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Abstract

We studyextremeNash equilibria in the context ofselfish routinggame. Specifically, we assume
a collection ofn users each employing anixed strategywhich is a probability distribution oven
parallelidentical links to control the routing of its own assignédffic. In aNash equilibriumeach
user selfishly routes its traffic on those links that minimizeeikpected latency casthesocial cost
of a Nash equilibrium is the expectation, over all random choices of the users, of the maximum, over
all links, latencythrough a link.

We provide substantial evidence for thally Mixed Nash Equilibrium Conjecturevhich states
that the worst Nash equilibrium is tfigly mixed Nash equilibriunwhere each user chooses each link
with positive probability. Specifically, we prove that the Fully Mixed Nash Equilibrium Conjecture is
valid for pure Nash equilibria. Furthermore, we show, that under a certain condition, the social cost
of any Nash equilibrium is within a factor 021 + ¢) of that of the fully mixed Nash equilibrium,
whereh is the factor by which the largest user traffic deviates from the average user traffic.
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Considering pure Nash equilibria, we providB8AS to approximate the best social cost, we give
an upper bound on the worst social cost and we show thatt48-hard to approximate the worst
social cost within a multiplicative factor better than-2/(m + 1).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction
1.1. Motivation and framework

A Nash equilibrium{22,23] represents a stable state of the play sfrategic gamgin
which each player holds an accurate opinion about the (expected) behavior of other players
and acts rationally. An issue that arises naturally in this context concerns the computational
complexity of Nash equilibria of any given strategic game. Due to the ultimate significance
of Nash equilibrium as a prime solution concept in contempo@Gayne Theory24], this
issue has become a fundamental algorithmic problem that is being intensively studied in
the Theory of Computing community today (see, e.g., [4,7,31]); in fact, it is arguably one
of the few, most important algorithmic problems for which generalpolynomial-time
algorithms are known today (cf. [26]).

The problem of computing arbitrary Nash equilibria becomes even more challenging
when one considerextremeNash equilibria, ones that maximize or minimize a certain
objective function So, understanding the combinatorial structure of extreme Nash
equilibria is a necessary prerequisite to either designing efficient algorithms to compute
them or establishing corresponding hardness and thereby designing efficient
approximation algorithms. In this work, we embark on a systematic study of the
combinatorial structure and the computational complexity of extreme Nash equilibria;
our study is carried out within the context of a simpédfish routinggame, originally intro-
duced in a pioneering work by Koutsoupias and Papadimitriou [16], that we
describe next.

We assume a collection niusers, each employingaixed strategywhich is a probability
distribution ovemparallellinks, to control the shipping of its own assignieaffic. For each
link, a capacityspecifies the rate at which the link processes traffic. In a Nash equilibrium,
each user selfishly routes its traffic on those links that minimizexipected latency cqgst
given the network congestion caused by the other users. A ssgrsortis the set of those
links on which it may ship its traffic with non-zero probability. Thecial costof a Nash
equilibrium is the expectation, over all random choices of the users, of the maximum, over
all links, latencythrough a link.

Our study distinguishes betwepnre Nash equilibria, where each user chooses exactly
one link (with probability one), anthixedNash equilibria, where the choices of each user
are modeled by a probability distribution over links. We also distinguish in some cases
between models daflentical capacitieswhere all link capacities are equal, anchdbitrary
capacities
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1.2. The fully mixed Nash equilibrium conjecture

In this work, we formulate and study a natural conjecture asserting that the fully mixed
Nash equilibriunt is theworstNash equilibrium with respect to social cost. Formally, we
conjecture:

Conjecture 1.1(Fully Mixed Nash Equilibrium Conjectuye For any traffic vectomw such
that the fully mixed Nash equilibriufrexists and for any Nash equilibriur®, SC(w, P) <
SC(w, F).

Clearly, the Fully Mixed Nash Equilibrium Conjecture is intuitive and natural: the fully
mixed Nash equilibrium favors “collisions” between different users (since each user as-
signs its traffic with positive probability teverylink); thus, this increased probability
of “collisions” favors a corresponding increase to the (expected) maximum total traffic
through a link, which is, precisely, the social cost. More importantly, the Fully Mixed Nash
Equilibrium Conjecture is also significant since it precisely identifiesvibest possible
Nash equilibrium for the selfish routing game we consider; this will enable designers of
Internet protocols not only to avoid choosing the worst-case Nash equilibrium, but also to
calculate the worst-case loss to the systerargtNash equilibrium due to its deliberate
lack of coordination, and to evaluate the Nash equilibrium of choice against the (provably)
worst-case one.

1.3. Contribution and significance

Our study provides quite strong evidence in support of the Fully Mixed Nash Equilib-
rium Conjecture by either establishing or near establishing the conjecture in a number of
interesting instances of the problem.

We start with the model of arbitrary capacities, where traffics are allowed to vary arbitrar-
ily. There we prove that the Fully Mixed Nash Equilibrium Conjecture holdptwe Nash
equilibria. We next turn to the case of identical capacities. Through a delicate probabilistic
analysis, we establish that in the special case, the number of links is equal to the number
of users and for a suitable large number of users, the social castydiash equilibrium
is less than 2(1 + ¢) (for any e > 0) times the social cost of the fully mixed Nash equi-
librium, whereh is the factor by which the largest user traffic deviates from the average
user traffic. Our proof employs concepts and techniques fmajorization theorj18] and
stochastic order30], such as comparing two random variables according tostmihastic
variability (cf. [28, Section 9.5]).

For pure Nash equilibria we show that itA§P-hard to decide whether or not any given
allocation of users to links can be transformed into a pure Nash equilibrium using at most
k selfish stepseven if the number of links is 2. Furthermore, we prove that there exists
a polynomial-time approximation schemTAS) to approximate the social cost of the
best pure Nash equilibrium to any arbitrary accuracy. The proof involves an algorithm that
transforms any pure strategy profile into a pure Nash equilibrium with at most the same
social cost, using at mostreassignments of users. We call this technityashification
and it may apply to other instances of the problem as well.
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Still for pure Nash equilibria, we give a tight upper bound on the ratio bet@ééw, L)
andOPT (w) for any Nash equilibriunk. . Then we show that it i8/P-hard to approximate
the worst-case Nash equilibrium with a ratio that is better than this upper bound. We close
our section about pure Nash equilibria with a pseudopolynomial algorithm for computing
the worst-case Nash equilibrium for any fixed number of links.

1.4. Related work and comparison

The selfish routing game considered in this paper was first introduced by Koutsoupias
and Papadimitriof 6] as a vehicle for the study of the price of selfishness for routing over
non-cooperative networks, subsequently studied in the work of Mavronicolas and Spirakis
[19], where fully mixed Nash equilibria were introduced and analyzed. In both works,
the aim had been to quantify the amount of performance loss in routing due to selfish
behavior of the users. (Later studies of the selfish routing game from the same point of
view, that of performance, include the works by Koutsoupias et al. [15] and by Czumaj and
Vocking [2].)

