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Abstract

A packet-switching network is stable if the number of packets in the network remains
bounded at all times. A very natural question that arises in the context of stability properties
of such networks is how network structure precisely affects these properties.

In this work, we embark on a systematic study of this question in the context of Ad-
versarial Queueing Theory, which assumes that packets are adversarially injected into the
network. We consider size, diameter, maximum vertex degree, minimum number of disjoint
paths that cover all edges of the network, and network subgraphs as crucial structural pa-
rameters of the network, and we present a comprehensive collection of structural results, in
the form of stability and instability bounds on injection rate of the adversary for various
greedy protocols:

• Increasing the size of a network may result in dropping its instability bound. This is
shown through a novel, yet simple and natural, combinatorial construction of a size-
parameterized network on which certain compositions of greedy protocols are running.
The convergence of the drop to 0.5 is found to be fast with and proportional to the
increase in size.

• Maintaining the size of a network small may already suffice to drop its instability
bound to a substantially low value. This is shown through a construction of a FIFO

network with size 22, which becomes unstable at rate 0.704. This represents the
current state-of-the-art trade-off between network size and instability bound.

• The diameter, maximum vertex degree and minimum number of edge-disjoint paths
that cover a network may be used as control parameters for the stability bound of the
network. This is shown through an improved analysis of the stability bound of any
arbitrary FIFO network, which takes these parameters into account.

• How much can network subgraphs that are forbidden for stability affect the instability
bound? Through improved combinatorial constructions of networks and executions,
we improve the state-of-the-art instability bound induced by certain known forbidden
subgraphs on networks running a certain greedy protocol.

Our results shed more light and contribute significantly to a finer understanding of the
impact of structural parameters on stability and instability properties of networks.
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1 Introduction

1.1 Motivation and Framework

Objectives. A lot of research has been done in the field of packet-switched communication
networks for the specification of their behavior. In such networks, packets arrive dynamically
at the nodes and they are routed in discrete time steps across the edges. In this work, we
embark on a study of the impact structural network properties have on the correctness and
performance properties of networks. We study here greedy protocols as our test-bed. In some
cases, we consider networks in which different switches can use different greedy protocols. This
is motivated by the heterogeneity of modern large-scale networks such as the Internet.

Framework of Adversarial Queueing Theory. We focus on a basic adversarial model for packet
arrival and path determination that has been recently introduced in a pioneering work by
Borodin et al. [4]. It was developed as a robust counterpart to classical Queueing theory [6]
that replaces stochastic by worst case assumptions. The underlying goal is to determine whether
it is feasible to prove stability results even when packets are injected by an adversary. At each
time step, the adversary may inject a set of packets into some nodes. For each packet, the
adversary specifies a simple path that the packet must traverse; when the packet arrives to its
destination, it is absorbed by the system. When more than one packets wish to cross a queue
at a given time step, a contention-resolution protocol is employed to resolve the conflict. A
crucial parameter of the adversary is its injection rate r, where 0 < r < 1. Among the packets
that the adversary injects in any time interval I, at most �r|I|� can have paths that require
any particular edge. We say that a packet p requires an edge e at time t if the edge e lies on
the path from its position to its destination at time t.

Stability. Stability requires that the number of packets in the system remains bounded at all
times. We say that a protocol P is stable [4] on a network G against an adversary A of rate r

if there is a constant C (which may depend on G and A) such that the number of packets in
the system is bounded at all times by C. We say that a protocol P is universally stable [4] if it
is stable against every adversary of rate less than 1 and on every network. We also say that a
network G is universally stable [4] if every greedy protocol is stable against every adversary of
rate less than 1 on G. We say forbidden subgraphs for network stability when the packets follow
non-simple paths (paths do not contain repeated edges, but they contain repeated vertices) [2, 8]
any graph obtained by replacing any edge of the graphs U1 and U2 (see Figures 1 and 2) by
disjoint directed paths.

Greedy Protocols. We consider six greedy contention-resolution protocols– ones that always
advance a packet across a queue (but one packet at each discrete time step) whenever there
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Protocol name Which packet it advances: US

Shortest-In-System (SIS) The most recently injected packet
√

[1, Theorem 2.3]

Longest-In-System (LIS) The least recently injected packet
√

[1, Theorem 2.5]

Furthest-To-Go (FTG) The furthest packet from its destination
√

[1, Theorem 2.7]

Nearest-To-Source (NTS) The nearest packet to its origin
√

[1, Theorem 2.8]

First-In-First-Out (FIFO) The earliest arrived packet at the queue X [1, Theorem 2.10]

Nearest-To-Go-Using-LIS The nearest packet to its destination X [2, Lemma 7]
(NTG-U-LIS) or the same as LIS for tie-breaking

Table 1: Greedy protocols considered in this paper. (US stands for universally stable)

resides at least one packet in the queue (see Table 1).

Network Structure. Important parameters of network structure are:

• size– the number of queues in the network,

• diameter– the maximum directed path length in the network,

• maximum vertex degree– the maximum number of ingoing edges in a vertex in the net-
work,

• minimum number of edge-disjoint paths that cover all edges of the network, and

• forbidden subgraphs for stability.

1.2 Contribution

Our work interestingly shows how network structure precisely affects stability. In particular, we
present a comprehensive collection of structural results in the form of stability and instability
bounds on injection rate of the adversary.

• We prove that increasing the network size can drop the lower bound on injection rate that
guarantees instability for heterogeneous networks. This is shown through a novel, yet
simple and natural, construction of a size-parameterized network on which compositions
of LIS protocol with any of SIS, NTS and FTG protocol are running. In particular, we
apply our construction in instances of a parameterized network family and we prove that
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when network size tends to infinity then the instability bound for the compositions of LIS

protocol with any of SIS, NTS and FTG protocol converges to 0.5. The convergence of
the drop to 0.5 is found to be fast with and proportional to the increase in size.

• We show how specific network graph parameters such as the maximum directed network
path length, the maximum vertex degree and the minimum number of edge-disjoint paths
that cover a network can be used as a control mechanism for proving a stability bound
on any arbitrary network that uses FIFO as contention-resolution protocol. Our analysis
obtains an upper bound on FIFO stability based on a fundamental FIFO property, namely
that in any FIFO network, packets exit the network after some bounded time (by their
size and the network structure). This result improves the previous known upper bound
for FIFO stability of [7] for all networks. Furthermore, for several networks our stability
bound is better than the one estimated in [12] such as the network U1 in Figure 1.

• We prove that applying a specific adversarial construction to a small size network suffices
to drop its instability bound to a substantially small value. This is shown for a network
with only 22 queues on which queues FIFO is running. This network is proven to be
unstable for any r ≥ 0.704. The same instability bound can be obtained applying the
technique of [12] on a size-parameterized network with at least 361 queues. The technique
we use exploits the existence of multiple parallel paths between a common origin and
destination in the network topology as a delaying mechanism.

• We prove that certain forbidden subgraphs for universal stability can drop to lower values
the instability bound of the networks where they are subgraphs. In particular, we study
two simple graphs U2 and U3 (see Figures 2 and 7) that have been shown in [2, 8] to be
forbidden subgraphs for universal stability in the model of non-simple paths (paths do not
contain repeated edges, but they contain repeated vertices). Note that U3 is an extension
of U1 (Figure 1) for n = 0, m = 1 and d = 2. For these graphs we show instability
for lower rates than those in [2] via a different construction. Note that we assume that
NTG-U-LIS protocol runs on the network queues as in [2]. The adversarial construction
we apply is based on the exploitation of injected packet sets in specific time periods as
delaying mechanisms for packet sets injected in following time periods.

1.3 Related Work

Adversarial Queueing Model. Adversarial Queueing Theory and corresponding stability and
instability issues, received a lot of interest and attention (see, e.g., [1, 2, 7, 9, 11, 13]). The
universal stability of SIS, LIS, NTS and FTG protocols was established by Andrews et al. [1].
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Figure 1: Network U1 and its extension Γ(U1) [2, Lemma 7]
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Figure 2: Network U2 and its extension Γ(U2) [2, Lemma 7]

Stability in Heterogeneous Networks. The subfield of study of the stability properties of com-
positions of universally stable protocols has been opened recently by Koukopoulos et al. [9, 11]
where lower bounds of 0.683 and 0.519 on the injection rate that guarantee instability for the
composition pairs LIS-SIS, LIS-NTS and LIS-FTG were respectively presented.

Stability of FIFO Networks. The subfield of proving stability bounds for greedy protocols on
every network was first initiated by Diaz et al. [7] showing an upper bound on injection rate that
guarantees the stability of FIFO in networks with a finite number of queues which is based on
network parameters. In an alternative work, Lotker et al. [12] proved that any greedy protocol
can be stable in any network if the injection rate of the adversary is upper bounded by 1/(d+1),
where d is the maximum path length that can be followed by any packet. Also, they proved
that for a specific class of greedy protocols, time-priority protocols, the stability bound becomes
1/d.

Instability of FIFO Networks. The instability of FIFO for small-size networks (in the model
of adversarial queueing theory) was first established by Andrews et al. [1, Theorem 2.10] for
injection rate r ≥ 0.85. Lower bounds of 0.8357 and 0.749 on FIFO instability were presented
by Diaz et al. [7, Theorem 3] and Koukopoulos et al. [9, Theorem 5.1]. Recently, it has been
proved by Koukopoulos et al. [10] a lower bound of 0.41 for FIFO instability on a network with
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eight nodes. But, this bound holds for a model of dynamic capacities [5] that is an extension of
the classical model of adversarial queueing theory. In this model of dynamic capacities [5], the
capacities of network links can be changed dynamically by the adversary to any integer value
in the interval [1, C] with C > 1, while in the classical model of adversarial queueing theory all
network link capacities are unit all the time.

An alternative approach for studying FIFO instability in the context of adversarial queueing
theory is based on parameterized constructions for networks with unbounded size. Using this
approach, Lotker et al. [12] proved an instability bound of 1

2 + ε for FIFO; the network size is
a function of r that goes to infinity very fast as r goes down to 0.5. Recently, this result was
improved by Bhattacharjee and Goel [3] showing that FIFO can become unstable for arbitrarily
small injection rates on parameterized network constructions. Furthermore, Koukopoulos et
al. [10] achieved partial progress towards the same goal showing that FIFO can become unstable
for arbitrarily small injection rates on parameterized network constructions under the model
of dynamic capacities that has been initiated in [5]. However, it has been recently found that
there is a gap in the proof of the claim of [10] that this result holds, also, for the classical model
of adversarial queueing theory.

Instability of Forbidden Subgraphs. In [2, Lemma 7], a characterization for directed network
graphs (digraphs) universal stability is given when the packets follow non-simple paths (paths do
not contain repeated edges). According to this characterization a digraph is universally stable
if and only if it does not contain as subgraph any of the extensions of U1 (Γ(U1)) or U2 (Γ(U2))
where the parameters n, m, d, l, k represent numbers of consecutive edges with l, k, n ≥ 0 and
m, d > 0 (see Figures 1 and 2). These graphs have been shown [2, Lemma 7] to have instability
bounds of 0.84089 for NTG-U-LIS protocol.

1.4 Road Map

The rest of this paper is organized as follows. Section 2 presents model definitions. Section 3
demonstrates our lower bounds on injection rate that guarantee instability for compositions
of protocols. Section 4 shows upper bounds on injection rate that guarantee stability for
FIFO. Section 5 presents a lower bound on injection rate that guarantees instability for a FIFO

network. Section 6 shows our lower bounds on injection rate that guarantee instability for
forbidden subgraphs. We conclude, in Section 7, with a discussion of our results and some open
problems.
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2 Definitions and Preliminaries

The adversarial queueing model considers a communication network that is modelled by a
directed graph G = (V, E), where |V | = n, and |E| = m(G). Each node u ∈ V represents a
communication switch, and each edge e ∈ E represents a link between two switches. In each
node, there is a buffer (queue) associated with each outgoing link. Buffers store packets that
are injected into the network with a route, which is a simple directed path in G. When a packet
is injected, it is placed in the buffer of the first link on its route.

