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Abstract: Consider a network vulnerable to viral infection, where
the security software can guarantee safety only to a limited part of it.
We model this practical network scenario as a non-cooperative multi-
player game on a graph, with two kinds of players, a set of attackers
and a protector player, representing the viruses and the system security
software, respectively. Each attacker player chooses a node of the graph
via a probability distribution to infect. The protector player chooses
either an edge or a simple path of the network and cleans this part
from attackers. Each attacker wishes to maximize the probability of
escaping its cleaning by the protector. In contrast, the protector aims
at maximizing the expected number of extinguished attackers. We call
the two games obtained the Path and the Edge model, respectively.

We are interested in the associated Nash equilibria, where no net-
work entity can unilaterally improve its local objective. We obtain the
following results:

For certain families of graphs, mixed Nash equilibria can be computed
in polynomially time. These families include, among others, regular
graphs, graphs with perfect matchings and trees. The corresponding
Price of Anarchy for any mixed Nash equilibria of the game is upper
and lower bounded by a linear function of the number of vertices of
the graph. (We define the Price of Anarchy to reflect the utility of the
protector.) The problem of existence of a pure Nash equilibrium for the
Path model is NP-complete.

Keywords: Network Security Games, Nash equilibria, Graph Theory

Copyright c© 200x Inderscience Enterprises Ltd.



2 M. Mavronicolas, V. G. Papadopoulou, A. Philippou and P. Spirakis

Biographical notes: Marios Mavronicolas is a Professor of Computer
Science at University of Cyprus. His research interests span the Theory
of Algorithms and Complexity, with focus on Game Theory, Distrib-
uted and Parallel Computing, Networking and the Internet, where he
has published widely in leading journals and conferences. He is on the
Editorial Board of Theoretical Computer Science, Journal of Intercon-
nection Networks and Networks. He previously held faculty positions at
the University of Connecticut and the University of Crete. He holds a
PhD in Computer Science from Harvard University.

Vicky Papadopoulou is a Post-Doctoral Researcher in Computer Science
at University of Cyprus. Her research interests include Graph Theory,
Algorithms, Computational Complexity, and Algorithmic Game Theory.
She has published in prestigious journals and conference proceedings.
She previously worked as Visiting Lecturer at the University of Cyprus
and University of Patras. She holds a PhD in Computer Science from
University of Patras.

Anna Philippou is an Assistant Professor of Computer Science at Uni-
versity of Cyprus. Her research interests include Concurrency Theory
and its Applications, Specification and Verification of Concurrent Sys-
tems, Formal Methods, and Semantics of Programming Languages. She
has published in several prestigious journals and conference proceed-
ings. She previously worked as a Teaching Assistant at the University
of Warwick and as a Postdoctoral Research Fellow at the University of
Pennsylvania. She holds a PhD in Computer Science from University of
Warwick.

Paul Spirakis is currently the Director of the RACTI and a Full Professor
in the Patras University, Greece. His research interests Algorithms and
Complexity and interaction of Complexity and Game Theory. He has ex-
tensively published in most of the important Computer Science journals
and most of the significant refereed conferences. He was acknowledged
between the top 50 scientists worldwide in Computer Science with re-
spect to ”The best Nurturers in Computer Science Research”, published
by B. Kumar and Y.N. Srikant, ACM Data Mining, 2005. He was elected
unanimously as one of the two Vice Presidents of the Council of the
EATCS. He holds a PhD in Computer Science from Harvard University.

1 Introduction

1.1 Motivation

This work considers a problem of Network Security related to the protection of
a system from harmful procedures (e.g., viruses, worms). Consider an information
network where the nodes of the network are insecure and vulnerable to infection
from entities called attackers, such as viruses and Trojan horses. A protector, such
as the system security software, is available to the system, but it can guarantee
security only to a limited part of the network, such as a simple path or a single link
of it. Each harmful entity targets a location (such as a node) of the network; the
node is damaged unless it is cleaned by the system security software.
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Apparently, the harmful entities and the system security software have con-
flicting objectives. The security software seeks to protect the network as much as
possible, while the harmful entities wish to avoid being caught by the software so
that they be able to damage the network. Thus, the system security software seeks
to maximize the expected number of viruses it catches, while each harmful entity
seeks to maximize the probability it escapes from the security software.

Naturally, we model this scenario as a non-cooperative strategic game played on a
graph with two kinds of players: the vertex players representing the harmful entities,
and the edge or the path player representing the system security software considered
in each of the two cases, choosing a single edge or a simple path, respectively. The
corresponding games are called the Edge and the Path model, respectively. In
each model, each player seeks to maximize her Individual Profit. We are interested
in the Nash equilibria (12; 13) associated with these games, where no player can
unilaterally improve its Individual Profit by switching to a more advantageous
probability distribution.

We measure the system performance utilizing Social Cost (5), defined as the
number of attackers caught by the protector.

1.2 Contribution

Our results are summarized as follows:

1.2.1 The Edge Model

r-Factorizable, Regular and Perfect Matching Graphs. Although (8) provides a
graph-theoretic characterization of mixed Nash Equilibria for the Edge model, the
characterization only implies an exponential time algorithm for the case of general
graphs. Here, we utilize the characterization to provide polynomial time algorithms
to compute mixed Nash equilibria for specific graphs. In particular, we combine
the characterization with a suitable exploration of some graph-theoretic properties
of each graph family considered to obtain polynomial time structured mixed Nash
equilibria.

We consider r-factorizable graphs, which contain a spanning r-regular subgraph,
for some positive integer r. We show that an r-factorizable graph G admits a
mixed Nash equilibrium that can be computed in time O(T (G)), where O(T (G))
is the time needed for the computation of an r-factor of G (Theorem 3.1). So, if
T (G) is a polynomial function, a Nash equilibrium can be computed in polynomial
time (Corollary 3.2). Also, this implies that regular graphs admit polynomially
computable Nash equilibria (Corollary 3.3). Furthermore, since a graph with a
Perfect Matching (called Perfect Matching graph) is an 1-factorizable graph and a
Perfect Matching can be computed in polynomial time (3), the same result implies
that Perfect Matching graphs admit polynomial time Nash equilibria (Corollary
3.4).

