
A Family of Resource-Bound Real-Time

Process Algebras

Insup Leea,1 Anna Philippoub,2 , Oleg Sokolskya,3

a Department of Computer and Information Science, University of Pennsylvania, 200 South 33rd Street,
Philadelphia, PA, USA

b Department of Computer Science, University of Cyprus, P.O. Box 20537, Nicosia, Cyprus

Abstract

The Algebra of Communicating Shared Resources (ACSR) is a timed process algebra which extends classical
process algebras with the notion of a resource. It takes the view that the timing behavior of a real-time
system depends not only on delays due to process synchronization, but also on the availability of shared
resources. Thus, ACSR employs resources as a basic primitive and it represents a real-time system as
a collection of concurrent processes which may communicate with each other by means of instantaneous
events and compete for the usage of shared resources. Resources are used to model physical devices such
as processors, memory modules, communication links, or any other reusable resource of limited capacity.
Additionally, they provide a convenient abstraction mechanism for capturing a variety of aspects of system
behavior. The resulting framework combines the areas of process algebra and real-time scheduling, and
can facilitate the reasoning about systems that are sensitive to deadlines, process interaction and resource
availability.
In this paper we give an overview of ACSR and three of its extensions PACSR, P2ACSR and MCSR, which
take into account probabilistic failures, power consumption and multi-capacity resources.

Keywords: real-time process algebra, resource modeling, probabilistic behavior, power consumpion

1 Introduction

Modeling timing aspects of system behavior has a long history in process-algebraic

formalisms. In this paper, we advocate the use of resources in the modeling of

real-time systems as a means of arriving at simpler and more faithful models.

Process algebras, such as CCS [7], CSP [4], and ACP [2], have been developed

to describe and analyze communicating, concurrently-executing systems. They are

based on the premises that the two most essential notions in understanding complex

� This research was supported in part by ARO DAAD19-01-1-0473, ARO W911NF-05-1-0182, NSF CCR-
0209024, NSF CNS-0509327, and NSF CNS-0509143.
1 Email: lee@cis.upenn.edu
2 Email: annap@cs.ucy.ac.cy
3 Email: sokolsky@cis.upenn.edu

Electronic Notes in Theoretical Computer Science 162 (2006) 221–226

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.085

mailto:lee@cis.upenn.edu
mailto:annap@cs.ucy.ac.cy
mailto:sokolsky@cis.upenn.edu
http://www.elsevier.com/locate/entcs

dynamic systems are concurrency and communication [7]. The Algebra of Commu-

nicating Shared Resources (ACSR) introduced by Lee et. al. [6], is a timed process

algebra which can be regarded as an extension of CCS. The timing behavior of a

real-time system depends not only on delays due to process synchronization, but

also on the availability of shared resources. Most real-time process algebras ad-

equately capture delays due to process synchronization. However, they abstract

out resource-specific details by assuming idealistic operating environments. On the

other hand, scheduling and resource-allocation algorithms used for real-time systems

ignore the effect of process synchronization except for simple precedence relations

between processes. The ACSR algebra provides a formal framework that combines

the areas of process algebra and real-time scheduling, and, thus, can help us to rea-

son about systems that are sensitive to deadlines, process interaction and resource

availability.

The computation model of ACSR is based on the view that a real-time system

consists of a set of communicating processes that use shared resources for execution

and synchronize with one another. The notion of real time in ACSR is quantitative

and discrete, and is accommodated using the concept of timed actions. Executing

a timed action requires access to a set of resources and takes one unit of time.

Resources are serially reusable, and access to them is governed by priorities. To en-

sure the uniform progression of time, processes execute timed actions synchronously.

Similar to CCS, the execution of an event is instantaneous and never consumes any

resource. The notion of communication is modeled using events through the exe-

cution of complementary events, which are then converted into an internal event.

Processes execute events asynchronously except when two processes synchronize

through matching events. Priorities are used to direct the choice when several

events are possible at the same time.

We have extended ACSR into a family of process algebras, GCSR [1], Dense-

time ACSR [3], ACSR-VP [5], PACSR [8] and P2ACSR [10]. GCSR allows the

visual representation of ACSR processes. ACSR-VP extends ACSR with value-

passing capabilities, extending the class of scheduling problems that can be handled.

PACSR allows the modeling of resource failure with probabilities, whereas P2ACSR

adds the notion of power consumption. Some of these extensions are informally

described below.

2 Resource-Bound Processes

2.1 The Computation Model

We distinguish two types of actions: those which consume time, and those which are

instantaneous. Timed actions may require access to system resources, e.g., cpu’s,

memory, batteries, etc. In contrast, instantaneous actions provide a synchronization

mechanism between concurrent processes.

Timed Actions. A system has a finite set of serially-reusable resources, R.

An action consumes one “tick” of time and employs a set of resources, each with

an integer priority. For example, action {(r, p)} denotes the use of some resource

I. Lee et al. / Electronic Notes in Theoretical Computer Science 162 (2006) 221–226222

r ∈ R running at priority level p. The action ∅, consuming no resources, represents

idling for one time unit.