Important parameters of the structure of a network is the size m(G) (the number of network
queues), and the minimum number of edge-disjoint paths j(G) that cover the graph G. It holds
that 1

j(G) ≥ 1
m(G) . Other important parameters are the maximum vertex degree α(G) (the

maximum number of ingoing edges in a vertex in the network), the diameter d(G) (maximum
directed path length in the network) and the existence of forbidden subgraphs for universal
stability.

The definition of a bounded adversary A of rate (r, b) (where b ≥ 1 is a natural number and
0 < r < 1) in the adversarial queueing theory model [4] requires that for any edge e and any
time interval I, the adversary injects no more than r|I| + b packets during |I| time steps that
require edge e at their time of injection. Such a model allows for adversarial injection of packets
that are “bursty” using the integer b > 0.

We say that a packet p requires an edge e at time t if the edge e lies on the path from its
position to its destination at time t. For proving lower bounds on injection rate that guarantee
instability, it is advantageous to have an adversary that is as weak as possible. Thus, we assume
that b = 0. Given a network G and an edge e ∈ G, we denote by Q(e) the queue at e and we
denote by e(t) the size of Q(e) at time t.

In order to formalize the behavior of a network under the adversarial queueing model, we
use the notions of system and system configuration. A triple of the form 〈G,A, P〉 where G is a
network, A is an adversary and P is the used protocol on the network queues is called a system.
The execution of the system proceeds in global time steps numbered 0, 1, . . .. Each time-step is
divided in two sub-steps. In the first sub-step, one packet is sent from each non-empty buffer
over its corresponding link. In the second sub-step, packets are received by the nodes at the
other end of the links; they are absorbed (eliminated) if that node is their destination, and
otherwise they are placed in the buffer of the next link on their respective routes. New packets
are injected in the second sub-step.

In every time step t, the current configuration Ct of a system 〈G,A, P〉 is a collection of sets
{St

e : eεG}, such that St
e is the set of packets waiting in the queue of the edge e at the end of
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step t. If the current system configuration is Ct, we obtain the system configuration Ct+1 for
the next time step as follows: (i) Addition of new packets to some of the sets St

e, each of which
has an assigned path in G, and (ii) for each non-empty set St

e deletion of a single packet pεSt
e

and its insertion into the set St+1
f where f is the edge following e on its assigned path (if e is

the last edge on the path of p, then p is not inserted into any set.) A time evolution of the
system for an adversary of rate (r, b) is a sequence of such configurations C1, C2, . . ., such that
for all edges e and all intervals I, no more than r|I| + b packets are introduced during I with
an assigned path containing e.

A contention-resolution protocol specifies, for each pair of an edge e and a time step, which
packet among those waiting at the tail of edge e will be moved along edge e. A greedy contention-
resolution protocol always specifies some packet to move along edge e if there are packets waiting
to use edge e. In this work, we restrict attention to deterministic, greedy contention-resolution
protocols. In particular, we consider:

• SIS (Shortest-in-System) gives priority to the most recently injected packet into the net-
work;

• LIS (Longest-in-System) gives priority to the least recently injected packet into the net-
work;

• FTG (Furthest-to-Go) gives priority to the packet that has to traverse the larger number
of edges to its destination;

• NTS (Nearest-to-Source) gives priority to the packet that has traversed the smallest num-
ber of edges from its origin;

• FIFO (First-In-First-Out) gives priority to the earliest arrived packet at a queue;

• NTG-U-LIS (Nearest-To-Go-Using-LIS) gives priority to the nearest packet to its destina-
tion or the least recently injected packet for tie-breaking.

All these contention-resolution protocols require some tie-breaking rule in order to be un-
ambiguously defined. In this work, whenever we are proving a positive result, we assume that
the adversary can break the tie arbitrarily; for proving a negative result, we can assume any
well-determined tie breaking rule for the adversary.

In our adversarial constructions for FIFO protocol we exploit the fair mixing property of
FIFO according to which if two packet sets arrive at the same queue simultaneously will mix
according to the initial proportions of their sizes. Also, we consider α(G) > 1 because if
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α(G) = 1 then we have a tree or a ring that is known to be universally stable [1]. An important
preliminary result on FIFO stability is given below.

Proposition 2.1 (Diaz et al. [7]) Let r′G be a real number in (0, 1) satisfying the equation
2−r′G
1−r′G

r′GΣd(G)−1
i=0 (α(G) + r′G)i = 1

m(G) . Then for any network G, and any adversary with r ≤ r′G
the system 〈G,A, FIFO〉 is stable.

In the adversarial constructions we study here for proving instability, we assume that there
is a sufficiently large number of packets s0 in the initial system configuration. This will imply
instability results for networks with an empty initial configuration, as established by Andrews
et al. [1, Lemma 2.9]. Also, for simplicity, and in a way similar to that in [1], we omit floors
and ceilings and sometimes count time steps and packets roughly. This only results to losing
small additive constants while we gain in clarity.

3 Stability in Heterogeneous Networks

In this section we prove lower bounds on injection rate that guarantee instability for heteroge-
neous networks. In our proof we distinguish two types of packet injections:

• We denote by Xi the set of packets that are injected into the system in the ith round of
a phase. These packet sets are characterized as investing flows because they will remain
in the system till the beginning of the next phase.

• We denote by Si,j the jth set of packets the adversary injects into the system in the ith

round of a phase. These packet sets are characterized as short intermediate flows because
they are injected on judiciously chosen paths of the network for blocking investing flows.

3.1 A Parameterized Network Family

We provide here a parameterized family of heterogeneous networks Nk. The motivation that
led us to such a parameterization in the network topology is two-fold:

• The existence of many parallel queues in the network allows the adversary to simultane-
ously inject several short intermediate flows that block the investing flows in the system,
without violating the rule of the restricted adversarial model.
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• Such a parameterized network topology construction, enables a parameterized analysis
of the system configuration evolution into distinguished rounds whose number depends
on the parameterized network topology. In LIS-FTG composition, the parameterization,
besides the parallel edges, includes additional chains of queues for the exploitation of FTG

in blocking investing flows.

3.2 A Parameterized Adversarial Construction

In order for our adversarial construction to work, we split the time into phases. In each phase we
study the evolution of the system configuration by considering distinguished time rounds. For
each phase, we inductively show that the number of packets in the system increases. Applying
repeatedly this inductive argument we show instability.

Theorem 3.1 Let r > 0.5. There is a network Nk where k is a parameter linear to the number
of network queues and an adversary A of rate r such that the system 〈Nk,A, Pr〉 is unstable if
Pr is a composition of LIS protocol with any protocol of a) SIS, b) NTS and c) FTG.

Proof: Part a) This proof is based on the preservation of all the investing flows injected dur-
ing a phase into the system. We consider an instance of the parameterized network family (net-
work Nk in Figure 3). All the queues use the LIS protocol except the queues f1, f

′
1, h1, . . . , hk−1,

h
′
1, . . . , h

′
k−1 that use the SIS protocol. Moreover, the queues hk, h

′
k can use either LIS or SIS

protocol because there is no packet conflict in them.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that are queued in
g
′
1, h

′
1, . . . , h

′
k−1 requiring to traverse the edges e0, f1, f2, g1, h1.

Induction Step: At the beginning of phase j+1 there will be more than sj packets (sj+1 packets)
that will be queued in g1, h1, . . . , hk−1 requiring to traverse the edges e1, f

′
1, f

′
2, g

′
1, h

′
1.

We construct an adversary A such that the induction step holds. Proving that the induction
step holds, we ensure that the inductive hypothesis will hold at the beginning of phase j +1 for
the symmetric edges with an increased value of sj , sj+1 > sj . From the inductive hypothesis,
initially, there are sj packets (called S−flow) in the queues g

′
1, h

′
1, . . . , h

′
k−1 requiring to traverse

the edges e0, f1, f2, g1, h1. In order to prove that the induction step works it is assumed that
there is a large enough number sj of packets in the initial system configuration.

Phase j consists of l = k + 1 rounds with l ≥ 3, that is k ≥ 2. The sequence of injections is
as follows:
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Figure 3: A network Nk that uses LIS-SIS protocols. (P can be either LIS or SIS.)

• Round 1: It lasts |T1| = sj time steps.

Adversary’s behavior. During this round, the adversary injects a set X1 of |X1| = r|T1|
packets in queue e0 wanting to traverse the edges e0, f3, g1, h1, e1, f

′
1, f

′
2, g

′
1, h

′
1 and a set

S1,1 of |S1,1| = r|T1| packets in queue f1 that require to traverse only the edge f1.

Evolution of the system configuration. S − flow packets have priority over X1 packets
in queue e0 because it uses LIS protocol. Therefore, X1 packets remain in queue e0 at
the end of this round. After traversing the edge e0, S − flow packets are delayed by S1,1

packets in queue f1 because it uses SIS protocol. Thus, at the end of this round a portion
Y of |Y | = r|T1| packets from S − flow packets remain in queue f1, while S1,1 packets
traverse the edge f1 and they are absorbed.

• Round 2: It lasts |T2| = r|T1| time steps.

Adversary’s behavior. During this round, the adversary injects a set X2 of |X2| = r|T2|
packets in queue g1 requiring to traverse the edges g1, h2, e1, f

′
1, f

′
2, g

′
1, h

′
1. Also, it injects

a set S2,1 of |S2,1| = r|T2| packets in queue f2 wanting to traverse the edges f2, g2, h1.

Evolution of the system configuration. Y packets have priority over X1 and S2,1 packets
in queues g1 and f2 correspondingly because these queues use LIS protocol. Furthermore,
X1 packets have priority over X2 packets in queue g1 because it uses the LIS protocol.

Since the number of rounds depends on the network topology (i.e. l = k + 1), we next
analyze an intermediate round t, 3 ≤ t < l.
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• Round t (intermediate round): It lasts |Tt| = r|Tt−1| time steps. For readability
reasons, we structure the description of this round in three distinguished parts. The first
part deals with the adversary’s behavior during round t, the second part discusses how
the system configuration evolves, and the third part proves why this happens.

Adversary’s behavior. During this round, the adversary injects t − 1 short intermediate
flows St,1, . . . , St,t−1 of |St,1| = . . . = |St,t−1| = r|Tt| packets. Each packet flow St,j

(2 ≤ j ≤ t − 1) is injected in queue gj wanting to traverse the edges gj , hj . On the other
hand, the packet flow St,1 is injected in queue f2 wanting to traverse the edges f2, gt, h1.
In addition, the adversary injects the investing flow Xt of |Xt| = r|Tt| packets in queue
g1 wanting to traverse the edges g1, ht, e1, f

′
1, f

′
2, g

′
1, h

′
1.

Evolution of the system configuration. St−1,j packets (2 ≤ j ≤ t − 2) have priority over
St,j packets in queue gj due to the LIS protocol. Also, St−1,1 packets have priority over
St,1 and St,t−1 packets in queues f2 and gt−1 correspondingly because these queues use the
LIS protocol and St−1,1 packets are longer time in the system than St,1 and St,2 packets.

