
Theoretical Computer Science 383 (2007) 59–85
www.elsevier.com/locate/tcs

Long-lived Rambo: Trading knowledge for communicationI

Chryssis Georgioua, Peter M. Musialb, Alexander A. Shvartsmanb,c,∗

a Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
b Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06278, USA

c Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Shareable data services providing consistency guarantees, such as atomicity (linearizability), make building distributed systems
easier. However, combining linearizability with efficiency in practical algorithms is difficult. A reconfigurable linearizable data
service, called RAMBO, was developed by Lynch and Shvartsman. This service guarantees consistency under dynamic conditions
involving asynchrony, message loss, node crashes, and new node arrivals. The specification of the original algorithm is given at
an abstract level aimed at concise presentation and formal reasoning about correctness. The algorithm propagates information
by means of gossip messages. If the service is in use for a long time, the size and the number of gossip messages may grow
without bound. This paper presents a consistent data service for long-lived objects that improves on RAMBO in two ways: it
includes an incremental communication protocol and a leave service. The new protocol takes advantage of the local knowledge,
and carefully manages the size of messages by removing redundant information, while the leave service allows the nodes to
leave the system gracefully. The new algorithm is formally proved correct by forward simulation using levels of abstraction.
An experimental implementation of the system was developed for networks-of-workstations. The paper also includes selected
analytical and preliminary empirical results that illustrate the advantages of the new algorithm.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper presents a practical algorithm implementing long-lived, survivable, atomic read/write objects in dynamic
networks, where participants may join, leave, or fail during the course of computation. The survivability of data
is ensured through redundancy: the data are replicated and maintained at several network locations. Replication
introduces the challenges of maintaining consistency among the replicas, and managing dynamic participation as
the collections of network locations storing the replicas change due to arrivals, departures, and failures of nodes.

A new approach to implementing atomic read/write objects for dynamic networks was developed by Lynch and
Shvartsman [1] and extended by Gilbert et al. [2]. They developed a memory service called RAMBO (Reconfigurable
Atomic Memory for Basic Objects) that maintains atomic, a.k.a. linearizable, readable/writable data in highly dynamic

I This work is supported in part by the NSF Grants 9988304, 0121277, and 0311368, and by the NSF CAREER Award 9984778.
∗ Corresponding author at: Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06278, USA.

E-mail address: aas@cse.uconn.edu (A.A. Shvartsman).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.03.052

http://www.elsevier.com/locate/tcs
mailto:aas@cse.uconn.edu
http://dx.doi.org/10.1016/j.tcs.2007.03.052


60 C. Georgiou et al. / Theoretical Computer Science 383 (2007) 59–85

environments. In order to achieve availability in the presence of failures, the objects are replicated at several network
locations. In order to maintain consistency in the presence of small and transient changes, the algorithm uses
configurations of locations, each of which consists of a set of members plus sets of read-quorums and write-quorums.
In order to accommodate larger and more permanent changes, the algorithm supports reconfiguration, by which the
set of members and the sets of quorums are modified. Any configuration may be installed at any time. Obsolete
configurations can be removed from the system without interfering with the ongoing read and write operations. The
algorithm tolerates arbitrary patterns of asynchrony, node crashes, and message loss. It is formally shown [2,1] that
atomicity is maintained in any execution of the algorithm. We developed an experimental implementation of this
algorithm on a network-of-workstations [3].

The original RAMBO algorithm is formulated at an abstract level aimed at concise specification and formal
reasoning about the algorithm’s correctness. Consequently, the algorithm incorporates a simple communication
protocol that maintains very little in the way of protocol states. Nevertheless, showing correctness requires careful
arguments involving subtle race conditions [2,1]. The algorithm propagates information among the participants by
means of gossip messages that contain information representing the sender’s state. The number and the size of gossip
messages may in fact grow without bound. This renders the algorithm impractical for use in long-lived applications.

The gossip messages in RAMBO include the set of participants, and the size of these messages increases over time
for two reasons. First, RAMBO allows new participants to join the computation, but it does not allow the participants
to leave gracefully. In order to leave, the participants must pretend to crash. Given that in asynchronous systems
failure detection is difficult, it may be impossible to distinguish departed nodes from the nodes that crash. Second,
RAMBO gossips information among the participants without regard for what may already be known at the destination.
Thus, a participant will repeatedly gossip substantial amounts of information to others even if it has not learned
anything new since the last time it gossiped. While such redundant gossip helps with tolerating message loss, it
substantially increases the communication burden. Given that the ultimate goal for this algorithm is to be used in
long-lived applications, and in dynamic networks with an unknown (and possibly infinite) universe of nodes, the
algorithm must be carefully refined to substantially improve its communication efficiency.

Contributions. The paper presents a new algorithm for reconfigurable atomic memory for dynamic networks.
The algorithm, called LL-RAMBO, makes implementing atomic survivable objects practical in long-lived systems
by managing the knowledge accumulated by the participants and the size of the gossip messages. Each participating
node maintains a more complicated protocol state and, with the help of additional local processing, this investment is
traded for substantial reductions in the size and the number of gossip messages. Based on [2,1], we use Input/Output
Automata (IOA) [4] to specify the algorithm, and then prove it correct in two stages by forward simulation, using
levels of abstraction. We include analytical and preliminary empirical results illustrating the advantages of the new
algorithm. In more detail, our contributions are as follows.

(1) We develop L-RAMBO that implements an atomic memory service and includes a leave service (Section 4). We
prove the correctness (safety) of L-RAMBO by forward simulation of RAMBO; hence we show that every trace of
L-RAMBO is a trace of RAMBO.

(2) We develop LL-RAMBO by refining L-RAMBO to implement incremental gossip (Section 5). We prove that
LL-RAMBO implements the atomic service by forward simulation of L-RAMBO. This shows that every trace of
LL-RAMBO is a trace of L-RAMBO, and thus a trace of RAMBO. The proof involves subtle arguments relating the
knowledge extracted from the local state to the information that is not included in gossip messages. We present
the proof in two steps for two reasons: (i) the presentation matches the intuition that the leave service and the
incremental gossiping are independent; and (ii) the resulting proof is simpler than a direct simulation of RAMBO
by LL-RAMBO.

(3) We show (Section 6) that LL-RAMBO consumes fewer communication resources than RAMBO, while preserving
the same read and write operation latency, which under certain steady-state assumptions is at most 8d time, where
d is the maximum message delay unknown to the algorithm. Under these assumptions, in runs with periodic
gossip, LL-RAMBO achieves substantial reductions in communication.

(4) We implemented all algorithms on a network-of-workstations. Preliminary empirical results complement the
analytical comparison of the two algorithms (Section 7).

Background. Several approaches can be used to implement consistent data in (static) distributed systems. Starting
with Gifford [5] and Thomas [6], many algorithms used collections of intersecting sets of object replicas to solve the
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consistency problem. Upfal and Wigderson [7] use majority sets of readers and writers to emulate shared memory.
Awerbuch and Vitanyi [8] use matrices of registers where the rows and the columns are written and respectively read
by specific processors. Attiya, Bar-Noy and Dolev [9] use majorities to implement shared objects in static message
passing systems. Extensions with reconfigurable quorums have been explored [10,11]. These systems have limited
ability to support long-lived data when the longevity of processors is limited. Virtual synchrony [12], and group
communication services (GCS) in general [13], can be used to implement consistent objects, e.g., by using a global
totally ordered broadcast. The set of nodes participating in a GCS can evolve; however, forming a new view is initiated
after a single failure and can take a substantial time, while reads and writes are delayed during view formation. In our
algorithm, as in [1,2], reads and writes can make progress during reconfiguration. In the current approach, arbitrary
new configurations can be introduced. This yields a more dynamic system compared to [14–18] that would require
that some new quorums include nodes from the old quorums, thus restricting the choice of the new configuration
through the static constraints that need to be satisfied even before the reconfiguration.

The work on reconfigurable atomic memory [10,1,2] results in algorithms that are more dynamic because they place
fewer restrictions on the choice of new configurations and allow for the universe of processors to evolve arbitrarily.
However, these approaches are based on abstract communication protocols that are not suited for long-lived systems.
In this paper, we provide a long-lived solution by introducing graceful processor departures and incremental gossip.
The idea of incrementally propagating information among participating nodes has been previously used in a variety
of different settings, e.g., [19–25]. Incremental gossip is also called anti-entropy [26,27] or reconciliation [28]; these
concepts are used in database replication algorithms; however, due to the nature of the application they assume stronger
assumptions, e.g., ordering of messages.

Document structure. The model and the data types used throughout the paper are introduced in Section 2. In
Section 3, we review RAMBO. In Section 4 we specify and prove correct the graceful leave service. Section 5 presents
our final solution, a system with leave and incremental gossip, and proves it correct. In Section 6 we present the
analytical performance analysis, and in Section 7 we demonstrate the experimental results. We conclude in Section 8.
A preliminary version of this paper appears in [29].

2. Model and definitions

We now define the notion of memory atomicity and the model of computation used in this paper. We also define
common data types and quorum systems.

2.1. Atomicity

We assume that the clients of the data service for each object x are well-formed, in that each client invokes only
one read or write operation on the object at a time.

The data object x is atomic (a.k.a. linearizable) if in any execution, whenever all the read and write operations that
are invoked complete, then the read and write operations for object x can be partially ordered by an ordering ≺, so
that the following conditions are satisfied:

(1) The partial order is consistent with the external order of invocations and responses; that is, there do not exist read
or write operations π1 and π2 such that π1 completes before π2 starts, yet π2 ≺ π1.

(2) All write operations are totally ordered and every read operation is ordered with respect to all the writes.
(3) Every read operation ordered after any write returns the value of the last write preceding it in the partial order;

any read operation ordered before all writes returns (v0)x .

(Atomicity is often defined in terms of an equivalence with a serial memory. The definition given here implies this
equivalence, as shown, for example, in Lemma 13.16 in [30].)

2.2. Model of computation

We assume the asynchronous distributed, message-passing model with an unknown number of processors that have
unique identifiers. Processors may join the service at any time after the service is initiated, and may crash at any time
during the computation, and can do so without warning.
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The non-failed processors communicate via point-to-point channels with the following properties: (i) messages are
not corrupted, (ii) messages may be lost, (iii) messages may be delivered in an arbitrary order, and (iv) messages are
not spontaneously generated by the channels, which means that for each receive event there is a corresponding send
event. We denote by Channeli, j the channel from node i to node j .

In the correctness (safety) analysis, we assume complete asynchrony (Section 4). For the purpose of performance
analysis (Section 6) we impose bounds on the duration of processing steps and the delivery of messages. These bounds
are unknown to the algorithm.

2.3. Data types

In the discussion that follows, we assume two distinguished elements, ⊥ and ±, which are not in any of the basic
types. For any type A, we define new types A⊥ = A ∪ {⊥} and A± = A ∪ {⊥,±}. If A is a partially ordered set, we
augment its ordering by assuming that ⊥ < a < ± for every a ∈ A.

We define C to be the set of configuration identifiers and assume only the trivial partial order on C , in which
all elements are incomparable. For each c ∈ C we define: (i) members(c), a finite subset of node identifiers, (ii)
read-quorums(c), a set of finite subsets of members, and (iii) write-quorums(c), a set of finite subsets of members.
We require that for every R ∈ read-quorums(c), and every W ∈ write-quorums(c), R ∩ W 6= ∅. No intersection
requirement is imposed on the sets of members or on the quorums from distinct configurations.

In Table 1 we define data types, distinguished elements, and functions used in the sequel. The definitions of
variables and data types are also recalled throughout the discussion to provide intuition into how they are used.

3. Reconfigurable atomic memory for basic objects (RAMBO)

We now describe the RAMBO algorithm as presented in [1], including the rapid configuration upgrade as given
in [2]. The algorithm is given for a single object. Atomicity is preserved under composition, and multiple objects
are composed to yield a complete shared memory. Therefore, throughout the rest of the paper, we describe an
implementation for a particular object x and suppress any explicit mention of x . Thus, we write V , v0, c0, and i0
from now on as shorthand for Vx , (v0)x , (c0)x , and (i0)x , respectively. For the detailed Input/Output Automata code
of the algorithms see Appendix and [1,2].

In order to achieve fault tolerance and availability, RAMBO replicates objects at several network locations. In order
to maintain memory consistency in the presence of small and transient changes, the algorithm uses configurations.
In order to accommodate larger and more permanent changes, the algorithm supports reconfiguration, by which the
set of members and the sets of quorums are modified. Any quorum configuration may be installed, and atomicity is
preserved in all executions.