Trees. We present a linear time algorithm for computing a mixed Nash equi-
librium for a tree (Theorem 3.5). This improves an algorithm to compute such an

equilibrium that runs in time O
(√

|V ||E|· log|V |
|V |2
|E|

)
from (10).

Price of Anarchy. We present upper and lower bounds on the Social Cost of any
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mixed Nash equilibrium in the Edge model (Theorem 3.10). Using these bounds,
we show that the corresponding Price of Anarchy is upper and lower bounded by a
linear function of the number of vertices of the graph (Theorem 3.12).

1.2.2 The Path Model

We prove that the existence problem of pure Nash equilibria in the Path model
is NP-complete (Theorem 4.4). This is in contrast to the Edge model, where no
instance has a pure Nash equilibrium (8, Theorem 1).

1.3 Related Work and Significance

This work is a step further in the development of Algorithmic Game Theory.
It is also one of the very few works modeling network security problems using
strategic games. Such a research line is that of Interdependent Security games (1).
However, none of these works, with an exception of (1), studied the associated
Nash equilibria. In (1), the authors studied a particular Virus Inoculation game
and established connections with variants of the Graph Partition problem.

The Edge model was introduced and studied in (8), where a non-existence result
for pure Nash equilibria (for any instance) and a polynomial time algorithm to
computed mixed Nash equilibria for bipartite graphs were provided.

(10) provided a polynomial time characterization of graphs admitting a class
of structured Nash equilibrium the so called Matching Nash equilibria. The char-
acterization implies that trees admit such equilibria. They also presented an al-
gorithm to compute such them (if such one exists) for a graph that runs in time

O
(√

|V ||E|· log|V |
|V |2
|E|

)
. Here, we present a more efficient, linear time algorithm

for computing a structured Nash equilibrium for a tree. More recently, (9) showed
that a more general class of graphs admits polynomial time computable Nash equi-
libria; the graphs with Fractional Perfect Matchings.

Recently, generalizations of the Edge model have been introduced and investi-
gated:

• In (4), the protector is able to scan and protect a set of k links of the network.
That work presented a polynomial time algorithm for computing pure and
mixed Nash equilibria and a polynomial-time transformation of a special class
of structured Nash equilibria between the Edge model and the generalized
model.

• In the generalization considered in (7), there is a number of interdependent
protectors with a reward-sharing scheme. The results in (7) provide inter-
esting trade-offs between the number of the protectors and the amount of
protection.

2 Framework

Throughout, we consider an undirected graph G = G(V, E) with no isolated
vertices; G is non-trivial whenever it has more than one edges, otherwise it is
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trivial.

2.1 Graph Theory

For a vertex set U ⊆ V , denote G(U) the subgraph of G induced by U ; de-
note EdgesG(U) = {(u, v) ∈ E | u, v ∈ U}. For an edge set E′ ⊆ E, de-
note VerticesG(E′) = {v ∈ V | (v, u) ∈ E′}. For a vertex set U ⊆ V , denote
NeighG(U) = {u /∈ U | (u, v) ∈ E for some vertex v ∈ U}. For an edge set
F ⊆ E, denote G(F ) the subgraph of G induced by F . For a vertex set U ⊆ V ,
the graph G\U is obtained by by G by removing the vertices of set U and their
incident edges. For a vertex v ∈ V , denote ∆G(v) the degree of vertex v and
∆(G) = maxv∈V ∆G(v).

• An Independent Set is a vertex set IS ⊆ V such that for all pairs of vertices
u, v ∈ IS, (u, v) /∈ E.

• A Vertex Cover is a vertex set V C ⊆ V such that for each edge (u, v) ∈ E
either u ∈ V C or v ∈ V C.

• An Edge Cover is an edge set EC ⊆ E such that for every vertex v ∈ V ,
there is an edge (v, u) ∈ EC.

• A Matching is a set M ⊆ E of non-incident edges. A Maximum Matching is
one that has maximum size; α′(G) denotes the size of a Maximum Matching
and it is called the Matching Number. The currently fastest algorithm to
compute a Maximum Matching of G appears in (3) and has running time

O

(√
|V ||E| · log|V |

|V |2
|E|

)
. It is known that a Minimum Edge Cover can be

computed in polynomial time via computing a Maximum Matching. (See, e.g.,
(15, page 115).) A Perfect Matching is a Matching that is also an Edge
Cover. A graph that admits a Perfect matching is called Perfect Matching
graph.

• A (simple) path is a sequence v1, v2, · · · , vk of distinct vertices from V such
that vi, vi+1 ∈ E for 1 ≤ i < k; say that the path has size k. A Hamil-
tonian path is a path that includes all vertices from V . A graph containing
a Hamiltonian path is called Hamiltonian. It is well known that answering
the question whether a given graph is Hamiltonian is an NP-complete (2,
problem GT39). Denote Paths(G) the set of all possible paths in G.

• For a rooted tree graph T = (V, E) denote root ∈ V , the root of the tree
and leaves(T ) the leaves of the tree T . For any v ∈ V , denote parentT (v) the
parent of v in the tree and childrenT (v) its children in the tree T . For any
A ⊆ V , let parentsT (A) := {u ∈ V | u = parentT (v), v ∈ A}.