At the end of round t, there is a number of t − 3 different cases for the queues where
X1, . . . , Xt−1 packets (that have been injected at rounds 1, . . . , t− 1 correspondingly) are
queued depending on their position at the beginning of round t and the injection rate r.
Note that although these cases represent different system configurations with respect to
the position of investing flows, the evolution in each case follows the same rules, as it is
expressed in the claim below. We next illustrate case i (1 ≤ i ≤ t − 3):

Case i: At the beginning of round t, a portion or all Xi packets along with Xi+1, . . . , Xt−1

are queued in g1, while the rest Xi packets are queued in hi and all the X1, . . . , Xi−1

packets are queued in h1, . . . , hi−1 correspondingly.

At the end of round t, two subcases are possible:

– X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. A portion or all Xi

packets in queue g1 are queued with the rest Xi packets in hi and Xi+1, . . . , Xt−1

packets remain in g1.

– X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. All the Xi packets
in g1 are queued with the rest Xi packets in hi, a portion of Xi+1 packets is queued
in hi+1, while the rest Xi+1 packets along with Xi+2, . . . , Xt−1 packets remain in
queue g1.

Xt−1 packets have priority over Xt packets in queue g1 that uses LIS protocol because
Xt−1 packets are longer time in the system. Therefore, Xt packets remain in queue g1 at
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the end of this round. Note that, in all possible system configurations at the end of round
t, the investing flows X1, . . . , Xt remain into the system. However, we have not proved
yet why the system configuration evolves like that in each case. This is ensured by the
following technical claim.

Claim 3.2 If at the beginning of round t a portion or all Xi (1 ≤ i ≤ t − 3) packets are
queued at the head of g1, while the rest are queued in hi, Xi+1, . . . , Xt−1 packets are queued
in g1, and all X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly, then at the
end of round t (i) Xi packets are delayed in hi, (ii) Xi+1 packets are delayed in hi+1

if Xi packets traverse g1 before the end of t otherwise Xi+1 packets remain in g1, (iii)
the investing flows Xi+2, . . . , Xt remain in g1, and (iv) the investing flows X1, . . . , Xi−1

continue to remain in h1, . . . , hi−1 correspondingly.

Proof: Consider that at the beginning of round t, a portion or all Xi packets along with
Xi+1, . . . , Xt−1 are queued in g1, while the rest Xi packets are queued in hi and all the
X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly.

At the end of round t, two subcases are possible:

– The short intermediate flows St−1,1, . . . , St−1,i−1 block X1, . . . , Xi−1 packets in queues
h1, . . . , hi−1 correspondingly that use SIS protocol because St−1,1, . . . , St−1,i−1 flows
are shortest time in the system. A portion or all Xi packets in queue g1 traverse it
(there are no remaining time steps till the end of the round) and they are queued
with the rest Xi packets in hi that uses SIS protocol, where Xi packets continue to
be blocked by the St−1,i − flow packets that are shortest time in the system than
Xi packets. Furthermore, Xi+1, . . . , Xt packets are queued in g1 that uses LIS due
to Xi packets that are in the system for a longer time.

– The short intermediate flows St−1,1, . . . , St−1,i−1 block X1, . . . , Xi−1 packets in queues
h1, . . . , hi−1 correspondingly that use SIS protocol because St−1,1, . . . , St−1,i−1 flows
are shortest time in the system. All the Xi packets traverse the edge g1 during
this round before the end of this round. These packets are queued with the rest Xi

packets in hi, where they continue to be blocked by St−1,i packets that are nearest
to their source. Also, a portion of Xi+1 packets is blocked in queue hi+1 that uses
SIS protocol by St−1,i+1 packets that are shortest time in the system. The rest Xi+1

packets along with Xi+2, . . . , Xt packets are queued in queue g1.

Lemma 3.3 The short intermediate flows St−1,1, . . . , St−1,t−2 delay all the packets of the
investing flows X1, . . . , Xt in the system 〈Nk,A, LIS − SIS〉 till the end of round t.
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Proof: Due to Claim 3.2 the short intermediate flows St−1,1, . . . , St−1,t−2 (that have
been injected in the system during round t− 1) delay the investing flows X1, . . . , Xt−2 in
the system. In addition, the investing flow Xt−1 is blocked in g1 that uses LIS protocol by
Xt−2 flow. Also, note that the investing flow Xt that is injected by the adversary during
round t is simultaneously blocked in g1 by Xt−1 flow because g1 uses LIS protocol and
Xt−1 is in the system for a longer time compared to Xt since it has been injected in the
system during round t−1. Therefore, the short intermediate flows St−1,1, . . . , St−1,t−2 are
enough to keep all the packets of the investing flows X1, . . . , Xt in the system till the end
of round t.

• Round l: It lasts |Tl| = r|Tl−1| time steps.

Adversary’s behavior. During this round, the adversary injects an investing flow Xl of
|Xl| = r|Tl| packets in queue g1 wanting to traverse the edges g1, hl, e1, f

′
1, f

′
2, g

′
1, h

′
1.

Evolution of the system configuration. Xl−1 packets (that have been injected in the
system at round l − 1) have priority over Xl packets in queue g1. If we follow a similar
analysis as in the intermediate round t, we can prove that the short intermediate flows
Sl−1,1, . . . , Sl−1,l−2 have priority over X1, . . . , Xl−1 packets in the system. Therefore, at
the end of round l, the number of packets that are queued in g1, h1, . . . , hl−2 = hk−1

requiring to traverse the edges e1, f
′
1, f

′
2, g

′
1, h

′
1 is sj+1 = |X1| + . . . + |Xl|.

In order to have instability, we must have sj+1 > sj . This holds for rk+2 − 2r + 1 < 0.
This argument can be repeated for an infinite number of phases ensuring the instability
of the system 〈Nk,A, LIS − SIS〉. Also, k → ∞ =⇒ rk+2 → 0, because 0 < r < 1. Thus,
for instability it suffices −2r + 1 < 0, i.e. r > 0.5.

Part b) This part of the proof is similar to the first one. In particular, the topology of the
used network in this part is similar to the first one. One difference in the network of Part b
is the use of NTS protocol where SIS is used in the network of Part a. As in Part a the basic
argument behind this long technical proof is that we have found a way to keep all the investing
flows injected during a time period structured in rounds, into the system. More specifically, the
injection of short intermediate flows with the same paths as in Part a is enough to guarantee
their priority over investing flows when they conflict in queues that use NTS. This is shown in
an inductive way, by demonstrating that all investing flows, injected till the current round, are
still into the system.

Consider the network Nk in Figure 4. All the queues of the network use the LIS protocol
except the queues that correspond to the edges f1, f

′
1, h1, . . . , hk−1, h

′
1, . . . , h

′
k−1 that use the
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Figure 4: A network Nk that uses LIS-NTS protocols. (P can be either LIS or NTS.)

NTS protocol. Moreover, the queues hk, h
′
k can use either LIS or NTS protocol because there is

no packet conflict in them.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that are queued in the
queues g

′
1, h

′
1, . . . , h

′
k−1 requiring to traverse the edges e0, f1, f2, g1, h1.

Induction Step: At the beginning of phase j+1 there will be more than sj packets (sj+1 packets)
that will be queued in the queues g1, h1, . . . , hk−1 requiring to traverse the edges e1, f

′
1, f

′
2, g

′
1, h

′
1.

We will construct an adversary A such that the induction step will hold. Proving that the
induction step holds, we ensure that the inductive hypothesis will hold at the beginning of phase
j + 1 for the symmetric the edges with an increased value of sj , sj+1 > sj . From the inductive
hypothesis, initially, there are sj packets (called S−flow) in the queues g

′
1, h

′
1, . . . , h

′
k−1 requir-

ing to traverse the edges e0, f1, f2, g1, h1. In order to prove that the induction step works it is
assumed that there is a large enough number sj of packets in the initial system configuration.

Phase j consists of l = k + 1 rounds with l ≥ 3, that is k ≥ 2. The sequence of injections is
as follows:

• Round 1: It lasts |T1| = sj time steps.

Adversary’s behavior. During this round, the adversary injects a set X1 of |X1| = r|T1|
packets in queue e0 wanting to traverse the edges e0, f3, g1, h1, e1, f

′
1, f

′
2, g

′
1, h

′
1 and a set

S1,1 of |S1,1| = r|T1| packets in queue f1 that require to traverse only the edge f1.
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Evolution of the system configuration. S − flow packets have priority over X1 packets in
queue e0 because it uses LIS protocol. So, for every arrival of an injected X1 packet in e0

there is at least one S − flow packet there that is in the system for a longer time, so it
has priority. Therefore, X1 packets remain in queue e0 at the end of this round. After
traversing the edge e0, S − flow packets are delayed by S1,1 packets in queue f1 because
it uses NTS protocol and S1,1 packets are nearest to their source than S − flow packets.
So, all the S1,1 packets traverse f1 and they are absorbed along with some packets from
S−flow. Thus, at the end of this round a portion Y of |Y | = r|T1| packets from S−flow

packets remain in queue f1.

• Round 2: It lasts |T2| = r|T1| time steps.

Adversary’s behavior. During this round, the adversary injects a set X2 of |X2| = r|T2|
packets in queue e0 requiring to traverse the edges e0, f3, g1, h2, e1, f

′
1, f

′
2, g

′
1, h

′
1. Also,

it injects a set S2,1 of |S2,1| = r|T2| packets in queue f2 wanting to traverse the edges
f2, g2, h1.

Evolution of the system configuration. Y packets have priority over X1 and S2,1 packets
in queues g1 and f2 correspondingly because these queues use LIS protocol and Y packets
are longer time in the system than X1 and S2,1 packets. Furthermore, X1 packets have
priority over X2 packets in queue e0 because it uses the LIS protocol.

Since the number of rounds depends on the network topology (i.e. l = k + 1), we next
analyze an intermediate round t, 3 ≤ t < l.

• Round t (intermediate round): It lasts |Tt| = r|Tt−1| time steps. For readability
reasons, we structure the description of this round in three distinguished parts. The first
part deals with the adversary’s behavior during round t, the second part discusses how
the system configuration evolves, and the third part proves why this happens.

Adversary’s behavior. During this round, the adversary injects t − 1 short intermediate
flows St,1, . . . , St,t−1 of |St,1| = . . . = |St,t−1| = r|Tt| packets. Each packet flow St,j

(2 ≤ j ≤ t − 1) is injected in queue gj wanting to traverse the edges gj , hj . On the other
hand, the packet flow St,1 is injected in queue f2 wanting to traverse the edges f2, gt, h1.
In addition, the adversary injects the investing flow Xt of |Xt| = r|Tt| packets in queue
f3 wanting to traverse the edges f3, g1, ht, e1, f

′
1, f

′
2, g

′
1, h

′
1.

Evolution of the system configuration. St−1,j packets (2 ≤ j ≤ t − 2) have priority over
St,j packets in queue gj due to the LIS protocol. Also, St−1,1 packets have priority over
St,1 and St,t−1 packets in queues f2 and gt−1 correspondingly because these queues use
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the LIS protocol and St−1,1 packets are longer time in the system than St,1 and St,t−1

packets.

At the end of round t, there is a number of t − 3 different cases for the queues where
X1, . . . , Xt−1 packets (that have been injected at rounds 1, . . . , t− 1 correspondingly) are
queued depending on their position at the beginning of round t and the injection rate r.
Note that although these cases represent different system configurations with respect to
the position of investing flows, the evolution in each case follows the same rules, as it is
expressed in the claim below. We next illustrate case i (1 ≤ i ≤ t − 3):

Case i: At the beginning of round t, Xt−1 packets are queued in f3, a portion or all Xi

packets along with Xi+1, . . . , Xt−2 are queued in g1, while the rest Xi packets are queued
in hi and all the X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly.