The algorithm consists of three kinds of automata: (i) Joiner automata, handling join requests; (ii) Recon
automata, handling reconfiguration requests (recon), and generating a totally ordered sequence of configurations;
and (iii) Reader–Writer automata, handling read and write requests, manage configuration upgrades, and implement
gossip messaging. The overall systems is the composition of these automata with the automata modelling point-to-
point communication channels, see Fig. 1. (Properties of the channel automata are described in Section 2.)

The Joiner automaton is quite straightforward, simply sending a join message when node i joins, and sending
a join-ack message whenever a join message is received. The Recon automaton establishes a total ordering of
configurations; it is implemented using a consensus service (e.g., Paxos [31]), or it can be a much simpler service
when the set of possible configurations is finite [32]. Here, we assume that a total ordering exists, and we need not
discuss this further (for details see [1]).

The external signature of the service is in Fig. 2. A client at node i uses a joini action to join the system.
After receiving join-acki , the client can issue readi and writei requests, which result in read-acki and write-acki
responses. The client can issue a reconi request a reconfiguration. The faili action models a crash at node i .
Remark. The faili action is an input action coming from the environment. In the original RAMBO, it is used solely to
signal the crash of node i . In this paper, we introduce a new kind of action coming from the environment—the leavei
action. This is discussed in detail in the next section. In showing the correctness of the new algorithm, we assume that
faili and leavei are synonymous: both come from the environment and both result in node i ceasing to participate in
the computation. Thus, we model graceful departures as a form of failure.
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Table 1
Definitions of data types

I The totally-ordered set of locations, i.e., node identifiers.
T The set of tags, defined as N× I .
M The set of messages, which is a set of all legal messages that may be sent by the algorithm.

X
The set of object identifiers, partitioned into subsets Xi , i ∈ I . Xi is the set of identifiers for
objects that may be created at location i . For any x ∈ X , (i0)x denotes the unique i such that
x ∈ Xi .

Vx
For each x ∈ X : (i) Vx , the set of values that object x may take on, and (ii) (v0)x ∈ Vx , the initial
value of x .

C

The set of configuration identifiers. For each c ∈ C we define:
(i) members(c), a finite subset of I .
(ii) read-quorums(c), a set of finite subsets of members(c). (iii) write-quorums(c), a set of finite
subsets of members(c).
For every c, every R ∈ read-quorums(c), and every W ∈ write-quorums(c), R ∩W 6= ∅.

(c0)x

For each x ∈ X , (c0)x ∈ C , the initial configuration identifier for x . We assume that
members((c0)x ) = {(i0)x }. That is, the initial configuration for object x has only a single member,
which is the creator of x .

update A binary function on C±, defined by update(c, c′) = max(c, c′) if c and c′ are comparable (in the
augmented partial ordering of C±), update(c, c′) = c otherwise.

extend
A binary function on C±, defined by extend(c, c′) = c′ if c = ⊥ and c′ ∈ C , and extend(c, c′) = c
otherwise.

CMap The set of configuration maps, defined as the set of mappings fromN to C±,N→ C±. We extend
the update and extend operators elementwise to binary operations on CMap.

truncate
A unary function on CMap, defined by truncate(cm)(k) = ⊥ if there exists ` ≤ k such that
cm(`) = ⊥, truncate(cm)(k) = cm(k) otherwise. This truncates configuration map cm by
removing all the configuration identifiers that follow a ⊥.

Truncated The subset of CMap such that cm ∈ Truncated if and only if truncate(cm) = cm.

Usable
The subset of CMap such that cm ∈ Usable iff the pattern occurring in cm consists of a prefix of
finitely many ±s, followed by an element of C , followed by an infinite sequence of elements of
C⊥ in which all but finitely many elements are ⊥.
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Fig. 1. RAMBO architecture depicting automata at nodes i and j , the channels, and the Recon service.

Input:
join(rambo, J )i , J a finite subset of I − {i},

i ∈ I , such that if i = i0 then J = ∅
readi , i ∈ I
write(v)i , v ∈ V , i ∈ I
recon(c, c′)i , c, c′ ∈ C , i ∈ members(c), i ∈ I
faili , i ∈ I

Output:
join-ack(rambo)i , i ∈ I
read-ack(v)i , v ∈ V , i ∈ I
write-acki , i ∈ I
recon-ack(b)i , b ∈ {ok, nok}, i ∈ I
report(c)i , c ∈ C , i ∈ I

Fig. 2. RAMBO : External signature.

Every node of the system maintains a tag and a value for the data object. Every time a new value is written, it
is assigned a unique tag, with ties broken by process-ids. These tags are used to determine an ordering of the write
operations, and therefore determine the value that a read operation should return. Read and write operations have
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Table 2
State variables of Reader–Writeri

status A member of the set {idle, joining, active}, initially idle. Indicates status of the service at the
local node.

world A finite subset of I , initially ∅. The totally-ordered set of locations, i.e. node identifiers.

value
A member of V , initially v0, otherwise the value of the replica that was returned during the most
recent read or write operation.

tag A member of T , initially (0, i0), otherwise the value of the last tag that was returned during the
most recent read or write operation.

cmap A member of CMap, initially cmap(0) = c0, cmap(k) = ⊥ for k ≥ 1.
pnum1 A natural number, N, initially 0. Keeps count of the locally initiated phases.

pnum2 A mapping I → N, initially everywhere 0. Keeps track of phase counts of other nodes in the
system.

failed A Boolean, initially false. If set to true, it signals that the node stops participation in the service.

op
A record with fields: (i) type ∈ {read, write} (ii) phase ∈ {idle, query, prop, done}, initially
idle, (iii) pnum ∈ N, (iv) cmap ∈ CMap, (v) acc, a finite subset of I , and (vi) value ∈ V . This
record is used to track the progress of the current read/write operation.

upg
A record with fields: (i) phase ∈ {idle, query, prop}, initially idle, (ii) pnum ∈ N, (iii)
cmap ∈ CMap, (iv) acc, a finite subset of I , and (v) target ∈ N. This record is used to track
the progress of the current configuration upgrade operation.

two phases, query and propagation, each accessing certain quorums of replicas. Assume the operation is initiated at
node i . First, in the query phase, node i contacts read quorums to determine the most recent known tag and value.
Then, in the propagation phase, node i contacts write quorums. If the operation is a read operation, the second phase
propagates the largest discovered tag and its associated value. If the operation is a write operation, node i chooses a
new tag, strictly larger than every tag discovered in the query phase. Node i then propagates the new tag and the new
value to a write quorum. Note that every operation accesses both read and write quorums.

Configurations go through three stages: proposal, installation, and upgrade. First, a configuration is proposed by a
recon event. Next, if the proposal is successful, the Recon service achieves consensus on the new configuration, and
notifies participants with decide events. When every non-failed member of the prior configuration has been notified,
the configuration is installed. The configuration is upgraded when every configuration with a smaller index has been
removed. Upgrades are performed by the configuration upgrade operations. Each upgrade operation requires two
phases, a query phase and a propagate phase. The first phase contacts a read-quorum and a write-quorum from the old
configurations, and the second phase contacts a write-quorum from the new configuration. All three operations, read,
write, and configuration upgrade, are implemented using gossip messages.

The cmap is a mapping from integer indices to configurations ∪{⊥,±}, initially mapping every integer to ⊥. It
records which configurations are active, which have not yet been created, indicated by ⊥, and which have already
been removed, indicated by ±. The total ordering on configurations determined by Recon ensures that all nodes agree
on which configuration is stored in each position in cmap. We define c(k) to be the configuration associated with
index k.

The record op is used to store information about the current phase of an ongoing read or write operation, while
upg is used for information about an ongoing configuration upgrade operation. A node can process read and write
operations concurrently with configuration upgrade operations. The op.cmap subfield records the configuration map
associated with the operation. For read or write operations, this consists of the node’s cmap when a phase begins,
augmented by any new configurations discovered during the phase. A phase completes when the initiator has
exchanged information with quorums from every valid configuration in op.cmap. The pnum subfield records the
phase number when the phase begins, allowing the initiator to determine which responses correspond to the phase.
The acc subfield accumulates the ids of the nodes from which quorums have responded during the current phase.

A short description of the variables introduced in this section can be found in Table 2, and of the data types in
Table 1.

Remark. RAMBO uses monotonically increasing phase numbers to detect fresh responses. The new phase number
is computed by incrementing the previous phase number. Here, we assume that new phase numbers are computed by
adding an arbitrary positive integer to the previous phase number. This is sufficient for the correctness of RAMBO,
while substantially simplifying the proof of correctness of our algorithm.
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4. RAMBO with graceful leave

Here we augment RAMBO with a leave service allowing the participants to depart gracefully. We prove that the
new algorithm, called L-RAMBO, implements atomic memory.

Nodes participating in RAMBO communicate by means of gossip messages containing the latest object value and
bookkeeping information that includes the set of known participants. RAMBO allows participants to fail or leave
without warning. Since, in asynchronous systems, it is difficult or impossible to distinguish slow or departed nodes
from crashed nodes, RAMBO implements gossip to all known participants, regardless of their status. In highly dynamic
systems, this leads to (i) the size of gossip messages growing without bounds; and (ii) the number of messages sent in
each round of gossip increasing as new participants join the computation.

L-RAMBO allows graceful node departures by letting a node that wishes to leave the system to send notification
messages to an arbitrary subset of known participants. When another node receives such a notification, it marks
the sender as departed, and stops gossiping to that node. The remaining nodes propagate the information about the
departed nodes to the other participants, eventually eliminating gossip to nodes that departed gracefully.

Specification of L-RAMBO. We interpret the faili event as synonymous with the leavei event—both are inputs
from the environment and both result in node i stopping participation in all operations. The difference between faili
and leavei is strictly internal: leavei allows a node to leave gracefully. The well-formedness conditions of RAMBO
and the specifications of Joineri and Recon remain unchanged. The introduction of the leave service affects only
the specification of the Reader–Writeri automata. These changes for L-RAMBO are given in Fig. 3, except for the
segments of code annotated with a parenthesized asterisk ((*)) should be disregarded until our targeted long-lived
algorithm LL-RAMBO is presented in Section 5 (we combine the two specifications to avoid unnecessary repetition
and simplify presentation).

The signature of Reader–Writeri automaton is extended with actions recv(leave) j,i and send(leave)i, j used
to communicate the graceful departure status. The state of Reader–Writeri is extended with new state variables:
departedi , the set of nodes that left the system, as known at node i , leave-worldi , the set of nodes that node i can
inform of its own departure, once it decides to leave and sets leave-worldi to worldi − departedi .

The key algorithmic changes involve the actions recv(m) j,i and send(m)i, j . The messages in the original RAMBO
algorithm include: W the world of the sender, v the object and its tag t , cm the cmap , pns the phase number of the
sender, and pnr the phase number of the receiver that is known to the sender. The gossip message m in L-RAMBO
also includes D, a new parameter, initialized to the departed set of the sender.

We now detail the leave protocol. Assume that nodes i and j participate in the service, and node i wishes to depart
following the leavei event, whose effects set the state variable failedi to true in Joineri , Reconi , and Reader–Writeri .
The leavei action at Reader–Writeri (see Fig. 3) also initializes the set leave-worldi to the identifiers found in
worldi , less those found in departedi . Now Reader–Writeri is allowed to send one leave notification to any node in
leave-worldi . This is done by the send(leave)i, j action that arbitrarily chooses the destination j from leave-worldi .
Note that node i may nondeterministically choose the original faili action (see Appendix or [1]), in which case no
notification messages are sent (this is the “non-graceful” departure).

When Reader–Writeri receives a leave notification from node j , it adds j to its departedi set. Node i sends
gossip messages to all nodes in the set worldi − departedi , which includes information about j’s departure. When
Reader–Writeri receives a gossip message that includes the set D, it updates its departedi set accordingly.

A short description of variables introduced in this section can be found in Table 3, whereas short descriptions of
other variables can be found in Table 2, and of the data types in Table 1.

Atomicity of L-RAMBO service. The L-RAMBO system is the composition of all Reader–Writeri and Joineri
automata, the Recon service, and Channeli, j automata for all i, j ∈ I . We show the atomicity of L-RAMBO by
forward simulation that proves that any trace of L-RAMBO is also a trace of RAMBO, and thus L-RAMBO implements
atomic objects. The proof uses history variables, annotated with the symbol [h] in Fig. 3.