• For an integer r, graph G is r-regular if ∆G(v) = r, ∀v ∈ V . A r-factor of a
graph G, is a spanning subgraph of G such that ∆Gr (v) = r for any v ∈ V . We
denote it as Gr = (V, E′), where E′ ⊂ E. A graph containing an r-factor is
called r-factorizable. For an 1-factor of G, its edge set is a Perfect Matching
of G. A 2-factor of a graph, also called cycle cover, (if there exists) can
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be computed in polynomial time, via Tutte’s reduction (14) to the classical
Perfect Matching problem (see (6, Sect. 10.1)). Thus, the currently most

efficient algorithm for its computation needs time O

(√
|V ||E| · log|V |

|V |2
|E|

)

(3).

A graph G is called polynomially computable r-factorizable if it contains
a an r-factor subgraph that can be compute in polynomial time. It can be
easily seen that there exist exponential many such graph instances.

2.2 The Edge Model

Associated with G is a strategic game ΠE(G) = 〈N , {Si}i∈N , {IP}i∈N 〉 on G:

• The set of players isN = Nvp∪Nep, whereNvp contains ν vertex players
vpi, 1 ≤ i ≤ ν and Nep contains a single edge player ep.

• The strategy set Si of vertex player vpi is V ; the strategy set Sep of
the edge player ep is E. So, the strategy space S of the game is S =(
×

i ∈ Nvp
Si

)
× Sep = V ν × E.

• Fix any profile s = 〈s1, . . . , sν , sep〉 ∈ S, also called a pure profile :

– The Individual Profit of vertex player vpi is a function IPi(s) : S →
{0, 1} such that IPi(s) =

{
0, si ∈ sep

1, si 6∈ sep
; so, the vertex player vpi

receives 1 if it is not caught by the edge player, and 0 otherwise.

– The Individual Profit of the edge player ep is a function IPep(s) :
S → N such that IPep(s) = |{i : si ∈ sep}|; so, the edge player ep
receives the number of vertex players it catches.

2.2.1 Pure Strategies and Pure Nash Equilibria

The profile s is a pure Nash equilibrium (12; 13) if for each player i ∈ N ,
it maximizes IPi(s) over all profiles t that differ from s only with respect to the
strategy of player i. Intuitively, in a pure Nash equilibrium, vertex player (resp.,
the edge player) can (resp., cannot) improve its Individual Profit by switching to
a different vertex (resp., edge). In other words, a pure Nash equilibrium is a local
maximizer for the Individual Profit of each player. Say that G admits a pure Nash
equilibrium if there is a pure Nash equilibrium for the strategic game ΠE(G).

2.2.2 Mixed Strategies and Profiles

A mixed strategy for player i ∈ N is a probability distribution over Si; thus, a
mixed strategy for a vertex player (resp., edge player) is a probability distribution
over vertices (resp., edges). A mixed profile s = 〈s1, . . . , sν , sep〉 is a collection
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of mixed strategies; si(v) is the probability that vertex player vpi chooses vertex v
and sep(e) is the probability that the edge player ep chooses edge e.

The support of player i ∈ N in the profile s, denoted Supporti(s), is the
set of pure strategies in its strategy set to which i assigns a strictly positive
probability in s. Denote Supportvp(s) =

⋃
i∈Nvp

Supporti(s). Set Edgesv(s) ={
(u, v) ∈ E : (u, v) ∈ Supportep(s)

}
. So, Edgesv(s) contains all edges incident to

v that are included in the support of the edge player. For a vertex set U ⊆ V , set
EdgesU (s) = {e = (u, v) ∈ Supportep(s) : u ∈ U}. So, EdgesU (s) contains all edges
incident to a vertex in U that are included in the support of the edge player.

For a vertex v ∈ V , the probability the edge player ep chooses an edge that con-
tains the vertex v is denoted Ps(Hit(v)). Clearly, Ps(Hit(v)) =

∑
e∈Edgesv(s) sep(e).

For a vertex v ∈ V , denote as VPv(s) the expected number of vertex players choosing
vertex v according to s; so, VPv(s) =

∑
i∈Nvp

si(v). For each edge e = (u, v) ∈ E,
VPe(s) is the expected number of vertex players choosing either the vertex u or the
vertex v.

2.2.3 Expected Individual Profit and Conditional Expected Individual Profits

A mixed profile s induces an Expected Individual Profit IPi(s) for each player
i ∈ N , which is the expectation according to s of the Individual Profit of player i.

Induced by the mixed profile s is also the Conditional Expected Individual
Profit IPi((s−i, v)) of vertex player vpi ∈ Nvp on vertex v ∈ V , which is the
conditional expectation according to s of the Individual Profit of player vpi had it
chosen vertex v. So,

IPi((s−i, v)) = 1− Ps(Hit(v))

= 1−
∑

e∈Edgesv(s)

sep(e)

Clearly, for the vertex player vpi ∈ Nvp,

IPi(s) =
∑

v∈V

si(v) · IPi((s−i, v))

=
∑

v∈V

si(v) ·

1−

∑

e∈Edgesv(s)

sep(e)


 .

Finally, induced by the mixed profile s is the Conditional Expected Individual
Profit IPep((s−ep, e)) of the edge player ep on edge e = (u, v) ∈ E, which is the
conditional expectation according to s of the Individual Profit of player ep had it
chosen edge e. So,

IPep((s−ep, e)) = VPe(s)

=
∑

i∈Nvp

(si(u) + si(v)).
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Clearly, for the edge player ep,

IPep(s) =
∑

e∈E

sep(e) · IPep((s−ep, e))

=
∑

e=(u,v)∈E

sep(e) ·

 ∑

i∈Nvp

(si(u) + si(v))


 .

2.2.4 Mixed Nash Equilibria

The mixed profile s is a mixed Nash equilibrium (12; 13) if for each player
i ∈ N , it maximizes IPi(s) over all mixed profiles t that differ from s only with
respect to the mixed strategy of player i. In other words, a Nash equilibrium s
is a local maximizer for the Expected Individual Profit of each player. By Nash’s
celebrated result (12; 13), there is at least one mixed Nash equilibrium for the
strategic game ΠE(G); so, every graph G admits a mixed Nash equilibrium.

