
The Distributed Computing Column
by

Mario Mavronicolas

Department of Computer Science, University of Cyprus
75 Kallipoleos St., CY-1678 Nicosia, Cyprus

mavronic@cs.ucy.ac.cy

A Game on a Distributed Network∗

Vicky Papadopoulou
Department of Computer Science

University of Cyprus

P.O. Box 20537, Nicosia CY-1678, Cyprus

viki@cs.ucy.ac.cy

Abstract

Consider a distributed information network with harmful procedures called
attackers (e.g., viruses); each attacker uses a probability distribution to choose
a node of the network to damage. Opponent to the attackers is the system
protector scanning and cleaning from attackers some part of the network
(e.g., an edge or a simple path), which it chooses independently using an-
other probability distribution. Each attacker wishes to maximize the proba-
bility of escaping its cleaning by the system protector; towards a conflicting
objective, the system protector aims at maximizing the expected number
of cleaned attackers. In [8, 9], we model this network scenario as a non-
cooperative strategic game on graphs. We focus on two basic cases for the
protector; where it may choose a single edge or a simple path of the network.
The two games obtained are called as the Path and the Edge model, respec-
tively. For these games, we are interested in the associated Nash equilibria,
where no network entity can unilaterally improve its local objective. For the
Edge model we obtain the following results:

∗This work was partially supported by the IST Programs of the European Union under contract
numbers IST-2001-33116 (FLAGS) and IST-2004-001907 (DELIS).

• No instance of the model possesses a pure Nash equilibrium.

• Every mixed Nash equilibrium enjoys a graph-theoretic structure, which
enables a (typically exponential) algorithm to compute it.

• We coin a natural subclass of mixed Nash equilibria, which we call
matching Nash equilibria, for this game on graphs. Matching Nash
equilibria are defined using structural parameters of graphs

– We derive a characterization of graphs possessing matching Nash
equilibria. The characterization enables a linear time algorithm
to compute a matching Nash equilibrium on any such graph.

– Bipartite graphs and trees are shown to satisfy the characteriza-
tion; we derive polynomial time algorithms that compute match-
ing Nash equilibria on corresponding instances of the game.

• We proceed with other graph families. Utilizing graph-theoretic argu-
ments and the characterization of mixed NE proved before, we com-
pute, in polynomial time, mixed Nash equilibria on corresponding
graph instances. The graph families considered are regular graphs,
graphs with, polynomial time computable, r-regular factors and graphs
with perfect matchings.

• We define the social cost of the game to be the expected number of
attackers catch by the protector. We prove that the corresponding Price
of Anarchy in any mixed Nash equilibria of the Edge model is upper
and lower bounded by a linear function of the number of vertices of
the graph.

Finally, we consider the more generalized variation of the problem con-
sidered, captured by the Path model. We prove that the problem of existence
of a pure Nash equilibrium is NP-complete for this model.

1 Introduction

Motivation and Framework. Although Network Security has been always
considered to be a critical issue in networks, the recent huge growth of public
networks (e.g. the Internet) made it even more very important [15]. This work
considers a dimension of this area, related to the protection of a system from
harmful entities (e.g. viruses, worms, trojan horses, eavesdroppers [4]). Consider
an information network where the nodes of the network are insecure and vulner-
able to infection by attackers such as, viruses, Trojan horses, eavesdroppers. In
particular, at any time, a number of harmful entities is known (or an upper bound
of this number) to be present in the network. A protector, i.e. system security
software, is available in the system but it can guarantee security only to a limited

part of the network, such as a simple path or a single link of it, which it may
choose using a probability distribution. Such limitations result from money and
system performance costs caused in order to purchase a global security software
or by the reduced efficiency or usability of a protected node. Each harmful entity
targets a location (i.e. a node) of the network via a probability distribution; the
node is damaged unless it is cleaned by the system security software. Apparently,
the harmful entities and the system security software have conflicting objectives.
The system security software seeks to protect the network as much as possible,
while the harmful entities wish to avoid being caught by the software so that they
be able to damage the network. Thus, the system security software seeks to max-
imize the expected number of viruses it catches, while each harmful entity seeks
to maximize the probability it escapes from the system security software.

Naturally, we model this scenario as a non-cooperative multi-player strategic
game played on a graph with two kinds of players: the vertex players representing
the harmful entities, and the edge or the path player representing each one of the
above two cases for the system security software considered; where it can choose
a simple path or a single edge of the network, respectively. The corresponding
games are called the Path and the Edge model, respectively. In both cases, the
Individual Cost of each player is the quantity to be maximized by the correspond-
ing entity. We are interested in the Nash equilibria [11, 12] associated with these
games, where no player can unilaterally improve its Individual Cost by switching
to a more advantageous probability distribution.

Summary of Results. Here we overview the most important results of [8, 9].
Our study is mainly focus on the Edge model where our results are summarized
as follows:

• We prove that the model posses no pure Nash equilibrium (Theorem 3.1).

• We then proceed to study mixed Nash equilibria (mixed NE) of the Edge
model. We provide a graph-theoretic characterization of mixed NE (Theo-
rem 3.2). Roughly speaking, the characterization yields that the support of
the edge player and the vertex players are an edge cover and a vertex cover
of the graph and a subgraph of the graph, respectively. Given the supports,
the characterization provides a system of equalities and inequalities to be
satisfied by the probabilities of the players. Unfortunately, this characteri-
zation only implies an exponential time algorithm for the general case.