At the end of round t, two subcases are possible:

– X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. A portion or all Xi

packets in queue g1 are queued with the rest Xi packets in hi and Xi+1, . . . , Xt−1

packets are queued in g1.

– X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. All the Xi packets
in g1 are queued with the rest Xi packets in hi, a portion of Xi+1 packets is queued
in hi+1, while the rest Xi+1 packets along with Xi+2, . . . , Xt−1 packets are queued
in queue g1.

Xt−1 packets have priority over Xt packets in queue f3 that uses LIS protocol because
Xt−1 packets are longer time in the system. Therefore, Xt packets remain in queue f3 at
the end of this round. Note that, in all possible system configurations at the end of round
t, the investing flows X1, . . . , Xt remain into the system. However, we have not proved
yet why the system configuration evolves like that in each case. This is ensured by the
following technical claim.

Claim 3.4 If at the beginning of round t, a portion or all Xi (1 ≤ i ≤ t − 3) packets
are queued at the head of g1, while the rest are queued in hi, Xi+1, . . . , Xt−2 packets are
queued in hi, Xt−1 packets are queued in f3 and all X1, . . . , Xi−1 packets are queued in
h1, . . . , hi−1 correspondingly, then at the end of round t (i) Xi packets are delayed in
hi, (ii) Xi+1 packets are delayed in hi+1 if all Xi packets traverse g1 before the end of
t otherwise Xi+1 packets remain in g1, (iii) the investing flows Xi+2, . . . , Xt−1 remain
in g1, (iv) the investing flow Xt remains in f3, and (v) the investing flows X1, . . . , Xi−1

continue to remain in h1, . . . , hi−1 correspondingly.
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Proof: Consider that at the beginning of round t, the investing flow Xt−1 remains in
f3, a portion or all Xi packets along with Xi+1, . . . , Xt−2 are queued in g1, while the rest
Xi packets are queued in hi and all the X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1

correspondingly.

At the end of round t, two subcases are possible:

– The short intermediate flows St−1,1, . . . , St−1,i−1 block X1, . . . , Xi−1 packets in queues
h1, . . . , hi−1 correspondingly that use NTS protocol because St−1,1, . . . , St−1,i−1 flows
are nearest to their source. A portion or all Xi packets in queue g1 traverse it (there
are no remaining time steps till the end of the round) and they are queued with
the rest Xi packets in hi that uses NTS protocol, where Xi packets continue to be
blocked by the St−1,i−flow packets that are nearest to their source than Xi packets.
Furthermore, Xi+1, . . . , Xt−1 packets are queued in g1 that uses LIS due to Xi pack-
ets that are in the system for a longer time. Also, Xt−1 packets delay Xt packets in
f3 that uses LIS because Xt−1 packets are in the system for a longer time.

– The short intermediate flows St−1,1, . . . , St−1,i−1 block X1, . . . , Xi−1 packets in queues
h1, . . . , hi−1 correspondingly that use NTS protocol because St−1,1, . . . , St−1,i−1 flows
are nearest to their source. All the Xi packets traverse the edge g1 during this round
before the end of this round. These packets are queued with the rest Xi packets in hi,
where they continue to be blocked by St−1,i packets that are nearest to their source.
Also, a portion of Xi+1 packets is blocked in queue hi+1 that uses NTS protocol by
St−1,i+1 packets that are nearest to their source. The rest Xi+1 packets along with
Xi+2, . . . , Xt−1 packets are queued in queue g1. Also, Xt−1 packets delay Xt packets
in f3 that uses LIS because Xt−1 packets are in the system for a longer time.

Lemma 3.5 The short intermediate flows St−1,1, . . . , St−1,t−2 delay all the packets of the
investing flows X1, . . . , Xt in the system 〈Nk,A, LIS − NTS〉 till the end of round t.

Proof: Due to Claim 3.4 the short intermediate flows St−1,1, . . . , St−1,t−2 (that have
been injected in the system during round t− 1) block the investing flows X1, . . . , Xt−2 in
the system. In addition, the investing flow Xt−1 is blocked in g1 that uses LIS protocol by
Xt−2 flow. Also, note that the investing flow Xt that is injected by the adversary during
round t is simultaneously blocked in f3 by Xt−1 flow because f3 uses LIS protocol and
Xt−1 is in the system for a longer time compared to Xt since it has been injected in the
system during round t−1. Therefore, the short intermediate flows St−1,1, . . . , St−1,t−2 are
enough to keep all the packets of the investing flows X1, . . . , Xt in the system till the end
of round t.
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• Round l: It lasts |Tl| = r|Tl−1| time steps.

Adversary’s behavior. During this round, the adversary injects an investing flow Xl of
|Xl| = r|Tl| packets in queue f3 wanting to traverse the edges g1, hl, e1, f

′
1, f

′
2, g

′
1, h

′
1.

Evolution of the system configuration. Xl−1 packets (that have been injected in the
system at round l − 1) have priority over Xl packets in queue g1. If we follow a similar
analysis as in the intermediate round t, we can prove that the short intermediate flows
Sl−1,1, . . . , Sl−1,l−2 have priority over X1, . . . , Xl−1 packets in the system. Therefore, at
the end of round l, the number of packets that are queued in g1, h1, . . . , hl−2 = hk−1

requiring to traverse the edges e1, f
′
1, f

′
2, g

′
1, h

′
1 is sj+1 = |X1| + . . . + |Xl|.

In order to have instability, we must have sj+1 > sj . This holds for rk+2 − 2r + 1 < 0.
This argument can be repeated for an infinite number of phases ensuring the instability
of the system 〈Nk,A, LIS − NTS〉. Also, k → ∞ =⇒ rk+2 → 0, because 0 < r < 1. Thus,
for instability it suffices −2r + 1 < 0, i.e. r > 0.5.

Part c) This part of the proof is similar to its spirit with the other two parts. However, the
topology of the used network in this part has two significant differences with the networks that
are used in the other parts. One difference in the network of Part c is the use of FTG protocol
where SIS is used in the network of Part a. Another difference is that the network contains
additional paths, comparing to the other two cases, that start at queues that use FTG. These
paths have sufficient lengths, such that the injected short intermediate packet flows have the
same blocking effects over the injected investing packet flows when they conflict in queues that
use FTG, as happens in LIS-SIS and LIS-NTS cases. This is shown in an inductive way, by
demonstrating that all investing flows, injected till the current round, are still into the system.

Consider the network Nk in Figure 5. All the queues of the network use the LIS protocol
except the queues that correspond to the edges f1, f

′
1, h1, . . . , hk−1, h

′
1, . . . , h

′
k−1 that use the FTG

protocol. Moreover, the edges hk, h
′
k and the edges l0, l1, l2, l

′
0, l

′
1, l

′
2, g1,1, g1,2, g1,3, g1,4, g1,5, . . . ,

gk−1,1, gk−1,2, gk−1,3, gk−1,4, gk−1,5 and g
′
1,1, g

′
1,2, g

′
1,3, g

′
1,4, g

′
1,5, . . . , g

′
k−1,1, g

′
k−1,2, g

′
k−1,3, g

′
k−1,4,

g
′
k−1,5 can use either LIS or FTG protocol because there is no packet conflict in them.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that are queued in the
queues g

′
1, h

′
1, . . . , h

′
k−1 requiring to traverse the edges e0, f1, f2, g1.

Induction Step: At the beginning of phase j+1 there will be more than sj packets (sj+1 packets)
that will be queued in the queues g1, h1, . . . , hk−1 requiring to traverse the edges e1, f

′
1, f

′
2, g

′
1.

We will construct an adversary A such that the induction step will hold. Proving that the
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Figure 5: A network Nk that uses LIS-FTG protocols. (P can be either LIS or FTG.)
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induction step holds, we ensure that the inductive hypothesis will hold at the beginning of
phase j + 1 for the symmetric edges with an increased value of sj , sj+1 > sj . From the induc-
tive hypothesis, initially, there are sj packets (called S − flow) in the queues g

′
1, h

′
1, . . . , h

′
k−1

requiring to traverse the edges e0, f1, f2, g1. In order to prove that the induction step works it
is assumed that there is a large enough number sj of packets in the initial system configuration.

Phase j consists of l = k + 1 rounds with l ≥ 3, that is k ≥ 2. The sequence of injections is
as follows:

• Round 1: It lasts |T1| = sj time steps.

Adversary’s behavior. During this round, the adversary injects a set X1 of |X1| = r|T1|
packets in queue e0 wanting to traverse the edges e0, f3, g1, h1, e1, f

′
1, f

′
2, g

′
1 and a set S1,1

of |S1,1| = r|T1| packets in queue f1 that require to traverse the edges f1, l0, l1, l2.

Evolution of the system configuration. S − flow packets have priority over X1 packets in
queue e0 because it uses LIS protocol. So, for every arrival of an injected X1 packet in e0

there is at least one S − flow packet there that is in the system for a longer time, so it
has priority. Therefore, X1 packets remain in queue e0 at the end of this round. After
traversing the edge e0, S − flow packets are delayed by S1,1 packets in queue f1 because
it uses FTG protocol and S1,1 packets have furthest to go than S − flow packets. So, all
the S1,1 packets traverse f1 along with some packets from S − flow. Thus, at the end of
this round a portion Y of |Y | = r|T1| packets from S − flow packets remain in queue f1

wanting to traverse the edges f1, f2, g1.

• Round 2: It lasts |T2| = r|T1| time steps.

Adversary’s behavior. During this round, the adversary injects a set X2 of |X2| = r|T2|
packets in queue e0 requiring to traverse the edges e0, f3, g1, h2, e1, f

′
1, f

′
2, g

′
1. Also, it

injects a set S2,1 of |S2,1| = r|T2| packets in queue f2 wanting to traverse the edges
f2, g2, h1, g1,1, g1,2, g1,3, g1,4, g1,5.

Evolution of the system configuration. Y packets have priority over X1 and S2,1 packets
in queues g1 and f2 correspondingly because these queues use LIS protocol and Y packets
are longer time in the system than X1 and S2,1 packets. Furthermore, X1 packets have
priority over X2 packets in queue e0 because it uses the LIS protocol.

Since the number of rounds depends on the network topology (i.e. l = k + 1), we next
analyze an intermediate round t, 3 ≤ t < l.

• Round t (intermediate round): It lasts |Tt| = r|Tt−1| time steps. For readability
reasons, we structure the description of this round in three distinguished parts. The first
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part deals with the adversary’s behavior during round t, the second part discusses how
the system configuration evolves, and the third part proves why this happens.

Adversary’s behavior. During this round, the adversary injects t − 1 short intermediate
flows St,1, . . . , St,t−1 of |St,1| = . . . = |St,t−1| = r|Tt| packets. Each packet flow St,j (2 ≤
j ≤ t−1 is injected in queue gj wanting to traverse the edges gj , hj , gj,1, gj,2, gj,3, gj,4, gj,5.
On the other hand, the packet flow St,1 is injected in queue f2 wanting to traverse the
edges f2, gt, h1, g1,1, g1,2, g1,3, g1,4, g1,5. In addition, the adversary injects the investing flow
Xt of |Xt| = r|Tt| packets in queue g1 wanting to traverse the edges g1, ht, e1, f

′
1, f

′
2, g

′
1.

Evolution of the system configuration. St−1,j packets (2 ≤ j ≤ t − 2) have priority over
St,j packets in queue gj due to the LIS protocol. Also, St−1,1 packets have priority over
St,1 and St,t−1 packets in queues f2 and gt−1 correspondingly because these queues use
the LIS protocol and St−1,1 packets are longer time in the system than St,1 and St,t−1

packets.