The closest to our work is the one by Fotakis et al. [7], which focuses on the combinatorial
structure and the computational complexity of Nash equilibria for the selfish routing game
we consider. The Fully Mixed Nash Equilibrium Conjecture formulated and systematically
studied in this paper has been inspired by two results due to Fotakis et al. [7] that confirm
or support the conjecture. First, Fotakis et al. [7, Theorem 4.2] establish the Fully Mixed
Nash Equilibrium Conjecture for the model of identical capacities and assuminghat
Second, Fotakis et al. [7, Theorem 4.3] establish that, for the model of arbitrary capacities,
the social cost of any Nash equilibrium is no more thard23imes the social cost of the
(generalized) fully mixed Nash equilibrium.

The routing problem considered in this paper is equivalent to the multiprocessor schedul-
ing problem. Here, pure Nash equilibria and Nashification translate to local optima and
sequences of local improvements. A schedule is said ture optimalif no job on a
processor with maximum load can improve by moving to another processor [29].

Obviously, the set of pure Nash equilibriais a subset of the set of jump optimal schedules.
Moreover, in the model of identical processors every jump optimal schedule can be trans-
formed into a pure Nash equilibrium without altering the makespan. Thus, for this model
the strict upper bound-2 2/(m + 1) on the ratio between best and worst makespan of jump
optimal schedules [6,29] also holds for pure Nash equilibria.

Algorithms for computing a jump optimal schedule from any given schedule have been
proposed in [1,6,29]. The fastest algorithm is given by Schuurman and Vredeveld [29]. It
always moves the job with maximum weight from a makespan processor to a processor with
minimum load, using ©@:) moves. However, in all algorithms the resulting jump optimal
schedule is not necessarily a Nash equilibrium.

1.5. Road map
The rest of this paper is organized as follows. Section 2 presents some preliminaries.

Stochastic orders are treated in Section 3. Pure Nash equilibria are contrasted to the fully
mixed Nash equilibrium in Section 4. Worst mixed Nash equilibria are contrasted to the
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fully mixed Nash equilibrium in Sectiof. Sections 6 and 7 consider best and worst pure
Nash equilibria, respectively. We conclude, in Section 8, with a discussion of our results
and some open problems.

2. Framework

Most of our definitions are patterned after those in [19, Section 2] and [7, Section 2],
which, in turn, were based on those in [16, Sections 1 and 2].

2.1. Mathematical preliminaries and notation

For any integem >1, denotgm] = {1, ..., m}. Denotel’ the Gamma functionthat is,
for any natural numbeN, I'(N + 1) = N!, while for any arbitrary real number > 0,
I'x) = fgo +*~le~! dr. The Gamma function is invertible; bofhand its inversd 1 are
increasing. It is well known that—1(N) = (log N/ loglogN)(1 + o(1)) (see, e.g., [10]).
For our purposes, we shall use the fact that for any pair of an arbitrary real nurabdman
arbitrary natural numbeN, (2/e)* = N if and only if « = I'"1(N) + ©(1). For an event
E in a sample space, dend?e(E) the probability of evenE happening.

For arandom variabl¥, denotef (X) theexpectatiorof X. In theballs-and-bingproblem,
m balls are thrown intan bins uniformly at random. (See [14] for a classical introduction
to this problem.) It is known that the expected maximum number of balls thrown over a bin
equals the quantitg(m) = I'"*(m) — 3 + o(1) [10].

In the paper, we make use of the following inequality, which holds due to Hoeffding.

Theorem 2.1(McDiarmid [20, Theorem 2.3] Let X1, X», ..., X,, be independent ran-
dom variables witl0< X <1 for each kLet S, = > Xy andu = £(S,). Then for any
p >0,

Pr(Sy>(L+ p <e @HDmash=-pu.
Note that if 0< X <« for all k € [n] and for some constant> 0, then for any$ > 0,

Pr(S,>(1+ P <e @HDIAH-HE.

2.2. General
We consider aetworkconsisting of a set afn parallellinks 1, 2, ..., m from asource
node to alestinationnode. Each of network userd, 2, ..., n, orusersfor short, wishes

to route a particular amount of traffic along a (non-fixed) link from source to destination.
Denotew; thetraffic of useri € [n]. Define then x 1 traffic vectorw in the natural way.
Assume throughout that > 1 andn > 1. Assume also, without loss of generality, that
w1=w2> -+ - >w,. For atraffic vectow, denoteW = )] w;. Defineh as the factor by
which the largest user traffic deviates from the average user traffic /thasys 3.

A pure strategyfor useri € [n] is some specific link. Anixed strategyor useri € [n]
is a probability distribution over pure strategies; thus, a mixed strategy is a probability
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distribution over the set of links. Treaipportof the mixed strategy for usére [n], denoted
supporii), is the set of those pure strategies (links) to whiabksigns positive probability.
A pure strategy profilés represented by an-tuple (¢1, ¢2, ..., ¢,) € [m]"; a mixed
strategy profileis represented by am x m probability matrixP of nm probabilitieSpij,
i € [n]andj e [m], Wherepl.j is the probability that userchooses link. For a probability
matrix P, defineindicator variables/’ € {0,1},i € [n] and¢ € [m], such thatlf =
if and only if pf > 0. Thus, the support of the mixed strategy for user [n] is the set
{€ e m]|1f =1}.
For each link¢ e [m], define theview of link ¢, denotedview(?), as the set of users
i € [n] that potentially assign their traffics to link so,viem?) = {i € [n]|1i‘3 = 1}.
For each link¢ e [m], denoteV¢ = |view(¢)|. A mixed strategy profild® is fully mixed
[19, Section 2.2] if for all users € [n] and links; € [m], Il.j =11

2.3. System, models and cost measures

Denotec’ > 0 the capacityof link £ e [m], representing the rate at which the link
processes traffic. So, thatencyfor traffic w through link¢ equalsw/c*. In the model of
identical capacitiesall link capacities are equal to 1; link capacities may vary arbitrarily in
the model ofarbitrary capacities For a pure strategy profil@1, €2, ..., ¢,), thelatency
cost for user j denoted};, is (Zk:ek=e, wy)/cti; that is, the latency cost for users the

latency of the link it chooses. For a mixed strategy prd®ijelenotes’ the actual traffic

on link ¢ € [m]; so,8" is a random variable for each linkke [m], denoted® the expected
trafficon link ¢ € [m]; thus,0* = £(6%) = YI_; pfw;. GivenP, define then x 1 expected
traffic vector® induced byP in the natural way. Give, denoteA’ the expected latency

on link ¢ € [m]; clearly, A° = 0°/ct. Define them x 1 expected latency vectax in the
natural way. For a mixed strategy profffe the expected latency co&tr useri € [r] on

link ¢ € [m], denotecﬂf, is the expectation, over all random choices of the remaining users,
of the latency cost for uséhad its traffic been assigned to lidkthus,