The particular definition of Expected Individual Profits implies in a Nash equi-
librium, for each player i ∈ N and strategy x ∈ Si such that si(x) > 0, all Con-
ditional Expected Individual Profits IPi((s−i, x)) are the same and no less than
any Conditional Expected Individual Profit IPi((s−i, x

′)) with si(x′) = 0, where
x′ ∈ Si. It follows that:

• For each vertex player vpi, for any vertex v ∈ Supporti(s),

IPi(s) = 1−
∑

e∈Edgesv(s)

sep(e).

• For the edge player ep, for any edge (u, v) ∈ Supportep(s),

IPep(s) =
∑

i∈Nvp

(si(u) + si(v)) .

Note that for each vertex player vpi, there is some vertex v such that si(v) > 0;
since a Nash equilibrium s maximizes the Individual Profit of the edge player ep,
it follows that IPep(s) > 0 for a Nash equilibrium s. A profile s is uniform if each
player uses a uniform probability distribution on her support.

2.2.5 Background

In (8, Theorem 1) it was proved that if G contains more than one edges, then
ΠE(G) has no pure Nash Equilibrium. We use a characterization of Nash equilib-
rium proved in the same work:

Theorem 2.1 ((8)) A profile s is a Nash equilibrium if and only if (1) for each
vertex v ∈ Supportvp(s), Ps(Hit(v)) = minv′∈V Ps(Hit(v′)), and (2) for each edge
e ∈ Supportep(s), VPe(s) = maxe′∈E VPe′(s).

We also use the notion of Covering profiles, introduced in (8). A covering
profile is a profile s such that (1) Supportep(s) is an Edge Cover of G and (2)
Supportvp(s) is a Vertex Cover of the graph G(Supportep(s)). It turns out that
Covering profiles are interesting:
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Proposition 2.2 ((8)) A Nash Equilibrium is a Covering profile.

An Independent Covering profile (8) s is a uniform Covering profile in
which si = sj , for any two vertex players i, j ∈ Nvp such that (1) Supportvp(s) is
an Independent Set and (2) each vertex in Supportvp(s) is incident to exactly one
edge in Supportep(s). Our analysis uses the following previous result:

Theorem 2.3 ((10)) An Independent Covering profile is a Nash equilibrium.

2.3 The Path Model

We now introduce a generalization of the Edge model ΠE(G). The generalization
consists of allowing the prodector (edge player in the Edge model) to select a path
of G, instead of a single edge. We call this generalization as the Path model and
denote it as ΠP(G) = 〈N , {Si}i∈N , {IP}i∈N 〉. The only difference with ΠE(G) is
that:

(i) N = Nvp ∪ Npp, where Nvp is defined as before but Npp contains a single
path player pp (which replaces the edge player)

(ii) spp = Paths(G).

Thus, the strategy set S of ΠP(G) is S =
(
×

i ∈ Nvp
Si

)
× Spp = V ν × |Paths(G)|.

Note that the strategy set of ΠP(G) is exponential, as the number of distinct
paths of the graph.

2.3.1 Nash Equilibria

In the same way as for ΠE(G), we define a pure Nash equilibrium for ΠP(G).
Similarly, we define a mixed strategy si for player i ∈ N and a mixed profile
s for ΠP(G). In a mixed profile s, we define the support Supporti(s) for player
i ∈ N . Also, we define Pathsv(s) = {p ∈ Paths(G) : p ∈ Supportpp(s) and v ∈
VerticesG(p)}. For a vertex v ∈ V , the probability the path player pp chooses
a path that contains the vertex v is denoted Ps(Hit(v)). Clearly, Ps(Hit(v)) =∑

p∈Paths(v) spp(p). For a vertex v ∈ V , we define VPv(s) as in ΠE(G). So, for a path
p ∈ PG(s), we denote VPp(s) =

∑
v∈VerticesG(p)

∑
i∈Nvp

si(v).
Similarly to ΠE(G), we define the Expected Individual Profit IPis, and the

Conditional Expected Individual Profit IPi((s−i, x)), of player i, for a strategy
x ∈ Si. So, for any vertex player vpi ∈ Nvp, for any vertex v ∈ V , IPi((s−i, v)) =
1 − Ps(Hit(v)). For the path player, for any path p ∈ Paths(G), IPpp((s−pp, p)) =
VPp(s).

2.4 Social Cost and Price of Anarchy

We utilize the notion of social cost (5) for evaluating the system performance.
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Definition 2.1 For model M, M = {P,E}, we define the social cost of configu-
ration s on instance ΠM(G), SC(ΠM, s), to be the (expected) sum of vertex players
of ΠM arrested in s. That is, SC(ΠM, s) = IPp(s) (p = {pp, ep}, when M = P and
M = E, respectively).

Obviously, the system wishes to maximize the social cost.

Definition 2.2 For model M, M = {P,E}, the price of anarchy, r(M) is

r(M) = max
ΠM(G),s

maxs∗∈S SC(ΠM(G), s∗)
SC(ΠM(G), s)

3 The Edge Model

We first study Nash equilibria in the Edge model.

3.1 r-Factor, Regular, Perfect Matching Graphs

Theorem 3.1 For a positive integer r, an r-factorizable graph G admits a Nash
equilibrium s that can be computed in time O(T (G)), where O(T (G)) is the time
needed for the computation of an r-factor of G. Also, SC(ΠE(G), s) = 2ν

|V | .

Proof. From G first compute in polynomial time O(T (G)) an r-regular factor of
G, Gr(V, Er). Then construct the following configuration s on ΠE(G):

For each vertex player i ∈ Nvp, and each vertex v ∈ V, set si(v) := 1
|V | .

For each edge e ∈ Er, set sep(e) := 1
|Er| and sep(e) := 0 for each edge e ∈ E\Er.