At the end of round t, there is a number of t − 3 different cases for the queues where
X1, . . . , Xt−1 packets (that have been injected at rounds 1, . . . , t− 1 correspondingly) are
queued depending on their position at the beginning of round t and the injection rate r.
Note that although these cases represent different system configurations with respect to
the position of investing flows, the evolution in each case follows the same rules, as it is
expressed in the claim below. We next illustrate case i (1 ≤ i ≤ t − 3):

Case i: At the beginning of round t, a portion or all Xi packets along with Xi+1, . . . , Xt−1

are queued in g1, while the rest Xi packets are queued in hi and all the X1, . . . , Xi−1

packets are queued in h1, . . . , hi−1 correspondingly.

At the end of round t, two subcases are possible:

– X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. A portion or all Xi

packets in queue g1 are queued with the rest Xi packets in hi and Xi+1, . . . , Xt−1

packets remain in g1.

– X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. All the Xi packets
in g1 are queued with the rest Xi packets in hi, a portion of Xi+1 packets is queued
in hi+1, while the rest Xi+1 packets along with Xi+2, . . . , Xt−1 packets remain in
queue g1.

Xt−1 packets have priority over Xt packets in queue g1 that uses LIS protocol because
Xt−1 packets are longer time in the system. Therefore, Xt packets remain in queue g1 at
the end of this round. Note that, in all possible system configurations at the end of round
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t, the investing flows X1, . . . , Xt remain into the system. However, we have not proved
yet why the system configuration evolves like that in each case. This is ensured by the
following technical claim.

Claim 3.6 If at the beginning of round t a portion or all Xi (1 ≤ i ≤ t − 3) packets are
queued at the head of g1, while the rest are queued in hi, and all X1, . . . , Xi−1 packets
are queued in h1, . . . , hi−1 correspondingly, then at the end of round t (i) Xi packets are
delayed in hi, (ii) Xi+1 packets are delayed in hi+1 if all Xi packets traverse g1 before
the end of t otherwise Xi+1 packets remain in g1, (iii) the investing flows Xi+2, . . . , Xt

remain in g1, and (iv) the investing flows X1, . . . , Xi−1 continue to remain in h1, . . . , hi−1

correspondingly.

Proof: Consider that at the beginning of round t, a portion or all Xi packets along with
Xi+1, . . . , Xt−1 are queued in g1, while the rest Xi packets are queued in hi and all the
X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly.

At the end of round t, two subcases are possible:

– The short intermediate flows St−1,1, . . . , St−1,i−1 block X1, . . . , Xi−1 packets in queues
h1, . . . , hi−1 correspondingly that use FTG protocol because St−1,1, . . . , St−1,i−1 flows
have farthest to go. A portion or all Xi packets in queue g1 traverse it (there are
no remaining time steps till the end of the round) and they are queued with the
rest Xi packets in hi that uses FTG protocol, where they continue to be blocked by
the St−1,i − flow packets that have farthest to go than Xi packets. Furthermore,
Xi+1, . . . , Xt packets are queued in g1 that uses LIS due to Xi packets that are in
the system for a longer time.

– The short intermediate flows St−1,1, . . . , St−1,i−1 block X1, . . . , Xi−1 packets in queues
h1, . . . , hi−1 correspondingly that use FTG protocol because St−1,1, . . . , St−1,i−1 flows
have farthest to go. All the Xi packets traverse the edge g1 during this round before
the end of this round. These packets are queued with the rest Xi packets in hi, where
they continue to be blocked by St−1,i packets that are nearest to their source. Also, a
portion of Xi+1 packets is blocked in queue hi+1 that uses FTG protocol by St−1,i+1

packets that have farthest to go. The rest Xi+1 packets along with Xi+2, . . . , Xt

packets are queued in queue g1.

Lemma 3.7 The short intermediate flows St−1,1, . . . , St−1,t−2 delay all the packets of the
investing flows X1, . . . , Xt in the system 〈Nk,A, LIS − FTG〉 till the end of round t.
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Proof: Due to Claim 3.6 the short intermediate flows St−1,1, . . . , St−1,t−2 (that have
been injected in the system during round t− 1) block the investing flows X1, . . . , Xt−2 in
the system. In addition, the investing flow Xt−1 is blocked in g1 that uses LIS protocol by
Xt−2 flow. Also, note that the investing flow Xt that is injected by the adversary during
round t is simultaneously blocked in g1 by Xt−1 flow because g1 uses LIS protocol and
Xt−1 is in the system for a longer time compared to Xt since it has been injected in the
system during round t−1. Therefore, the short intermediate flows St−1,1, . . . , St−1,t−2 are
enough to keep all the packets of the investing flows X1, . . . , Xt in the system till the end
of round t.

• Round l: It lasts |Tl| = r|Tl−1| time steps.

Adversary’s behavior. During this round, the adversary injects an investing flow Xl of
|Xl| = r|Tl| packets in queue f3 wanting to traverse the edges g1, hl, e1, f

′
1, f

′
2, g

′
1.

Evolution of the system configuration. Xl−1 packets (that have been injected in the
system at round l − 1) have priority over Xl packets in queue g1. So, Xl packets remain
in queue g1 at the end of this round. If we follow a similar analysis as in the intermediate
round t, we can prove that the short intermediate flows Sl−1,1, . . . , Sl−1,l−2 have priority
over X1, . . . , Xl−1 packets in the system. Therefore, at the end of round l, the number
of packets that are queued in g1, h1, . . . , hl−2 = hk−1 requiring to traverse the edges
e1, f

′
1, f

′
2, g

′
1 is sj+1 = |X1| + . . . + |Xl|.

In order to have instability, we must have sj+1 > sj . This holds for rk+2 − 2r + 1 < 0.
This argument can be repeated for an infinite number of phases ensuring the instability
of the system 〈Nk,A, LIS − FTG〉. Also, k → ∞ =⇒ rk+2 → 0, because 0 < r < 1. Thus,
for instability it suffices −2r + 1 < 0, i.e. r > 0.5.

Notice that our method converges very fast to 0.5 for small values of the parameter k that
depends on the network size. This can be shown easily if in the inequality rk+2−2r+1 < 0 the
parameters r, k are replaced by appropriate values. Therefore, for k = 7 the instability bound
on injection rate is 0.501 and the number of network queues is 36 in the case of LIS-SIS and
LIS-NTS (given by 8 + 4k), while it is 102 in the case of LIS-FTG (given by 4 + 14k).

4 Structural Conditions for FIFO Stability

In this section we show upper bounds on injection rate that guarantee stability for FIFO. We
denote by old packet, any packet that was injected in previous time periods than the current
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one. The earliest time step in a time period, at which all the old packets in the system have
been served is denoted by M . Also, we consider the disjoint paths Π1, Π2, . . . ,Πj(G). The
number of packets in the path Πj (1 ≤ j ≤ j(G)) at time step M will be denoted by s(Πj).
Furthermore, we denote the queues of G by Q1, Q2, . . . , Qm and their loads at time t ≥ 0 by
q1(t), q2(t), . . . , qm(t). We show:

Theorem 4.1 Let rG be a real number in (0, 1) satisfying the equation r2
GΣd(G)−1

i=0 (α(G)+rG)i =
1

j(G) . Then for any network G, and any adversary with r ≤ rG the system 〈G,A, FIFO〉 is stable.

Proof: Let P (0) = Σqi(0) be the initial load. We will construct an infinite sequence of
consecutive distinguished time periods, ti, at which P (ti) ≤ P (0) thus keeping the network
stable. The fact that we are using a FIFO protocol implies that after a certain time all the old
packets will leave the system. We will compute a bound to this time.

Consider now the worst case of an old packet being last in a queue Qj at time 0 and
targeted with the largest simple path in the network. Rename the queues in this simple path
as Qj ≡ Qj0 , . . . = Qjd(G)−1

. Note that at time M1 = qj0 all packets of this queue will have
been served. Thus these packets have passed to the next queues in the path. Moreover, they
can be delayed by at most rM1 new injections. Furthermore, the size of any Qji is bounded
above by (α(G)+ r)M1. We repeat the same procedure, each time considering the last queue in
the path that still contains old packets. After d(G) − 2 additional steps (M2, M3, . . . , Md(G)−1)
all the old packets would disappear or being in Qjd(G)

. Define P (t) = maxm
i=0 {qi(t)}. Working

in the previous way, an absolute bound for the delay of the last old packet in Qj is M =
M1 + . . . + Md(G)−1, where for every 0 < i < d(G), we have M1 ≤ q(Σj<iMj), with M0 = 0.
Moreover, during a period of q(t) steps starting at time t, we have P (t+P (t)) ≤ (α(G)+r)P (t).
Solving the recurrence, the total time is

M ≤ Σd(G)−1
i=0 (α(G) + r)iP (0)

At time step M all the old packets have been absorbed and only the injected packets in
the time period [0 . . . M ] will remain in the system. Because j(G) is the minimum number of
edge-disjoint paths in the network, during this period in the worst case at most j(G)rM packets
will be injected in the network. Therefore the total number of packets in the network at time
step M is at most P (M) ≤ j(G)rM . At time step M , s(Πj) packets exist in each disjoint path
Πj from the definitions. Note that the minimum number of packets in a disjoint path Πj at
time step M (min{s(Πj)}) is significantly bigger comparing to the number of network edges.
This allows us to assume that when a disjoint path Πj has s(Πj) packets, then in each time
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step of a time period of s(Πj) time steps, r packets arrive into the path and one packet leaves
it.

Assume now s = min {s(Πj)}. The change of the number of packets in the disjoint path Πj

in absolute values, ∆Πj , at M + s time step will be

∆Πj = Σmin {s(Πj)}
0 |r − 1| = |r − 1|min {s(Πj)} ≤ |r − 1|s(Πj)

Thus, the total change of the system configuration will be

ΣΠj∆Πj ≤ ΣΠj |r − 1|s(Πj) = |r − 1|ΣΠjs(Πj)

But, P (M) = ΣΠjs(Πj). Thus,

ΣΠj∆Πj ≤ |r − 1|P (M)

is at most the change of the system configuration for a time period with s = min{s(Πj)} steps.

Consider now, the consecutive time intervals with duration: s, rs, r2s, . . . , rks, where k is
such that rks ≥ 1 and rk+1s < 1. The same argument as in the case of s time steps can be used
for ris time steps. For each of these time intervals the change of the system configuration will
be at most ri(r − 1)P (M). Let t1 be the time at which rks finishes. The packets in network G
at time t1 are all new. Thus, the number of packets in the system at time t1 is at most

P (t1) ≤ P (M) + (r − 1)P (M) + r(r − 1)P (M) + . . . + rk−1(r − 1)P (M) = rkP (M)

For stability, we need P (t1) ≤ P (0). Thus, we must choose an r such that rkP (M) ≤ P (0).
But,

P (M) ≤ j(G)rM ≤ j(G)rΣd(G)−1
i=0 (α(G) + r)iP (0)

Thus,
rkj(G)rΣd(G)−1

i=0 (α(G) + r)iP (0) ≤ P (0)

For k = 1 this equation takes its smallest value

r2Σd(G)−1
i=0 (α(G) + r)i ≤ 1

j(G)

This is equivalent to find in the real interval (0, 1), the root rG of the polynomial

−r2j(G)(α(G) + r)d(G) + r2j(G) + α(G) + r − 1

By the Bolzano Theorem, this polynomial has a root rG in (0, 1).
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From Theorem 4.1 and the upper bound on injection rate that guarantees stability for FIFO,
which has been estimated in [12] we have:

Corollary 4.2 Let r∗ = max {rG , 1
d(G)}. Then for every G, and any adversary with r ≤ r∗ the

system 〈G,A, FIFO〉 is stable.