Events. Instantaneous actions, or events, provide process synchronization in

ACSR. An event is denoted by a pair (a, p), where a is the label of the event, and p

is its priority. Labels represent input and output actions on channels. As in CCS,

the special identity label, τ , arises when two events with input and output on the

same channel synchronize.

2.2 Real-Time Processes

ACSR processes are described by the following grammar, where we assume a set of

process constants each with an associated definition of the kind C
def
= P .

P ::= NIL | (a, n). P | A:P | P + P | P‖P | P\F | [P]I | P\\I |

P �
a

t (P,P, P) | C

Steps of ACSR processes are constructed using the two prefix operators correspond-

ing to the two types of actions. The process (a, n). P executes the instantaneous

event (a, n) and proceeds to P . The process A:P executes a resource-consuming

action during the first time unit and proceeds to P . The process P + Q represents

nondeterministic choice and the process P‖Q describes the concurrent composition

of P and Q. The temporal scope construct, P �
a

t (Q,R, S), restricts a process P

by a time limit (t). If P completes its execution within this limit an exception, a,

is thrown, in which case an exception handler (Q) is executed. If not, control is

passed to a timeout process (R). In any case, P can be interrupted by a step of an

interrupt process (S). Other static operators of ACSR allow us to hide the identity

of certain resources (P\\I), reserve the use of a resource for a given process ([P]I),

and force synchronization between processes by restricting certain events (P\F).

The executions of a process are defined by a timed labeled transition system

(timed LTS). A timed LTS, M , is defined as 〈P,D,→, P0〉, where P is a set of

ACSR processes, ranged over by P,Q, D is a set of actions, and → is a labeled

transition relation such that P
α

−−−−→ Q if process P may perform an instantaneous

event or timed action α and then behave as Q. P0 ∈ P represents the initial state

of the system.

Analysis of real-time systems. Within the ACSR formalism we can conduct

two types of analysis for real-time scheduling: validation and schedulability analysis.

Validation shows that a given specification correctly models the required real-time

scheduling discipline, such as Rate Monotonic and Earliest-Deadline-First. Schedu-

lability analysis determines whether or not a real-time system with a particular

scheduling discipline misses any of its deadlines. The validation and schedulability

analysis of a real-time system can be carried out by establishing appropriate equiv-

alences between the ACSR processes representing the system under consideration

and its specification.

I. Lee et al. / Electronic Notes in Theoretical Computer Science 162 (2006) 221–226 223

2.3 Resource Probabilities and Actions

PACSR (Probabilistic ACSR) extends ACSR by associating each resource with a

probability. This probability captures the rate at which the resource may fail. Thus,

timed actions can now account for resource failure.

Timed Actions. In addition to the set of ACSR resources R, we consider set

R that contains, for each r ∈ R, r, representing the failed resource r. Actions are

constructed as in ACSR, but may now contain both normal and failed resources.

The action {(r, p)}, cannot happen if r has failed. On the other hand, action {(r, q)}
takes place only when resource r has failed. This notation is useful for specifying

recovery from failures.

Resource Probabilities. In PACSR we associate each resource with a prob-

ability at which the resource may fail. We denote by p(r) ∈ [0, 1] the probability

of resource r being up, while p(r) = 1 − p(r) is the probability of r failing. This

probabilistic behavior of a resource-consuming process is reflected in the opera-

tional semantics of PACSR. For example, consider the process {(cpu, 1)} : NIL,

with p(cpu) = 2/3. Then, with probability 2/3, resource cpu is available and the

process may perform the step, while, with probability 1/3, the resource fails and

the process deadlocks.

Probabilistic Processes. The syntax of PACSR processes is the same as that

of ACSR. The only extension concerns the appearance of failed resources in timed

actions. Thus, it is possible on one hand to assign failure probabilities to resources

of existing ACSR specifications and perform probabilistic analysis on them, and, on

the other hand, to ignore failure probabilities and apply non-probabilistic analysis

of PACSR specifications. The semantics of PACSR is given operationally via two

transition relations that define the probabilistic and the non-deterministic behav-

ior of processes. The resulting transition systems belong to the class of labelled

concurrent Markov chains [11].

Analysis of probabilistic systems. We have defined a probabilistic weak

bisimulation [9], which allows us to compare observable behaviors of PACSR pro-

cesses similar to the case of ACSR. In addition, probabilistic information embedded

in the probabilistic transitions allows us to perform quantitative analysis of PACSR

specifications. In particular, we can compute the probability of reaching a given

state or a deadlocked state, or we may perform model-checking of PACSR specifi-

cations [8].

2.4 Power-aware Processes

Often, we need to model consumable resources, such as power, in addition to

reusable ones. An extension of PACSR, called P2ACSR, allows us to reason about

power-aware processes by specifying the amount of power consumed when a resource

is accessed.