• We introduce matching Nash equilibria, which are a natural subclass of
mixed Nash equilibria with a graph-theoretic definition (Definition 4.1).
Roughly speaking, the supports of vertex players in a matching Nash equi-
librium form together an independent set of the graph, while each vertex

in the supports of the vertex players is incident to only one edge from the
support of the edge player.

• We provide a characterization of graphs admitting a matching Nash equi-
librium (Theorem 4.4). We prove that a matching Nash equilibrium can be
computed in linear time for any graph satisfying the characterization once a
suitable independent set is given for the graph.

• We consider bipartite graphs for which we show that they satisfy the char-
acterization of matching Nash equilibria; hence, they always have one (The-
orem 5.4). More importantly, we prove that a matching Nash equilibrium
can be computed in polynomial time for bipartite graphs (Theorem 5.5).

• Next, we proceed with other families of graphs. Combining the characteri-
zation of mixed Nash equilibria proved before with suitable graph-theoretic
properties of each class addressed, we compute polynomial time mixed NE
for each of them. These graph families include, trees, regular graphs, graphs
that can be partitioned into vertex disjoint regular subgraphs, graphs with
perfect matchings (Theorems 6.5, 6.6, 6.7, 6.9, respectively). Note that
trees are also bipartite graphs. Thus, the algorithm for bipartite graphs can
apply on them as well. However, the algorithm for trees provided, computes
matched Nash equilibria in in significantly less time that the algorithm of
bipartite graphs. This is achieved via suitable exploration of the special
structure of a tree.

• We measure the system performance with respect to the problem considered
utilizing the notion of the social cost [6]. Here, it is defined to be the number
of attackers catch by the protector. We compute upper and lower bounds of
the social cost in any mixed Nash equilibria of the Edge model. Using
these bounds, we show that the corresponding Price of Anarchy is upper
and lower bounded by a linear function of the number of vertices of the
graph (Theorem 7.2).

Finally, we consider a more generalized case of the problem considered, rep-
resented by the Path model. We prove that the problem of existence of pure Nash
equilibria in this model is NP-complete (Theorem 8.2). This result opposes in-
terestingly with the corresponding non-existence result of the Edge model, proved
before and indicates some fascinating dimensions of the yet unexplored research
area considered here.

Significance and Related Work. Our work joins the booming area of Algorith-
mic Game Theory. At the same time, it contributes in the subfield of Network

Security, related to the protection of a network from harmful entities (e.g. viruses,
worms, malicious procedures, or eavesdroppers [4]). This work is the first work
(with an exception of [2]) to model network security problems as strategic game
and study its associated Nash equilibria. In particular, [2] is a part of a relevant
research line related on Interdependent Security games [5]. In such a game, a
large number of players must make individual investment decisions related to se-
curity, in which the ultimate safety of each participant may depend in a complex
way on the actions of the entire population. Another related work is that of [4],
studying the feasibility and computational complexity of two privacy tasks in dis-
tributed environments with mobile eavesdroppers; of distributed database main-
tenance and message transmission. A mobile eavesdropper is a computationally
unbounded adversary that move its bugging equipment within the system.

This work is one of the only few works highlighting a fruitful interaction be-
tween Game Theory and Graph Theory. In [2], the authors consider inoculation
strategies for victims of viruses and establishes connections with variants of the
Graph Partition problem. In [1], the authors study a two-players game on a graph,
establish connections with the k-server problem and provide an approximate so-
lution for the simple network design problem.

Our results contribute towards answering the general question of Papadim-
itriou [14] about the complexity of Nash equilibria for our special game. We
believe that our matching Nash equilibria (and/or extensions of them) will find
further applications in other network games and establish themselves as a candi-
date Nash equilibrium for polynomial time computation in other settings as well.

2 Framework

Throughout, we consider an undirected graph G(V, E), with |V(G)| = n and |E(G)|
= m. Given a set of vertices X ⊆ V , the graph G\X is obtained by removing from
G all vertices of X and their incident edges. A graph H, is an induced subgraph
of G, if V(H) ⊆ V(G) and (u, v) ∈ E(H), whenever (u, v) ∈ E(G). For any vertex
v ∈ V(G), denote Neigh(v) = {u : (u, v) ∈ E(G)}, the set of neighboring vertices
of v. For a set of vertices X ⊆ V , denote Neigh(X) = {u � X : (u, v) ∈ E(G)
for some v ∈ X}. Denote Δ(v) = |Neigh(v)| the degree of vertex v in G and
Δ(G) = maxv∈V |Neigh(v)| the maximum degree of G. A simple path, P, is a path
of G with no repeated vertices, i.e. P = {v1, · · · , vi · · · , vk}, where 1 ≤ i ≤ k ≤ n,
vi ∈ V , (vi, vi+1) ∈ E(G) and each vi ∈ V appears at most once in P. Denote P(G)
the set of all possible paths in G. For a tree graph T denote root ∈ V , the root of
the tree and leaves(T) the leaves of the tree T . For any v ∈ V(T), denote parent(v)
the parent of v in the tree and children(v) its children in the tree T . For any A ⊆ V ,
let parents(A) := {u ∈ V : u = parent(v), v ∈ A}. For all above properties of a

graph G, when there is no confusion, we omit G.

2.1 The model

Definition 2.1. An information network is represented as an undirected graph
G(V, E). The vertices represent the network hosts and the edges represent the
communication links. For M = {P,E}, we define a non-cooperative game ΠM(G) =
〈N , {S i}i∈N , {IC}i∈N〉 as follows:

• The set of players is N = Nvp ∪ Np, where Nvp is a finite set of vertex
players vpi, i ≥ 1, p = {pp, ep} and Np is a singleton set of a player p
which is either (i) the path player and p = pp or (ii) the edge player and
p = ep, in the case where M = P or M = E, respectively.