To illustrate the strength and applicability of our analytical techniques towards the upper
bound on injection rate that guarantees FIFO stability which is given in [12], we apply them to
network U1 (Figure 1). The upper bound for FIFO stability is 1/3 in [12], while in our case is
0.3371.

Now we show that our stability bound rG is larger than the stability bound r′G of Proposi-
tion 2.1:

Let
f(r) = Σd(G)−1

i=0 (α(G) + r)i

Note that f(r) is monotone and increasing for r > 0. But,

2 − r′G
1 − r′G

r′Gm(G)f(r′G) = 1

Also, r′Gf(r′G) ≤ 1
2m(G) because for all r ∈ (0, 1) it holds that 1−r

2−r ≤ 1
2 .

Since rG < 1, it holds

rGf(rG) > r2
Gf(rG) =

1
j(G)

From this equation along with 1
j(G) ≥ 1

m(G) and r′Gf(r′G) ≤ 1
2m(G) , we take

r2
Gf(rG) > r′Gf(r′G)

This holds for r2
G > r′G . Therefore, we have shown that in all networks G, we have

√
r′G < rG

which implies rG > r′G since r′G ∈ (0, 1).

In order to illustrate with an example, that the technique we present in Theorem 4.1 gives
better upper bounds for FIFO stability comparing to the technique proposed by Diaz et al.
in [7] (Proposition 2.1), we apply them to network U1 (Figure 1). Then, the upper bound for
FIFO stability is 0.0231 for [7], while in our case is 0.3371.
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Figure 6: The Network N

5 Instability of Small-Size FIFO Networks

In this section we present a lower bound on injection rate that guarantees instability for a FIFO

network with only 22 queues. We show:

Theorem 5.1 Let r ≥ 0.704. There is a network N of 22 queues and an adversary A of rate
r such that the system 〈N ,A, FIFO〉 is unstable.

Proof: We consider the network N in Figure 6. We start with an informal description of our
proof.

(i) We split the time into phases. In each phase we consider the evolution of the system con-
figuration as a sequence of consecutive distinguished time rounds. Then, we inductively
show that the number of packets in the system increases at the end of a phase compar-
ing to the beginning. This inductive argument can be applied repeatedly, thus showing
instability for an infinite time interval.

(ii) We use an inductive hypothesis with two parts. The first part specifies the position of
the initial packets at the beginning of a phase and that their number is smaller than the
number of packets in the corresponding subset of queues that will serve as initial packets
at the beginning of the next phase. The second part guarantees that the initial packets
in each phase will traverse their path as a continuous flow.
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(iii) We achieve further delay of packets initially residing in the system by exploiting multiple
parallel paths of the network topology between a common origin and destination.

(iv) We heavily exploit the fair mixing property of FIFO.

We now continue with the detailed proof.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that are queued in
the queues e1, f

′
3, f

′
4, f

′
5, f

′
6, f

′
8 requiring to traverse the edges e0, f1, f3, f5, all these packets are

able to depart from their initial edges to the symmetric part of the network (f1, f3, f5) as a
continuous flow in sj time steps, the number of packets that are queued in queues f

′
4, f

′
6, f

′
8, e0

is larger than the number of packets that are queued in queues f
′
3, f

′
5 and the number of packets

that are queued in queue e1 is less than the number of packets that are queued in queues
f

′
4, f

′
6, f

′
8.

Induction Step: At the beginning of phase j+1 there will be more than sj packets (sj+1 packets)
that are queued in the queues f3, f5, f4, f6, f8, e0 requiring to traverse the edges e1, f

′
1, f

′
3, f

′
5, all

of which will be able to depart from their initial edges to the symmetric part of the network
(f

′
1, f

′
3, f

′
5) in sj+1 time steps as a continuous flow, the number of packets that will be queued

in queues f4, f6, f8, e0 will be larger than the number of packets that will be queued in queues
f3, f5 and the number of packets that will be queued in queue e0 will be less than the number
of packets that will be queued in queues f4, f6, f8.

Notice that our inductive argument claims that if at the beginning of phase j all sj packets
that are queued in queues e1, f

′
3, f

′
4, f

′
5, f

′
6, f

′
8 requiring to traverse the edges e0, f1, f3, f5, manage

to traverse their initial edges in sj time steps as a continuous flow, then at the beginning of
phase j + 1 all sj+1 packets, that will be queued in queues e0, f3, f5, f4, f6, f8 requiring to
traverse the edges e1, f

′
1, f

′
3, f

′
5, will be able to traverse their initial edges in sj+1 time steps as

a continuous flow. This argument guarantees the reproduction of the inductive hypothesis in
queues e0, f3, f5, f4, f6 even if there are flows (in particular in queues f3, f4, f5, f6, f8) that do
not want to traverse the edges e1, f

′
1, f

′
3, f

′
5 the packets of which are regularly spread among the

packets that want to traverse these edges.

Furthermore, this argument implies the third part of the inductive argument, which claims
that if at the beginning of phase j, the number of packets that are queued in queues e1, f

′
4, f

′
6, f

′
8

is larger than the number of packets that are queued in queues f
′
3, f

′
5, then at the beginning of

phase j +1 the number of packets that will be queued in queues e0, f4, f6, f8 will be larger than
the number of packets that will be queued in queues f3, f5. This happens because in the first
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round of the adversary’s construction we inject packets in queue f
′
4 and if the third part of the

inductive hypothesis doesn’t hold then we cannot guarantee that all the initial sj packets will
depart their initial edges to the edges f1, f3, f5 in sj time steps as a continuous flow. However,
we include it into the inductive hypothesis for readability reasons.

We will construct an adversary A such that the induction step will hold. Proving that the
induction step holds, we ensure that the inductive hypothesis will hold at the beginning of
phase j + 1 for the symmetric edges with an increased value of sj , sj+1 > sj .

From the inductive hypothesis, initially, there are sj packets (called S−flow) in the queues
e1, f

′
3, f

′
4, f

′
5, f

′
6, f

′
8 requiring to traverse the edges e0, f1, f3, f5. In order to prove the induction

step, it is assumed that there is a set S with a large enough number of |S| = sj packets in the
initial system configuration.

During phase j the adversary plays three rounds of injections. The sequence of injections
is as follows:

• Round 1: This round lasts |T1| = sj time steps.

Adversary’s behavior. During this round, the adversary injects a set X of |X| = r|T1|
packets in queue f

′
4 wanting to traverse the edges f

′
4, f

′
6, f

′
8, f

′
10, e0, f2, f3, f5, e1, f

′
1, f

′
3, f

′
5.

Also, it injects a set S1 of |S1| = r|T1| packets in queue f1 wanting to traverse the edge
f1.

Evolution of the system configuration. The packets of set S delay X packets in queue e0

because the S packets in queues e1, f
′
4, f

′
6, f

′
8 are more than the S packets in queues f

′
3, f

′
5

and the packets in e1 are less than the packets in queues f
′
4, f

′
6, f

′
8 at the beginning of this

round. Thus, all the S packets will traverse their initial edges in sj time steps stopping
the packets of set X in queue e0.

At the same time, the packets of set S are delayed in queue f1 where they get mixed with
S1 packets. Notice that due to FIFO, the packets of sets S, S1 mix in consecutive blocks
according to their initial proportion of their sizes (fair mixing property). Since |S| = |T1|
and |S1| = r|T1|, these proportions are |S|

|S1|+|S| and |S1|
|S1|+|S| , respectively. Thus, during the

sj steps of this round, the packets of sets S, S1, which cross f1 are, respectively, |S|
|S1|+|S| |T1|

and |S1|
|S1|+|S| |T1|. Therefore, the remaining packets in queue f1 are:

– for packet set S: a set Srem of |Srem| = |T1| − |S|
|S1|+|S| |T1| packets,

– for packet set S1: a set S1,rem of |S1,rem| = |S1| − |S1|
|S1|+|S| |T1| packets.
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• Round 2: It lasts |T2| = r|T1| time steps.

Adversary’s behavior. The adversary injects a set Y of |Y | = r|T2| packets in queue f
′
4

requiring to traverse the edges f
′
4, f

′
6, f

′
8, f

′
10, e0, f4, f6, f8, f10, e1, f

′
1, f

′
3, f

′
5. At the same

time, the adversary injects a set S2 of |S2| = r|T2| packets in queue f2 wanting to traverse
the edge f2, a set S3 of |S3| = r|T2| packets in queue f3 wanting to traverse the edge f3,
and a set S4 of |S4| = r|T2| packets in queue f5 wanting to traverse the edge f5.

Evolution of the system configuration. The packets of set Y are blocked by the set X in
queue e0. At the same time, the packet sets X, S2 mix in consecutive blocks according
to their initial proportion of their sizes due to FIFO. Since |X| = r|T1| and |S2| = r|T2|,
these proportions are |X|

|X|+|S2| and |S2|
|X|+|S2| , respectively. Thus, during the |T2| steps of

this round, the packets of sets X, S2, that traverse the edge f2 are:

– for set X: a set Xpass,f2 of |Xpass,f2 | = |X|
|X|+|S2| |T2| packets,

– for set S2: a set S2,pass,f2 of |S2,pass,f2 | = |S2|
|X|+|S2| |T2| packets. These packets are

absorbed.

On the other hand, the remaining packets in queue f2 are

– for set X: a set Xrem,f2 of |Xrem,f2 | = |X| − |Xpass,f2 | packets,

– for set S2: a set S2,rem,f2 of |S2,rem,f2 | = |S2| − |S2,pass,f2 | packets.

Notice that in queue f1 at the beginning of this round, there are the Srem, S1,rem packets
that have remained there from the previous round. Since their total number is |T2|,
which is equal to the duration of this round, the packets of S1,rem do not delay the
packets of Srem. In addition, the S1,rem packets are absorbed after they traverse the edge
f1, therefore only the Srem packets require the edge f3. As a result the packet stream
arriving from f1 to f3 does not contain packets at the positions of the S1,rem packets.
Thus, we can consider it as a stream with empty spaces at the positions of the S1,rem

packets. However, these empty spaces are uniformly spread for the duration of the time
period. Thus, during this round, three different packet sets arrive at queue f3:

– Xpass,f2 where |Xpass,f2 | = |X|
|X|+|S2| |T2| packets. These packets mixed with packets

of set S2,pass,f2 . But, since their total number is |T2|, S2,pass,f2 packets do not delay
Xpass,f2 packets. Also the S2,pass,f2 packets are absorbed after they traverse the
edge f2. Thus, only the Xpass,f2 packets require to traverse the edge f3. As a result
the stream arriving from f2 to f3 does not contain packets at the positions of the
S2,pass,f2 packets.
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– Srem, where |Srem| = |S| − |S|
|S1|+|S| |T1|,

– S3, where |S3| = r|T2|.

Since the total number of packets of the three flows arriving to queue f3 is

|T | = |Xpass,f2 | + |S3| + |Srem|

the corresponding proportions are:

– for Xpass,f2 :
|Xpass,f2

|
T ,

– for Srem: |Srem|
T ,

– for S3:
|S3|
T .

Thus, the remaining packets in queue f3 from each flow at the end of this round are:

– for Xpass,f2 : a set Xrem,f3 of |Xrem,f3 | = |Xpass,f2 | − |Xpass,f2
|

|T | |T2| packets,

– for Srem: a set Srem,f3 of |Srem,f3 | = |Srem| − |Srem|
|T | |T2| packets,

– for S3: a set S3,rem of |S3,rem| = |S3| − |S3|
|T | |T2| packets.