Resources and power consumption. In order to reason about power con-

sumption in distributed settings, the set of resources R is partitioned into a finite

set of disjoint classes Ri. Intuitively, each Ri corresponds to a distinct power source

I. Lee et al. / Electronic Notes in Theoretical Computer Science 162 (2006) 221–226224

which can provide a limited amount of power ci. Each resource r ∈ Ri consumes a

certain amount of power from Ri. As in PACSR, each resource has a fixed proba-

bility of failure.

Power-consuming timed actions. Timed actions are extended to include the

amount of power consumed by resources. Formally, an action is a finite set of triples

of the form (r, p, c), where r is a resource, p is the priority of the resource usage

and c is the rate of power consumption. The additional restriction on an action is

that the total power consumption for any of the resource classes does not exceed

the limit of the class. The semantics is given again as labelled concurrent Markov

chains by an extension of the transition relations of PACSR

Analysis of power-aware systems. We defined a power-aware temporal logic

and a model-checking algorithm for it [10], which allows us to check bounds on power

consumption. We can also compute minimum and maximum power consumption

within a given time frame.

2.5 Multi-capacity resources

MCSR extends the ACSR resource framework to capture memory use as a different

kind of resource. Memory is a critical resource in size-constrained embedded systems

such as mobile phones. In the design of an embedded system, we need to consider

tradeoffs between memory use and the speed of the tasks in the system.

Multi-capacity Resources. The nature of memory as a resource is different

from ACSR serially-reusable resources. Two processes can use the same memory, as

long as the total use does not exceed the memory capacity. Therefore, we introduce

a new class of resources called multi-capacity resources. Specifically, we partition the

set of resources R into classes Rs and Rm. Resources in Rs are single-capacity re-

sources access to which is governed by priorities, as in ACSR. The resource class Rm

contains multi-capacity resources. Resources in Rm are associated with a capacity

attribute which represents the amount of resource available in a system.

Timed actions in MCSR. A timed action in MCSR consists of several re-

sources used according to their class, and, as before, consume one unit of time.

Resources in Rs, are associated with a priority level, whereas resources in Rm are

associated with the amount of resource used in the action. For example, for re-

sources cpu ∈ Rs, and mem ∈ Rm, timed action {(cpu, i), (mem,u)} uses resource

cpu, representing a processor unit, at priority level i, while consuming u units of

the resource mem, representing a memory source.

Analysis of MCSR systems. The addition of multi-capacity resources does

not affect the underlying model of ACSR. Thus, bisimulations defined for ACSR

also apply to the new framework. Consequently, we may test the schedulability

of a real-time system containing multi-capacity resources via checking appropriate

bisimulations or searching for deadlocked states.

I. Lee et al. / Electronic Notes in Theoretical Computer Science 162 (2006) 221–226 225

References

[1] Ben-Abdallah, H., “GCSR: A Graphical Language for the Specification, Refinement and Analysis of
Real-Time Systems”, PhD thesis, Department of Computer and Information Science, University of
Pennsylvania, 1996.

[2] Bergstra, J. A., and J. W. Klop. Algebra of Communicating Processes with Abstraction, Theoretical
Computer Science, 37:77–121, 1985.

[3] Brémond-Grégoire P., and I. Lee, Process Algebra of Communicating Shared Resources with Dense
Time and Priorities, Theoretical Computer Science, 189:179–219, 1997.

[4] Hoare, C. A. R.,“Communicating Sequential Processes”, Prentice-Hall, 1985.

[5] Kwak, H. H., I. Lee, A. Philippou, J. Y. Choi, and O. Sokolsky, Symbolic schedulability analysis of
real-time systems, Proceedings of RTSS’98, pages 409–418, IEEE Computer Society Press, 1998.

[6] Lee, I., P. Brémond-Grégoire, and R. Gerber, A Process-Algebraic Approach to the Specification and
Analysis of Resource-Bound Real-Time Systems, Proceedings of the IEEE, pages 158–171, 1994.

[7] Milner, R., “Communication and Concurrency”, Prentice-Hall, 1989.

[8] Philippou, A., R. Cleaveland, I. Lee, S. Smolka, and O. Sokolsky, Probabilistic resource failure in real-
time process algebra, Proceedings of CONCUR’98, volume 1466 of LNCS, pages 389–404, Springer
Verlag, 1998.

[9] Philippou, A., O. Sokolsky, and I. Lee, Weak bisimulation for probabilistic systems, Proceedings of
CONCUR’00, volume 1877 of LNCS, pages 334-349, 2000.

[10] Sokolsky, O., A. Philippou, I. Lee, and K. Christou, Modeling and analysis of power-aware systems,
Proceedings of TACAS ’03, volume 2619 of LNCS, pages 409–425, 2003.

[11] Vardi, M., Automatic verification of probabilistic concurrent finite-state programs, Proceedings of
FOCS’85, pages 327-338, 1985.

I. Lee et al. / Electronic Notes in Theoretical Computer Science 162 (2006) 221–226226

	Introduction
	Resource-Bound Processes
	The Computation Model
	Real-Time Processes
	Resource Probabilities and Actions
	Power-aware Processes
	Multi-capacity resources

	References