• The strategy set S i of each player vpi, i ∈ Nvp, is V; the strategy set S p of
the player p is either (i) the set of paths of G, P(G) or (i) E, when M = P or

M = E, respectively. Thus, the strategy set S of the game is
(
×

i ∈ Nvp
S i

)
× S p

and equals to |V ||Nvp| × |P(G)| or |V ||Nvp| × |E|, when M = P or M = E,
respectively.

• Take any strategy profile�s = 〈s1, . . . , s|Nvp|, sp〉 ∈ S, also called a configura-
tion.

– The Individual Cost of vertex player vpi is a function ICi : S → {0, 1}
such that ICi(�s) =

{
0, si ∈ sp

1, si � sp
; intuitively, vpi receives 1 if it is not

caught by the player p, and 0 otherwise.

– The Individual Cost of the player p is a function IC p : S → N such
that ICp(�s) = |{si : si ∈ sp}|.

We call the games obtained as the Path or the Edge model, for the case where
M = P or M = E, respectively.

The configuration �s is a pure Nash equilibrium [11, 12] (abbreviated as pure
NE) if for each player i ∈ N , it maximizes ICi over all configurations�t that differ
from �s only with respect to the strategy of player i.

We consider mixed strategies for the Edge model. In the rest of the paper,
unless explicitly mentioned, when referring to mixed strategies, these apply on
the Edge model. A mixed strategy for player i ∈ N is a probability distribution
over its strategy set S i; thus, a mixed strategy for a vertex player (resp., edge
player) is a probability distribution over vertices (resp., over edges) of G. A mixed
strategy profile �s is a collection of mixed strategies, one for each player. Denote

P�s(ep, e) the probability that edge player ep chooses edge e ∈ E(G) in �s; de-
note P�s(vpi, v) the probability that player vpi chooses vertex v ∈ V in �s. Note∑

v∈V P�s(vpi, v) = 1 for each player vpi; similarly,
∑

e∈E P�s(ep, e) = 1. Denote
P�s(vp, v) =

∑
i∈Nvp

P�s(vpi, v) the probability that vertex v is chosen by some vertex
player in �s.

The support of a player i ∈ N in the configuration �s, denoted D�s(i), is the set
of pure strategies in its strategy set to which i assigns strictly positive probability
in �s. Denote D�s(vp) =

⋃
i∈Nvp

D�s(i); so, D�s(vp) contains all pure strategies (that
is, vertices) to which some vertex player assigns strictly positive probability. Let
also ENeigh�s(v) = {(u, v) ∈ E : (u, v) ∈ D�s(ep)}; that is ENeigh�s(v) contains all
edges incident to v that are included in the support of the edge player in �s. Given a
mixed strategy profile �s, we denote (�s−x, [y]) a configuration obtained by �s, where
all but player x play as in �s and player x plays the pure strategy y.

A mixed strategic profile �s induces an Expected Individual Cost ICi for each
player i ∈ N , which is the expectation, according to �s, of its corresponding In-
dividual Cost (defined previously for pure strategy profiles). The mixed strategy
profile �s is a mixed Nash equilibrium [11, 12] (abbreviated as mixed NE) if for
each player i ∈ N , it maximizes ICi over all configurations�t that differ from�s only
with respect to the mixed strategy of player i. We denote such a strategy profile as
�s ∗. Denote BR�s(x) the set of best response (pure) strategies of player x in a mixed
strategy profile �s, that is, ICx(�s−x, y) ≥ ICx(�s−x, y′), ∀ y ∈ BR�s(x) and y′ � BR�s(x),
y′ ∈ S x, where S x is the strategy set of player x (see also [13], chapter 3). A fully
mixed strategy profile is one in which each player plays with positive probability
all strategies of its strategy set.

For the rest of this section, fix a mixed strategy profile �s. For each vertex
v ∈ V , denote Hit(v) the event that the edge player hits vertex v. So, the proba-
bility (according to �s) of Hit(v) is P�s(Hit(v)) =

∑
e∈ENeigh(v) P�s(ep, e). Define the

minimum hitting probability P�s as minv P�s(Hit(v)). For each vertex v ∈ V , denote
m�s(v) the expected number of vertex players choosing v (according to �s). For each
edge e = (u, v) ∈ E, denote m�s(e) the expected number of vertex players choosing
either u or v; so, m�s(e) = m�s(u)+m�s(v). It is easy to see that for each vertex v ∈ V ,
m�s(v) =

∑
i∈Nvp

P�s(vpi, v). Define the maximum expected number of vertex players
choosing e in �s as maxe m�s(e).

We proceed to calculate the Expected Individual Cost. Clearly, for the vertex
player vpi ∈ Nvp,

ICi(�s) =
∑

v∈V(G)

P�s(vpi, v) · (1 − P�s(Hit(v))

=
∑

v∈V(G)

⎛⎜⎜⎜⎜⎜⎜⎝P�s(vpi, v) · (1 −
∑

e∈ENeigh(v)

P�s(ep, e)

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

For the edge player ep,

ICep(�s) =
∑

e=(u,v)∈E(G)

P�s(ep, e) · (m�s(u) + m�s(v))

=
∑

e=(u,v)∈E(G)

⎛⎜⎜⎜⎜⎜⎜⎜⎝P�s(ep, e) · (
∑
i∈Nvp

P�s(vpi, u) + P�s(vpi, v))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Social Cost and Price of Anarchy. We utilize the notion of social cost [6] for
evaluating the system performance related to the problem considered. A natural
such measurement is the number of attackers catch by the system protector; a
maximization of this quantity maximizes system’s performance with respect to its
safety from harmful entities. We therefore define,

Definition 2.2. For model M, M = {P,E}, we define the social cost of configuration
�s on instance ΠM(G), SC(ΠM(G),�s), to be the sum of vertex players of ΠM(G)
arrested in �s. That is, SC(ΠM(G),�s) = ICp(�s), where p = pp or p = ep when
M = P or M = E, respectively. The system wishes to maximize the social cost.

