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� Introduction

��� Background

A threshold counter is a shared data structure that assumes integer values� It
provides two operations� Increment changes the current counter value from v
to v � �� but does not return any information� while Read returns the value
bv�wc� where v is the current counter value and w is a �xed constant� Thus�
the Read operation returns the �approximate� value of the counter to within
the constant w� Threshold counters have a variety of potential uses� most ob�
viously software barrier synchronization 	see� for example� 
��� Section ������
or 
������ Threshold counters are interesting because they can sometimes be
implemented more e�ciently than exact counters�

The most obvious way to implement a shared counter� whether threshold or
exact� is to use a single shared variable protected by a lock� However� such
centralized data structures may become �hot�spots� for shared memory com�
munication� or a �sequential bottleneck� with respect to concurrency� Aspnes
et al� 
�� devised a class of distributed data structures� called balancing net�
works� that provides a decentralized way to solve a variety of counter�based
synchronization problems�

Balancing networks are made up of balancers� Informally� a balancer 
�� is
a switching element with input wires and output wires� Tokens arrive asyn�
chronously on input wires� and are routed to successive output wires in �round�
robin� fashion� A balancing network is an acyclic network of balancers� A
balancing network�s depth is the length of its longest path�

Balancing networks can be used to construct counting networks 
��� which
are useful for constructing shared exact counters� and smoothing networks 
���
which are useful for load balancing� Balancing networks can also be used to
construct threshold networks 
�� and weak threshold networks 
�� which pro�
vide highly�concurrent� low�contention implementations of threshold counters�
Each of these classes of networks supports some form of Increment operation�
implemented by passing a token through the network�

Threshold networks are interesting because there are constructions of them
with substantially lower depth than the best known� practical construction of
counting networks� While the most practical construction of a counting net�
work known to date is the bitonic counting network 
�� Section �� of depth
approximately log�w� there exists� in contrast� a threshold network construc�
tion of depth logw 
�� Section ����

Supporting decrements in threshold and weak threshold networks would allow
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them to implement decrementable threshold counters� which have many po�
tential practical uses� For example� one might use a decrementable threshold
counter to control memory allocation policies on a multiprocessor� A thread
might increment the counter when it allocates a block of memory� and decre�
ment the counter when it frees that block� The operating system might mon�
itor the counter� requesting additional resources if the counter�s approximate
value exceeds a certain threshold� In this work� we address the question of
supporting decrements in threshold and weak threshold networks�

��� Results and Techniques

The principal contribution of this work is the �rst proof that any threshold
network implementation of a threshold counter can be extended to support a
Decrement operation that changes the counter value from v to v � �� We also
show that the same is true of weak threshold network implementations under
the assumption that the weak threshold network is made up of balancers�
called regular� that have the same number of input and output wires�

The extension to support the Decrement operation uses a new construct called
an antitoken� which was recently introduced by Shavit and Touitou 
���� While
each token that arrives at a balancer advances the toggle and exits on the next
successive output wire� an antitoken� by contrast� sets the toggle back� and
exits on the preceding wire� Informally� an antitoken �cancels� the e�ect of
the most recent token� and vice versa�

Shavit and Touitou 
��� proved that antitokens implement a Decrement op�
eration for a restricted class of balancing networks called a counting tree�
Subsequently� Aiello et al� 
�� proved that antitokens are more powerful� they
can be used to extend counting networks and smoothing networks to support
decrements� More generally� they identi�ed a broad class of properties� called
boundedness properties� that are preserved by the introduction of antitokens�
thus� if a balancing network satis�es any arbitrary boundedness property when
traversed by tokens alone� then it continues to satisfy that same property when
traversed by tokens and antitokens� Being a threshold counter� however� is not
a boundedness property� so di�erent arguments are needed to reason about
the behavior of threshold networks�

The proof techniques employed by Aiello et al� 
�� were purely combinatorial�
centered around the concept of a fooling pair of inputs 
�� Section ��� In this
work� we adapt and extend these techniques to encompass both threshold net�
works and weak threshold networks 	under the regularity assumption� within
the structural class of balancing networks whose properties are preserved by
the introduction of antitokens and decrement operations�
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��� Road Map