Note first that s is constructed in constant time. We now show that s is a Nash
equilibrium. For any vertex v ∈ V (= Supportvp(s)),

Ps(Hit(v))
=

∑
e∈Edgesv(s) sep(e)

= |Edgesv(s)|
|Er| (since sep = 1

|Er| , for each e ∈ Supportep(s), by construction)

= r
r · |V |

2

(since ∆G(Supportep(s))(v) = r and |Er| = r · |V |
2 )

= 2
|V | .

It follows that Ps(Hit(v)) = minv′∈V Ps(Hit(v′)), for any vertex v ∈ Supportvp(s).
Thus, s satisfies Condition (1) in the characterization of Nash equilibria (Theorem
2.1). For condition (2), consider any edge e = (u, v) ∈ E. Then,

VPe(s)
= VPu(s) + VPv(s)
=

∑
i∈Nvp

(si(u) + si(v))

= 2 · ν · 1
|V | , (∀ v ∈ V , v ∈ Supportvp(s) and si(v) = 1

|V | , by construction)
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It follows that VPe(s) = maxe′∈E VPe′(s), for each edge e ∈ Supportep(s). Thus,
s satisfies Condition (2) in the characterization of Nash equilibria (Theorem 2.1),
which proves that it is a Nash equilibrium.

We finally compute the social cost of s:

SC(ΠE(G), s)
= IPep(s)
= VPe(s), (for any edge e ∈ Supportep(s), since s is a Nash equilibrium)

= 2ν
|V | ,

as required.

Corollary 3.2 For a positive integer r, a polynomially computable r-factorizable
graph G has a polynomially computable Nash equilibrium.

Corollary 3.3 A regular graph has a polynomially computable Nash equilibrium.

Observe that the class of r-factorizable graphs is a subclass for (r−1)-factorizable
graphs. So, we can restrict ourselves to the easiest case of 1-factorizable graphs
(Perfect Matching graphs). Such a graph can be recognized in polynomial time

O
(√

|V ||E|· log|V |
|V |2
|E|

)
(3); and a Perfect Matching of it can be can be com-

puted in the same time. Thus, Theorem 3.1 implies that,

Corollary 3.4 If G is a Perfect Matching graph, then it admits a Nash equilibrium

that can be computed in time O

(√
|V ||E| · log|V |

|V |2
|E|

)
.

3.2 Trees

In this section we consider trees. We present an efficient algorithm to compute
a mixed Nash equilibrium in a tree. The algorithm, called TreesNE, is presented in
pseudocode in Figure 3.2.

Theorem 3.5 Algorithm TreesNE computes a mixed Nash equilibrium of a tree
graph T = (V, E) in linear time O(|V |).

Proof. We prove the claim via a sequence of Lemmas.

Lemma 3.6 Set V C is an Independent Set.

Proof. Set V C is constructed during Step (2) of the algorithm. We prove that
the set is an Independent Set by induction to the number of iterations of the step.
Consider an iteration r and denote as T ′r and V Cr the current graph T ′ and vertex
set V C, respectively. In the first iteration of the step, set V C is extended with the
leaves of tree T ′r, leaves(T ′r). Since for the first iteration, leaves(T ′) = leaves(T ), it
follows that initially, set V Cr is an Independent Set.

Assume, by induction, that V Cr is an Independent Set at the beginning of
iteration r. We prove that this remains true after the extension of the set at the
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Algorithm TreesNE
Input: A rooted tree T = (V, E)
Output: A mixed Nash equilibrium s for T .

(1) Set T ′ := T and V C := ∅.
(2) Repeat until T ′ == ∅

(2/a) Set V C := V C ∪ leaves(T ′).

(2/b) For each vertex v ∈ leaves(T ′),

If parentT ′(v) 6= ∅, then EC := EC ∪ {(v, parentT ′(v)))}
else EC := EC ∪ {(v, u)}, for any u ∈ childrenT (v).

(2/c) Set T ′ := T ′\{leaves(T ′), parents(leaves(T ′))}.
(3) Set Supportep(s) := EC and Supportvp(s) := V C.

(3) For each vertex player i ∈ Nvp, and each vertex v ∈ V C, set si(v) = 1
|V C| .

For each edge e ∈ EC , set sep(e) = 1
|EC| .

end of the iteration. Consider a vertex v ∈ leaves(T ′r). Since r > 1, vertex v is
an inner vertex of the graph T . Moreover, by Step (2/c), in each expansion of
set V C, we exclude from the set the parents of the currently inserted vertices. It
follows that vertex set childrenT (v) has been excluded from the set V Cr, in previous
iterations of the step. As it concerns the parent of v in T , we argue that parentT (v)
is not contained in V Cr. This is true because, by Step (2/a), in each iteration,
V Cr is expanded only with the leaves of Tr. It follows that parentT (v) can not be
contained in V Cr. Thus, extending set V C with set leaves(T ′r), in current iteration,
guarantees that the set is still an Independent Set, as required.

Lemma 3.7 Set EC is an Edge Cover.

Proof. Note that each vertex v ∈ V is considered in Step (2) of the algorithm,
either as a (i) leaf of T ′ or (ii) a parent of such a leaf. In both cases, an edge (v, u)
is added to EC (in Step (2/b)), where u is the parent of vertex v, for case (i) or u
is one of its children, for case (ii). Thus, in any case, vertex v is covered by EC so
that EC is an Edge Cover.

Lemma 3.8 Set V C is a Vertex Cover of T (EC).

Proof. For each edge (v, u) added to EC (at Step (2/b) of the algorithm), ver-
tex v ∈ leaves(T ′) was added to V C (at Step (2/a) of the same iteration of the
algorithm). The claim follows.

Lemma 3.9 Profile s is an Independent Covering profile.