Definition 2.3. For model M, M = {P,E}, we define the price of anarchy, r(M) to
be,

r(M) = max
ΠM(G),�s ∗

max�s∈S SC(ΠM(G),�s)
SC(ΠM(G), �s ∗)

2.2 Background from Graph Theory

Throughout this section, we consider the (undirected) graph G = G(V, E).
G(V, E) is bipartite if its vertex set V can be partitioned as V = V1 ∪ V2 such that
each edge e = (u, v) ∈ E has one of its vertices in V1 and the other in V2. Such
a graph is often referred to as a V1,V2-bigraph. Fix a set of vertices S ⊆ V . The
graph G is an S -expander if for every set X ⊆ S , |X| ≤ |NeighG(X)|. For an integer
r, graph G is r-regular if Δ(v) = r, ∀v ∈ V .

A factor of a graph G is a sugraph Gr � G such that V(Gr) = V(G). An r-
regular factor of G is a factor of it (not necessarily connected) which is also an
r-regular graph. A hamiltonian path of a graph G is a simple path containing
all vertices of G. A set M ⊆ E is a matching of G if no two edges in M share a
vertex. Given a matching M, say that set S ⊆ V is matched into V\S in M if for
every vertex v ∈ S , there is an edge (v, u) ∈ M and u ∈ V\S . A vertex cover of
G is a set V ′ ⊆ V such that for every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. An
edge cover of G is a set E′ ⊆ E such that for every vertex v ∈ V , there is an edge
(v, u) ∈ E′. Say that an edge (u, v) ∈ E (resp., a vertex v ∈ V) is covered by the

vertex cover V ′ (resp., the edge cover E′) if either u ∈ V ′ or v ∈ V ′ (resp., if there
is an edge (u, v) ∈ E′). A set IS ⊆ V is an independent set of G if for all vertices
u, v ∈ IS , (u, v) � E. Clearly, IS ⊆ V is an independent set of G if and only if the
set VC = V\IS is a vertex cover of G.

We will use the consequence of Hall’s Theorem [3, Chapter 6] on the marriage
problem.

Proposition 2.4 (Marriage’s Theorem). A graph G has a matching M in which
set X ⊆ V is matched into V\X in M if and only if for each subset S ⊆ X,
|Neigh(S)| ≥ |S |.

Note that the problem of finding a perfect matching of a graph (if there exists
one) is equivalent to the problem of finding an 1-regular factor of the graph. The
problem of finding a maximum matching of any graph can be solved in polynomial
time [10]. Furthermore, a 2-regular factor of a graph (if there exists one) can
be computed in polynomial time, via Tutte’s reduction [16]; see also [7] for a
survey in cycle covers problems of various sizes. By the above observations we
get that there exists an exponential number of graphs that have polynomial time
computable r-regular factors.

3 Nash Equilibria

All following sections, except the last one, are devoted to the Edge model. For
pure Nash equilibria of the Edge model, in [8] we prove:

Theorem 3.1. If G contains more than one edges, then ΠE(G) has no pure Nash
Equilibrium.

Proof. Consider any graph G with at least two edges and any configuration �s of
ΠE(G). Let e the edge selected by the edge player in �s. Since G contains more
than one edges, there exists an e′ ∈ E) not selected by the edge player in �s, such
that e and e′ contain at least one different endpoint, assume u. If there is at least
one vertex player located on e, it will prefer to alternate to u so that not to get
arrested by the edge player and gain more. Thus, this case can not be a pure NE.
Otherwise, no vertex player is located on edge e. This implies an individual cost
of 0 for the edge player which the player can unilaterally improve by selecting any
edge containing at least one vertex player. Thus, this case also can not be a pure
NE for the instance, concluding that �s is not a pure NE.

Characterization of Mixed Nash Equilibria. Next we present a characteriza-
tion of mixed Nash equilibria of the Edge model, proved in [8].

Theorem 3.2. (Characterization of Mixed NE) A mixed strategy profile �s is a
Nash equilibrium for any ΠE(G) if and only if:

1. D�s(ep) is an edge cover of G and D�s(vp) is a vertex cover of the graph
obtained by D�s(ep).

2. The probability distribution of the edge player over E, is such that, (a)
P�s(Hit(v)) = P�s(Hit(u)) = minv P�s(Hit(v)), ∀ u, v ∈ D�s(vp) and (b)

∑
e∈D�s(ep)

P�s(ep, e) = 1.

3. The probability distributions of the vertex players over V are such that, (a)
m�s(e1) = m�s(e2) = maxe m�s(e), ∀ e1, e2 ∈ D�s(ep) and
(b)
∑

v∈V(D�s(ep)) m�s(v) = ν.

Remark 3.3. Note that the characterization does not implies a polynomial time
algorithm for computing a mixed Nash equilibrium, since it involves solving a
mixed integer programming problem.

In [9], we also provide an estimation on the payoffs of the vertex players in
any Nash equilibrium of the Edge model.