Wi+ Y41 ki PRk (- phHw; + 0°

2=
ct ct

1
For each user € [r], theminimum expected latency codénoted;, is the minimum, over
all links ¢ € [m], of the expected latency cost for usem link ¢; thus,4; = mingep,; )f
For a probability matriX, define the: x 1 minimum expected latency cost vedtanduced
by P in the natural way.
Associated with a traffic vectaw and a mixed strategy profile is thesocial cos{{16,
Section 2], denote8C(w, P), which is the expectation, over all random choices of the

1An earlier treatment of fully mixed strategies in the contexbiofiatrix gameshas been found if27], called
therecompletely mixed strategieSee als¢21] for a subsequent treatment in the contexdtoditegically zero-sum
gamesDatta[3] studied recently some universality properties of fully mixed Nash equilibria (calling tbihy
mixeq.
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users, of the maximum (over all links) latency of traffic through a link; thus,

o —p Wk
SCw,P)=¢& <max Zk(’f)
te[m) c
n Z _ wk
= ( I1 pi* - max 7"'@";@ )
(€1,02,... L) elm]" \ k=1 Lelm] ¢

Note thatSC(w, P) reduces to the maximum latency through a link in the case of pure
strategies. On the other hand, texial optimun{16, Section 2] associated with a traffic
vectorw, denotedPT (w), is theleast possiblenaximum (over all links) latency of traffic
through a link; thus,

Zk:zk:e Wk

OPT(w) = 7
{4

in
(01,80,....0,)e[m]" Le[m] c

2.4. Nash equilibria

We are interested in a special class of mixed strategies called Nash eq{@)#a] that
we describe below. Say that a usee [n] is satisfied for the probability matrif if for
all links ¢ € [m], if =} if If =1, andif > J; if If = 0; thus, a satisfied user has no
incentive to unilaterally deviate from its mixed strategy. A user [n] is unsatisfied for
the probability matrixP if i is not satisfied for the probability matriR. The probability
matrix P is aNash equilibrium{16, Section 2] if for all users € [n] and links¢ € [m],

2 =J;0f 1Y = 1, andif > J; if I = 0. Thus, each user assigns its traffic with positive
probability only on links (possibly more than one of them) for which its expected latency
cost is minimized. Théully mixed Nash equilibriurfiL9], denoted-, is a Nash equilibrium
that is a fully mixed strategy. Mavronicolas and Spirakis [19, Lemma 15] show that all
links areequiprobablen a fully mixed Nash equilibrium, which is unique (for the model
of identical capacities).

Fix any traffic vectorw. The worst Nash equilibriunis the Nash equilibriunP that
maximizesSC(w, P); the best Nash equilibriunis the Nash equilibrium that minimizes
SC(w, P). The worst social costdenotedWC(w), is the social cost of the worst Nash
equilibrium; correspondingly, thigest social costdenotedBC(w), is the social cost of the
best Nash equilibrium.

Fotakis et al. [7, Theorem 1] consider starting from any arbitrary pure strategy profile
and following a particular sequence of selfish steps, whereselfssh stepexactly one
unsatisfied user is allowed to change its pure strategy. A selfish stepréedy selfish
stepif the unsatisfied user chooses its best link. A (greedy) selfish step does not increase
the social cost of the initial pure strategy profile. Fotakis et al. [7, Theorem 1] show that
this sequence of selfish steps eventually converges to a Nash equilibrium, which proves its
existence; however, it may take a large number of steps. It follows that if the initial pure
strategy profile has minimum social cost, then the resulting (pure) Nash equilibrium will
have minimum social cost as well. This implies that there exists a pure Nash equilibrium
with minimum social cost. Thus, we ha€(w) = OPT(w).
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2.5. Algorithmic problems

We list a few algorithmic problems related to Nash equilibria that will be considered
in this work. The definitions are given in the style of Garey and Johfi8prA prob-
lem instance is a tuplen(m, w, ¢), wheren is the number of usersn is the number
of links, w = (w;) is a vector ofn user traffics and: = (¢/) is a vector ofm link
capacities.

IT;: NASH EQUILIBRIUM SUPPORTS
INSTANCE A problem instancen, m, w, ¢).
OuTprUT: Indicator variableyl.’ € {0, 1}, wherei € [n] andj € [m], that support a Nash
equilibrium for the system of the users and the links.

Fotakis et al. [7, Theorem 2] establish tisdSH EQUILIBRIUM SUPPORTS s in
‘P when restricted to pure equilibria. We continue with two complementary to each other
optimization problems (with respect to social cost).

IT,: BEST NASH EQUILIBRIUM SUPPORTS

INSTANCE A problem instancen, m, w, c).

OUTPUT: Indicatorvariablesll/ € {0, 1}, wherei € [n] andj € [m], that support the best
Nash equilibrium for the system of the users and the links.

IT3: WORST NASH EQUILIBRIUM SUPPORTS

INSTANCE A problem instancen, m, w, ¢).

OuTPUT: Indicator variablesil.f € {0, 1}, wherei € [n] andj € [m], that support the worst
Nash equilibrium for the system of the users and the links.

Fotakis et al. [7, Theorems 3 and 4] establish that BEST NASH EQUILIBRIUM
SUPPORTS andWORST NASH EQUILIBRIUM SUPPORTS are N'P-hard. Since
both problems can be formulated as an integer program, it follows that they/ &xe
complete.

I14: NASH EQUILIBRIUM SOCIAL COST
INSTANCE A problem instancen(, m, w, ¢); a Nash equilibriumP for the system of the
users and the links.
OuTPUT: The social cost of the Nash equilibriufn

Fotakis et al. [7, Theorem 8] establish tiASH EQUILIBRIUM SOCIAL COST is
#P-complete. Furthermore, Fotakis et al. [7, Theorem 9] show that there exists a fully poly-
nomial, randomized approximation scheme@gxSH EQUILIBRIUM SOCIAL COST.

The following two problems, inspired byASH EQUILIBRIUM SOCIAL COST , are
introduced for the first time in this work.

IIs: WORST NASH EQUILIBRIUM SOCIAL COST
INSTANCE A problem instancen, m, w, c).
OuTpPUT: The worst social costvSC(w).

ITs: BEST NASH EQUILIBRIUM SOCIAL COST
INSTANCE A problem instancen, m, w, ¢).
OuTPUT: The best social co8SC(w).
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I17: k-NASHIFY
INSTANCE A problem instancen(, m, w, c¢); a pure strategy profile for the system of the
users and the links.
QUESTION: Is there a sequence of at méstelfish steps that transforinto a (pure) Nash
equilibrium?

The following problem is a variant &6NASHIFY in whichk is part of the input.

ITg: NASHIFY
INSTANCE A problem instancen, m, w, ¢); a pure strategy profile for the system of the
users and the links; an integer- 0.
QUESTION: Is there a sequence of at méstelfish steps that transforinto a (pure) Nash
equilibrium?