Proof. We first show that s is a Covering profile. By Lemma 3.7, EC is an
Edge Cover. By Step (3) of the algorithm, Supportep(s) = EC. It follows that
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Supportep(s) is an Edge Cover, as required by Condition (1) of a Covering profile.
By Lemma 3.8, V C is a Vertex Cover of T (EC). By Step (3) of the algorithm,
Supportep(s) = EC and Supportvp(s) = V C. It follows that Supportvp(s) is a Vertex
Cover of the graph T (Supportep(s)), as required by Condition (2) of a Covering
profile. Thus, s is a Covering profile.

We proceed to show that s is an Independent Covering profile. Note first that
s is a uniform profile such that si = sj , for any two vertex players i, j ∈ Nvp.
By Lemma 3.6, and since Supportvp(s) = V C, it follows that Supportvp(s) is an
Independent Set. Thus, s satisfies additional Condition (1) of an Independent
Covering profile.

We proceed to prove additional Condition (2) of an Independent Covering pro-
file. Note that, by Step (2/b) of the algorithm, for each vertex v added in V C, we
add an edge (v, u) in EC, where either u = parentT ′(v) or u ∈ childrenT (v) (in the
case where parentT (v) = ∅). By Condition (1) of a Covering profile, there exists
at least one edge (v, u) ∈ Supportep(s). We claim that there is exactly one such
edge. Note that, vertex v is either a leave of T or an inner vertex of T . In the
first case, edge (v, u) is the only incident to v edge in T ; thus the claim follows.
For the latter case, since v ∈ leaves(T ′), Step (2/c) implies that childrenT (v) have
been removed from T ′ in previous iterations of the algorithm. Thus, edge (v, u),
such that u ∈ childrenT (v) are not contained in Supportep(s). Thus, edge (v, u),
such that u ∈ childrenT (v) are not contained in Supportep(s). Since, T is a tree, it
follows that edge (v, u) ∈ Supportep(s) is the only one edge of Supportep(s) incident
to vertex v ∈ Supportvp(s). Additional Condition (2) of an Independent Covering
profile follows, concluding the claim.

We now return in the proof of the Theorem. Lemma 3.9 implies that s is an
Independent Covering profile. Thus, by Theorem 2.3, s is a Nash equilibrium, as
required.

For the time complexity of the algorithm, Step (1) takes constant time. Step (2)
iterates at most O(|V |) times. In each iteration, Steps (2/a), (2/c) takes constant
time. By Step (2/b), each vertex v ∈ V is considered in exactly one iteration of
Step (2). Moreover, Step (2/b) takes constant time. Thus, Step (2) is completed
in linear time O(|V |). Step (3) takes constant time. Finally, Step (4) takes O(|V |)
time. It follows that the algorithm is completed in linear time O(|V |).

3.3 The Price of Anarchy

We first upper and lower bound the Social Cost of a Nash equilibrium.

Theorem 3.10 For a Nash equilibrium s,

ν

min
{|Supportep(s)|, |Supportvp(s)|

} ≤ SC(ΠE(G), s) ≤
ν ·∆G(Supportep(s))

|Supportep(s)|
.

Proof. We first show the lower bound.
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max
e′∈E

VPe′(s)

= 1
|Supportep(s)| ·

∑
e∈Supportep(s) VPe(s) (by Condition (2) of Theorem 2.1).

= 1
|Supportep(s)| ·

∑
v∈VerticesG(Supportep(s)) |Edgesv(s)| · VPv(s)

= 1
|Supportep(s)| ·

∑
v∈V |Edgesv(s)| · VPv(s),

since profile s is a Covering profile (by Proposition 2.2), it satisfies Condition (1)
of Covering profile, i.e. Supportep(s) is an Edge Cover of G. So,

max
e′∈E

VPe′(s)

≥ 1
|Supportep(s)| ·

∑
v∈V VPv(s)

= ν
|Supportep(s)| .

Thus,

SC(ΠE(G), s)
= IPep(s)
= VPe(s) (for an edge e ∈ Supportep(s), since s is a Nash equilibrium)
= maxe′∈E VPe′(s) (by Condition (2) of Theorem 2.1)
≥ ν

|Supportep(s)| .

Also, we argue that since s is a Nash equilibrium, there exists a vertex v′ ∈
Supportvp(s) such that VPv(s) ≥ ν

|Supportvp(s)| . Assume in contrary that, VPv(s) <

ν
|Supportvp(s)| , for each vertex v ∈ Supportvp(s). Then,

∑

v∈V

VPv(s)

=
∑

v∈Supportvp(s) VPv(s)

< |Supportvp(s)| · ν
|Supportvp(s)|

< ν,

a contradiction since,
∑

v∈V VPv(s) = ν (since s is a profile).

It follows that there exists a vertex v′ ∈ Supportvp(s) such that VPv′(s) ≥
ν

|Supportvp(s)| .
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Thus,

SC(ΠE(G), s)
= IPep(s)
= VPe′(s)

(for an edge e′ = (v′, u) ∈ Supportep(s), since s is a Nash equilibrium)
= VPv′(s) + VPu(s)
≥ VPv′(s)
≥ ν

|Supportvp(s)| (by definition of vertex v′),

as required.
It folllows that,

SC(ΠE(G), s) ≥ ν

min
{|Supportep(s)|, |Supportvp(s)|

} .

We now prove the upper bound.
∑

e∈Supportep(s)

VPe(s)

=
∑

v∈VerticesG(Supportep(s)) |Edgesv(s)| · VPv(s)

=
∑

v∈V |Edgesv(s)| · VPv(s)
≤ ∑

v∈V ∆(G(Supportep(s))) · VPv(s)
= ∆(G(Supportep(s))) ·

∑
v∈V VPv(s)

≤ ∆(G(Supportep(s))) · ν (s is a profile)

So,

max
e′∈E

VPe′(s)

= 1
|Supportep(s)| ·

∑
e∈Supportep(s) VPe(s) (by Condition (2) of Theorem 2.1)

=
∆(G(Supportep(s))) · ν

|Supportep(s)|
Thus,

SC(ΠE(G), s)
= IPep(s)
= VPe(s)

(for an edge e ∈ Supportep(s), since s is a Nash equilibrium)
= maxe′∈E VPe′(s) (by Condition (2) of Theorem 2.1)

≤ ∆(G(Supportep(s))) · ν
|Supportep(s)| .