Claim 3.4. For any ΠE(G), a mixed NE, �s ∗, satisfies ICi(�s ∗) = IC j(�s ∗) and
1 − 2

|D�s ∗ (vp)| ≤ ICi(�s ∗) ≤ 1 − 1
|D�s ∗ (vp)| , ∀i, j ∈ Nvp.

4 Matching Nash Equilibria

In [8] we introduce a family of configurations of the Edge model, called matching.
Such configurations are shown to lead to mixed NE, called matching mixed NE.
First, we provide a characterization for the existence of a matching mixed NE,
shown in [8]. Using this characterization, we provide a polynomial time algo-
rithm for the computation of matching Nash equilibria for any instance ΠE(G) of
the problem, where the graph G satisfies the characterization. We remark applica-
bility of the algorithm for a quite broad family of graphs, that of bipartite graphs
(section 5).

Intuition behind Matching Nash equilibria. The obvious difficulty of solving
the system of Theorem 3.2 directs us in trying to investigate the existence of some
polynomially computable solutions of the system, corresponding to mixed NE of
the game. To which configuration should we consider as easy to compute, we
utilized the following way of thinking. A first observation is that finding a config-
uration that satisfies condition 2 of Theorem 3.2 seems the most difficult constrain
(among the three conditions) to be fulfilled. This is so because it contains the

largest number of variables (P�s(ep, e), ∀ e ∈ E) among the three conditions and
each equation of it might involve up to Δ(G) such variables. Thus, let us consider
the subtask of the system of computing function P�s(·), ∀e ∈ E. Consider the case
where the equations of condition 2.(a) are independent, that is for each variable e,
P�s(ep, e) appears in only one equation of condition 2.(a). Obviously, in this case
the task becomes less difficult. Note that in such case, D�s(vp) constitutes an inde-
pendent set of G. Moreover, when furthermore, each vertex of D�s(vp) is incident
only in one edge of D�s(ep), then each equation of condition 2.(a) contains only
one variable, making the satisfaction of the condition even less difficult. Based on
these thoughts, in [8], we define the following family of configurations which, as
we show, can lead to mixed NE for the game. In the sequel, we investigate their
existence and their polynomial time computation.

Definition 4.1. A matching configuration�s of ΠE(G) satisfies: (1) D�s(vp) is an
independent set of G and (2) each vertex v of D�s(vp) is incident to only one edge
of D�s(ep).

Claim 4.2. [8] For any graph G, if in ΠE(G) there exists a matching configuration
which additionally satisfies condition 1 of Theorem 3.2, then there exists probabil-
ity distributions for the vertex players and the edge player such that the resulting
configuration is a mixed Nash equilibrium for ΠE(G). These distributions can be
computed in polynomial time.

In the proof of the Claim, in [8], we consider any configuration �s as stated by
the Claim (assuming that there exists one) and the following probability distribu-
tions of the vertex players and the edge player on �s:

∀e ∈ D�s(ep), P�s(ep, e) := 1/|D�s(ep)|,
∀e′ ∈ E, e′ � D�s(ep), P�s(ep, e′) := 0

(3)

∀ i ∈ Nvp, ∀ v ∈ D�s(vp), P�s(vpi, v) := 1
|D�s(vp)| ,

∀u ∈ V, u � D�s(vp), P�s(vpi, u) := 0
(4)

Then, it is shown that �s satisfies all conditions of Theorem 3.2, thus it is a mixed
NE.

Definition 4.3. A matching configuration which additionally satisfies condition 1
of Theorem 3.2 is called a matching mixed NE.

Furthermore, in [8], we characterize graphs that admit matching Nash equilib-
ria.

Theorem 4.4. For any graph G, ΠE(G) contains a matching mixed Nash equilib-
rium if and only if the vertices of the graph G can be partitioned into two sets IS ,
VC (VC ∪ IS = V and VC ∩ IS = ∅), such that IS is an independent set of G
(equivalently, VC is a vertex cover of the graph) and G is a VC-expander graph.

Proof. We first prove that if G has an independent set IS and the graph G is a
VC-expander graph, where VC = V\IS , then ΠE(G) contains a matching mixed
NE. By the definition of a VC-expander graph, it holds that Neigh(VC′) ≥ VC′,
for all VC′ ⊆ VC. Thus, by the Marriage’s Theorem 2.4, G has a matching M
such that each vertex u ∈ VC is matched into V\VC in M; that is there exists
an edge e = (u, v) ∈ M, where v ∈ V\VC = IS . Partition IS into two sets
IS 1, IS 2, where set IS 1 consists of vertices v ∈ IS for which there exists an
e = (u, v) ∈ M and u ∈ VC. Let IS 2 the remaining vertices of the set, i.e.
IS 2 = {v ∈ IS : ∀ u ∈ VC, (u, v) � M}.

Now, recall that there is no edge between any two vertices of set IS , since
it is independent set, by assumption. Henceforth, since G is a connected graph,
∀ u ∈ IS 2 ⊆ IS , there exists e = (u, v) ∈ E and moreover v ∈ V\IS = VC.
Now, construct set M1 ⊆ E consisting of all those edges. That is, initially set
M := ∅ and then for each v ∈ IS 2, add one edge (u, v) ∈ E in M1. Note that, by
the construction of the set M1, each edge of it is incident to only one vertex of
IS 2. Next, construct the following configuration �s of ΠE(G): Set D�s(vp) := IS
and D�s(ep) := M ∪ M1.