For each i , we define h-msgi to be the history variable that keeps track of all messages sent by Reader–Writeri
automata. Initially, h-msgi = ∅ for all i ∈ I . Whenever a message m is sent by i to some node j ∈ I via Channeli, j ,
we let h-msgi ← h-msgi ∪ {〈m, i, j〉}. We define h-MSG to be

⋃
i∈I h-msgi . (The remaining history variables are

used in reasoning about LL-RAMBO, in Section 5.)
The following lemma states that only “good” messages are sent.
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Signature:
As in RAMBO , plus new actions:
Input : leavei , recv(leave) j,i
Output : send(leave)i, j

State:
As in RAMBO , plus new states:
leave-world, a finite subset of I , initially ∅
departed, a finite subset of I , initially ∅

(*)
(*)
(*)
(*)

ig ∈ IGMap, initially ∀k ∈ I ,
ig(k).w-known=∅, ig(k).w-unack=∅,
ig(k).d-known=∅, ig(k).d-unack=∅,
ig(k).p-ack = 0

Transitions at i:

(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)

Input recv(〈W, D, v, t, cm, pns, pnr〉) j,i
Effect:

if ¬failed ∧ status 6= idle then
status← active
world← world ∪W
departed← departed ∪ D
[h]hrecv-W( j, i, pnr)← W
[h]hrecv-D( j, i, pnr)← D
ig(j).w-known← ig(j).w-known ∪W
ig(j).w-unack← ig(j).w-unack −W
ig(j).d-known← ig(j).d-known ∪ D
ig(j).d-unack← ig(j).d-unack − D
if pnr > ig(j).p-ack then

ig(j).w-known← ig(j).w-known ∪ ig(j).w-unack
ig(j).w-unack← world − ig(j).w-known
ig(j).d-known← ig(j).d-known ∪ ig(j).d-unack
ig(j).d-unack← departed − ig(j).d-known
ig(j).p-ack← pnum1

if t > tag then (value, tag)← (v, t)
cmap← update(cmap, cm)

pnum2( j)← max(pnum2( j), pns)
if op.phase ∈ {query, prop}∧pnr ≥ op.pnum then

op.cmap← extend(op.cmap, truncate(cm))

if op.cmap ∈ Truncated then
op.acc← op.acc ∪ { j}

else
pnum1← pnum1+ 1
op.acc← ∅
op.cmap← truncate(cmap)

if upg.phase∈{query, prop}∧pnr≥upg.pnum then
upg.acc← upg.acc ∪ { j}

Input recv(leave) j,i
Effect:

if ¬failed ∧ status = active then
departed← departed ∪ { j}

(*)

(*)

(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)

Output send(〈W, D, v, t, cm, pns, pnr〉)i, j
Precondition:
¬failed
status = active
j ∈ (world − departed)

〈W, D, v, t, cm, pns, pnr〉 =
〈world
−ig(j).w-known,
departed
−ig(j).d-known,
value, tag, cmap, pnum1, pnum2( j)〉

Effect:
pnum1← pnum1+ 1
[h]h-msg ← h-msg∪
〈〈W, D, v, t, cm, pns, pnr〉, i, j〉

[h]hsent-W(i, j, pns)← W
[h]hsent-D(i, j, pns)← D
[h]hs-world(i, j, pns)← world
[h]hs-departed(i, j, pns)← departed
[h]hs-w-known(i, j, pns)← ig(j).w-known
[h]hs-d-known(i, j, pns)← ig(j).d-known
[h]hs-w-unack(i, j, pns)← ig(j).w-unack
[h]hs-d-unack(i, j, pns)← ig(j).d-unack
[h]hs-pack(i, j, pns)← ig(j).p-ack

Input leavei
Effect:

if ¬failed then
failed← true
departed← departed ∪ {i}
leave-world← world − departed

Output send(leave)i, j
Precondition:

j ∈ leave-world
Effect:

leave-world← leave-world − { j}

Fig. 3. Modification of Reader–Writeri for L-RAMBO , and for LL-RAMBO (the lines annotated with (*)).

Table 3
State variables that are used in L-RAMBO , in addition to the ones defined in Table 2

leave-world
A finite subset of I , initially ∅; otherwise, contains node identifiers to which the leave notification
message may be sent to.

departed A finite subset of I , initially ∅; otherwise, it is a subset of node identifiers found in world.

h-msg
∀〈m, ·, i〉 ∈ h-msgi : m ∈ M,. A history variable that keeps track of all messages sent by node i .
A set of all sent messages is denoted as h-MSG =

⋃
∀` h-msg`.

Lemma 4.1. In any execution of L-RAMBO, if m is a message received by node i in a recv(m)i, j event, then
〈m, j, i〉 ∈ h-MSG, and m ∈ {〈W, D, v, t, cm, pns, pnr〉, leave, join}, where 〈W, D, v, t, cm, pns, pnr〉 ∈ I ×
I × V × T × Cmap × N× N.

Proof. By the definition of Channel j,i , the messages are not corrupted, and for every receive there exists a preceding
send event (messages are not manufactured by the channel). Therefore, m must have been sent by some node j ∈ I
during some earlier event of the execution. Hence 〈m, j, i〉 ∈ h-msg j ; by definition, 〈m, j, i〉 ∈ h-MSG. Messages
are sent only in Reader–Writer j automaton’s send(〈W, D, v, t, cm, pns, pnr〉) j,i or send(leave) j,i events, or
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in Joiner j automaton’s send(join) j,i event, and by the code of these events m = 〈W, D, v, t, cm, pns, pnr〉,
m = leave, or m = join. �

Definition 4.2 and Theorem 4.3 are used to show the safety of L-RAMBO.

Definition 4.2 ([30]). Let A and S be two automata with the same external signature. A forward simulation from A
to S is a relation R ⊆ states(A)× states(S) that satisfies the following two conditions:

(1) If t is any initial state of A, then there is an initial state s of S such that s ∈ R(t), where R(t) is an abbreviation
for {s: (t, s) ∈ R}.

(2) If t and s ∈ R(t) are reachable states of A and S respectively, and if (t, π, t ′) is a step of A, then there exists an
execution fragment of S from s to some s′ ∈ R(t ′), having the same trace as step (t, π, t ′).

Theorem 4.3 ([30]). If there is a simulation from automaton A to automaton S, then traces(A) ⊆ traces(S).

Next, we show that L-RAMBO implements RAMBO, assuming the environment behaves as (informally) described
in Section 3. Showing well-formedness is straightforward by inspecting the code. The proof of atomicity is based on
a forward simulation from L-RAMBO to RAMBO.

Theorem 4.4. L-RAMBO implements atomic read/write objects.

Proof. We show that L-RAMBO algorithm simulates RAMBO. Specifically, we show that there exists a simulation
relation R from L-RAMBO to RAMBO that satisfies Definition 4.2. Observe that L-RAMBO and RAMBO have the
same external signatures.

We denote by M SGRA the set of messages in the channel automata of RAMBO and by M SGLR the set of messages
in the channel automata of L-RAMBO.

We define the simulation relation R to map:

(α) a state t of L-RAMBO to a state s of RAMBO so that every “common” state variable has the same value. For
example, for node i ∈ I , t.worldi = s.worldi , t.pnum1i = s.pnum1i , t.cmapi = s.cmapi , etc.

(β) a message m = 〈W, D, v, t, cm, pns, pnr〉 ∈ Channeli, j .M SGLR to a message m′ = 〈W, v, t, cm, pns, pnr〉 ∈
Channeli, j .M SGRA so that: (i) m.v = m′.v, (ii) m.t = m′.t , (iii) m.cm = m′.cm, (iv) m.pns = m′.pns,
(v) m.pnr = m′.pnr , and (vi) m.W = m′.W .

Recall that the difference between the two algorithms is in the Reader–Writer automata. Therefore, in order to
show that L-RAMBO simulates RAMBO, we focus only on the transitions related to the Reader–Writer automata. (We
remind the reader that the detailed code of RAMBO is given in Appendix.) We now show that R satisfies Definition 4.2:

(1) If t is an initial state of L-RAMBO, then there exists an initial state s of RAMBO such that s ∈ R(t), since
all common state variables have the same initial values. For example, ∀i ∈ I , t.worldi = ∅ = s.worldi ,
t.pnum1i = 0 = s.pnum1i , etc.

(2) Suppose t and s are reachable states of L-RAMBO and RAMBO respectively such that s ∈ R(t) and that (t, π, t ′).
We show that there exists a state s′ ∈ R(t ′) such that there is an execution fragment of RAMBO that has the same
trace as π .
(a) If π = send(m)i, j , i, j ∈ I , where m = 〈W, D, v, t, cm, pns, pnr〉 then let s′ be such that

(s, send(m′)i, j , s′), where m′ = 〈W, v, t, cm, pns, pnr〉. Both actions have an empty trace, since send(m)i, j
(resp. send(m′)i, j ) is considered internal with respect to the composition of automata that comprises
automaton L-RAMBO (resp. RAMBO).

From the code of L-RAMBO, we have that m = 〈W, D, v, t, cm, pns, pnr〉 is placed in the
Channeli, j .M SGLR, where m.W = t.worldi , m.v = t.valuei , m.cm = t.cmapi , m.pns = t.pnsi , and
m.pnr = t.pnum2( j)i . From the state correspondence, since send(m)i, j is enabled, send(m′)i, j is also
enabled. Furthermore, send(m′)i, j places m′ = 〈W, v, t, cm, pns, pnr〉 in the Channeli, j .M SGRA where
m′.W = s.worldi , m′.v = s.valuei , m′.cm = s.cmapi , m′.pns = s.pnsi , and m′.pnr = s.pnum2( j)i . From
the state correspondence of R for t and s, we conclude that the message correspondence of R for t ′ and s′

is preserved. Also, the state correspondence for t ′ and s′ is preserved, since t ′.pnum1i = t.pnum1i + 1 =
s′.pnum1i + 1 = s′.pnum1i and all other common variables remain unchanged.
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(b) If π = recv(m) j,i , i, j ∈ I , where m = 〈W, D, v, t, cm, pns, pnr〉. By Lemma 4.1, m ∈ s.h-MSG. Let s′

be such that (s, recv(m′) j,i , s′), where m′ = 〈W, v, t, cm, pns, pnr〉. Both actions have empty trace, since
recv(m) j,i (resp. recv(m′) j,i ) is considered internal in the composition of automata that comprises automaton
L-RAMBO (resp. RAMBO).

Now, since m = 〈W, D, v, t, cm, pns, pnr〉 was in Channeli, j .M SGLR, by the message correspondence
of R, message m′ = 〈W, v, t, cm, pns, pnr〉 is in Channeli, j .M SGRA and m and m′ satisfy the mapping
defined above. By inspection of the code of the algorithms, the only difference between update performed by
L-RAMBO and RAMBO is that L-RAMBO updates the departedi set. The the remaining common variables
undergo identical updates; hence the state correspondence for t ′ and s′ is preserved. Also, the message
correspondence is not affected, since no messages are sent.

(c) If π = send(m)i, j , i, j ∈ I , where m = leave, then let s′ be such that s = s′ and RAMBO does not perform
any action. The action π in L-RAMBO has an empty trace, since it is considered internal in the composition of
automata that comprises automaton L-RAMBO. By the code of this action, only the leave-worldi variable is
updated. The remaining common state variables of L-RAMBO are unchanged. Since RAMBO does not perform
a step, its state variables are not modified. Hence, the state correspondence for t ′ and s′ is preserved.

(d) If π = recv(m) j,i , i, j ∈ I , where m = leave. By Lemma 4.1, m ∈ s.h-MSG. Let s′ be such that s = s′ and
RAMBO does not perform any action. The action π in L-RAMBO has an empty trace, since it is considered
internal in the composition of automata that comprises automaton L-RAMBO. By the code of this action,
only thedepartedi set is updated. The remaining common state variables of L-RAMBO are unchanged. Since
RAMBO does not perform a step, its state variables are not modified. Hence, the state correspondence for t ′

and s′ is preserved.
(e) If π = leavei , i ∈ I , then let s′ be such that (s, leavei , s′). By examination of the code, the state variable

failedi is set to true by both L-RAMBO and RAMBO. The remaining common state variables are not changed.
(Algorithm L-RAMBO initializes leave-worldi with the identifiers found in the set {worldi−departedi−{i}}.)
Since, s′.failedi = true = t ′.failedi , and all remaining common state variables are unchanged, the state
correspondence for t ′ and s′ is preserved.