In our hardness and completeness proofs, we will employ the followifiigcomplete
problemd13]:

ITy: BIN PACKING

INSTANCE A finite seti/ of items, a sizes(u) € N for eachu € U, a positive integer bin
capacityB, and a positive integef.

QUESTION Is there a partition off into disjoint setd41, ..., Uk such that for each séf;,
1<i<K, Y, qq S(W<B?

IT10: PARTITION
INSTANCE A finite setl/ and a size (1) € N for each elemeni € U.
QUESTION Is there a subsét’ < U suchtha® ., sw) = >, o0 S@)?

We note thaBIN PACKING is strongly N'P-completg8,25].2

3. Stochastic order relations

In this section, we treat stochastic order relations; we establish a certain stochastic order
relation for the expected maxima of certain sums of Bernoulli random variables. We will
show that in the balls-and-bins ganmelfalls are thrown at random into bins), if the sum
of the ball weights is the same, the expected maximum load over all bins is larger when
the balls have different weight in comparison to all balls having the same weight. This will
be used in Section 5 to prove an upper bound on the social cost of a worst mixed Nash
equilibrium.

Recall that a functiory : ® — N is convexif for all numbers/ such that O< 4 < 1,
fAx1 4+ (1 — Dx2) <Af(x1) + (1 — A) f(x2). We proceed to describe a stochastic order
relation between two random variables.

Definition 3.1. For any pair of arbitrary random variabl¥sandY, say thatX is stochas-
tically more variable than Mf for all increasing and convex functiong : % — N,

E(f X)) ZE(f(Y)).

2p problem isstrongly N"P-completsif it remains\/P-complete even if any instance of lengitfis restricted
to contain integers of size polynomialinSo, strongly\VP-complete problems admit no pseudopolynomial-time
algorithms unles® = N'P.
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Call stochastically more variabilitthe corresponding stochastic order relation on the set
of random variables. (Sg@8, Section 9.5] for a more complete treatment of the notion
of stochastically more variable and [18,30] for more on majorization theory and stochas-
tic orders.) The following lemma [28, Proposition 9.5.1] provides an alternative, analytic
characterization of stochastically more variability.

Lemma 3.1. Consider any pair of non-negative random variables X andThen X is
stochastically more variable thai if and only if for all numbersx>0, fx"; Pr(x >

x)de> [, Pr(X > x)dx.

Consider now a setting of the balls-and-bins problem whéralls 1, . . ., n with traffics
wi, ..., w, are allocated intonbins 1 . .., m uniformly at random. So, for each pair of a

balli € [n]andalinkj € [m], define Bernoullirandom variablé’# = w; with probability

1/m and 0 with probability 1— 1/m, and Yf W /n with probability 1/m and 0 with
probab|I|ty 1- 1/m For each linkj € [m], define the random variabléé = > ien] Y’

ands/ = Y icpn Y75 thus, each 06’ and 5/ J € [m], is a sum of Bernoulli random

variables; denoté’/ = £(5/) and9’ = 5(5’) the expectations af/ and(Sf respectively.
Note that

_5< > Yij> = 2 E(Yij)

ien] ieln]
_ (w.i_i_()(l_i))_m_ﬂ
= i = =—,
ieln] m m m m

while

§3=5((§3)=5( > Yﬁ) _ 5(1@/’)
i€[n] i€[n]

oy (Mlio(i- b)) kiow

ien] \ 10 M
So,0/ = ¢/ for each binj € [m].
For two numbers:, y € WT define

[x—y]:{x_y if x >y,

0 else.

We can then show the following preliminary lemma:

Lemma 3.2. Leth; € R fori € [n] and letd = (1/n) Y_}_, b;. Then for allx >0

i[bi —x]=>n-|d — x].

i=1
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Proof. Without loss of generality, assume that<b,< --- <b,. The claim is true if
x >d. If x<byq, thenx <d and

i[bi—x]: ﬁ:(b,'—x):n-(d—x).
i=1 i=1

Now letd; < x<bj41 andd > x. It follows that

n n n n
Ybi—xl= Y bi—x)= Y b—m—jx= ) b—n-x+j-x
i=1 i=j+1 i=j 1 i=j+1

n n

J
> > bi—-n-x+ Y. b= > b —n-x
i=j+1 i=1 i=1

=n-(d-—x) ([l
We finally prove:

Lemma 3.3(Stochastically More Variability LemmaFor any traffic vectonw, maxo?,
..., 0™} is stochastically more variable thanax{d*, ..., 5™}.

Proof. Define the discrete random variablés= max(s®, ..., 8"} andX = max(s®, ...,
o™}. We then have to show that for all>0,

00 00 -

f Pr(X > x) dx}/ Pr(X > x)dx.
X=0u X=0

Let Sy be the collection of all pure strategy profiles, where the maximum number of traffics

onany linkj e [m]is exactlyk. If i # j, thenS; N S; = @. Furthermore

U Si=I[ml"
i=[n/m]
For any pure strategy profile € S, define LinkL) to be the smallest index of a link,
holding k traffics. Furthermore, for any pure strategy profildet 7 (L) be the collection
of users that are assigned to L{iik. Every set ok traffics is equal to some&(L), L € Sk
with the same probability, say;. Define the actual traffic ohink(L) as

b(L)y= > w;.
iel(L)
If all traffics are identical the actual traffic dnnk(L) for a pure strategy profile € Sy is
simplyb(L) =k - W/n.

Every pure strategy profile € [m]" occurs with the same probability &" and defines
together withb(L) a discrete random variable Z is a discrete random variable that can
take every possible valugL), L € [m]".

It is easy to see thaf is stochastically more variable th@nsince for any pure strategy
profile L, Z refers to the actual traffic donk(L), wherea refers to the maximum actual
traffic over all links.
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We will complete our proof by showing thatis stochastically more variable thah
SinceZ andX are discrete random variables,

o0 n
/ Pr(Z>x)dx= > (px-Ar), whereA, = Y [b(L)—q]
x=a k=[n/m] LeSk
and
o0 ~ n — - W
f Pr(X>x)dx= > (px-Ax), whereAg = |Sl- [k C—— oc] )
xX=0 k=[n/m] n
Since for a fixedk each traffic contributes with the same probabilitytd.),

w
Y b(L) =Sk k- —.
LeS; n

It follows from Lemmag3.2 thatAk>Avk for eachk. ThereforeZ is stochastically more
variable thanX, which completes the proof of the lemmall

By definition of stochastically more variability, Lemma 3.3 immediately implies:

Corollary 3.4. For any traffic vectomw,
gmax(st, ..., ") =Emaxor, ..., 5.

In the balls-and-bins game in whichballs are thrown uniformly at random intabins,
Corollary 3.4 shows that if the sum of the ball weights is the same, the expected maximum
load over all bins is larger when the balls have different weights in comparison to all balls
having the same weight.