The technique of proportions can still be used even if some stream of packets has empty
spaces, since the empty spaces are uniformly spread. Notice that during this round the
stream arriving to the edge f5 contains three different packet sets:

– the set S4, where |S4| = r|T2|,
– the set Spass,f3 of Srem packets that traverse the edge f3, where |Spass,f3 | = |Srem|

|T | |T2|,
– the set Xpass,f3 of Xpass,f2 packets that traverse the edge f3, where |Xpass,f3 | =

|Xpass,f2
|

|T | |T2|.

Notice also that the S3 packets that traverse the edge f3 are absorbed after they traverse
edge f3. Since the total number of packets in the three flows is |T ′ | = |S4| + |Spass,f3 | +
|Xpass,f3 | the corresponding proportions are:

– for Xpass,f3 :
|Xpass,f3

|
|T ′ | ,

– for Spass,f3 :
|Spass,f3

|
|T ′ | ,

– for S4:
|S4|
|T ′ | .

Thus, the remaining packets from each flow in queue f5 at the end of this round are:
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– for Xpass,f3 : |Xpass,f3 | − |Xpass,f3
|

|T ′ | |T2|,

– for Spass,f3 : |Spass,f3 | − |Spass,f3
|

|T ′ | |T2|
– for S4: |S4| − |S4|

|T ′ | |T2|.

• Round 3: It lasts |T3| = r|T2| time steps.

Adversary’s behavior. During this round the adversary injects a set S5 of |S5| = r|T3|
packets in queue f4 requiring to traverse only f4, a set S6 of |S6| = r|T3| packets in queue
f6 requiring to traverse only f6, a set S7 of |S7| = r|T3| packets in queue f8 requiring to
traverse only f8 and a set Z of |Z| = r|T3| packets in queue e0 requiring to traverse the
edges e0, f7, f9, f10, e1, f

′
1, f

′
3, f

′
5.

Evolution of the system configuration. Y packets have priority over Z packets in queue
e0. At the same time the packet sets S5, Y get mixed in queue f4 in consecutive blocks
according to their initial proportion of their sizes. These proportions are

– for set Y : |Y |
|Y |+|S5| ,

– for set S5:
|S5|

|Y |+|S5| .

Thus, during the |T3| steps of this round, the packets of packet sets Y, S5 that remain in
queue f4 are respectively:

– for Y : a set Yrem of |Yrem| = |Y | − |Y |
|Y |+|S5| |T3| packets,

– for S5: a set S5,rem of |S5,rem| = |S5| − |S5|
|Y |+|S5| |T3| packets.

On the other hand the packets of packet sets Y, S5 that traverse the edge f4 are respec-
tively:

– for Y : a set Ypass of |Ypass| = |Y |
|Y |+|S5| |T3| packets,

– for S5: a set S5,pass of |S5,pass| = |S5|
|Y |+|S5| |T3| packets. The S5,pass packets are

absorbed after they traverse the edge f4 because they are single-edge injections.

Furthermore, during this round the set of packets S6 get mixed with the set Ypass in
consecutive blocks according to their initial proportion of their sizes. These proportions
are:

– for Ypass:
|Ypass|

|S6|+|Ypass|

– for S6:
|S6|

|S6|+|Ypass| .
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Thus, during the |T3| steps of this round, the packets that traverse the edge f6 are re-
spectively:

– for Ypass: a set Ypass,f6 of |Ypass,f6 | = |Ypass|
|S6|+|Ypass| |T3| packets,

– for S6: a set S6,pass of |S6,pass| = |S6|
|S6|+|Ypass| |T3| packets. The S6,pass packets are

absorbed after they traverse the edge f6 because they are single-edge injections.

Therefore, the remaining packets in queue f6 are:

– for Ypass: a set Yrem,f6 of |Yrem,f6 | = |Ypass| − |Ypass,f6 | packets,

– for S6: a set S6,rem of |S6,rem| = |S6| − |S6,pass| packets.

Additionally, during this round the set of packets S7 get mixed in queue f8 with the set
Ypass,f6 in consecutive blocks according to their initial proportion of their sizes. These
proportions are:

– for Ypass,f6 :
|Ypass,f6

|
|S7|+|Ypass,f6

|

– for S7:
|S7|

|S7|+|Ypass,f6
| .

Thus, during the |T3| steps of this round, the packets that traverse the edge f8 are re-
spectively:

– for Ypass: a set Ypass,f8 of |Ypass,f8 | = |Ypass,f6
|

|S7|+|Ypass,f6
| |T3| packets,

– for S7: a set S7,pass of |S7,pass| = |S7|
|S7|+|Ypass,f6

| |T3| packets. The S7,pass packets are
absorbed after they traverse the edge f8 because they are single-edge injections.

Therefore, the remaining packets in queue f8 are:

– for Ypass: a set Yrem,f8 of |Yrem,f8 | = |Ypass,f6 | − |Ypass,f8 | packets,

– for S6: a set S7,rem of |S7,rem| = |S7| − |S7,pass| packets.

Notice that the total number of packets that are queued in queue f5 at the end of round
2 is equal to

|P1| = |Xpass,f3 | + |Spass,f3 | + |S4|

However, |P1| < |T3|, for all r > 0. Thus, all the packets in queue f5 at the end of the
previous round will traverse the edge f5. Therefore, the remaining time during which
packets arriving to edge f5 from edge f3 can traverse the edge f5 is trem = |T3| − |P1|.
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Notice also that the total number of packets that are queued in queue f3 at the beginning
of this round is

|P2| = |Xrem,f3 | + |Srem,f3 | + |S3,rem|

However, |P2| ≥ |T3|, for all r. Thus, a number of Xrem,f3 , Srem,f3 , S3,rem packets can
remain in queue f3 at the end of this round. This number is |P3| = |P2| − |T3|. From this
number, the number of packets that belong to set S3,rem is

|S3,rem,f3 | = |P3| |S3,rem|
|S3,rem| + |Xrem,f3 | + |Srem,f3 |

Except the remaining packets in queue f3, there is a number of packets of sets Xrem,f3 ,
Srem,f3 and S3,rem that traverse the edge f3 during this round. This number of packets
is |T3|. From these packets, the packets that belong to S3,rem are absorbed because they
are single-edge injections. The number of these packets is |S3,rem|

|S3,rem|+|Xrem,f3
|+|Srem,f3

| |T3|.
In |T3| steps, the same portion of Xrem,f3 and Srem,f3 packets traverse the edge f3,
Xrem,f3,pass and Srem,f3,pass correspondingly, because they get mixed in queue f3 with
the same proportion. The size of the portion of Xrem,f3 and Srem,f3 packets that traverse
edge f3 is

|Xpass,f3,pass| = |Srem,f3,pass| =
|Xrem,f3 |

|S3,rem| + |Xrem,f3 | + |Srem,f3 |
|T3|

Consequently, the sum of these packets is |P4| = |Xrem,f3,pass| + |Srem,f3,pass|. However,
|P4| ≥ trem for all r. Therefore, during the remaining trem time steps of this round a
number of Xpass,f3,pass and Srem,f3,pass packets, which arrive to the edge f5 from the edge
f3, will traverse the edge f5. Xpass,f3,pass and Srem,f3,pass packets arrive to the edge f5

from the edge f3 with the same proportion and their sum P4 is greater or equal to the
remaining time steps trem. Thus, the same number of Xpass,f3,pass and Srem,f3,pass packets
will traverse the edge f5 (Xpass,f3,f5 and Sabsorb,f3,f5 correspondingly). This number is
|Xpass,f3,f5 | = |Sabsorb,f3,f5 | = trem

2 . Therefore, the number of packets from the packet set
Xrem,f3 that will not arrive at queue e1 is |Xf3,f5 | = |Xrem,f3 | − |Xpass,f3,f5 |.
In addition, the total number of packets that are in queue f2 at the end of round 2 is
|P5| = |T3|. Thus, all the X packets traverse the edge f2 and arrive to the edge f3 where
they are blocked due to the packets that are already queued in f3 at the end of the
previous round. This happens because the number of packets that are queued in f3 at
the end of the previous round is greater than or equal to the time duration of the current
round as we have shown previously.
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The total number of packets that arrive at queue e1 during this round is:

|Pe1 | = |Xpass,f3,f5 | + |Ypass,f8 |

For r ≥ 0.276, |Pe1 | ≤ |T3|. Therefore for r ≥ 0.276 the number of packets that arrive at
queue e1 is less or equal to the number of time steps of this round.

In order to have instability the number of packets that are queued in queues f3, f4, f5, f6, f8,

e0, e1 requiring to traverse the edges e1, f
′
1, f

′
3, f

′
5 at the end of round 3, sj+1, should be

more than the initial sj packets that were queued in the system at corresponding queues
at the beginning of round 1. This holds for

|Z| + |Yrem| + |Yrem,f6 | + |Yrem,f8 | + |Xrem,f2 | + |Xf3,f5 | > sj

This inequality implies that r ≥ 0.704. The first part of the proof is now complete.

In order to conclude the proof we should also consider the following technical lemma:

Lemma 5.2 For r ≥ 0.609, the number of time steps that are needed for the arrival at
queue e1 of all the X packets that remain in queues f3, f5 at the end of round 3 is less
than or equal to the number of time steps that are needed for the arrival at queue e1 of
all the Y, Z packets that remain in queues f4, f6, f8, e0 at the end of round 3.

Proof: The required number of time steps for the arrival at queue e1 of all the X packets
that remain in queues f3, f5 at the end of round 3 is

PX,e1 = |Xrem,f3 | − |Xpass,f3,f5 | + |Srem,f3 | − |Sabsorb,f3,f5 | + |Xrem,f2 | + |S3,rem,f3 |.
where the quantities |Xrem,f3 |, |Xpass,f3,f5 |, |Srem,f3 |, |Sabsorb,f3,f5 |, |Xrem,f2 |, |S3,rem,f3 | have
been estimated at round 3 of the adversarial construction.

On the other hand the number of packets remaining in queue f4 at the end of round 3
is Q(f4) = |Yrem| + |S5,rem|. The number of packets remaining in queue f6 at the end of
round 3 is Q(f6) = |Yrem,f6 | + |S6,rem| and the number of packets remaining in queue f8

at the end of round 3 is Q(f8) = |Yrem,f8 | + |S7,rem|. Also, the number of Z packets that
remain in queue e0 is Q(e0) = r|T3|.
In r|T3| time steps all the Z packets will arrive at queue f10. Also in r|T3| time steps,
all the Yrem,f6 , Yrem,f8 packets will arrive at queue f10 as Q(f6) + Q(f8) < r|T3| and all
the Yrem packets will depart queue f4 towards queue f10. Therefore, the required number
of time steps for the arrival at queue e1 of all the Y, Z packets that remain in queues
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f4, f6, f8, e0 at the end of round 3 is PY,Z,e1 = |Z|+ |Yrem|+ |Yrem,f6 |+ |Yrem,f8 | where the
quantities |Z|, |Yrem|, |Yrem,f6 |, |Yrem,f8 | have been estimated at round 3 of the adversarial
construction. For r ≥ 0.609, the inequality PY,Z,e1 ≥ PX,e1 holds. If this constraint holds,
the third part of the inductive hypothesis of the theorem holds too.

Notice that we have, till now, managed to reproduce the inductive hypothesis in queues
f3, f5, f4, f6, f8, e0, e1 but with some packet sets (in particular in queues f4, f6, f8, f3, f5)
that contain packets that do not want to traverse the edges e1, f

′
1, f

′
3, f

′
5. In order for the

induction step to work we must show that all the X, Y, Z packets that remain in these
queues at the end of round 3 will manage to depart to the symmetric part of the network
(f

′
1, f

′
3, f

′
5) in sj+1 time steps as a continuous flow. This is shown by the following lemma.