(f) If π is not one of the above actions, then we choose s′ such that (s, π, s′). That is, we simulate the same action.
By inspection of the code of the algorithms, it follows that any state change after π has occurred is identical
for both algorithms, hence the state correspondence and message correspondence given by R is preserved.

Therefore, R is a simulation mapping from L-RAMBO to RAMBO per Definition 4.2. Thus, L-RAMBO simulates
RAMBO. Since RAMBO implements atomic objects [1,2], so does L-RAMBO. �

Finally, observe from the preconditions of send(〈W, D, v, t, cm, pns, pnr〉) j,i that if i ∈ departed j , then send
is disabled, i.e., once a node j learns that another node i left the system, j stops gossiping to i . The correctness of the
leave service is as follows: if node i is placed in the departed set of node j , then i has indeed departed the service.

Theorem 4.5. For all states s of an execution of algorithm L-RAMBO, for any i, j ∈ I , if i ∈ s.departed j then
i ∈ s.departedi .

Proof. The proof is by induction on the length of the execution. The base case holds trivially, since all sets are empty
in the initial state. Assume that the claim of the lemma holds up to state s, and consider step (s, π, s′). Consider the
case where i ∈ s.departed j , i, j ∈ I . By inspection of the code (see Fig. 3), we see that no identifier is ever removed
from departed. Hence, we have that i ∈ s′.departed j , and by inductive hypothesis, i ∈ s.departedi , and hence
i ∈ s′.departedi as desired. Let us now consider the more interesting case where i 6∈ s.departed j and i ∈ s′.departed j .
That is, the case where j adds i in departed j during step (s, π, s′). By examination of the code, there are only two
actions that would make the above case possible:

• π = recv(m)i, j , i, j ∈ I , where m = leave. By Lemma 4.1, m ∈ s.h-MSG. Hence, there is a preceding
send(leave)i, j event. By inspection of the code, we observe that by the time the preconditions of the output
send(leave)i, j are satisfied, the following is already true: i ∈ departedi . Hence, we have that i ∈ s′.departedi as
desired.
• π = recv(m)k, j , k, j ∈ I (k 6= j), where m = 〈W, D, v, t, cm, pnr, pns〉, and i ∈ D. By Lemma 4.1,

m ∈ s.h-MSG. Hence, there is a preceding send(〈W, D, v, t, cm, pnr, pns〉)k, j event, where i ∈ D. By the
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preconditions of this action, we have that i ∈ ŝ.departedk for some state ŝ < s. By our inductive hypothesis, we
have that i ∈ ŝ.departedi and hence i ∈ s′.departedi as desired.

This completes the proof. �

5. RAMBO with graceful leave and incremental gossip

Now we present, and prove correct, our final algorithm, called LL-RAMBO (Long-Lived RAMBO). The algorithm
is obtained by incorporating incremental gossip into L-RAMBO, so that the size of gossip messages is controlled by
eliminating redundant information. In L-RAMBO (resp. RAMBO) the gossip messages contain sets corresponding to
the sender’s world and departed (resp. world) state variables at the time of sending (Fig. 3). As new nodes join the
system and as participants leave the system, the cardinality of these sets grows without bound, rendering RAMBO
and L-RAMBO impractical for implementing long-lived objects. The LL-RAMBO algorithm addresses this issue. The
challenge here is to ensure that only the certifiably redundant information is eliminated from the messages, while
tolerating message loss and reordering.

Specification of LL-RAMBO. We specify the algorithm by modifying the code of L-RAMBO. In Fig. 3, these
modifications are annotated with a parenthesized asterisk ((*)). The lines annotated with [h] in Fig. 3 deal with
history variables (that are used only in the proof of correctness). The new gossip protocol allows node i to gossip
the information in the sets worldi and departedi incrementally to each node j ∈ worldi − departedi . Following j’s
acknowledgment,1 node i never again includes this information in gossip messages sent to j , but will include new
information that i has learned since the last acknowledgment by j .

To describe the incremental gossip idea in more detail, we consider an exchange of a gossip messages between
nodes i and j , where i is the sender and j is the receiver. The sets world and departed are managed independently
and similarly, and we illustrate incremental gossip using just the set world. First, we define new data types. Let an
incremental gossip identifier be the tuple 〈w-known, d-known, w-unack, d-unack, p-ack〉, where w-known, d-known,
w-unack, and d-unack are finite subsets of I , and p-ack is a natural number. Let I G denote the set of all incremental
gossip identifiers. Finally, let IGMap be the set of incremental gossip maps, defined as the set of mappings I → I G.
We extend the state of the Reader–Writeri automaton with igi ∈ IGMap. Node i uses a ig( j)i tuple to keep track of
the knowledge it has about the information already in possession of, and currently being propagated to, node j (see
Fig. 3). Specifically, for each j ∈ worldi , ig(j)i.w-known is the set of node identifiers that i is assured is a subset of
world j , ig(j)i.w-unack is the set of node identifiers, a subset of worldi , that j needs to acknowledge. The components
ig(j)i.d-known and ig(j)i.d-unack are defined similarly for the departed set. Lastly, ig(j)i.p-ack is the phase number
of i when the last acknowledgment from j was received. Initially each of these sets is empty, and p-ack is zero for
each ig( j)i with j ∈ I .

Node j acknowledges a set of identifiers by including this set in the gossip message, or by sending a phase number
of i such that node i can deduce that node j has received this set of identifiers in some previous message from i to
j . Messages that include i’s phase number that is larger than ig(j)i.p-ack are referred to as fresh or acknowledgment
messages; otherwise they are referred to as stale messages. (We will return to this point in the discussion that follows.)

In RAMBO, once node i learns about node j , it can gossip to j at any time. We now examine the
send(〈W, D, v, t, cm, pns, pnr〉)i, j action. The world component, W , is set to the difference of worldi and the
information that i knows that j has, ig(j)i.w-known, at the time of the send. The remaining components of the gossip
message are the same as in L-RAMBO. The effect of the send action causes the phase number of the sender to
increase; this ensures that each message sent is labeled with a unique phase number of the sender.

Now we examine the recv(〈W, D, v, t, cm, pns, pnr〉)i, j action at j (note that we switch i and j relative to
the code in Fig. 3 to continue referring to the interaction of the sender i and receiver j). The component W
contains a subset of node identifiers from j’s world. Hence, W is always used to update world j , ig(i)j.w-known,
and ig(i)j.w-unack. The update of world j is identical to that in L-RAMBO. By definition, ig(i)j.w-known is the set
of node identifiers that j is assured that i has; hence we update it with information in W . Similarly, by definition
ig(i)j.w-unack is the set of node identifiers that j is waiting for i to acknowledge. It is possible that i has learned some

1 We note that this is not an explicit acknowledgment of a message, but some future message that contains information about what that node
learned.
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Table 4
Additional state variables in the specification of LL-RAMBO and history variables used in the proof of correctness

Additional state variables used in the specification of LL-RAMBO .

IG

A set of incremental gossip records. For each record ig ∈ I G, we define the following fields: (i)
w-known, (ii) w-unack, (iii) d-known, (iv) d-unack, where each is ⊆ I and each is initially set to
∅, and (v) p-ack ∈N. These records are used to keep track of knowledge exchange between two
nodes in I .

IGMap A set of incremental gossip maps, defined as a set of mappings from N to I G.

hs-pack
A mapping from I × I ×N to N. A history variable that records value of ig(j)i.p-ack during each
send event from i to j .

History variables used in the proof of LL-RAMBO correctness.
Each of the following is a mapping from I × I × N to 2I

∪ {⊥}.
hsent-W
and
hsent-D

hsent-W records the world component of each message sent by i . hsent-D is defined analogously
for the departed set.

hrecv-W
and
hrecv-D

hrecv-W records the world component of a each message received by i . hrecv-D is defined
analogously for the departed set.

hs-world
and
hs-departed

hs-world records value of the worldi during each send event. hs-departed is defined analogously
for the departed set.

hs-w-known
and
hs-d-known

hs-w-known records value of the ig(j)i.w-known at each time a message is sent from i to j .
hs-d-known is defined analogously for the departed set.

hs-w-unack
and
hs-d-unack

hs-w-unack records value of the ig(j)i.w-unack at each time a message is sent from i to j .
hs-d-unack is defined analogously for the departed set.

or all of this information from other nodes, and it is now a part of W ; hence we remove any identifiers in W that are
also in ig(i)j.w-unack from ig(i)j.w-unack; these identifiers do not need further acknowledgment.

What happens next in the effect of recv depends on the value of pnr (the phase number that i believes j to be
in). First, if pnr ≤ ig(i)j.p-ack, this means that this message is a stale message, since there must have been a prior
message from j to i that included phase number of j higher or equal to pnr . Hence, no updates take place. Second, if
pnr > ig(i)j.p-ack, this message is considered to be an acknowledgment message. By definition, ig(i)j.p-ack contains
the phase number of j when the last acknowledgment from i was received. Following the last acknowledgment, the
phase number of j was incremented, ig(i)j.p-ack was assigned the new value of the phase number of j , and lastly
the new set of identifiers to be propagated was recorded. Since node i replied to j with a phase number larger than
ig(i)j.p-ack, it means that j and i exchanged messages where i learned about the new phase number of j ; by the same
token i also learned the information included in these messages. (We show formally that ig(i)j.w-unack is always a
subset of each message component W that is sent to i by j .) Hence, it is safe for j to assume that i at least received
the information in ig(i)j.w-unack, and to add it to ig(i)j.w-known.

Since the choice of i and j is arbitrary, gossip from j to i is defined identically.
Brief descriptions of variables introduced in this section are in Table 4. The remaining variables are given in

Tables 2 and 3, and the data types are given in Table 1.
Atomicity of LL-RAMBO. We show that any trace of LL-RAMBO is a trace of L-RAMBO, and thus a trace of

RAMBO. We start by defining the remaining history variables used in the proofs. These variables are annotated in
Fig. 3 with a [h] symbol.

• For every tuple 〈m, i, j〉 ∈ h-msgi , where m = 〈W, D, v, t, cm, pns, pnr〉 and pns = p, the history variable
hsent-W(i, j, p) is a mapping from I × I × N to 2I

∪ {⊥}. This variable records the world component of the
message, W , when i sends message m to j , and i’s phase number is p. Similarly, we define a derived history
variable hsent-D(i, j, p), a mapping from I × I × N to 2I

∪ {⊥}. This history variable records the departed
component of the message, D, when i sends message m to j , and i’s phase number is p.

Now we list history variables used to record information for each send(〈W, D, v, t, cm, pns, pnr〉)i, j event.
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• Each of the following variables is a mappings from I × I × N to 2I
∪ {⊥}. hs-world(i, j, pns) records the

value of worldi , hs-departed(i, j, pns) records the value of departedi , hs-w-known(i, j, pns) records the value
of ig(j)i.w-known, hs-d-known(i, j, pns) records the value of ig(j)i.d-known, hs-w-unack(i, j, pns) records the
value of ig(j)i.w-unack, and hs-d-unack(i, j, pns) records the value of ig(j)i.d-unack.
• hs-pack(i, j, pns) is a mapping from I× I ×N to N. It records the value of ig(j)i.p-ack.

The last history variables record information in messages at each recv(〈W, D, v, t, cm, pns, pnr〉) j,i event.

• Each of the following is a mapping from I × I × N to 2I
∪{⊥}. hrecv-W( j, i, pns) records the component W

(world) and hrecv-D( j, i, pns) records the component D ( departed ).

Similarly as in Section 4, we define a history variable h-MSG that keeps track of messages sent by Reader–Writer
automata.

Lemma 5.1. In any execution of LL-RAMBO, if m is a message received by node i in a recv(m)i, j event, then
〈m, j, i〉 ∈ h-MSG, and m ∈ {〈W, D, v, t, cm, pns, pnr〉, leave, join}, where 〈W, D, v, t, cm, pns, pnr〉 ∈ I × I ×
V × T × Cmap × N× N.

Proof. This proof is identical to that of Lemma 4.1, since the format of messages sent by Reader–Writer automata in
LL-RAMBO is as in L-RAMBO. �

We continue by showing the properties of messages delivered by Reader–Writer processes, which are considered
as fresh responses — based on the examination of the message component that is the phase number of the receiver.
Specifically, if the message is deemed as an acknowledgment message, then the information that is expected to be
acknowledged by the receiver is always a subset of the information included in the message from the sender.