4. Pure versus fully mixed Nash equilibria

In this section, we establish the Fully Mixed Nash Equilibrium Conjecture for the case
of pure Nash equilibria. This result holds also for the model of arbitrary capacities.

We show that the minimum expected latency cost of a user in any (mixed) Nash equi-
librium is at most its minimum expected latency cost in the fully mixed Nash equilibrium.
Afterwards we prove that this implies validity of the Fully Mixed Nash Equilibrium Con-
jecture for pure Nash equilibria.

We start by proving:

Lemma 4.1. Fix any traffic vectow, mixed Nash equilibriur® and useriThen Z; (w, P)
<Ai(w, F).

Proof. LetP = (p,{), F = (fkf) fork € [n] andj € [m]. Then

Z( > p;iwk>= > wk<2p7ﬁ>= > wk
jelm] ke[n],k#i ke[n],k#i j€lm] ke[n], k#£i
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and
> ( > fk]wk>= > wk( > fk]>= > wr
jelm] \ keln) ki kelnl ki jelml keln) ki

It follows that

Z( > P;ﬂwk>= Z( > fk]wk),
jelm] \ ke[n],k#i jelm] \ ke[n],k#i

and therefore there exists some lijtke [m] such that

> opPw< Y P
keln] ki keln] ki
Then,
Ai(w, P) < A{O(w, P) (since/; is the minimum of alli{,j e [n])
Ji
Wi+ D kelnl ki P wi
ch
i + D kel ki Fwi

X

cJo
= 7w, F)
= Ji(w, F) (sincefij0 > 0 andF is a Nash equilibrium O

The following theorem shows that the Fully Mixed Nash Equilibrium Conjecture is valid
for pure Nash equilibria.

Theorem 4.2. Fix any traffic vectow and pure Nash equilibriurh.. Then SC(w, L) <
SC(w, F).

Proof. For each usei € [n], 4;(w, P) is the minimum, over all linksj € [m], of the
expected latency cost for usesn link j, andSC(w, P) is the expectation of the maximum
(over all links) latency of traffic through a link. This implies thiatw, P) <SC(w, P) for
every mixed Nash equilibriurR. Hence,

Ai(w, P) < 4;(w, F) (by Lemma 41)
< SC(w, F) (as shown above

The claim follows now sinc&C(w, L) = maxe, 4i(w, L) holds for every pure Nash
equilibriumL. O

5. Worst mixed Nash equilibria

In this section we show that if = m andmis suitably large then the social cost of
any Nash equilibrium is at most21 + ¢) times the social cost of the fully mixed Nash

equilibrium. Recall, thak = 57 = 55~ .
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Theorem 5.1. Consider the model of identical capacitidsetn = m, m suitably large
Then for any traffic vectow and Nash equilibriunP, SC(w, P) < 2h(1 + ¢) SC(w, F),
for anye > 0.

Proof. Fix any traffic vectorw and Nash equilibriun®. We start by showing a simple
technical fact.

Claim 1. Fix any pair of a link¢ € [m] and a useti € viewm(¢). Then pfwi >0t — W/m.

Proof. Clearly,

S (zp;wi>= > (z p;wi>
Jj€lm] Jjelml \i€ln] i€ln] \ jelm]

=Z<wiZP,-j> 2 wi=W.
i€n] jelm] i€n]

This implies that there exists some liftke [m] such that! < W/m. Note that by definition
of social costz! = (1— py)w; + 0° . It follows that 2! <w; + W/m. On the other hand,
if =(1- pf)wi + 6.

Sincei € view(t), we have, by definition of Nash equilibria, thigt< 2¢ (with equality
holding when' e view(¢')). It follows that(1— pf)w; +0° <w; +W/m, or thatp! w; > 0° —
W/m, as needed. [

As an immediate consequence of Cldinwe obtain:
Corollary 5.2. Fix any link¢ € [m]. Then 0 <(V¢/ (V¢ — 1)) W/m.

Proof. Clearly, by Claiml,

W W
0'= % piwi= ¥ pw> ¥ <0K__>:VZ(0€__>7

i€ln] ieview() ieview() m m

or, by rearrangement of term&, < (V¢/(V¢ — 1))W/m, as needed. [J
SinceV¢>2, v¢/(Vt —1)<2. Thus, by Corollans.2:
Lemma 5.3. Fix any link¢ € [m] with V¢ >2.Then 0 <2 W/m.

We now prove a complementary lemma. Fix any in& [m]with V¢ = 1. Letview(l) =
{i}. Thent <w; < max w; <OPT(w)<SC(w, F). Thus:

Lemma 5.4. Fix any link¢ € [m] with V¢ = 1. Then 0° <SC(w, F).

Usew to define the vectalv with all entries equal t&V /n. By definition of social cost,
SC(W, F) isthe loadw /m of each ball times the expected maximum number of balls thrown
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uniformly at random intan bins. Sincen = m, we can statéC (W,F) = R(m) - W/m,
or W/m = SC(W, F)/R(m). Fix now any linkj € [n] with V/ >2. Then,

0 < P (by Lemma 53)
m

—
h

Furthermore,
SC(w, F)

>SC(W, F) (by Corollary 34)
w

= R(m)—
m

- R(m)% (by Definition of h).

Letr >2,r € N. Then, for any constarnt > 0, arbitrarily close to 0,
Pr (8’ > rh(1+¢) SC(w, F))
. ) w
< Pr(¢/ > r(1+&)R(m)w1) (smceSC(w, F)>R(m)— = R(m)%).
m

From Theoren?.1 it follows that for anys > 0,

) £@))
—(A+HInA+H-HEGT) wi
w]_ J—

Pr(o/ > @1+ pEW) <e

o £6)
A+ pEPEE

5.

( e )(1—&-/5)85?1)

<|— .
1+p

With (1+ ) = r(1+e)R(m)g’(”51j) and sincef (8/) < 2% < 2w; < rwp we get:

Pr(6/ > rh(L+ &) SCW, F)) < Pr(¢/ > r(1+ &)R(m)w1)

) r(14+e)R(m)wq
e- &) e
< _—
r(14+e)R(m)wy

e r(14¢)R(m)
(o)
14+ ¢&)R(m)

e A+e)Rm)\ "
B (((He)R(m)) ) '

Define nows. > 0 so that(o/€)* = m. Then, clearlyx = I'"1(m) + ©(1). Note that
A+e)Rm)=QA+e)tm)— A+ s)% + o(1) (by definition of R(m))

=1+l tm + 01
> o (for suitably largen, sinces > 0).
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Since(x/e)* is an increasing function of, this implies that
(L4 &)R(m) \ TR 5o
CR - (2 =m.
e

This implies that

e A+e)Rm)\ " 1
((He)R(m)) S

It follows that
Pr(¢/ >rh (1+¢)SC(w, F)) < i.
mr
Hence

Pr ( max &' > rh(1+4 &)SCw, F))
telm] | Vi =2

=Pr < \/ 8¢ > rh(1+ &)SC(w, F))
telm] | |V¢|>2
< 3 Pr(0* > rh(1+ £)SC(w, F))
Lelm] | [VE =2