The rest of this paper is organized as follows� Section � provides a frame�
work for our discussion� Section � introduces the threshold property and the
weak threshold property� and establishes some simple properties� The paper�s
principal contribution� our results for threshold and weak threshold networks�
appears in Sections � and � respectively� We conclude� in Section �� with a
discussion of our results and some open problems�

� Framework

The framework for our discussion is patterned after 
�� Sections � � ���

��� Notation

For any integer g � �� x�g� denotes the integer vector hx�� x�� � � � � xg��iT� For
any vector x�g�� denotes kx�g�k� �

Pg��
i�� xi� We use ��g� to denote h�� �� � � � � �iT�

a vector with g zero entries� similarly� we use ��g� to denote h�� �� � � � � �iT� a
vector with g unit entries� A constant vector is any vector of the form c��g��
for any constant c�

For any integer x and positive integer �� denote x div � and x mod � the
integer quotient and remainder� respectively� of the division of x by �� note
that � � x mod � � �� �� while x � 	x div �� �� x mod �� Clearly� � divides
x if x mod � � �� Say that � divides x�g� if � divides each entry of x�g��

��� Balancers

This section is adapted from 
�� Section �����

Balancing networks are constructed from acyclically wired elements� called
balancers� that route tokens and antitokens through the network� and wires�
Balancers can have multiple input and output wires� in the style of Aharonson
and Attiya 
��� Felten et al� 
��� and Hardavellas et al� 
��� Following Shavit and
Touitou 
��� and Busch et al� 
��� balancers handle both tokens and antitokens�
We think of a token and an antitoken as the basic �positive� and �negative�
unit� respectively� that are routed through the balancer�

For any pair of positive integers fin and fout� an 	fin� fout��balancer� or balancer
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Fig� �� A balancer

for short� is a routing element receiving tokens and antitokens on fin input
wires� numbered �� �� � � � � fin��� and sending out tokens and antitokens to fout
output wires� numbered �� �� � � � � fout��� fin and fout are called the balancer�s
fan�in and fan�out� respectively� A regular balancer is an 	fin� fout��balancer
such that fin � fout� that is� fan�in equals fan�out for a regular balancer�

Tokens and antitokens arrive on the balancer�s input wires at arbitrary times�
and they are output on its output wires� Roughly speaking� a balancer acts
like a �generalized� toggle� which� on a stream of input tokens and antitokens�
alternately forwards them to its output wires� going either down or up on each
input token and antitoken� respectively� For clarity� we assume that all tokens
and antitokens are distinct�

Figure � depicts a balancer with three input wires and �ve output wires�
stretched horizontally� the balancer is stretched vertically� In the left part�
tokens and antitokens are denoted with full and empty circles� respectively�
the numbering re�ects the real�time order of tokens and antitokens in an
execution where they traverse the balancer one by one 	such an execution is
called a sequential execution��

For each input index i� � � i � fin � �� we denote by xi the balancer input
state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire i� that is� xi is the number of tokens
that have entered on input wire i minus the number of antitokens that have
entered on input wire i� Denote x�fin� � hx�� x�� � � � � xfin��i

T� call x�fin� an input
vector� For each output index j� � � j � fout��� we denote by yj the balancer
output state variable that stands for the algebraic sum of the numbers of tokens
and antitokens that have exited on output wire j� that is� yj is the number
of tokens that have exited on output wire j minus the number of antitokens
that have exited on output wire j� Denote y�fout� � hy�� y�� � � � � yfout��i

T� call
y�fout� an output vector�

The con�guration of a balancer at any given time is the tuple hx�fin��y�fout�i�
roughly speaking� the con�guration is the collection of its input and output
state variables� In the initial con�guration� all input and output wires are
empty� that is� in the initial con�guration� x�fin� � ��fin�� and y�fout� � ��fout��





A con�guration of a balancer is quiescent if there are no tokens or antitokens
in the balancer� Note that the initial con�guration is a quiescent one� The
following formal properties are required for an 	fin� fout��balancer�

	i� Safety property� in any con�guration� a balancer never creates either to�
kens or antitokens spontaneously�

	ii� Liveness property� for any �nite numbers t of tokens and a of antitokens
that enter the balancer� the balancer reaches within a �nite amount of
time a quiescent con�guration where t � e tokens and a � e antitokens
have exited the network� where e� � � e � minft� ag� is the number of
tokens and antitokens that are �eliminated� in the balancer�

	iii� Step property� in any quiescent con�guration� for any pair of output in�
dices j and k such that � � j � k � fout � �� � � yj � yk � ��

From the safety and liveness properties� it follows that for any quiescent con�
�guration hx�fin��y�fout�i of a balancer� kx�fin�k� � ky�fout�k�� that is� in a quies�
cent con�guration� the algebraic sum of tokens and antitokens that exited the
balancer is equal to the algebraic sum of tokens and antitokens that entered
it� Note that the equality holds even for the case where some of the tokens
and antitokens are �eliminated� in the balancer�

We are mostly interested in quiescent con�gurations of a balancer� For any
input vector x�fin� to balancer b� denote y�fout� � b	x�fin�� the output vector
in the quiescent con�guration that b will reach after all tokens and antitokens
that entered b have exited� write also b � x�fin� � y�fout� to denote the balancer
b�

For any quiescent con�guration hx�fin��y�fout�i of a balancer b � x�fin� � y�fout��
the state of the balancer b� denoted stateb	hx�fin��y�fout�i�� is de�ned to be

stateb	hx
�fin��y�fout�i�� ky�fout�k� mod fout �

by de�nition of quiescent con�guration� it follows that

stateb	hx
�fin��y�fout�i�� kx�fin�k� mod fout �

Thus� for the sake of simplicity� we will denote

stateb	x
�fin��� stateb	hx

�fin��y�fout�i� �

We remark that the state of an 	fin� fout��balancer is some integer in the set
f�� �� � � � � fout � �g� which captures the �position� to which it is set as a tog�
gle mechanism� This integer is determined by either the balancer input state
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Fig� �� A balancing network

variables or the balancer output state variables in the quiescent con�guration�
Note that the state of the balancer in the initial con�guration is ��

��� Balancing Networks

This section is adapted from 
�� Section �����

A 	win� wout��balancing network B is a collection of interwired balancers� where
output wires are connected to input wires� having win designated input wires�
numbered �� �� � � � � win � �� which are not connected to output wires of bal�
ancers� having wout designated output wires� numbered �� �� � � � � wout� �� sim�
ilarly not connected to input wires of balancers� and containing no cycles� A
balancing network is regular if each of its interwired balancers is regular�

Tokens and antitokens arrive on the network�s input wires at arbitrary times�
and they traverse a sequence of balancers in the network in a completely
asynchronous way till they exit on the output wires of the network� Figure �
depicts a balancing network with eight input and output wires using the same
conventions as in Figure ��

For each input index i� � � i � win � �� we denote by xi the network input
state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire i� that is� xi is the di�erence of the
number of tokens that have entered on input wire i minus the number of anti�
tokens that have entered on input wire i� Denote x�win� � hx�� x�� � � � � xwin��i

T�
call x�win� an input vector� For each output index j� � � j � fout � �� we de�
note by yj the network output state variable that stands for the algebraic
sum of the numbers of tokens and antitokens that have exited on output
wire j� that is� yj is the number of tokens that have exited on output wire j
minus the number of antitokens that have exited on output wire j� Denote
y�wout� � hy�� y�� � � � � ywout��i

T� call y�wout� an output vector�
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The con�guration of a network at any given time is the tuple of con�gurations
of its individual balancers� In the initial con�guration� all input and output
wires of balancers are empty� The safety and liveness property for a balanc�
ing network follow naturally from those of its balancers� Thus� a balancing
network eventually reaches a quiescent con�guration in which all tokens and
antitokens that entered the network have either exited the network or pair�
wise �eliminated� themselves� In any quiescent con�guration of B we have
kx�win�k� � ky�wout�k�� that is� in a quiescent con�guration� the algebraic sum
of tokens and antitokens that exited the network is equal to the algebraic sum
of tokens and antitokens that entered it�

Naturally� we are interested in quiescent con�gurations of a network� For any
quiescent con�guration of a network B with corresponding input and output
vectors x�win� and y�wout�� respectively� the state of B� denoted stateB	x�win���
is de�ned to be the collection of the states of its individual balancers� We
remark that we have speci�ed x�win� as the single argument of stateB� since
x�win� uniquely determines all input and output vectors of balancers of B�
which are used for de�ning the states of the individual balancers� Note that
the state of the network in its initial con�guration is a collection of ��s� For
any input vector x�win�� denote y�wout� � B	x�win�� the output vector in the
quiescent con�guration that B will reach after all tokens and antitokens that
entered B have exited� write also B � x�win� � y�wout� to denote the network B�
Clearly� B	��win�� � ��wout��

��� Boundedness Properties

Boundedness properties were introduced by Aiello et al� 
��� Our presentation
summarizes 
�� Section ����� Fix throughout any integer g � ��

For any integer K � �� the K�smoothing property 
���� is de�ned to be the
set of all vectors y�g� such that for any entries yj and yk of y�g�� where � �
j� k � g � �� jyj � ykj � K� any vector y�g� in the K�smoothing property is a
K�smooth vector� A smoothing property is a K�smoothing property� for some
integer K � ��

A boundedness property 
�� Section ���� is any subset of some smoothing prop�
erty� that is closed under addition with a constant vector� Thus� a bounded�
ness property is a strict generalization of the smoothing property� since any
smoothing property is trivially a boundedness property� Since there are in�
�nitely many smoothing properties� there are in�nitely many boundedness
properties as well�

The step property 
�� is de�ned to be the set of all vectors y�g� such that for
any entries yj and yk of y�g�� where � � j � k � g � �� � � yj � yk � �� any
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vector y�g� in the step property is a step vector� An equivalent de�nition of a
step vector y�g� given in 
�� requires that for each index j� � � j � g� �� yj �
d	ky�g�k�� j��ge� Note that any step vector is ��smooth 	but not vice versa��
hence� the step property is a 	proper� subset of the ��smoothing property�
which is trivially closed under addition with a step vector� It follows that the
step property is a boundedness property�

Say that a vector y�g� has the 	boundedness
 property � if y�g� � �� Say that a
balancing network B � x�win� � y�wout� has the 	boundedness
 property � if for
every input vector x�win�� B	x�win�� � �� A counting network 
�� is a balancing
network that has the step property� Similarly� a K�smoothing network 
���� is
a balancing network that has the K�smoothing property� The main result of
Aiello et al� 
�� establishes that allowing negative inputs does not spoil the
boundedness property of a balancing network�

Theorem � �Aiello et al� ���� Fix any boundedness property � and a bal�
ancing network B � x�win� � y�wout� such that y�wout� has the boundedness prop�
erty � whenever x�win� is a non�negative vector� Then� B has the boundedness
property ��

��� Fooling Pairs

Our presentation follows 
�� Section ���

Say that input vectors x�fin�
� and x�fin�

� are a fooling pair to balancer b � x�fin� �

y�fout� 
�� Section �� if stateb	x
�fin�
� � � stateb	x

�fin�
� �� roughly speaking� a fooling

pair �drives� the balancer to identical states in the two corresponding quies�
cent con�gurations� The concept of a fooling pair can be extended from a
single balancer to a network in the natural way� Say that input vectors x�win�

�

and x
�win�
� are a fooling pair to network B � x�win� � y�wout� if for each bal�

ancer b of B� the input vectors of b in quiescent con�gurations corresponding
to x�win�

� and x
�win�
� � respectively� are a fooling pair to b� roughly speaking� a

fooling pair �drives� all balancers of the network to identical states in the two
corresponding quiescent con�gurations�

The next result relates the output vectors of any balancing network on certain
combinations of a fooling pair of input vectors�

Lemma � �Aiello et al� ���� Consider a balancing network B � x�win� �

y�wout�� Take any input vectors x
�win�
� and x

�win�
� that are a fooling pair to net�

work B� Then� for any input vector x�win��

B	x
�win�
� � x�win��� B	x

�win�
� ��B	x

�win�
� � x�win��� B	x

�win�
� � �
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We continue to survey some further combinatorial properties of fooling pairs
that we will use in our later proofs� Say that x�win� is a null vector to network
B � x�win� � y�wout� 
�� Section �� if the vectors x�win� and ��win� are a fooling
pair to B� Intuitively� a null vector �hides� itself from the network B in the
sense that it does not alter the state of B while traversing it� The next claim
determines the output of a balancing network on any non�negative multiple
of a null vector�

Lemma � �Aiello et al� ���� Consider a balancing network B � x�win� �
y�wout�� Take any vector x�win� that is null to B� Then� for any integer k � ��

B	kx�win��� k B	x�win�� �

For any balancing network B� denote Wout	B�� the product of the fan�outs
of balancers of B� The next claim establishes a su�cient condition involving
Wout	B� for a vector to be null to B�

Lemma 	 �Aiello et al� ���� Consider a balancing network B � x�win� �
y�wout�� Assume that Wout	B� divides x�win�� Then� x�win� is a null vector to B�

� The Threshold Property and the Weak Threshold Property

In this section� we introduce the threshold property and the weak threshold
property� we prove several simple properties of them� Fix throughout any
integer wout � ��

Say that a vector y�wout� is a threshold vector 
�� if ywout�� � bky�wout�k��woutc�
The threshold property is the set of all threshold vectors y�wout�� It is straightfor�
ward to see that adding a constant vector to a threshold vector yields another
threshold vector� thus� the threshold property is closed under addition with
a constant vector� Moreover� take any step vector y�wout�� thus� by equivalent
de�nition of step vector� ywout�� � dk	y�wout�� 	wout����k��woute� A straight�
forward calculation reveals that ywout�� � bky�wout�k��woutc� Hence� y�wout� is a
threshold vector� It follows that the step property is a subset of the threshold
property�

Say that a vector y�wout� is a weak threshold vector 
� if there is some output
index j� possibly j �� wout � �� such that yj � bky�wout�k��woutc� The weak
threshold property is the set of all weak threshold vectors y�wout�� As for the case
of threshold vectors� it is straightforward to see that adding a constant vector
to a weak threshold vector yields another weak threshold vector� thus� the
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threshold property is closed under addition with a constant vector� Moreover�
the threshold property is a 	proper� subset of the weak threshold property�

We start by showing that the threshold property is not a boundedness property
in all non�trivial cases�

Proposition 
 The threshold property is not a boundedness property if and
only if wout � ��

PROOF� Suppose �rst that wout � �� We will show that the threshold prop�
erty is identical to the step property in this case� which is a boundedness
property�

Since the step property is a subset of the threshold property� it remains to
show that the threshold property is a subset of the step property� Take any
threshold vector y���� so� y� � b	y� � y����c� There are two cases to consider�
If y�� y� is even� then y� � 	y�� y����� or y�� y� � �� If y�� y� is odd� then
y� � 	y��y������� or y��y� � �� It follows that in all cases � � y��y� � ��
hence� y��� is a step vector� so that the threshold property is a subset of the
step property� It follows that the threshold property is identical to the step
property for wout � �� Since the step property is a boundedness property� it
follows that the threshold property is a boundedness property for wout � �� as
needed�

Suppose now that wout � �� Assume� by way of contradiction� that the thresh�
old property is a boundedness property� By de�nition of boundedness prop�
erty� this implies that the threshold property is a subset of the K�smoothing
property for some integer K � �� Consider the threshold vector y�wout� with
ywout�� � K � �� ywout�� � 	K � ��	wout� ��� and yl � � for � � l � wout� ��
Since the threshold property is a subset of theK�smoothing property� it follows
that y�wout� is K�smooth� However� jywout�� � ywout��j � j	K � ��	wout� ��j �
	K � ��	wout � �� � K � �� since wout � �� A contradiction� �

We continue to prove an identical fact for the weak threshold property�

Proposition � The weak threshold property is not a boundedness property if
and only if wout � ��

PROOF� Suppose �rst that wout � �� Recall that the weak threshold prop�
erty is closed under addition with a constant vector� thus� to show that the
weak threshold property is a boundedness property for wout � �� it su�ces to
show the weak threshold property is a subset of the ��smoothing property in
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this case� So� take any weak threshold vector y���� so� either y� � b	y��y����c
or y� � b	y� � y����c�

There are two cases to consider� If y�� y� is even� then either y� � 	y�� y����
or y� � 	y� � y����� in either case� y� � y� � �� If y� � y� is odd� then either
y� � 	y� � y� � ����� or y� � 	y� � y� � ����� hence� either y� � y� � � or
y� � y� � �� so that in either case jy� � y�j � �� It follows that in all cases
jy� � y�j � �� hence� y��� is a ��smooth vector� so that the weak threshold
property is a subset of the ��smoothing property� It follows that the weak
threshold property is a boundedness property for wout � �� as needed�

Suppose now that wout � �� Since the threshold property is a 	proper� subset
of the weak threshold property� while by Proposition � the threshold property
is not a boundedness property for wout � �� it follows that the weak threshold
property is not a boundedness property for wout � �� as needed� �

Propositions  and � imply that Theorem � does not apply a fortiori to either
threshold networks or weak threshold networks� Hence� in order to show that
allowing negative inputs does not spoil either threshold networks or weak
threshold networks� di�erent arguments are needed� In the rest of this section�
we prepare such arguments�

Say that a vector y�wout� is a saturated vector if ywout�� � ky�wout�k��wout�
Clearly� any saturated vector is a threshold vector� but not vice versa� We
continue to show a simple property of saturated vectors�

Proposition � Consider a saturated vector y�wout�� Then� �y�wout� � �y�wout�

is a saturated vector�

PROOF� Clearly�

eywout���� ywout�� 	since �y�wout� � �y�wout��

��
ky�wout�k�

wout
	since y�wout� is a saturated vector�

�
k�y�wout�k�

wout
	since �y�wout� � �y�wout�� �

so that �y�wout� is a saturated vector� as needed� �

We continue to show another closure property of the threshold property� more
speci�cally� we prove that the threshold property is closed under addition with
a saturated vector�

��



Proposition  Consider a threshold vector y�wout� and a saturated vector
�y�wout�� Then� y�wout� � �y�wout� is a threshold vector�

PROOF� Clearly�

ywout�� � eywout���

�
ky�wout�k�

wout

�
�
k�y�wout�k�

wout

	since y�wout� is threshold and �y�wout� is saturated�

�

�
ky�wout�k�

wout
�
k�y�wout�k�

wout

�

�

�
ky�wout�k� � k�y�wout�k�

wout

�

�

�
ky�wout� � �y�wout�k�

wout

�
�

so that y�wout� � �y�wout� is a threshold vector� as needed� �

By Proposition �� the following is an immediate consequence of Proposition ��

Corollary � Consider a threshold vector y�wout�� and a saturated vector �y�wout��
Then� y�wout� � �y�wout� is a threshold vector�

Say that a vector y�wout� is a weak saturated vector if there is some output
index j� possibly j �� wout � �� such that yj � ky�wout�k��wout� Clearly� any
saturated vector is a weak saturated vector� but not vice versa�

The threshold property and the weak threshold property give rise to corre�
sponding networks in the natural way� A threshold network 
�� is a balancing
network B � x�win� � y�wout� that has the threshold property� Roughly speak�
ing� a threshold network detects input �chunks� of size wout on the output
wire wout � �� called the threshold wire� For example� the network depicted
in Figure � is a threshold network 
��� for the cases where the input vector is
��smooth�

A weak threshold network 
� is a balancing network B � x�win� � y�wout� that
has the weak threshold property� Thus� like threshold networks� weak threshold
networks detect� on each input vector x�win�� input �chunks� of size wout on
some output wire j � j	x�win��� � � j � win � �� called the threshold wire for
input x�win�� However� unlike threshold networks� it is possible that threshold
wires for di�erent input vectors be di�erent�

��



	 Threshold Networks

In this section� we establish that the threshold property is preserved by the
introduction of antitokens� We start by proving a technical claim�

Proposition �� Take a threshold network B � x�win� � y�wout�� Assume that
Wout	B� divides x�win�� Then� y�wout� is a saturated vector�

PROOF� Since Wout	B� divides x�win�� Lemma � implies that x�win� is a null
vector to network B� Thus� by Lemma �� B	woutx

�win�� � woutB	x�win�� �
wouty

�wout�� Since B is a threshold network� it follows that wout y
�wout� is a

threshold vector� By de�nition of threshold vector� this implies that wout ywout�� �
bwoutky�wout�k��woutc � ky�wout�k�� hence� ywout�� � ky�wout�k��wout� By de��
nition of saturated vector� this implies that y�wout� is a saturated vector� as
needed� �

Proposition �� provides a su�cient condition on the input vector of a thresh�
old network� which involves structural parameters of the network itself� for the
corresponding output vector to be a saturated vector� Thus� Proposition ��
is reminiscent� in both its statement and proof� to 
�� Proposition ����� which
provides a corresponding su�cient condition for the output vector of a bal�
ancing network that has any boundedness property to be a constant vector�
Hence� Proposition �� establishes an analogy between constant vectors with
respect to a network that has any boundedness property� and saturated vectors
with respect to a threshold network� We continue with using Proposition ��
to show our equivalence result for threshold networks�

Theorem �� �Threshold networks support decrements� Take a balanc�
ing network B � x�win� � y�wout� such that y�wout� is a threshold vector whenever
x�win� is a non�negative vector� Then� B is a threshold network�

PROOF� Consider any arbitrary input vector x�win�� We will show that B	x�win��
is a threshold vector�

Construct from x�win� an input vector �x�win� such that for each index i� � �
i � win � �� fxi is the least multiple of Wout	B� such that fxi � xi � �� Clearly�
Wout	B� divides �x�win�� By Proposition ��� B	�x�win�� is a saturated vector� while
by Lemma �� �x�win� is a null vector to network B� We apply Lemma � with

�x�win� for x�win�
� � ��win� for x�win�

� � and x�win� for x�win�� we obtain that

B	�x�win� � x�win���B	x�win�� � B	�x�win��� B	��win��

��



�B	x�win�� � B	�x�win�� �

so that B	x�win�� � B	�x�win� � x�win��� B	�x�win���

Since �x�win� � x�win� is a non�negative input vector� it follows� by assumption
on B� that B	�x�win��x�win�� is a threshold vector� Since B	�x�win�� is a saturated
vector� Corollary � implies that B	x�win�� is a threshold vector� as needed� �

Theorem �� establishes that threshold networks continue to operate correctly
when antitokens are added� since an antitoken represents a decrement by one
operation� this implies that threshold networks are capable of supporting this
operation�

The proof of Theorem �� used Lemmas � and �� which� however� hold for any
balancing network� it used Corollary �� which determines a special class of
vectors� namely� the saturated vectors� to provide closure under subtraction
to the threshold property� �nally� it used Proposition ��� which provides a
su�cient condition for the output of a threshold network to be a saturated
vector�We remark that the general structure of the proof of Theorem �� closely
follows the one of 
�� Theorem ���� 	quoted as Theorem � in this paper�� The
new ideas that we employed in our proof are the precise identi�cation of the
class of null vectors for threshold networks 	namely� the saturated vectors�
and the various closure properties these vectors provide�


 Weak Threshold Networks

In this section� we establish that the weak threshold property is preserved
by the introduction of antitokens� under the regularity assumption on weak
threshold networks�

We start with outlining� by way of a counter�example� a particular problem
that one encounters while trying to extend the proof of Theorem �� to weak
threshold networks�

Consider the vector y��� � h�� �� �i�T�� Since bky���k���c � � and y� � ��
y��� is a weak threshold vector� Consider also the vector �y��� � h�� �� �i�T��
Since k�y���k��� � � and y� � �� �y��� is a 	weak� saturated vector� However�
y���� �y��� � h�� �� �i���� which is not a weak threshold vector because bky����
�y���k���c � �� while no entry of y��� � �y��� equals �� Hence� y��� � �y��� is
not a weak threshold vector� which implies that the weak threshold property
is not closed under subtraction of a 	weak� saturated vector� Therefore� an
analog of Corollary � for weak threshold vectors is doomed to fail� and some

�



additional care is needed in extending the proof of Theorem �� 	which relies
on Corollary �� to weak threshold networks�

We have only been able to extend Theorem �� to the case of regular weak
threshold networks� namely weak threshold networks such that each of their
balancers has the same fan�in and fan�out� To this end� we will need a simple
technical claim which has been shown by Herlihy et al 
��� Lemma ���� for
networks consisting of balancers with fan�in and fan�out equal to two� and
which� apparently� holds for any regular balancing network�

Lemma �� �Herlihy et al� ����� Take a regular balancing network B � x�win� �
y�wout�� Then� for any integer c � �� B	c��win�� � c ��wout��

Roughly speaking� Lemma �� asserts that if exactly c tokens enter on each
input wire� then exactly c tokens will exit from each output wire� We are now
ready to show that regular weak threshold networks support decrements�

Theorem �� �Regular weak threshold networks support decrements�
Take a regular balancing network B � x�win� � y�wout� such that y�wout� is a weak
threshold vector whenever x�win� is a non�negative vector� Then� B is a weak
threshold network�

PROOF� Consider any arbitrary input vector x�win�� We will show that B	x�win��
is a weak threshold vector�

Construct from x�win� a constant input vector �x�win� � c��win�� where c is the
least multiple of Wout	B� such that for each index i� � � i � win��� c�xi � ��
	Alternatively� c is the maximum �xi� � � i � win � �� where �xi is the least
multiple of Wout	B� such that �xi�xi � ��� Clearly� Wout	B� divides �x�win�� By
Lemma �� �x�win� is a null vector to network B� We apply Lemma � with �x�win�

for x
�win�
� � ��win� for x

�win�
� � and x�win� for x�win�� we obtain that

B	�x�win� � x�win���B	x�win�� � B	�x�win��� B	��win��

�B	x�win�� � B	�x�win�� �

so that B	x�win�� � B	�x�win� � x�win��� B	�x�win���

Since �x�win� � c��win�� it follows by Lemma �� that B	�x�win�� � c��wout�� Since
�x�win� � x�win� is a non�negative input vector� it follows� by assumption on B�
that B	�x�win� � x�win�� is a weak threshold vector� Let j be the threshold wire
for B	�x�win� � x�win��� Since B	�x�win�� � c��wout�� B	�x�win��j � c so that

B	x�win��j �B	�x�win� � x�win��j � B	�x�win��j

��



�B	�x�win� � x�win��j � c

�

�
k�x�win� � x�win�k�

wout

�
� c

	since B	�x�win� � x�win�� is weak threshold�

�

�
k�x�win�k� � kx�win�k�

wout

�
� c

�

�
cwout � kx�win�k�

wout

�
� c

	by de�nition of �x�win��

� c�

�
kx�win�k�
wout

�
� c

�

�
kx�win�k�
wout

�
�

It follows that B	x�win�� is a weak threshold vector� as needed� �

� Conclusion

We have shown that any balancing network that satis�es the threshold prop�
erty on all non�negative input vectors� it will also satisfy it for any arbitrary
input vector� We have also shown a corresponding fact for the weak threshold
property� assuming that the network is regular� It would be interesting to see
whether or not the regularity assumption can be dropped for weak thresh�
old networks� Our results imply that� in designing and verifying threshold
and 	regular� weak threshold networks� it is possible to restrict attention to
non�negative input vectors� which conveniences design and simpli�es proofs�

Our proofs have built on the combinatorial techniques introduced in 
��� It
would still be interesting to �nd further applications of these techniques to
other classes of balancing networks� A recent paper 
�� provides a formal char�
acterization of all properties of balancing networks that are preserved under
the introduction of decrement operations via antitokens�
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