Lemma 5.2. Consider a step 〈s, π, s′〉 of an execution α of LL-RAMBO, where π = recv(〈W, D, v, t, cm, p j , pi 〉) j,i
for i, j ∈ I , and pi > s.ig(j)i.p-ack. Then, (a) s.ig(j)i.p-ack = s.hs-pack(i, j, pi ), (b) s.ig(j)i.w-unack ⊆
s.hs-w-unack(i, j, pi ), and (c) s.ig(j)i.d-unack ⊆ s.hs-d-unack(i, j, pi ).

Proof. We prove the three parts separately:

Part (a). Assume for contradiction that pi > s.ig(j)i.p-ack and s.hs-pack(i, j, pi ) 6= s.ig(j)i.p-ack. By the code of the
algorithm and the monotonicity of pnum1, the only possibility is such that s.hs-pack(i, j, pi ) < s.ig(j)i.p-ack. This
suggests that there must be a receive event recv(〈W, D, v, t, cm, p j , p〉) j,i , where p > s.hs-pack(i, j, pi ) (hence
hrecv-W( j, i, p) and hrecv-D( j, i, p) are defined) that resulted in the value of s.ig(j)i.p-ack. By the code of the
recv j,i action, for i, j ∈ I , ig(j)i.p-ack is assigned the phase number of i that i has during the receive event. Hence,
by the phase number paradigm, we have that s.ig(j)i.p-ack ≥ pi , which contradicts our initial assumption.

Part (b). From part (a) we have that hs-pack(i, j, pi ) = s.ig(j)i.p-ack. From the code, it follows that if ig(j)i.p-ack
does not change, then the membership of the set ig(j)i.w-unack can only be reduced (the “if pnr > ig(j)i.p-ack then”
statement in not executed). Therefore, s.ig(j)i.w-unack ⊆ s.hs-w-unack(i, j, pi ).

Part (c). Similar to part (b). From part (a), we have that hs-pack(i, j, pi ) = s.ig(j)i.p-ack. From the code, it follows
that if ig(j)i.p-ack does not change, then the membership of the set ig(j)i.d-unack can only be reduced (the “if
pnr > ig(j)i.p-ack then” statement in not executed). Therefore, s.ig(j)i.d-unack ⊆ s.hs-d-unack(i, j, pi ). �

We now state and prove four invariants that lead to the proof of atomicity of LL-RAMBO. The first invariant states
that a node does not send information to another node that the receiving node does not already possess.

Invariant 1. For all states s of any execution α of LL-RAMBO:
〈〈W, D, v, t, cm, pns, pnr〉, i, j〉 ∈ s.h-MSG⇒ W ⊆ s.worldi ∧ D ⊆ s.departedi .

Proof. The proof is by induction on the length of the execution. The base case is trivial, because all sets are empty in
the initial state. Assume the invariant holds for state s and consider step (s, π, s′).

(1) π = recv(〈W, D, v, t, cm, pns, pnr〉) j,i . By Lemma 5.1, 〈〈W, D, v, t, cm, pns, pnr〉, j, i〉 ∈ h-MSG. By the
inductive hypothesis and the monotonicity of the sets worldi and departedi , in state s′, the invariant is maintained.
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(2) π = recv(join) j,i . By Lemma 5.1, 〈join, j, i〉 ∈ h-MSG. By the effects of this action, s.worldi ⊆ s′.worldi and
s.departedi = s′.departedi . By the inductive hypothesis and the monotonicity of the sets worldi and departedi ,
in state s′, the invariant is maintained.

(3) π = recv(leave) j,i . By Lemma 5.1, 〈leave, j, i〉 ∈ h-MSG. By the effects of this action, s.worldi = s′.worldi
and s.departedi ⊆ s′.departedi . By the inductive hypothesis and the monotonicity of the sets worldi and
departedi , in state s′, the invariant is maintained.

(4) π = send(m)i, j . By the code of this action m = 〈W, D, v, t, cm, pns, pnr〉, such that W = s.worldi −

s.ig(j)i.w-known and D = s.departedi − s.ig(j)i.d-known. Therefore, W ⊆ s.worldi and D ⊆ s.departedi .
Observe that the effects of this action do not change worldi and departedi . Hence, W ⊆ s′.worldi and
D ⊆ s′.departedi . By the inductive hypothesis, the assignment 〈m, i, j〉 ∈ h-MSG maintains the invariant.

(5) Other actions do not change the variables involved in the invariant. So, by the inductive hypothesis, in state s′, the
invariant continues to hold.

This completes the proof. �

The following invariant states that the information that i expects j to acknowledge does not exceed the information
that actually should be acknowledged.

Invariant 2. For all states s of any execution α of LL-RAMBO:
(a) ∀ i, j ∈ I : s.ig(j)i.w-unack ⊆ s.worldi − s.ig(j)i.w-known.
(b) ∀ i, j ∈ I : s.ig(j)i.d-unack ⊆ s.worldi − s.ig(j)i.d-known.

Proof. We prove part (a) of the invariant. The proof of part (b) is analogous: the arguments are made on departed
related variables instead on world related variables.

The proof is by induction on the length of the execution. The base case is trivial because all sets are empty in the
initial state. Assume the invariant (part (a)) holds for state s, and consider step (s, π, s′).

(1) π = recv(〈W, D, v, t, cm, pns, pnr〉) j,i . By Lemma 5.1, 〈〈W, D, v, t, cm, pns, pnr〉, j, i〉 ∈ s.h-MSG. We
consider 4 cases:
(i) z ∈ W ∧ z /∈ s.worldi ∧ z 6= j . This is the first time node i learns about node z, indirectly from j . By the initial

value of the ig(z)i record and the monotonicity of worldi the invariant (part (a)) is maintained.
(ii) j /∈ s.worldi . This is the first time i learns about j , directly from j . Similarly to case 1(i), ig(j)i.w-unack and

ig(j)i.w-known are initialized to empty. Also, ig(j)i.p-ack is set to zero. Before the first inner “if-statement”,
s′.worldi = s.worldi ∪ W (note that j is now in s′.worldi ). Also, s′.ig(j)i.w-known = ig(j)i.w-known ∪ W
and s′.ig(j)i.w-unack = ig(j)i.w-unack − W . Since j /∈ s.worldi , by the code of the send action i never sends
messages to j , and hence pnr is zero. Therefore, the “if pnr > ig(j)i.p-ack then” statement is not executed.
By the inductive hypothesis (part (a)), the invariant (part (a)) is reestablished.

(iii) j ∈ worldi ∧ pnr ≤ s.ig(j)i.p-ack. Since pnr ≤ s.ig(j)i.p-ack, this implies that node i has learned and
communicated with node j in some earlier step of the execution. By the effects of this action, s′.worldi =

s.worldi ∪W , s′.ig(j)i.w-known = s.ig(j)i.w-known∪W , and s′.ig(j)i.w-unack = s.ig(j)i.w-unack−W . Then,

s′.worldi − s′.ig(j)i.w-known = (s.worldi ∪W )− (s.ig(j)i.w-known ∪W )

= s.worldi − s.ig(j)i.w-known−W.

By the inductive hypothesis (part (a)),
s.ig(j)i.w-unack −W ⊆ s.worldi − s.ig(j)i.w-known−W.

Therefore,
s′.ig(j)i.w-unack ⊆ s′.worldi − s′.ig(j)i.w-known.

Thus, the invariant (part (a)), in state s′, is maintained.
(iv) j ∈ worldi ∧ pnr > s.ig(j)i.p-ack. Using similar arguments as in case 1(iii), we have that up to the “if

pnr > ig(j)i.p-ack then” statement the invariant (part (a)) holds. Since pnr > s.ig(j)i.p-ack, the “if-statement”
is executed, and by its effects we have s′.ig(j)i.w-unack = s′.worldi − s′.ig(j)i.w-known. Hence, the invariant
(part (a)) is reestablished.

(2) π = recv(join) j,i . By Lemma 5.1, 〈join, j, i〉 ∈ s.h-MSG. By the code of this action s.worldi ⊆ s′.worldi .
If this is the first time node i learns about node j . then by the initial assignment of the ig( j)i record and the
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monotonicity of worldi , in state s′, the invariant (part (a)) holds. On the other hand, if j ∈ s.worldi , then by the
inductive hypothesis (part (a)) and the monotonicity of worldi , in state s′, the invariant (part (a)) holds.

(3) Other actions do not change the variables involved in the invariant (part (a)). So, by the inductive hypothesis (part
(a)), in state s′, the invariant (part (a)) continues to hold.

This completes the proof of part (a). As mentioned at the beginning of the proof, part (b) is shown in a similar
manner. �

In the next invariant, we use history variables to show that if i sends a message to j when it believes that j’s phase
number is p, then the information that i expects j to acknowledge does not exceed the information included in that
message.

Invariant 3. For all states s of any execution α of LL-RAMBO:
(a) 〈〈W, D, v, t, cm, p, pnr〉, i, j〉 ∈ s.h-MSG⇒ s.hs-w-unack(i, j, p) ⊆ W
(b) 〈〈W, D, v, t, cm, p, pnr〉, i, j〉 ∈ s.h-MSG⇒ s.hs-d-unack(i, j, p) ⊆ D.

Proof. The proof is by induction on the length of the execution. The base case is trivial because all sets are empty in
the initial state. Assume the invariant holds for state s, and consider step (s, π, s′).

(1) π = send(〈W, D, v, t, cm, pns, pnr〉)i, j . By the effects of this action we have that W = s′.worldi −

s′.ig(j)i.w-known and s′.hs-w-unack(i, j, p) = s′.ig(j)i.w-unack is defined. Also, D = s′.departedi −

s′.ig(j)i.d-known and s′.hs-d-unack(i, j, p) = s′.ig(j)i.d-unack is defined. By Invariant 2 we have that
s′.ig(j)i.w-unack ⊆ s′.worldi − s′.ig(j)i.w-known, and s′.ig(j)i.d-unack ⊆ s′.departedi − s′.ig(j)i.d-known. Thus,
by substitution we get that s′.hs-w-unack(i, j, p) ⊆ W and s′.hs-d-unack(i, j, p) ⊆ D, as desired. Therefore, by
the inductive hypothesis, in state s′, the invariant is reestablished.

(2) Other actions do not change the variables involved in the invariant. So, by the inductive hypothesis, in state s′, the
invariant continues to hold.

This completes the proof. �

We use Lemmas 5.1 and 5.2, and Invariants 1–3 to show the key Invariant 4 for the atomicity of LL-RAMBO. Here,
we show that node i never overestimates the knowledge possessed by j .

Invariant 4. For all states s of any execution α of LL-RAMBO:
(a) ∀ i, j ∈ I : s.ig(j)i.w-known ⊆ s.world j ,
(b) ∀ i, j ∈ I : s.ig(j)i.d-known ⊆ s.departed j .

Proof. We prove part (a) of the invariant. The proof of part (b) is analogous: the arguments are made on departed
related variables instead on world related variables.

The proof is by induction on the length of the execution. The base case is trivial because all sets are empty in
the initial state. Assume the invariant (part (a)) holds for state s and consider step (s, π, s′) (the following discussion
involves only part (a) of the invariant).

(1) π = recv(〈W, D, v, t, cm, pns, pnr〉)∗, j . By Lemma 5.1, 〈〈W, D, v, t, cm, pns, pnr〉, ∗, j〉 ∈ s.h-MSG. The set
s.ig(j)i.w-known, for i ∈ I , i 6= j , is not updated by the effects of this action. Observe that s.world j ⊆ s′.world j
(for i = j the invariant is trivially maintained). By the inductive hypothesis and the monotonicity of world j , in
state s′, the invariant is maintained.

(2) π= recv(join)∗, j . By Lemma 5.1 〈join, ∗, j〉 ∈ s.h-MSG. The discussion in this case is identical to that of case 1.
(3) π = recv(〈W, D, v, t, cm, pns, pnr〉) j,i . By Lemma 5.1, 〈〈W, D, v, t, cm, pns, pnr〉, j, i〉 ∈ s.h-MSG. We

consider 4 cases:
(i) z ∈ W ∧ z /∈ s.worldi ∧ z 6= j . This is the first time node i learns about node z, indirectly from j . By the initial

value of the ig(z)i record and the monotonicity of worldi , the invariant is maintained. (This is for all nodes
other than j . We consider j in the remaining three subcases.)