The proof is now complete.
We provide an estimation on the payoffs of the vertex players in any Nash

equilibrium.
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Lemma 3.11 In a mixed Nash equilibrium s,

1− 2
|Supportvp(s)|

≤ IPi(s) ≤ 1− 1
|Supportvp(s)|

.

Proof. For any vertex player i ∈ Nvp,

IPi(s)

= 1
|Supportvp(s)| ·

∑
v∈Supportvp(s) IPi(s)

= 1
|Supportvp(s)| ·

∑
v∈Supportvp(s)

(
1−∑

e∈Edgess(v) sep(e)
)

= 1
|Supportvp(s)| ·

∑
v∈Supportvp(s)(1)−∑

v∈Supportvp(s)

∑
e∈Edgess(v) sep(e)

Since s is a Covering profile (Proposition 2.2), Supportvp(s) is a vertex cover of
Supportep(s). Therefore, any edge e ∈ Supportep(s) appears either at most twice in
the the second right sum

∑
v∈Supportvp(s), once for each of its endpoints. So,

IPi(s)

≥ 1
|Supportvp(s)| ·

(
|Supportvp(s)| − 2

∑
e∈Supportep(s) sep(e)

)

(since
∑

e∈Supportep(s) sep(e) = 1)

= 1− 2
|Supportvp(s)| ,

as required.
Moreover, any edge e ∈ Supportep(s) appears either at least once in the the

second right sum
∑

v∈Supportvp(s), for one of the two end points of edge e. So,

IPi(s)

≤ 1
|Supportvp(s)| ·

(
|Supportvp(s)| − 1

∑
e∈Supportep(s) sep(e)

)

(since
∑

e∈Supportep(s) sep(e) = 1)

= 1− 1
|Supportvp(s)| ,

as required. The claims follows.

Theorem 3.12 For the Edge model, |V |2 ≤ r(E) ≤ |V |.

Proof. We first prove the upper bound. Obviously, maxs∗∈S SC(ΠE(G), s∗) ≤ ν.
Now consider the following profile s′: Set each vertex player i ∈ Nvp, s′i = v, for
some vertex v ∈ V and set s′ep = (v, u), for some (v, u) ∈ E such that u ∈ NeighG(v).
Then, SC(ΠE(G), s∗) = IPep(s′) = ν. It follows that, maxs∗∈S SC(ΠE(G), s∗) = ν.
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So,

r(E)

= maxΠE(G),s
maxs∗∈S SC(ΠM(G), s∗)

SC(ΠE(G), s)
= maxΠE(G),s

ν
SC(ΠE(G), s) (since SC(ΠE(G), s′) = ν)

≤ maxΠE(G),s
ν
ν

min
{|Supportep(s)|, |Supportvp(s)|

} (by Theorem 3.10)

≤ maxΠE(G),s{min{|Supportep(s)|, |V (Supportvp(s))|}}
≤ maxΠE(G),s{|V (Supportvp(s))|}
The last inequality is is true because max{min{f1, f2}} ≤ max{f1}, where f1, f2

are any two functions. So,

r(E) ≤ maxΠE(G),s{|V (Supportvp(s))|}
≤ |V | (since |Supportvp(s)| ≤ |V |).

We proceed to show the lower bound. Note that Theorem 3.3 implies that there
exists an instance ΠE(G) and a profile s′ such that SC(ΠE(G), s′) = 2ν

|V | . Thus,

r(E)

= maxΠE(G),s
maxs∗∈S SC(ΠM(G), s∗)

SC(ΠE(G), s)
= maxΠE(G),s

ν
SC(ΠE(G), s) (since SC(ΠE(G), s∗) = ν)

≥ ν
SC(ΠE(G), s′) (by definition of profile s′)

≥ ν
2ν
|V |

(SC(ΠE(G), s′) = 2ν
|V | , by Theorem 3.3)

= |V |
2 ,

as required.

4 The Path Model

For the Path model, we characterize pure Nash Equilibria. We first prove:

Proposition 4.1 If ΠP(G) admits a pure Nash equilibrium s then the graph G is
Hamiltonian.

Proof. Consider the path w ∈ Paths(G) such that spp(w) = 1. We prove that
w is a Hamiltonian path so that G is Hamiltonian. Assume in contrary that G
does not contain a Hamiltonian path. Then, VerticesG(w) ⊂ V . Ps(Hit(v)) =∑

w∈Pathsv(s) spp(w) = 1. On the other hand, for any vertex v ∈ V \{VerticesG(w)},
Ps(Hit(v)) =

∑
w∈Pathsv(s) spp(w) = 0.

Since, IPi((s−i, v)) = 1−Ps(Hit(v)), it follows that IPi((s−i, v)) > IPi((s−i, u)),
for any two vertices v, u, such that v ∈ V \{VerticesG(w)} and u ∈ VerticesG(w).
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Since s is a local maximizer for the Expected Individual Profit of the player vpi

and a pure profile, it follows that the player chooses some such v with probability
1 while he chooses any such u with probability zero. It follows that,

IPpp((s−pp, w)) = VPw(s)

=
∑

v∈VerticesG(w)

∑

i∈Nvp

si(v)

= 0.

Consider now an alternative path w′ ∈ Paths(G), w′ 6= w, such that v ∈
VerticesG(w′) and v ∈ V \{VerticesG(w)}. (Note that for vertex v, si(v) = 1).
Then,

IPpp((s−pp, w
′)) = VPw′(s)

=
∑

v∈VerticesG(w′)

∑

i∈Nvp

si(v)

> 0.