We first show that that�s is a matching configuration. Condition (1) of a match-
ing configuration is fulfilled because D�s(vp)(= IS) is an independent set. We show
that condition (2) of a matching configuration is fulfilled. Each vertex of set IS
belongs either to IS 1 or to IS 2. By definition, each vertex of IS 1 is incident to
only one edge of M and each vertex of IS 2 is incident to no edge in M. More-
over, by the construction of set M1, each vertex of IS 2 is incident to exactly one
edge of M1. Thus, each vertex v ∈ D�s(vp)(= IS) is incident to only one edge of
D�s(ep)(= M ∪ M1), i.e. condition (2) holds as well. Henceforth, �s is a matching
configuration.

We next show that condition 1 of Theorem 3.2 is satisfied by �s. We first show
that D�s(ep) is an edge cover of G. This is true because (i) set M ⊆ D�s(ep) covers
all vertices of set VC and IS 1, by its construction and (ii) set M1 ⊆ D�s(ep) covers
all vertices of set IS 2, which are the remaining vertices of G not covered by set
M, also by its construction. We next show that D�s(vp) is a vertex cover of the
subgraph of G obtained by set D�s(ep). By the definition of sets IS 1, IS 2 ⊆ IS ,
any edge e ∈ M is covered by a vertex of set IS 1 and each edge e ∈ M1 is covered
by a vertex of set IS 2. Since D�s(ep) = M ∪M1, we get that all edges of the set are
covered by D�s(vp) = IS 1 ∪ IS 2. This result combined with the above observation
on D�s(ep) concludes that condition 1 of Theorem 3.2 is satisfied by �s. Henceforth,
by Claim 4.2, it can lead to a matching mixed NE of ΠE(G).

We proceed to show that if G contains a matching mixed NE, assume �s, then
G has an independent set IS and the graph G is a VC-expander graph, where
VC = V\IS . Define sets IS = D�s(vp) and VC = V\IS . We show that these sets
satisfy the above requirements for G. Note first that, set IS is an independent of

G since D�s(vp) is an independent set of G by condition (1) of the definition of a
matching configuration.

We next show G contains a matching M such that each vertex of VC is matched
into V\VC in M. Since D�s(ep) is an edge cover of G (condition 1 of a mixed NE
of Theorem 3.2), for each v ∈ VC, there exists an edge (u, v) ∈ D�s(ep). Note that
for edge (u, v), it holds that v ∈ IS , since otherwise IS would not be a vertex cover
of D�s(ep) (Condition 1 of a mixed NE). Now, construct a set M ⊆ E consisting of
all those edges. That is, That is, initially set M := ∅ and then for each v ∈ VC, add
one edge (u, v) ∈ D�s(ep) in M. By the construction of set M and condition (2) of a
matching mixed NE, we get that M is a matching of G and that each vertex of VC
is matched into V\VC in M. Thus, by the Marriage’s Theorem 2.4, we get that
Neigh(VC′) ≥ VC′, for all VC′ ⊆ VC and so G is a VC-expander and condition
(2) of a matching configuration also holds in �s.

An example of a graph G with a matching mixed NE �s is illustrated in Figure
1. Set D�s(ep) is denoted by bold edges and set D�s(vp)(= IS) (as in Theorem 4.4)
by vertices with an asterisk, ∗. We remark that not all graphs have a matching
mixed NE; any odd cycle is such graph; this is so because for every edge cover
EC of the graph (corresponding to D�s(ep)), there is no set VC ⊆ V (corresponding
to D�s(vp)) such that VC is a vertex cover of the graph induced by EC and VC is
also an independent set of G. See Figure 1(b) for an example.

C5

(b)

G
IS

edges
between
vertices
of VC

(a)

No edges

Edges between
vertices of IS and VC

VC

Figure 1: Examples of graphs (a) with and (b) without matching mixed Nash
equilibrium.

4.1 A Polynomial Time Algorithm

The previous Theorems and Lemmas enabled us to develop a polynomial time al-
gorithm for finding matching mixed NE for any ΠE(G), where G is a graph satis-
fying the requirements of Theorem 4.4. The algorithm is described in pseudocode
in Figure 2.

Theorem 4.5. [8] Algorithm A(ΠE(G), IS ,VC) computes a matching mixed Nash
equilibrium for ΠE(G) in linear time O(n).

5 Bipartite Graphs

In this section we overview the basic results of [8] on the investigation the ex-
istence and polynomial time computation of matching mixed Nash equilibria for
any ΠE(G), for which G is a bipartite graph. We first provide some useful Lemmas
and Theorems on important properties of bipartite graphs.

Lemma 5.1. [8] In any bipartite graph G there exists a matching M and a vertex
cover VC such that (1) every edge in M contains exactly one vertex of VC and (2)
every vertex in VC is contained in exactly one edge of M.

Remark 5.2. The statement of the Lemma does not hold for all graphs; any odd
cycle graph is an example of its falseness (See Figure 1(b)). The falseness of the
Lemma in a general graph consists in that the statement (∗1) in its proof is false;
condition (ii) required for proving ∗1 is not true.

By the above Lemma 5.1, we can prove that,

Lemma 5.3. [8] Any X, Y-bigraph graph G can be partitioned into two sets IS ,
VC (IS ∪ VC = V and IS ∩ VC = ∅) such that VC is a vertex cover of G
(equivalently, IS is an independent set of G) and G is a VC-expander graph.

Lemma 5.3 and Theorem 4.4 imply:

Theorem 5.4. [8] AnyΠE(G) for which G is a connected bipartite graph, contains
a matching mixed Nash equilibrium.