= e S S
telm] | |V¢ =2
1

ol

Sinceh > 1,r > 2 and since < SC(w, F) forall ¢ € [m] with V¢ = 1 (by Lemma 5.4),
we have

Pr (Zm[an](é“ > rh(1+ &)SC(w, F))
e|lm

=Pr ( max &' > rh(1+ &)SC(w, F))
telm] | |VE|=>2

1
g mr_17
so that
£ (max5‘3> = Y oPr (max ot = 5)
le[m] 0<o<W le[m]

(by definition of expectation

= 3 5Pr(max5‘=5)

0<6<2h(11e)SCW.F) teim]

+ max &’ = 5)

oPr <
2h(14+6)SCW,F)<d < W telm]
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= 3 5Pr(max5‘3=5>

0< < 2h(1+6)SC(W.F) Le[m]

+ max ¢ = 5)

oPr (
2<r <00 rh(1+6)SCW,F) <8 < (r+ 1D (1+6)SC(w,F) telm]

< 2h(1+ &)SC(w, F)Pr (Zm[aﬁée < 2h(1+ &)SC(w, F))
elm

+ Y (r+Dh(14€)SC(w, F) - Pr (max55>rh(1+s)sqw, F)>

2<r< oo le[m]

< 2h(1+&)SCw, F) -1

+ Y (r+Dh(1+e)SCw,F)
2<r<o

1

mr—l

1
(sincePr(max@E[mI 0" > rh(1+ £)SC(w, F)) < —1>
m'=
= 2h(1+ £)SC(w, F)
1
+h(1+¢)SCw, F)— 3
Ma2<r<ooM

= 2h(1+ £)SC(W, F)
+h(1+ &)SCW, F) - 0 (1>
m

r+1
r—2

(SINCEY p e, < oo % = O(1) for m>2)

< 2h(1 4 28)SC(w, F),

for suitable largen. Hence,

SCw,P)=¢& (max5€> < 2h(1+ 2¢)SC(w, F)

le[m]
for anye, where O< ¢ < 1. This completes the proof of Theorésrl. [

If all user traffics aredentical that is,w; = w2 = ... = w,, thenh = 57t = 1. Thus,
Theorem 5.1 immediately implies:

Corollary 0.1. Consider the model of identical capacities. lket= m, m suitable large.
Then, for any traffic vectow with wy = w2 = ... = w, and Nash equilibriunmP,
SC(w, P) < (24 ¢)SC(w, F), for anye > 0.

Recall that there is a randomized, polynomial-time approximation schRRiEAS) to
approximate the social cost of any Nash equilibrium (in particular, the fully mixed) within
any arbitrarye > 0 [7, Theorem 9]. Thus, since, by Theorem 5.1, the worst social cost
is bounded by 2(1 + ¢) times the social cost of the fully mixed Nash equilibrium, this
yields:
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Theorem 5.5. Consider the model of identical capacitidsetn = m, m suitably large
Then there exists a randomizeg@olynomial-time algorithm with approximation factor
2h(1+ ¢), for anye > 0, for WORST NASH EQUILIBRIUM SOCIAL COST.

We significantly improve Theore®.1 under a certain assumption on the traffics.

Theorem 5.6. Consider any traffic vectow such thatwi > w2 + - - - + w,,. Then for any
Nash equilibriunP, SC(w, P) <SC(w, F).

Proof. Sincewi>wz + - -+ + w,, it follows that the link with maximum latency has user
1 assigned to it in any pure strategy profile. Thus, in partic6l@aew, P) = 21(w, P) and
SC(w, F) = A1(w, F). By Lemma4.1, A1(w, P) <A1(w, F). It follows that SC(w, P) <
SC(w, F), as needed. O

6. Best pure Nash equilibria and Nashification

We start by establishing/P-hardness foNASHIFY. Then we provide a polynomial-
time algorithm to convert any pure strategy profile into a pure Nash equilibrium with non-
increased social cost. Together with a PTAS for schedulijodps onmidentical machines
[11], this yields a PTAS foBEST PURE NASH EQUILIBRIUM .

Theorem 6.1. NASHIFY is A'P-hard, even ifm = 2.

Proof. By reduction fromPARTITION. Consider any arbitrary instance BARTITION
consisting of a seA of kitemsay, ao, .. ., a; with item sizess(ay), s(az), ..., s(ax) € N,
for any integeik. Construct from it an instance &fASHIFY as follows: Sez = 3k and
m = 2. Setw; = s(a;) for 1<i <k, andw; = 1/2k for k + 1<i <3k. Take the pure
strategy profile that assigns user®l. .., 2k to link 1 and usersR+ 1, ..., 3k to link 2.

We establish that this yields a reduction fré?ARTITION to NASHIFY. Assume first
that the instance oPARTITION is positive; that is, there exists a subggtC A such
that) ", 4 s(a) = ZueA\A, s(a). Since eithetA’| <k/2 or|A\A'| <k/2, assume, without
loss of generality, thatd’| <k/2. Note that each user assigned to link 1 is unsatisfied in the
constructed pure strategy profile since its latency cost on linR1 s, s(a) +k - 1/2k =
Y aeas(@ + % while its latency cost on link 2 i - 1/2k = % which is less. Thus, each
step that transfers an unsatisfied user that corresponds to an elerme#t from link 1
to link 2 is a selfish step, and the sequence of steps that transfer all users that correspond
to elements ofA’ from link 1 to link 2 is a sequence of at mdst2 < k steps. As a result
of this sequence of selfish steps, the latency of link 1 wilpBe: 4, 4 s(a) + %, while the

latency of link 2 will be) ", s(a) + % Since} 4 s(@) = 3 ,cp\ 4 5(a), these two
latencies are equal and the resulting pure strategy profile is therefore a Nash equilibrium,
which implies thalNASHIFY is positive.

Assume now that the instance BASHIFY is positive; that is, there exists a sequence
of at mostk selfish steps that transforms pure strategy profile in the constructed instance
of NASHIFY to a Nash equilibrium. Assume that in the resulting pure strategy profile
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Algorithm A, shi5,2
INPUT: A pure strategy profile L of n users with traffics
Wiy ey Wy
OUTPUT: A pure strategy profile L’ that is a Nash equilibrium.
e Sort the user traffics in non-increasing order so that w; >
ved 2 Wy
e For each user i:=1 to n, do
+ remove user ¢ from the link it is currently assigned;
- find the link ¢ with the minimum latency;
- reassign user 4 to the link 2.
od
e Return the resulting pure strategy profile L'.