(ii) j /∈ s.worldi . This is the first time i learns about j , directly from j . Similarly to case 3(i), ig(j)i.w-unack
and ig(j)i.w-known are initialized to empty. Also ig(j)i.p-ack is set to zero. Before the “if-statement”,
s′.worldi = s.worldi ∪ W (note that j is now in s′.worldi ). Also, s′.ig(j)i.w-known = ig(j)i.w-known ∪ W
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(ig(j)i.w-known = W ) and s′.ig(j)i.w-unack = ig(j)i.w-unack − W (ig(j)i.w-unack remains empty). Since
j /∈ s.worldi , by the code of the send action i never sent messages to j , and hence pnr is zero. Therefore, the
“if pnr > ig(j)i.p-ack then” statement is not executed. By substitution s′.ig(j)i.w-known = W . From Invariant
1 we have that W ⊆ s.world j = s′.world j . Hence s′.ig(j)i.w-known ⊆ s′.world j , as desired. By the inductive
hypothesis, in s′, the invariant is maintained.

(iii) j ∈ s.worldi ∧ pnr ≤ s.ig(j)i.p-ack. Since pnr ≤ s.ig(j)i.p-ack, this implies that node i has learned
and communicated with node j in some earlier step of the execution. By the effects of this action
s′.ig(j)i.w-known = s.ig(j)i.w-known ∪ W . From Invariant 1, we have that W ⊆ s.world j = s′.world j .
Also by the inductive hypothesis s.ig(j)i.w-known ⊆ s′.world j . Therefore, s′.ig(j)i.w-known ⊆ s′.world j , as
desired. Thus, in s′, the invariant is maintained.

(iv) j ∈ s.worldi ∧ pnr > s.ig(j)i.p-ack. Using similar arguments as in case 3(iii) we have that up to the “if
pnr > ig(j)i.p-ack then” ig(j)i.w-known = s.ig(j)i.w-known ∪W and ig(j)i.w-unack = s.ig(j)i.w-unack−W .
Since pnr > s.ig(j)i.p-ack the “if-statement” is executed; by its effects we get s′.ig(j)i.w-known =
ig(j)i.w-known ∪ ig(j)i.w-unack. Recall that ig(j)i.w-known = s.ig(j)i.w-known ∪ W . By Invariant 1 and the
inductive hypothesis, ig(j)i.w-known ⊆ s′.world j .

Since pnr is contained in the message from j by i , we have that s.hrecv-W(i, j, pnr) must be defined;
moreover, by the code of the algorithm, the monotonicity of the world variable, and the definition of
hrecv-W(i, j, pnr), we have that s.hrecv-W(i, j, pnr) ⊆ s′.world j . By the properties of the Channel automata,
we have that s.hsent-W(i, j, pnr) must also be defined and its value equals the value of s.hrecv-W(i, j, pnr).
By Invariant 3 we have that s.hs-w-unack(i, j, pnr) ⊆ s.hsent-W(i, j, pnr). By Lemma 5.2(b) we have
that if pnr > s.ig(j)i.p-ack then s.ig(j)i.w-unack ⊆ s.hs-w-unack(i, j, pnr). By substitution we have
s.ig(j)i.w-unack ⊆ s′.world j .

Therefore, s′.ig(j)i.w-known ⊆ s′.world j , as desired. Thus, by the inductive hypothesis, in s′, the invariant
is reestablished.

(4) Other actions do not change the variables involved in the invariant. So, the by inductive hypothesis, in state s′, the
invariant continues to hold.

This completes the proof of part (a). As mentioned at the beginning of the proof, part (b) is shown in a similar
manner. �

Finally, we show the atomicity of objects implemented by LL-RAMBO by proving that it simulates L-RAMBO,
i.e., by showing that every trace of LL-RAMBO is a trace of L-RAMBO (hence of RAMBO).

Theorem 5.3. LL-RAMBO implements atomic read/write objects.

Proof. We show that the LL-RAMBO simulates the L-RAMBO. Specifically, we show that there exists a simulation
relation R from LL-RAMBO automaton to L-RAMBO automaton that satisfies Definition 4.2. Observe that LL-
RAMBO and L-RAMBO have the same external signatures.

We denote by M SGLR the set of messages in the channel automata of L-RAMBO, and by M SGLLR the set of
messages in the channel automata of LL-RAMBO.

We define the simulation relation R to map:

(a) a state t of LL-RAMBO to a state s of L-RAMBO so that every “common” state variable has the same
value. For example, for node i ∈ I , t.worldi = s.worldi , t.departedi = s.departedi , t.pnum1i = s.pnum1i ,
t.cmapi = s.cmapi , etc.
(b) a message m = 〈W, D, v, t, cm, pns, pnr〉 ∈ Channeli, j .M SGLLR to a message m′ =

〈W, D, v, t, cm, pns, pnr〉 ∈ Channeli, j .M SGLR so that: (i) m.v = m′.v, (ii) m.t = m′.t , (iii)
m.cm = m′.cm, (iv) m.pns = m′.pns, and m′.W = hs-world(i, j, pns), and lastly (vii) m.D =

hs-departed(i, j, pns) − hs-d-known(i, j, pns) and m′.D = hs-departed(i, j, pns). (We assume that the history
variables hs-world(i, j, pns) and hs-departed(i, j, pns) are used in L-RAMBO in the similar manner that they are
used in LL-RAMBO.)

Recall that the difference between the two algorithms is in the Reader–Writer automata. Therefore, in order to
show that LL-RAMBO simulates L-RAMBO, we focus only on transitions related to the Reader–Writer automata. We
now show that R satisfies Definition 4.2:
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(1) If t is an initial state of LL-RAMBO, then there exists an initial state s of L-RAMBO such that s ∈ R(t),
since all common state variables have the same initial values. For example, ∀i ∈ I , t.worldi = s.worldi = ∅,
t.departedi = s.departedi = ∅, t.pnum1i = s.pnum1i = 0, etc. Also, the channels do not contain any messages.

(2) Suppose t and s are reachable states of LL-RAMBO and L-RAMBO respectively such that s ∈ R(t) and that
(t, π, t ′). We show that there exists a state s′ ∈ R(t ′) such that there is an execution fragment of L-RAMBO that
has the same trace as π .
(a) If π = recv(m) j,i , i, j ∈ I , where m = 〈W, D, v, t, cm, p, pnr〉. By Lemma 5.1, m ∈ s.h-MSG. Let s′ be

such that (s, recv(m′) j,i , s′). Both actions have empty trace, since recv(m) j,i (resp. recv(m′) j,i ) is considered
internal with respect to the composition of automata that comprises automaton LL-RAMBO (resp. L-RAMBO).

Now, since m = 〈W, D, v, t, cm, p, pnr〉 was in Channel j,i .M SGLLR, by the message correspondence
of R, message m′ = 〈W, D, v, t, cm, p, pnr〉 is in Channel j,i .M SGLR, and m and m′ have the mapping
defined above. By inspection of the code of both algorithms, it follows that besides state variables worldi and
departedi , all other common state variables are updated identically, as the information obtained by messages
m and m′ is the same for these variables. Also, the message correspondence is not affected, since no messages
are sent.

Hence we focus on showing that t ′.worldi = s′.worldi and t ′.departedi = s′.departedi . From the code of
LL-RAMBO, we have that t ′.worldi = t.worldi ∪ m.W and t ′.departedi = t.departedi ∪ m.D. Since m was
received (and hence removed from the channel), by the properties of the channel, there was a send event that
placed m in the channel so that m.W = t.hsent-W( j, i, p) = t.hs-world( j, i, p) − t.hs-w-known( j, i, p)

and m.D = t.hsent-D( j, i, p) = t.hs-departed( j, i, p) − t.hs-d-known( j, i, p). From Invariant 4 and
the monotonicity of variables world and departed, we have that hs-w-known( j, i, p) ⊆ t.worldi and
hs-d-known( j, i, p) ⊆ t.departedi . From this, and the fact that t.hs-w-known( j, i, p) ⊆ t.hs-world( j, i, p)

and t.hs-d-known( j, i, p) ⊆ t.hs-departed( j, i, p), we conclude that t ′.worldi = t.world∪t.hs-world( j, i, p)

and t ′.departedi = t.departed ∪ t.hs-departed( j, i, p). But by the state and message correspondence
of R, we have that t.world = s.world , t.departed = s.departed , m′.W = t.hs-world( j, i, p), and
m′.D = t.hs-departed( j, i, p). Hence, t ′.worldi = s.world ∪ m′.W = s′.world and t ′.departedi =

s.departed ∪ m′.D = s′.departed , as desired.
(b) If π = send(m)i, j , i, j ∈ I , where m = 〈W, D, v, t, cm, p, pnr〉. Let s′ be such that (s, send(m′)i, j , s′).

Both actions have empty trace, since send(m)i, j (resp. send(m′)i, j ) is considered internal in the composition
of automata that comprises automaton LL-RAMBO (resp. L-RAMBO).

From the code of LL-RAMBO, we have that m = 〈W, D, v, t, cm, pns, pnr〉 is placed
in Channeli, j .M SGLLR, where m.W = hs-world(i, j, pns) − hs-w-known(i, j, pns), m.D =

hs-departed(i, j, pns) − hs-d-known(i, j, pns), m.v = t.valuei , m.cm = t.cmapi , m.pns = t.pnum1i ,
and m.pnr = t.pnum2( j)i . From the state correspondence, since send(m)i, j is enabled, send(m′)i, j
is also enabled. Furthermore, send(m′)i, j places m′ = 〈W, D, v, t, cm, pns, pnr〉 in Channeli, j .M SGLR

where m′.W = hs-world(i, j, pns), m′.D = hs-departed(i, j, pns), m′.v = s.valuei , m′.cm = s.cmapi ,
m′.pns = s.pnum1i , and m′.pnr = s.pnum2( j)i . From the state correspondence of R for t and s, we
conclude that the message correspondence of R for t ′ and s′ is preserved. Also, the state correspondence for t ′

and s′ is preserved, since t ′.pnum1i = t.pnum1i + 1 = s.pnum1i + 1 = s′.pnum1i and all other common
variables remain unchanged.

(c) If π is an action besides send(m)i, j or recv(m) j,i , then we choose s′ such that (s, π, s′). That is, we simulate
the same action. By inspection of the code of the algorithms, it follows that any state change after π occurred
is identical for both algorithms; hence the state correspondence and message correspondence given by R is
preserved.

Therefore, R is a simulation mapping from LL-RAMBO to L-RAMBO per Definition 4.2. By Theorem 4.3, any
trace of LL-RAMBO is a trace of L-RAMBO. Since L-RAMBO implements atomic read/write objects per Theorem 4.4,
so does LL-RAMBO.

6. LL-RAMBO performance

In this section, we analyze the performance of LL-RAMBO by giving a conditional analysis of read and write
operation latency and and assessing improvement in communication for specific scenarios.
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6.1. Conditional read/write operation latency analysis

A conditional analysis of RAMBO read and write operation latency is presented in [2]. Here, we show that under
the same conditions, LL-RAMBO has the same operation latency. We start by giving relevant definitions (based on [2]
and [30]). Let d denote the maximum message delivery latency. Let d also be the interval at which the gossip messages
are sent. An execution with times associated with all events is called a timed execution. A timed execution is said to be
admissible if the following condition holds: “If timed execution ξ is an infinite sequence, then the times of the actions
approach ∞. If ξ is a finite sequence, then in the final state of ξ , every enabled task must be allowed to complete”
(see [30]).

Let α be an admissible timed execution, and let α′ be a finite prefix of α. Let `time(α′) denote the time of the last
event in α′. We say α is an α′-normal execution if (i) after α′, the local clocks of all automata progress at exactly the
rate of real time, (ii) no message sent in α after α′ is lost, and (iii) if a message is sent at time t in α and it is delivered,
then it is delivered by the time max{t + d, `time(α′)+ d}.

LL-RAMBO allows sending of gossip messages at arbitrary times. For the purpose of latency analysis, we restrict
the sending pattern: we assume that each automaton sends messages at the first possible time and at regular intervals
of d thereafter, as measured on the local clock. Also, non-send locally controlled events occur just once, within time
0 on the local clock.

As with all quorum-based algorithms, operation liveness depends on all the nodes in some quorums remaining
alive or not departing. We say that a configuration is installed when every member of the configuration has been
notified about the configuration. We say that an execution α is (α′,e,τ)-configuration-viable if for every installed
configuration, there exists a read-quorum, R, and a write-quorum, W , such that no process in R ∪ W fails or departs
before the maximum of (i) time τ after the next configuration is installed, and (ii) `time(α′)+ e + τ .