On the light of above results it is not difficult to show that,

Theorem 5.5. [8] For any ΠE(G), for which G is a bipartite graph, a matching
mixed Nash equilibrium ofΠE(G) can be computed in polynomial time, max{O(m

√
n),

O(n2.5/
√

log n)}, using Algorithm A.

6 Mixed Nash Equilibria in Various Graphs

Here, we overview on polynomial computable Nash equilibria of the Edge model
on some practical families of graphs, such as trees, regular graphs, graphs that can
be partitioned into vertex disjoint regular subgraphs, graphs with perfect match-
ings, showed in [9].

6.1 Trees

In Figure 3 we present in pseudocode an algorithm, called Trees(ΠE(T)), for com-
puting mixed NE for trees graph instances. The analysis following shows that the
algorithm computes a matched NE of the instance in linear time O(n). Observe
that trees are bipartite graphs, thus by Theorem 5.5 a matched mixed NE of ΠE(T)
can be computed in time O(n2.5/

√
log n) via algorithm A(ΠE(G), IS ,VC) (sec-

tion 4). Thus, algorithm Trees(ΠE(T)) presented next consists a more efficient
algorithm that A for computing matched NE for the case where the graph of the
instance is a tree.

The proof of correctness of the Algorithm is obtained via a series of Claims
proved in [9].

Claim 6.1. Set VC, computed by Algorithm Trees(ΠE(T)), is an independent set
of T .

Claim 6.2. Set EC is an edge cover of T and VC is a vertex cover of the graph
obtained by set EC.

Claim 6.3. Each vertex of IS is incident to exactly one edge of EC.

By Claims 6.1 and 6.3 we prove,

Lemma 6.4. Configuration �s t computed by algorithm Trees(ΠE(T)) is a match-
ing mixed NE.

By the previous Lemma, combined with Claim 4.2, in the same work it is
shown that,

Theorem 6.5. For any ΠE(T), where T is a tree graph, algorithm Trees(ΠE(T))
computes a mixed NE in polynomial time O(n).

6.2 Regular and Polynomially Computable r-factor graphs

Theorem 6.6. [9] For any ΠE(G) for which G is an r-regular graph, a mixed NE
can be computed in constant time O(1).

In the proof of the Theorem, the following configuration �s r on ΠE(G) is con-
structed:

For any i ∈ Nvp, P�s r(vpi, v) := 1
n , ∀v ∈ V(G) and then set, �s r

j := �s r
i ,

∀ j � i, j ∈ Nvp . Set P�s r(ep, e) := 1
m , ∀e ∈ E.

(5)

Then, its is shown that �s r is a mixed NE for ΠE(G).
The above result can be extended to graphs containing polynomially com-

putable r-regular factors subgraphs.

Corollary 6.7. For any ΠE(G) for which G is contains an r-regular factor sub-
graph, a mixed NE can be computed in polynomial time O(T (G)), where O(T (G))
is the time needed for the computation of Gr from G.

Observation 6.8. For any ΠE(G) for which G is a 2-regular factor graph, a mixed
NE can be computed in polynomial time, O(T (G)), where O(T (G)) is the (polyno-
mial) time needed for computing G2.

6.3 Perfect Graphs

Theorem 6.9. [9] For any ΠE(G) for which G has a perfect matching, a mixed
NE can be computed in linear time, O(

√
n · m).

In the proof of the Theorem, first, a perfect matching M of G is computed.
Then, the following configuration �s p on ΠE(G) is constructed:

For any i ∈ Nvp, P�s p(vpi, v) := 1
n , ∀v ∈ V(G) and set �s p

j := �s p
i ,

∀ j � i, j ∈ Nvp . Set P�s p(ep, e) := 1
|M| , ∀e ∈ E.

(6)

Then, it is shown, that both kinds of players, the vertex players and the edge player
are satisfied in �s p. Thus it is a mixed NE for ΠE(G).

7 The Price of Anarchy

In this section we overview on the basic results of [9] on the Social Cost and Price
of Anarchy of the Edge model.

Lemma 7.1. For any ΠE(G) and an associated mixed NE �s ∗, the social cost
SC(ΠE(G), �s ∗) is upper and lower bounded as follows:

max

{
ν

|D�s ∗(ep)| ,
ν

|V(D�s ∗(vp))|
}
≤ SC(ΠE(G), �s ∗) ≤ Δ(D�s ∗(ep)) · ν

|D�s ∗(ep)| (7)

These bounds are tight.

Theorem 7.2. The Price of Anarchy for the Edge model is n
2 ≤ r(E) ≤ n.

8 The Path Model

In the last section, we take a glimpse on the Path model. In [9], we provide the
following characterization of pure Nash Equilibria in the Path model.

Theorem 8.1. For any graph G, ΠP(G) has a pure NE if and only if G contains a
hamiltonian path.

This characterization implies the following result regarding the existence of
pure NE.

Corollary 8.2. The problem of deciding whether there exists a pure NE for any
ΠP(G) is NP-complete.

References

[1] N. Alon, R. M. Karp, D. Peleg and D. West, “A Graph-Theoretic Game and its
Application to the k-Server Problem”, SIAM Journal on Computing, Vol 24, No 1,
pp. 78-100, February 1995.

[2] J. Aspnes, K. Chang and A. Yampolskiy, “Inoculation Strategies for Victims of
Viruses and the Sum-of-Squares Problem”, Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 43-52, January 2005.

[3] A. S. Asratian, D. Tristan and M. J. Häggkvist, Bipartite Graphs and Their Applica-
tions, Cambridge Tracts in Mathematics, 131, 1998.