Fig. 1. The algorithnAnashify

users corresponding to a subgétc A remain in link 1, users corresponding to the subset
A\A’" C A are transfered to 2, while the sums of traffics of users with traffzk that
reside in links 1 and 2 areand 1— x, respectively; thus, the latencies of links 1 and 2 are
Ygen S(@ +xandy, 4 4 s(a) + 1 —x, respectively. We consider two cases:

Assume firstthatt’ = A. Then after at mostselfish steps the latency on link 2 is at most
1 whereas the latency on link 1 is at ledst . 4 s(a) > k. So there exists an unsatisfied user
a € A, a contradiction to the fact thAlASHIFY is positive. So letA’ # A. We show that
this implies)_,_ 4 s(a) — ZQGA\A, s(a) =0.Assumg )", 4 s(a) — ZaeA\A, s(a)| # 0.
Since the traffics of users iare integer, thisimplieisy _ ,c 4+ s(@)—>_,c 4\ 4 s(@)| > 1. The
factthatA” £ A shows that at least one user with large traffic was transformed to link 2. So
we can make at mogt— 1 selfish steps with the small traffics. However, transforntingl
small traffics to the link with smaller latency leaves one user with small traffic unsatisfied, a
contradiction to the fact tha#d ASHIFY is positive. Sd » ", 4 s(a) — ZaeA\A, s(a)] =0,
which implies thaPARTITION is positive. [

We remark thaWASHIFY is N'P-complete in the strong sense (&, Section 4.2]) iinis
part of the input. Thus, there is no pseudopolynomial-time algorithiNASHIFY (unless
P = N'P). In contrast, there is a natural pseudopolynomial-time algorifhmashity for
k-NASHIFY, which exhaustively searches all sequencek gélfish steps; since a selfish
step involves a (unsatisfied) user and a link for a totahafchoices, the running time of
Aj-nashify IS O((mn)*). We continue to present an algorithkfashiry that solvesNASHIFY
whenn selfish steps are allowed (Fig. 1).

The algorithmAnashirysorts the user traffics in non-increasing order sodhat - - - > wy,.
Then for each user:= 1 ton, it removes user from the link it is currently assigned, it
finds the link¢ with the minimum latency, and it reassigns usgr the link¢.

The following lemma is crucial to prove the correctness of algorifiyayniy

Lemma 6.2. A greedy selfish step of an unsatisfied user i with trafficnakes no user k
with traffic w; > w; unsatisfied.

Proof. LetL = (I1,...,l,) be a pure strategy profile. Furthermore et /; and letq be
the link with minimum latency. Denotg/ and’’ the latency of linkj € [m] before and
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after useli changed its strategy, respectively. Assume that kéecomes unsatisfied due
to the move of usar Since only the latency on linkandg changed, we have to distinguish
between two cases. Eithigr# ¢ and usek wants to change its strategygoor/; = ¢ and
userk becomes unsatisfied due to the additional traffion link g.

First, assume thdt # g, and that usek wants to change its strategy poSince user
changed its strategy fromto g we know thati? < 77 and thereforev; + A7 < wy + ar.
So if userk wants to change its strategypgpthen usek was already unsatisfied before user
i changed its strategy, a contradiction.

For the case that the strategy of ukés qwe defmeﬂ =9 —w,. We havevj € [m] :
M twe=M +wi =+ w = ) + wi + w;. Thereforek stays satisfied. [

Theorem 6.3.LetL = (l1,...,1,) be a pure strategy profile for n users with traffics
wq, ..., w, onmlinks with social coSC(w, L). Then algorithmAnashirycomputes a Nash
equilibrium fromL with social cost<SC(w, L) in O(nlogn) time

Proof. In order to complete the proof of Theore®u3, we have to show that algorithm
Anashify returns a pure strategy profile that is a Nash equilibrium and has social cost
SC(w, L") <SC(w, L). It is easy to see tha8C(w, L") <SC(w, L), since for usejj we
always choose the link with lowest latency as its strategy. After every iteration the user that
changed its strategy is satisfied. Since we go through the list of users in descending order
of their traffic and because of Lemma 6.2, all users that changed their strategy in earlier
iterations stay satisfied. Therefore after we went through the complete list of users, all users
are satisfied and thus' is a Nash equilibrium.

The running time of algorithmAnasnhiry is O(rlogn) for sorting then user traffics,
O(m logm) for constructing a heap with all latencies in the input pure strategy profile
L, and Qnlogm) for finding the minimum element of the heap in each ofrtherations
of the algorithm. Thus, the total running time isfdogn + mlogm + nlogm). The in-
teresting case is when <n (since otherwise, a single user can be assigned to each link,
achieving an optimal Nash equilibrium). Thus, in the interesting case, the total running time
of Anashifyis O(n logn). O

Running thePTAS of Hochbaum and Shmoys [11] for schedulingobson miden-
tical machinesgyields a pure strategy profile such thaSC(w, L) < (1 + ¢) OPT(w). On
the other hand, applying the algorithfashiry on L yields a Nash equilibriunk.” such
thatSC(w, L") <SC(w, L). Thus,SC(w, L") < (1 + ¢)OPT(w). Since alsdOPT(w) <SC
(w, L"), it follows that:

Theorem 6.4. There exists 8 TAS for BEST PURE NASH EQUILIBRIUM, for the model
of identical capacities
7. Worst pure Nash equilibria

In this section we consider worst pure Nash equilibria. We start by proving a tight up-
per bound on the social cost of any pure Nash equilibrium. Then, by reductionBtdm
PACKING, we establish\/P-hardness for approximating a pure Nash equilibrium with



M. Gairing et al. / Theoretical Computer Science 343 (2005) 133-157 153

worst social cost within a factor better than2/(m + 1). We close with a pseudopolynomial-

time algorithm to compute a worst pure Nash equilibrium if the number of links is fixed.
Denote withm-WCpNE the decision problem corresponding to the problem to compute

the worst-case pure Nash equilibrium fousers with trafficsvs, ..., w, onmlinks. If m

is part of the input, then we call the problaMCpNE. We first show:

Theorem 7.1. Fix any traffic vectorw and pure Nash equilibriunk.. Then SC(w, L)/
OPT(w)<2—2/(m + 1). Furthermore this upper bound is tight.

Proof. Schuurman and Vredevel]d9] showed the tightness of the upper bound for jump
optimal schedules proved by Finn and Horowitz [6]. Since every pure Nash equilibrium
is also jump optimal, the upper bound follows directly. Greedy selfish steps on identical
links can only increase the minimum load over all links. Thus, we can transform every
jump optimal schedule into a Nash equilibrium without altering the makespan, proving
tightness. O

Theorem 7.2. It is N"P-hard to find a pure Nash equilibrium L withC(w)/SC(w, L) <
2—-2/(m+1) — ¢, foranye > 0.Itis N'P-hard in the strong sense if the number of links
m is part of the input.