Lemma 5.3 All the X, Y, Z packets that remain in queues f3, f5, f4, f6, f8, e0, e1 at the
end of round 3 will manage to depart to the symmetric part of the network (f

′
1, f

′
3, f

′
5) in

sj+1 time steps as a continuous flow.

Proof: All the packets that are queued in queue e1 at the end of round 3 want to traverse
the edges e1, f

′
1, f

′
3, f

′
5. Also, from Lemma 5.2 for r ≥ 0.609, the number of time steps that

are needed for the arrival at queue e1 of all the X packets that remain in queues f3, f5 at
the end of round 3 is less than or equal to the number of time steps that are needed for
the arrival at queue e1 of all the Y, Z packets that remain in queues f4, f6, f8, e0 at the
end of round 3.

Therefore, in order to prove this lemma, it is sufficient to show that all the Y, Z packets
that remain in queues f4, f6, f8, e0 at the end of round 3 (PY,Z,e1 = |Z|+|Yrem|+|Yrem,f6 |+
|Yrem,f8 |) arrive at queue e1 in PY,Z,e1 time steps as a continuous flow. But, this holds
from Lemma 5.2.

We have so far established two (non-trivial) sufficient constraints on r for instability,
namely that r ≥ 0.704 and r ≥ 0.609. Clearly, taking r ≥ max{0.704, 0.609} = 0.704
suffices for instability of the network N in the constructed execution. This concludes our
proof.

6 Unstable Subgraphs

In this section we show lower bounds on injection rate that guarantee instability for forbidden
subgraphs. Consider the networks U2 and U3 (see Figures 2, 7) that use NTG-U-LIS protocol.
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Theorem 6.1 Let r ≥ 0.794. There is a network Ui and an adversary A of rate r such that
the system 〈Ui,A, NTG − U − LIS〉 is unstable where Ui is the network a) U2, b) U3.

Proof: Part a) Consider the network U2 in Figure 2.

Inductive hypothesis: At the beginning of phase j, there are sj packets (called S set of packets)
in the queues e1, e2 requiring to traverse the edges e1, f2 and e2, f1, f2 correspondingly.

Induction Step: At the beginning of phase j + 1 there will be more than sj packets, sj+1 > sj ,
in the queues e1, e2 requiring to traverse the edges e1, f2 and e2, f1, f2 correspondingly.

We will construct an adversary A such that the induction step will hold. Proving that the
induction step holds, we ensure that the induction hypothesis will hold at the beginning of
phase j + 1 with an increased value of sj , sj+1 > sj . From the induction hypothesis, initially,
there are sj packets (called S set of packets) in the queues e1, e2 requiring to traverse the edges
e1, f2 and e2, f1, f2 correspondingly. In order to prove that the inductive argument works, we
consider that there is a large enough number of packets sj in the initial system configuration.

During phase j the adversary plays three rounds of injections. The sequence of injections
is as follows:

• Round 1: It lasts |T1| = sj time steps.

Adversary’s behavior. During this round, the adversary injects in queue f2 a set Z1 of
|Z1| = r|T1| packets wanting to traverse the edges f2, e1, e2.

Evolution of the system configuration. S packets have priority over Z1 packets in queue f2

because S packets are nearest to their destination (queue f2) than Z1 packets (queue e2)
and f2 uses NTG-U-LIS. Thus, S packets reach their destination where they are absorbed,
while Z1 packets are queued in queue f2.
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• Round 2: It lasts |T2| = r|T1| time steps.

Adversary’s behavior. During this round, the adversary injects a set Z2 of |Z2| = r|T2|
packets in queue e1 requiring to traverse the edges e1, f2 and a set Z3 of |Z3| = r|T2|
packets in queue e2 requiring to traverse the edge e2.

Evolution of the system configuration. Z1 packets have priority over Z2 packets in e1.
These flows have the same number of edges to traverse to reach their destination, but
Z1 packets are longer time in the system than Z2 packets. Therefore, due to NTG-U-

LIS that uses LIS to solve such kind of contentions, all Z1 packets arrive at queue e2

where they get mixed with Z3 packets. The total number of packets arriving at queue e2

during this round is |Z1| + |Z3| packets. However, the duration of this round is |T2| time
steps. Therefore, |T2| packets traverse the edge e2 during this round, after which they are
absorbed. Thus, at the end of this round, there will be a set X of |X| = r|T2| remaining
packets in queue e2 wanting to traverse the edge e2 and |Z2| = r|T2| packets in queue e1

wanting to traverse the edges e1, f2.

• Round 3: It lasts |T3| = r|T2| time steps.

Adversary’s behavior. During this round, the adversary injects a set Z4 of |Z4| = r|T3|
packets in queue e1 requiring to traverse the edge e1 and a set Z5 of |Z5| = r|T3| packets
in queue e2 requiring to traverse the edges e2, f1, f2.

Evolution of the system configuration. X packets have priority over Z5 packets in queue
e2 because X packets have nearest to go (queue e2) than Z5 packets (queue f2). Thus at
the end of this round, there are |Z5| = r|T3| packets in queue e2 wanting to traverse the
edges e2, f1, f2. Also, the Z4 packets have priority over Z2 packets in queue e1 because
Z4 packets have nearest to go (queue e1) than Z2 packets (queue f2). But, the number
of Z4 packets is |Z4| = r|T3|, while this round has |T3| time steps. Therefore, along with
the Z4 packets and |T3| − r|T3| packets from Z2 will traverse the edge e1. Thus, at the
end of this round, the remaining portion of Z2 packets in queue e1 that want to traverse
the edges e1, f2 is |Y | = r|T3| packets. Totally at the end of this round, the number of
packets in queues e1, e2 requiring to traverse the edges e1, f2 and e2, f1, f2 correspondingly
is sj+1 = |Y | + |Z5| = 2r|T3|.
In order to have instability, we must have sj+1 > sj . This holds for 2r|T3| > |T1|, i.e.
r ≥ 0.794. This argument can be repeated for an infinite and unbounded number of
phases ensuring that the number of packets in the queues e1, e2 requiring to traverse the
edges e1, f2 and e2, f1, f2 at the end of a phase is larger than at the beginning of the phase
forever.
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Part b) Consider the network U3 in Figure 7.

Inductive hypothesis: At the beginning of phase j, there are sj packets in the queues e1, e2

requiring to traverse the edge f1.

Induction Step: At the beginning of phase j + 1 there will be more than sj packets, sj+1 > sj

in the queues e1, e2 requiring to traverse the edge f1.

We will construct an adversary A such that the induction step will hold. Proving that the
induction step holds, we ensure that the inductive hypothesis will hold at the beginning of phase
j + 1 with an increased value of sj , sj+1 > sj . From the inductive hypothesis, initially, there
are sj packets (called S set of packets) in the queues e1, e2 requiring to traverse the edge f1.
In order to prove that the inductive argument works, we consider that there is a large enough
number of packets sj in the initial system configuration.

During phase j the adversary plays three rounds of injections as follows:

• Round 1: It lasts |T1| = sj time steps.

Adversary’s behavior. During this round, the adversary injects in queue f1 a set Z1 of
|Z1| = r|T1| packets wanting to traverse the edges f1, f2, e1.

Evolution of the system configuration. S packets have priority over Z1 packets in queue
f1 because S packets are nearest to their destination (queue f1) than Z1 packets (queue
e1). Thus, S packets reach their destination where they are absorbed, while Z1 packets
are queued in queue f1.

• Round 2: It lasts |T2| = r|T1| time steps.

Adversary’s behavior. During this round, the adversary injects a set Z2 of |Z2| = r|T2|
packets in queue f2 requiring to traverse the edges f2, e2, f1 and a set Z3 of |Z3| = r|T2|
packets in queue e1 requiring to traverse the edge e1.

Evolution of the system configuration. Z1 packets have priority over Z2 packets in queue f2

because Z1 packets have nearest to go (queue e1) than Z2 packets (queue f1). Therefore,
all Z1 packets arrive at queue e1 where they get mixed with Z3 packets, while Z2 packets
are queued in queue f2. The total number of packets arriving in queue e1 during this
round is |Z1|+ |Z3| packets. However, the duration of this round is |T2| steps. Therefore,
|T2| packets will traverse the edge e1. Thus, at the end of this round, there will be a
set X of |X| = r|T2| remaining packets in queue e1 wanting to traverse the edge e1 and
|Z2| = r|T2| packets in queue f2 wanting to traverse the edges f2, e2, f1.
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• Round 3: It lasts |T3| = r|T2| time steps.

Adversary’s behavior. During this round, the adversary injects a set Z4 of |Z4| = r|T3|
packets in queue e2 requiring to traverse the edge e2 and a set Z5 of |Z5| = r|T3| packets
in queue e1 requiring to traverse the edges e1, f1.

Evolution of the system configuration. The packets of the set X have priority over Z5

packets in e1 because X packets have nearest to go (queue e1) than Z5 packets (queue
f1). Thus, at the end of this round, there are |Z5| = r|T3| packets in queue e2 wanting to
traverse the edges e1, f1, while X packets reach their destination where they are absorbed.
Furthermore, the Z4 packets have priority over Z2 packets in queue e2 because Z4 packets
have nearest to go (queue e2) than Z2 packets (queue f1). But, the number of Z4 packets
is |Z4| = r|T3|, while this round has duration |T3| time steps. Therefore, along with the
Z4 packets and |T3| − r|T3| packets from Z2 will traverse the edge e2. Thus at the end
of this round, the remaining portion of the Z2 packets in queue e2 that want to traverse
the edges e2, f1 is |Y | = r|T3| packets. Totally at the end of this round, the number of
packets in queues e1, e2 requiring to traverse the edge f1 is sj+1 = |Y | + |Z5| = 2r|T3|.
In order to have instability, we must have sj+1 > sj . This holds for 2r|T3| > |T1|, i.e.
r ≥ 0.794. This argument can be repeated for an infinite and unbounded number of
phases ensuring that the number of packets that are queued in e1, e2 requiring to traverse
the edge f1 at the end of a phase is larger than at the beginning of the phase forever.

7 Discussion and Directions for Further Research

In this work we have studied how network structure affects the stability properties of greedy
contention-resolution protocols in the framework of Adversarial Queueing Theory [4]. We have
shown that the lower bound on injection rate that guarantees instability for specific composi-
tions of universally stable protocols drops when the network size increases. In particular we
demonstrate size-parameterized adversarial constructions that lead to instability certain com-
positions of protocols for adversary’s injection rate r ∈ (0.5, 1]. We also presented a FIFO

network whose lower bound on injection rate that guarantees instability can be dropped to a
low value without increasing its size. This result represents the current state-of-the-art trade-
off between the network size and the lower bound on injection rate that guarantees instability.
Furthermore, we presented an enhanced analysis for estimating upper bounds on injection rate
that guarantee stability for FIFO on arbitrary networks that is based on the correct calibration
of certain graph parameters such as the maximum directed network path length, the maximum
vertex degree and the minimum number of edge-disjoint paths that cover the graph. Finally, we
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studied the instability behavior induced by certain known forbidden subgraphs on networks run-
ning NTG-U-LIS protocol presenting adversarial constructions that improve the state-of-the-art
lower bound on injection rate that guarantees instability.

In this work we have presented some examples of the impact network structure has on
the stability behavior of greedy protocols and networks. However, a lot of problems remain
open. An important problem is to study the impact of network structure parameters on other
greedy protocols. Another problem is whether the lower bound on injection rate that guarantees
instability for compositions of protocols can be dropped further increasing the network size or
whether it is affected by other network parameters that have not be determined yet. Finally, an
interesting problem is whether there are upper bounds on injection rate that guarantee stability
for forbidden subgraphs for universal stability.
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