[4] M. Franklin, P. Alto, Z. Galil and Moti Yung, “Eavesdropping Games: a Graph-
Theoretic Approach to Privacy in Distributed Systems”, Journal of the ACM, Vol
47, No 2, pp. 225-243, March 2000.

[5] M. Kearns and L. Ortiz, “Algorithms for Interdependent Security Games”, Proceed-
ings of the 17th Annual Conference on Neural Information Processing Systems, De-
cember 2003.

[6] E. Koutsoupias and C. H. Papadimitriou, “Worst-Case Equilibria”, In Proceedings
of the 16th Annual Symposium on Theoretical Aspects of Computer Science, pp.
404–413, Springer-Verlag, March 1999.

[7] B. Manthey, “On Approximating Restricted Cycle Covers”, Technical Report
arXiv:cs.CC/0504038 v2 , June 10, 2005.

[8] M. Mavronicolas, V. Papadopoulou, A. Philippou, P. Spirakis, “A Network Game
with Attacker and Protector Entities”, In the Proceedings of the 16th Annual Inter-
national Symposium on Algorithms and Computation, 2005.

[9] M. Mavronicolas, V. Papadopoulou, A. Philippou, P. Spirakis, “A Graph-Theoretic
Network Security Game”, In the Proceedings of the 1st Workshop on Internet and
Network Economics, 2005.

[10] S. Micali and V.V. Vazirani, “An O(V1/2E) Algorithm for Finding Maximum Match-
ing in General Graphs”, Proceedings of the 21st Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 17-27, 1980.

[11] J. F. Nash, “Equilibrium Points in n-Person Games”, Proceedings of the National
Acanemy of Sciences of the United States of America, Vol 36, pp 48-49, 1950.

[12] J. F. Nash, “Non cooperative Games”, Annals of Mathematics, Vol 54, No 2, pp.
286-295, 1951.

[13] M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.

[14] C. H. Papadimitriou, “Algorithms, Games, and the Internet”, Proceedings of the
33rd Annual ACM Symposium on Theory of Computing, pp. 749-753, June 2001.

[15] W. Stallings, Cryptography and Network Security: Principles and Practice, Third
Edition, Prentice Hall, 2003.

[16] W. T. Tutte, “A Short Proof of the Factor Theorem for Finite Graphs”, Canadian
Journal of Mathematics, Vol 6, pp. 347-352, 1954.

Algorithm A(ΠE(G), IS ,VC)

Input: A game ΠE(G) and a partition of V(G) into sets IS , VC = V\IS ,
such that IS is an independent set of G and G is a VC-expander graph.
Output: A mixed NE �s for ΠE(G).

1. Compute a set M ⊆ E as follows:

(a) Initialization: Set M := ∅, Matched := ∅ (currently
matched vertices in M), Unmatched := VC (currently un-
matched vertices of VC in M), Unused := IS , i := 1,
Gi := G and M1 := ∅.

(b) While Unmatched � ∅ Do:

i. Consider a u ∈ Unmatched.

ii. Find a v ∈ Unused such that (u, v) ∈ Ei. Set M :=
M ∪ (u, v), Unused := Unused\{v}.

iii. Prepare next iteration: Set i := i + 1, Matched :=
Matched ∪ {u}, Unmatched := Unmatched\{u}, Gi :=
Gi−1\u\v.

2. Partition set IS into two sets IS 1, IS 2 as follows: IS 1 := {u ∈
IS : ∃ (u, v) ∈ M} and IS 2 := IS \IS 1. Note that IS 2 := {u ∈
IS : ∀v ∈ VC, � (u, v) ∈ M}.
Compute set M1 as follows: ∀ u ∈ IS 2, set M1 := M1 ∪ (u, v),
for any (u, v) ∈ E, v ∈ VC.

3. Define a configuration �s with the following support: D�s(vp) :=
IS , D�s(ep) := M ∪ M1.

4. Determine the probabilities distributions of the vertex players
and the e.p. of configuration �s′ using equations (3) and (4) of
Claim 4.2.

Figure 2: Algorithm A(ΠE(G), IS ,VC).

Algorithm Trees(ΠE(T))

1. Initialization: VC := ∅, EC := ∅, r := 1, Tr := T .

2. Repeat until Tr == ∅
(a) Find the leaves of the tree Tr, leaves(Tr).

(b) Set VC := VC ∪ leaves(Tr).

(c) For each v ∈ leaves(Tr) do:

If parentTr(v) � ∅, then EC := EC ∪ {(v, parentTr(v)))},
else EC := EC ∪ {(v, u)}, for any u ∈ childrenT (v).

(d) Update tree: Tr+1 := Tr\leaves(Tr)\parents(leaves(Tr)).
Set r := r + 1.

3. Define a configuration �s t with the following support:
For any i ∈ Nvp, set D�s t(vpi) := VC and D�s t(ep) := EC. Then
set D�s t(vpj) := D�s t(vpi), ∀ j � i, j ∈ Nvp.

4. Determine the probabilities distributions of players in �s t as
follows:
ep : ∀ e ∈ D�s t(ep), set P�s t(ep, e) := 1/|EC|. Also, ∀ e′ ∈ E(T),
e′ � D�s t(ep), set P�s t(ep, e′) := 0.

For any vpi, i ∈ Nvp : ∀ v ∈ D�s t(vpi), set P�s t(vpi, v) := 1
|VC| .

Also, ∀ u � D�s t(vpi), set P�s t(vpi, u) := 0. Then set �s t
j = �s

t
i ,

∀ j � i, j ∈ Nvp.

Figure 3: Algorithm Trees(ΠE(T)).

	attackers.ps