We say that execution α satisfies (α′, τ )-recon-spacing if after α′, at least time τ elapses between the event that
reports a new configuration c (report(c)i ) and any following event that proposes a new configuration (recon(c, ∗)i ).
In other words, after α′, when the system stabilizes, reconfigurations are not too frequent.

Execution α is said to satisfy (α′, e)-join-connectivity if after α′, for any two nodes that both joined the system at
time t − e, they know about each other by time t .

Execution α satisfies (α′, e + τ)-recon-readiness if after α′, every recon(c) event proposing a new configuration
includes a node i in c only if i joined at least time e + τ ago. This, in conjunction with (α′, e)-join-connectivity,
ensures that all the nodes in active configurations are aware of each other.

As in [2], we assume that α is an α′-normal execution, satisfying (α′,e, 23d)-configuration-viability, (α′, 8d)-
recon-spacing, (α′, e)-join-connectivity, and (α′, e + d)-recon-readiness. (See [2] for a further discussion of these
assumptions.) With this we show conditionally that read and write operations take no more than 8d time.

Theorem 6.1. Let α be an α′-normal execution of LL-RAMBO satisfying join-connectivity, recon-readiness, recon-
spacing, and configuration-viability. Let t > `time(α′)+ e + d. Assume i is a node that received a join-acki prior to
time t − e − d, and neither fails nor departs in α until after time t + 8d. Then if a read or write operations starts at
node i time t, it completes by time t + 8d.

The proof is essentially identical to the proof of Theorem 5.3 in [2]. The key observation is that under the assumed
conditions the incremental gossip does not affect the pattern of messages. The only difference is that these messages
do not contain information that had been already propagated.

6.2. Communication efficiency analysis

In this section, we illustrate the communication savings attained by LL-RAMBO as compared to RAMBO. The
savings are assessed both in terms of gossip message size and number of gossip messages. We present communication
analysis of α′-normal timed executions α, where the prefix α′ satisfies specific properties. Following the prefix α′, we
assume that α is divided into rounds of length d , where d is greater than the maximum message latency. The active
nodes send gossip messages at the beginning of each round and subsequently receive gossip messages sent during the
current round. We assume that in all executions node failure and departures do not disable the quorum systems used
by the algorithms.

We observe that given any timed execution α of LL-RAMBO, it is possible to construct an execution α̂ of RAMBO
that has the same interaction with its environment as α (as follows from Theorem 5.3), but that includes additional
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gossip messages and gossip messages with different content, and that excludes leave notification messages that are
specific to LL-RAMBO. We also denote by α̂′ the prefix of α̂ that corresponds to α′. In the rest of this section, we will
be using this notation in comparing the communication efficiency of the two algorithms in terms of gossip messaging.

Recall that gossip messages in RAMBO have the format 〈W, v, t, cm, pns, pnr〉, and in LL-RAMBO the format
is 〈W, D, v, t, cm, pns, pnr〉. We also assume that each node identifiers is γ bits long, and that the values v, t , cm,
pns, and pnr , altogether occupy δ bits (a constant) in gossip messages.

Scenario 1: No joins or departures after α′. Here we make the following additional assumptions about α′ for
LL-RAMBO and α̂′ for RAMBO. Consider the following sequence of events, identical for α′ and α̂′. The service is
initialized by some node, called the creator. Next, m new participants join the service by sending to the creator m
join requests. After the last join request is received, the creator sends a gossip message to each new participant. Once
these gossip messages are received, all nodes have active status. At this point, the cardinality of world for each node
is n = m + 1. Now, l nodes decide to leave the system. In α′ of LL-RAMBO, these nodes send leave notification
messages to all participating nodes. We assume that these messages are delivered. These notification messages are
of constant size and are much smaller than any gossip message. Now the cardinality of the departed set at each
node is l in LL-RAMBO. In the case of RAMBO, l nodes leave by emulating crash failures. The number of the active
nodes, a, is a = n− l. This concludes α′ (respectively α̂′), following which no new nodes join the system or no active
nodes leave the system. Following α′ (respectively α̂′), normal timing holds in α (respectively α̂), and the active nodes
gossip at regular intervals as described above. We now give the result that compares the two algorithms for r rounds
of gossip.

Proposition 6.2. Let α be α′-normal execution of LL-RAMBO and α̂ be α̂′-normal execution of RAMBO as defined
by Scenario 1. Then:

(a) there are r · a · l fewer gossip messages in α following α′ than in α̂ following α̂′;
(b) the bit complexity of gossip messages in α following α′ is smaller by ((r − 1)· n2

· a · γ )+ (a · l2
·γ )+ (r · a ·l ·δ)

than the bit complexity in α̂ following α̂′.

Proof. Nodes participating in RAMBO cannot distinguish nodes that failed from nodes that departed. Therefore, in
each round of gossip, RAMBO sends a · n messages (an active node sends gossip messages to all nodes in its world).
Each gossip message has the size of n · γ + δ bits (|W | = |world| = n). Hence, the gossip message complexity of
RAMBO for r rounds is r · a · n, and the gossip message bit complexity is r · a · n · (n · γ + δ).

In LL-RAMBO, each node has learned that l nodes departed. Therefore, a2 gossip messages are sent in each of
the r rounds. In the first round, each gossip message has size (n + l) · γ + δ (since nodes do not know what other
nodes know). Since all messages are delivered, at the end of the first round, each node knows that every active node
has full knowledge of world and departed sets. Hence, in the following rounds, the gossip message size is δ bits.
Therefore, the gossip message complexity of LL-RAMBO for r rounds is r ·a2, and the gossip message bit complexity
is

(
a2
· (n + l) · γ

)
+

(
r · a2

· δ
)

.
Therefore, LL-RAMBO sends r · a · l fewer gossip messages than RAMBO. The reduction for the gossip message

bit complexity is
(
(r − 1) · n2

· a · γ
)
+

(
a · l2

· γ
)
+ (r · a · l · δ). �

If l is zero, then the behavior of these two algorithms is identical. Otherwise, l can be as small as one and as large
as n− 1, and since a = n− l, the savings in gossip messages for LL-RAMBO are between Ω(r · n) and O(r · n2). The
reduction in bit complexity for LL-RAMBO is between Ω(r · n2) and O(r · n3) (γ and δ are assumed to be constants).

Scenario 2: Steady turnover rate after α′. In this scenario, following the initial segment of an execution, nodes
join and leave at a constant rate per round in both RAMBO and LL-RAMBO. Consider the following sequence of
events for both systems. As in Scenario 1, the service is initialized by the creator. Then m new participants join the
service by sending join requests to the creator. After the last join request is received, the creator sends gossip to all
participants. Once these gossip messages are received, all nodes are active. At this point, the cardinality of world at
each node is n = m + 1. This concludes α′ of RAMBO (respectively α̂′ of LL-RAMBO). Following α′ (respectively
α̂′), normal timing holds in α (respectively α̂), and the active nodes gossip at the beginning of each round. In this
scenario, nodes join and leave the service at the same rate: during each round following α′ (respectively α̂′), z new
nodes join and z active nodes leave the service. We now give the result that compares the two algorithms for r rounds
of gossip.
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Proposition 6.3. Let α be α′-normal execution of LL-RAMBO and α̂ be α̂′-normal execution of RAMBO as defined
by Scenario 2. Then:

(a) there are (n − z) · z · ((r − 1) · (r − 2)/2) fewer gossip messages in α following α′ than in α̂ following α̂′;
(b) the bit complexity of gossip messages in α following α′ for r > 2 is smaller by

(n − z) ·
(
γ · z2

·
(
(r − 1) · (r − 2) · (2 · r − 1)/6

)
+

(
2 · γ · n + δ

)
· z ·

(
(r − 1) · (r − 2)/2

)
+ n · γ · (n − z) · (r − 2)+ n2

· γ
)

than the bit complexity in α̂ following α̂′. For r = 2 the reduction is (n− z) ·n2
·γ and for r = 1 the bit complexity

is the same.

Proof. For the analysis, we assume that the join requests are received by all active nodes by the end of the round
in which they were sent, and are received after all gossip messages are sent. On the other hand, we assume that the
leave notifications are received (in LL-RAMBO) by active nodes at the end of the following round. These assumptions
yield worst case behavior for LL-RAMBO in Scenario 2, since delaying notification messages only affect the gossip
communication complexity of LL-RAMBO (in RAMBO no notification messages are sent).

We now analyze the behavior of RAMBO for a round 1 ≤ k ≤ r . By the code of RAMBO, we observe that the
world set grows as nodes join the system. Since gossip messages include the entire world set, it follows that the
size of the gossip messages is proportional to the size of world . In RAMBO, nodes leave by emulating failures. Since
nodes cannot detect such failures, each active node attempts to gossip to all members in its world , regardless of their
failure status. Hence, as new participants join, the number and the size of gossip messages sent in RAMBO increases.

We separately consider the case when k = 1. At the beginning of the first round, the world of each active node is
n (join requests have not been yet received). From this, and the fact that only active nodes gossip (new joined nodes
become active after they receive a gossip message), in first round n2 messages are sent each of size n · γ + δ. We now
consider 2 ≤ k ≤ r . At the beginning of the k’th round there are n − z active nodes. Observe that up to k’th round
(k − 1) · z active nodes have left the system; also the same number have attempted to join the system, of which only
(k − 2) · z became active by k’th round (it takes at most 2d time for a node to become active). Hence, there may be
at most up to n − z active nodes and n participating nodes in the system at the beginning of each round k. The world
set of each active node has cardinality n + (k − 1) · z (since z nodes enter the system in every round). Therefore, in
each round k > 1, (n − z) · (n + (k − 1) · z) gossip messages are sent, each of size (n + (k − 1) · z) · γ + δ.

We now analyze, in a similar fashion, the behavior of LL-RAMBO for a round 1 ≤ k ≤ r . By the code of LL-
RAMBO, we observe that both the world and the departed sets grow as the new participants join and active nodes
leave the system. However, two nodes that have been active in two consecutive rounds, need only to exchange gossip
messages that contain only the identifiers of the z nodes that have departed and the z nodes that have joined the system
in the previous round. On the other hand, an active node has to send all current knowledge about world and departed
to the newly joined nodes. Also, note that once a node learns that another node has departed from the system, it does
not send any further gossip messages to that node. We separately consider cases where k = 1 and k = 2. The argument
for the first round is identical to the argument of the first round of RAMBO. At the beginning of the second round,
there are n − z active nodes (this is because in the first round z nodes departed and the z nodes joined the system,
where the newly joined nodes are not active yet). Also the cardinality of world variable of each active node is n + z
and the cardinality of departed variable is zero (since the leave notifications have not been received yet - they will be
received at the end of this round). Therefore, in the second round, (n − z) · (n + z) gossip messages are sent, and the
total bit complexity of these messages is (n− z) ·

(
n · (z · γ + δ)+ z · ((n+ z) · γ + δ)

)
. We now consider 2 ≤ k ≤ r .

At the beginning of the round k there are n − z active nodes (using the same reasoning as in case of RAMBO for
rounds k ≥ 2). The world set of each active node has cardinality n + (k − 1) · z (since z nodes enter the system in
every round), and the departed set has cardinality (k − 2) · z (since it takes an extra round for the notifications to be
received). It follows that in round k > 2, (n − z) · (n + z) gossip messages are sent, and the total bit complexity of
these messages is (n− z) ·

(
n · (2 · z · γ + δ)+ z · ((n+ (k − 1) · z+ (k − 2) · z) · γ + δ)

)
. By performing elementary

mathematical computations, it follows that for r rounds, LL-RAMBO sends (n − z) · z · ((r − 1) · (r − 2)/2) less
gossip messages than RAMBO. Also, it is not difficult to see that in the first round LL-RAMBO gossip bit complexity
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Fig. 4. Preliminary empirical results: (a) gossip message latency, (b) read and write latency.

is the same as RAMBO, and the gossip bit complexity reduction for the second round is (n − z) · n2
· γ . Finally, for

r > 2 we have that the savings in the gossip bit complexity are (n − z) ·
(
γ · z2

·
(
(r − 1) · (r − 2) · (2 · r − 1)/6

)
+(

2 · γ · n + δ
)
· z ·

(
(r − 1) · (r − 2)/2

)
+ n · γ · (n − z) · (r − 2)+ n2

· γ
)

. �

For the following bounds we consider 1 ≤ z ≤ n−1. The savings in gossip messages for LL-RAMBO when r > 2
are between Ω(r2

· n) and O(r2
· n2). When 1 ≤ r ≤ 2 there are no savings. The reduction in gossip bit complexity

for LL-RAMBO when r > 1 is between Ω(n2) and O(r3
· n3) (γ and δ are assumed to be constants). When r = 1

there is no reduction.