Since s is a Nash equilibrium, for each strategy w ∈ Spp such that spp(w) > 0, all
Conditional Expected Individual Profits IPpp((s−pp, w)) are the same and no less
than any Conditional Expected Individual Profit IPpp((s−pp, w

′)) with spp(w′) = 0.
Thus,

IPpp((s−pp, w)) ≥ IPpp((s−pp, w
′))

> 0,

a contradiction, since IPpp((s−pp, w)) = 0. It follows that G is Hamiltonian, as
required.

Moreover, we prove:

Theorem 4.2 If the graph G is Hamiltonian then ΠP(G) admits a pure Nash equi-
librium.

Proof. Assume that G contains a Hamiltonian path w. Consider a pure profile s
such that spp(w) = 1. Then, for the path player pp,

IPpp((s−pp, w))
= VPw(s)
=

∑
v∈VerticesG(w)

∑
i∈Nvp

si(v)

= ν (since w is a Hamiltonian path, by construction).

Thus, the Conditional Expected Individual Profit IPpp(s−pp, w) of the path player
is IPpp(s−pp, w) ≥ IPpp(s−pp, w

′), for any alternative strategy w′ ∈ Paths(G). It
follows that s is a local maximizer for its Expected Individual Profit.

As, it concerns the vertex players, note that for any vertex v ∈ V , it holds
that v ∈ VerticesG(w). Thus, for any vertex player vpi ∈ Nvp, Ps(Hit(v)) =∑

w∈Pathsv(s) spp(w) = 1, for any vertex v ∈ V . Since the Conditional Expected
Individual Profit IPi((s−i, v)) = 1−Ps(Hit(v)), it follows that IPi((s−i, v)) = 0, for
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any vertex v ∈ V . It follows that s is a local maximizer for its Expected Individ-
ual Profit. Since s is a local maximizer for the Expected Individual Profits of all
players, it is a pure Nash equilibrium, as required.
Propositions 4.1 and 4.2 together imply that:

Theorem 4.3 ΠP(G) admits a pure Nash equilibrium if and only if the graph G is
Hamiltonian.

Theorem 4.3 immediately implies:

Corollary 4.4 The problem of deciding whether there exists a pure NE for any
ΠP(G) is NP-complete.

References

[1] Aspnes, J., Chang, K., and Yampolskiy, A. ‘Inoculation Strategies for Victims
of Viruses and the Sum-of-Squares Partition Problem’, Journal of Computer
and System Sciences, Vol. 72, No. 6, pp. 1077–1093, September 2006.

[2] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to
Theory of NP-Completeness, W. H./ Freeman and Company, 1979.

[3] Goldberg, A. V., and Karzanov, A. V. ‘Maximum Skew-Symmetric Flows’,
Proceedings of the 3rd Annual European Symposium on Algorithms, Vol. 979,
Lecture Notes in Computer Science, pp. 155–170, Springer-Verlag, September
1995.

[4] Gelastou, M., Mavronicolas, M., Papadopoulou, V. G., Philippou, A. and
Spirakis, P. ‘The Power of the Defender’, CD-ROM Proceedings of the 2nd In-
ternational Workshop on Incentive-Based Computing, in conjunction with the
26th IEEE International Conference on Distributed Computing, July 2006.

[5] Koutsoupias, E. and Papadimitriou, C. H., ‘Worst-Case Equilibria’, Proceed-
ings of the 16th International Symposium on Theoretical Aspects of Com-
puter Science, Vol. 1563, Lecture Notes in Computer Science, pp. 404–413,
Springer-Verlag, March 1999.

[6] Lovász, L., and Plummer, M. D. Matching Theory, Vol. 121, North-Holland
Mathematics Studies, 1986.

[7] Mavronicolas, M., Monien, B., and Papadopoulou, V. G. ‘How Many Attack-
ers Can Selfish Defenders Catch?’, CD-ROM Proceedings of the 41st Hawaii
International International Conference on Systems Science, January 2008.

[8] Mavronicolas, M., Papadopoulou, V. G., Philippou, A. and Spirakis, P. G.
‘A Network Game with Attackers and a Defender’, Algorithmica, Special Is-
sue with selected papers from the 16th Annual International Symposium on
Algorithms and Computation, Vol. 51, No. 3, pp. 315-341, July 2008.

[9] Mavronicolas, M., Papadopoulou, V. G., Persiano, G., Philippou, A., and Spi-
rakis, P. G. ‘The Price of Defense and Fractional Matchings’, Proceedings of



20 M. Mavronicolas, V. G. Papadopoulou, A. Philippou and P. Spirakis

the 8th International Conference on Distributed Computing and Networking,
Vol. 4308, Lecture Notes in Computer Science, pp. 115–126, Springer-Verlag,
December 2006.

[10] Mavronicolas, M., Michael, L., Papadopoulou, V. G., Philippou, A. and Spi-
rakis, P. G. ‘The Price of Defense’, Proceedings of the 31st International
Symposium on Mathematical Foundations of Computer Science, Vol. 4162,
Lecture Notes in Computer Science, pp. 717–728, Springer-Verlag, Au-
gust/September 2006.

[11] Micali, S. and Vazirani, V. V. ‘An O(
√

V E) Algorithm for Finding Max-
imum Matching in General Graphs’, Proceedings of the 21st Annual IEEE
Symposium on Foundations of Computer Science, pp. 17-27, 1980.

[12] Nash, J. F., ‘Equilibrium Points in N-Person Games’, Proceedings of the Na-
tional Academy of Sciences of the United States of America, Vol. 36, pp.
48–49, 1950.

[13] Nash, J. F., ‘Non-Cooperative Games’, Annals of Mathematics, Vol. 54, pp.
286–295, 1951.

[14] Tutte, W. T. ‘A Short Proof of the Factor Theorem for Finite Graphs’, Cana-
dian Journal of Mathematics, Vol 6, pp. 347-352, 1954.

[15] West, D. B. Introduction to Graph Theory, Prentice Hall, 2nd edition, 2001.