Proof. We show that for a certain class of instances we have to ®INePACKING in

order to find a Nash equilibrium with desired propeBiN PACKING is A/P-complete in

the strong sensf®]. Consider an arbitrary instance BfN PACKING consisting of a set
ofitemsif = {uy. ..., up} With sizess(u;) <0, 3., g4 =m — 1,andK = m — 1 bins

of capacityB = 1. From this instance we construct an instance for the stated problem as
follows: Sete = 26. There arer — 2 = |U{| users with traffiav; = s(u;) and two users with
traffic w,_1 = w, = 1. Note that the social cost of a Nash equilibrium is either 2 when the
users with traffic 1 are on the same link, or at m@st+ 1)/m + 6 otherwise.

If BIN PACKING is negative, then there exists no Nash equilibrium with both users with
traffic 1 on the same link. Thus every Nash equilibrium has the desired propeip If
PACKING is positive, then there exists a Nash equilibrium with both users with traffic 1 on
the same link. The social cost of this Nash equilibriund€ (w) = 2. For any other Nash
equilibriumL where the users with traffic 1 use different linB&,(w, L) <(m + 1)/m + 9.

This yields

WC(w) 2 _ 2 _ 2m
SC(w, L) m+1+(S m+1+§ ma1y "
m m 2 2
=2- 28m_ gmsm
+1+— m+1+—
" 2 2
2
2—— —=.
m+1 ¢

So, to find a Nash equilibrium with desired property, we have to find a distribution of the
small trafficswy, ..., w,_2 tom — 1 links which solve8IN PACKING.
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SinceBIN PACKING is A'P-hard in the strong sense, if the number of bins is part of
the input, it follows that computing a pure Nash equilibrilcravith WC(w)/SC(w, L) <
2—2/(m+ 1) — ¢ is alsoNP-hard in the strong sense nifis part of the input. [

SinceWCpNE is N'P-hard in the strong sengé], there exists no pseudopolynomial
algorithm to solveVCpNE . However, we can give such an algorithm fotWCpNE .

Theorem 7.3. There exists a pseudopolynomial-time algorithm fewapNE .

Proof. We start with the state sét in which all links are empty. After inserting the first

i traffics, the state sef; consists of all(2m)-tuples (11, w1, ..., Am, w;) describing a
possible placement of the largédtaffics with 4; being the latency on linkandw; the
smallest traffic placed on link We need at most - |S;| steps to creatd; 1 from §;,
and|S;| < (W)™ - (w1)™, whereW,; = Z’j:l w ;. Therefore the overall computation time is
bounded by @:-m - W™ . (w1)™). The best-case Nash equilibrium and the worst-case Nash
equilibrium can be found by exhaustive search over the stasg asing Qi -m- W™ - (w1)™)

time. O

Remark. Theorem7.3 also holds for the case of arbitrary link capacities.

8. Conclusions and discussion

In this work, we have studied the combinatorial structure and the computational com-
plexity of the extreme (eitheworstor bes) Nash equilibria for the selfish routing game
introduced in the pioneering work of Koutsoupias and Papadimitriou [16].

Our study of the combinatorial structure has revealed an interesting, highly non-trivial,
combinatorial conjecture about the worst such Nash equilibrium, namekulheMixed
Nash Equilibrium Conjectureabbreviated aSMNE Conjecture; the conjecture states that
the fully mixed Nash equilibrium [19] is the worst Nash equilibrium in the setting we
consider. We have established that FMNE Conjecture is valid when restricted to pure
Nash equilibria. Furthermore, we have come close to establishifgMiNE Conjecture in
its full generality by proving that the social cost of any (pure or mixed) Nash equilibrium is
within a factor of Z(1+¢), foranye > 0, of that of the fully mixed Nash equilibrium, where
h is the factor by which the largest user traffic deviates from the average user traffic, and
under the assumptions that all link capacities are identical, the number of usersis equal to the
number of links and the number of links is suitably large. The proof of this result has relied
very heavily on applying and extending techniques from the theostagfhastic orders
andmajorization[18,30]; such techniques are imported for fhst time into the context
of selfish routing, and their application and extension are both of independent interest. We
hope that the application and extension of techniques from the theory of stochastic orders
and majorization will be valuable to further studies of the selfish routing game considered
in this paper and for the analysis and evaluation of mixed Nash equilibria for other games
as well.

Our study of the computational complexity of extreme Nash equilibria has resulted in
both positive and negative results. On the positive side, we have devised, for the case of
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identical link capacities, equal numbers of users and links and a suitably large number of
links, arandomized, polynomial-time algorithm to approximate the worst social cost within
a factor arbitrarily close to/d1+ ¢), for anye > 0. The approximation factori21+ ¢) of

this randomized algorithm will immediately improve upon reduchdurther down in our
combinatorial result described above, relating the social cost of any Nash equilibrium to
that of the fully mixed. We have also introduced the technigudashificatioras a tool for
converging to a Nash equilibrium starting with any assignment of users to links in a way that
does notincrease the social cost; coupling this technique with a polynomial-time approxima-
tion scheme for the optimal assignment of users to l[ak$has yielded a polynomial-time
approximation scheme for the social cost ofltlestNash equilibrium. In sharp contrast, we
have establishedtayht limit on the approximation factor of any polynomial-time algorithm
that approximates the social cost of twerst Nash equilibrium (assumin@® # NP).

Our approximability and inapproximability results for the best and worst Nash equilibria,
respectively, establish an essential difference between the approximation properties of the
two types of extreme Nash equilibria.

The most obvious problem left open by our work is to establisHF&IE Conjecture.

Some progress on this problem has been already reported by Liicking et al. [17], where
the conjecture is proved in various special cases of the model of selfish routing introduced
by Koutsoupias and Papadimitriou [16] and considered in this work; furthermore, Liicking
et al. disprove th€ MNE Conjecture in a different model for selfish routing that borrows
from the model ofunrelated machinef 2] studied in the scheduling literature.

The technique oNashificationas an algorithmic tool for the computation of Nash equi-
libria, also deserves further study. Some steps in this direction have been taken already by
Feldmann et al. [5].

Establishment of the Fully Mixed Nash Equilibrium Conjecture will reveal an interesting
complexity-theoretic contrast between the worst pure and mixed Nash equilibria. On the one
hand, computing the (supports of) tiverstpure Nash equilibrium is av’P-hard problem
[7, Theorem 4]; however, computing the social cost of a worst pure Nash equilibrium is
trivially in P (since it amounts to computing the maximum). On the other hand, if the
fully mixed Nash equilibrium conjecture is true, computing the supports of a worst mixed
Nash equilibriumis a trivial problem and, moreover, the polynomial characterization of the
fully mixed Nash equilibrium shown in [19, Theorem 14] implies that a worst mixed Nash
equilibrium can be computed in polynomial time; however, computing the social of a worst
mixed Nash equilibrium remainsBFtcomplete. This result follows from an inspection of
the proof of [7, Theorem 8], which establishes that computing the social cost of a Nash
equilibrium is a #-complete problem. We consider this different behavior of pure and
mixed Nash equilibria to be an interesting complexity-theoretic consequence of the Fully
Mixed Nash Equilibrium Conjecture.
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