7. LL-RAMBO implementation

We developed proof-of-concept implementations of RAMBO and LL-RAMBO on a network-of-workstations. In
this section, we present the preliminary experimental results.

Experimental results. We developed the system by manually translating the Input/Output Automata specifications
to Java code. To mitigate the introduction of errors during translation, the implementers followed a set of precise
rules [3] that guided the derivation of Java code. The platform consists of a Beowulf cluster with ten machines running
Linux. The machines are various Pentium processors up to 900 MHz interconnected via a 100 Mbps Ethernet switch.
The implementation of the two algorithms share most of the code and all low-level routines, so that any difference in
performance is traceable to the distinct world and departed set management and the gossiping discipline encapsulated
in each algorithm.

We are interested in long-lived applications, and we assume that the number of participants grows arbitrarily.
Given the limited number of physical nodes, we use majority quorums of these nodes, and we simulate a large number
of other nodes that join the system by including such node identifiers in the world sets. Using non-existent nodes
approximates the behavior of a long-lived system with a large set of participants. However, when using all-to-all gossip
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that grows quadratically in the number of participants, it is expected that the differences in RAMBO and LL-RAMBO
performance will become more substantial when using a larger number of physical nodes.

The experiment is designed as follows. There are ten nodes that do not leave the system. These nodes perform
concurrent read and write operations using a single configuration (that does not change over time), consisting of
majorities, i.e., six nodes. Fig. 4 compares: (a) the average latency of gossip messages, and (b) the average latency of
read and write operations in RAMBO and LL-RAMBO, as the cardinality of world sets grows from 10 to 7010.

LL-RAMBO exhibits substantially better gossip message latency than RAMBO (Fig. 4(a)). In fact, the average
gossip latency in LL-RAMBO does not vary noticeably. On the other hand, the gossip latency in RAMBO grows
substantially as the cardinality of the world sets increases. This is expected, due to the smaller incremental gossip
messages of LL-RAMBO, while in RAMBO, the size of the gossip messages is always proportional to the cardinality of
the world set. LL-RAMBO trades local resources (computation and memory) for smaller and fewer gossip messages.
We observe that the read/write operation latency is slightly lower for RAMBO when the cardinality of the world sets
is small (Fig. 4(b)). As the size of the world sets grows, the operation latency in LL-RAMBO becomes substantially
better than in RAMBO.

We close this section with the following remarks. First, the experiment is designed using a single configuration
that does not change over time. Note that reconfiguration creates additional network traffic; however, when
reconfigurations are infrequent, the performance of the implementation is not significantly affected. Since the main
aim of our algorithm is to reduce the size of the gossip messages, we decided not to reconfigure during the experiment.
Future experiments will include reconfiguration activities; however, it is also important to evaluate the system when
the reconfiguration traffic does not interfere with the routine gossip.

Second, the experiments were conducted using our preliminary implementation. This implementation is a proof-
of-concept for the methodology developed in [3] to translate the IOA specification into Java code. Both RAMBO
and LL-RAMBO have been implemented faithfully to their specifications; however, no attempt was made to optimize
either system. Therefore, the performance improvements in Fig. 4(a) and (b) should be considered in relative terms.

Finally, observe that due to node failures, some gossip messages may continue to grow without bound (since the
sender does not receive acknowledgments from the failed node). To diminish the communication and processing
impact in this case, we use exponential backoff : if a node does not receive a gossip message from some other node, it
will double the delay between consecutive gossip rounds to that node; normal timing is restored once communication
is reestablished. Note that both algorithms may take advantage of this assumption. In our experiments, gossip messages
were not sent to the virtual-failed nodes (this approximates exponential backoff in the case of permanently crashed
nodes). The results in Fig. 4(a) and (b) illustrate the performance of RAMBO and LL-RAMBO when gossip messages
are exchanged only between non-failed nodes.

8. Discussion and future work

We presented an algorithm for long-lived atomic data in dynamic networks. Prior solutions for dynamic
networks [1,2] did not allow the participants to leave gracefully, and relied on gossip that involved sending messages
whose size grew with time. The new algorithm, called LL-RAMBO improves on prior work by supporting the graceful
departures of participants and by implementing incremental gossip. The algorithm substantially reduces the size
and the number of gossip messages, leading to a much improved performance of the read and write operations.
We show that the improved algorithm implements atomic objects in the presence of arbitrary asynchrony, dynamic
node joins, and departures. The algorithm relies on simple point-to-point channels that permit message loss and
reordering.

We analyzed the efficiency of the algorithm and illustrated its performance using our implementation of the
algorithm in the local-area setting. In trading knowledge for communication, the algorithm increases the local memory
requirements. Specifically, the needed local storage is quadratic in the number of active participants. Future plans
include exploring optimizations that will reduce the local storage usage to be about linear in the number of participants.
Also, we plan to further explore ways to decrease the number of gossip messages sent. Currently, LL-RAMBO allows
all-to-all exchange of information among active participants, and when gossip is unconstrained and communication
bandwidth is limited, network congestion may degrade the performance of such a system. One way to solve this
problem is to constrain the gossip patterns. Restricting gossip vacuously preserves the linearizability property of the
algorithm, but will possibly alter its performance.
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Appendix. RAMBO specification

See Figs. A.1–A.8.

Signature:
Input:

join(rambo, J )i , J a finite subset of I − {i}
join-ack(r)i , r ∈ {recon, rw}
faili

Output:
send(join)i, j , j ∈ I − {i}
join(r)i , r ∈ {recon, rw}
join-ack(rambo)i

State:
status ∈ {idle, joining, active}, initially idle
child-status ∈ {recon, rw} → {idle, joining, active}, initially everywhere idle
hints ⊆ I , initially ∅
failed, a Boolean, initially false

Transitions:
Input join(rambo, J )i
Effect:

if ¬failed then
if status = idle then

status← joining
hints← J

Output send(join)i, j
Precondition:
¬failed
status = joining
j ∈ hints

Effect:
none

Output join(r)i
Precondition:
¬failed
status = joining
child-status(r) = idle

Effect:
child-status(r)← joining

Input join-ack(r)i
Effect:

if ¬failed then
if status = joining then

child-status(r)← active

Output join-ack(rambo)i
Precondition:
¬failed
status = joining
∀r ∈ {recon, rw} : child-status(r) = active

Effect:
status← active

Input faili
Effect:

failed← true

Fig. A.1. Joineri : Signature, state, and transitions.

Signature:

Input:
readi
write(v)i , v ∈ V
new-config(c, k)i , c ∈ C, k ∈ N+
recv(join) j,i , j ∈ I − {i}
recv(m) j,i , m ∈ M , j ∈ I
join(rw)i
faili

Output:
join-ack(rw)i
read-ack(v)i , v ∈ V
write-acki
send(m)i, j , m ∈ M , j ∈ I

Internal:
query-fixi
prop-fixi
cfg-upgrade(k)i , k ∈ N>0

cfg-upg-query-fix(k)i , k ∈ N>0

cfg-upg-prop-fix(k)i , k ∈ N>0

cfg-upgrade-ack(k)i , k ∈ N>0

State:

status ∈ {idle, joining, active}, initially idle
world, a finite subset of I , initially ∅
value ∈ V , initially v0
tag ∈ T , initially (0, i0)

cmap ∈ CMap, initially cmap(0) = c0,
cmap(k) = ⊥ for k ≥ 1

pnum1 ∈ N, initially 0
pnum2 ∈ I → N, initially everywhere 0
failed, a Boolean, initially false

op, a record with fields:
type ∈ {read, write}
phase ∈ {idle, query, prop, done}, initially idle
pnum ∈ N
cmap ∈ CMap
acc, a finite subset of I
value ∈ V

upg, a record with fields:
phase ∈ {idle, query, prop}, initially idle
pnum ∈ N
cmap ∈ CMap,
acc, a finite subset of I
target ∈ N

Fig. A.2. Reader–Writeri : Signature and state.



82 C. Georgiou et al. / Theoretical Computer Science 383 (2007) 59–85

Input join(rw)i
Effect:

if ¬failed then
if status = idle then
if i = i0 then

status← active
else

status← joining
world← world ∪ {i}

Input recv(join) j,i
Effect:

if ¬failed then
if status 6= idle then

world← world ∪ { j}

Output join-ack(rw)i
Precondition:
¬failed
status = active

Effect:
none

Fig. A.3. Reader–Writeri : Join-related transitions.

Input cfg-upgrade(k)i
Effect:
¬failed
status = active
upg.phase = idle
cmap(k) ∈ C
∀` ∈ N, ` < k : cmap(`) 6= ⊥

pnum1← pnum1+ 1
upg← 〈query, pnum1, cmap,∅, k〉
Internal cfg-upg-query-fix(k)i
Precondition:
¬failed
status = active
upg.phase = query
upg.target = k
∀` ∈ N, ` < k : upg.cmap(`) ∈ C
⇒ ∃R ∈ read-quorums(upg.cmap(`)) :

∃W ∈ write-quorums(upg.cmap(`)) :

R ∪W ⊆ upg.acc
Effect:

pnum1← pnum1+ 1
upg.pnum← pnum1
upg.phase← transient
upg.acc← ∅

Internal cfg-upg-prop-fix(k)i
Precondition:
¬failed
status = active
upg.phase = prop
upg.target = k
∃W ∈ write-quorums(upg.cmap(k)) : W ⊆ upg.acc

Effect:
for ` ∈ N : ` < k do

cmap(`)←±

Internal cfg-upgrade-ack(k)i
Precondition:
¬failed
status = active
upg.target = k
∀ ` ∈ N, ` < k : cmap(`) = ±

Effect:
upg.phase← idle

Fig. A.4. Reader–Writeri : Configuration-management transitions.

Output send(〈W, v, t, cm, pns, pnr〉)i, j
Precondition:
¬failed
status = active
j ∈ world
〈W, v, t, cm, pns, pnr〉 =
〈world, value, tag, cmap, pnum1, pnum2( j)〉

Effect:
none

Input recv(〈W, v, t, cm, pns, pnr, m〉) j,i
Effect:

if ¬failed then
if status 6= idle then

status← active
world← world ∪W
if t > tag then (value, tag)← (v, t)
cmap← update(cmap, cm)

pnum2( j)← max(pnum2( j), pns)
if op.phase ∈ {query, prop} ∧ pnr ≥ op.pnum then

op.cmap← extend(op.cmap, truncate(cm))

if op.cmap ∈ Truncated then
op.acc← op.acc ∪ { j}

else
pnum1← pnum1+ 1
op.acc← ∅
op.cmap← truncate(cmap)

if upg.phase 6= idle and pnr ≥ upg.pnum then
upg.acc← upg.acc ∪ { j}

Internal query-fixi
Precondition:
¬failed
status = active
op.type ∈ {read, write}
op.phase = query
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃R ∈ read-quorums(c) :

R ⊆ op.acc)
Effect:

if op.type = read then
op.value← value

else
value← op.value
tag← 〈tag.seq + 1, i〉

pnum1← pnum1+ 1
op.pnum← pnum1
op.phase← prop
op.cmap← truncate(cmap)

op.acc← ∅

Internal prop-fixi
Precondition:
¬failed
status = active
op.type ∈ {read, write}
op.phase = prop
∀k ∈ N, c ∈ C : (op.cmap(k) = c)
⇒ (∃W ∈ write-quorums(c) :

W ⊆ op.acc)

Fig. A.5. Reader–Writeri : Read/write and failure transitions.
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Input new-config(c, k)i
Effect:

if ¬failed then
if status 6= idle then

cmap(k)← update(cmap(k), c)

Input readi
Effect:

if ¬failed then
if status 6= idle then

pnum1← pnum1+ 1
〈op.pnum, op.type, op.phase〉
← 〈pnum1, read, query〉
〈op.cmap, op.acc〉
← 〈truncate(cmap),∅〉

Input write(v)i
Effect:

if ¬failed then
if status 6= idle then

pnum1← pnum1+ 1
〈op.pnum, op.type, op.phase〉
← 〈pnum1, write, query〉
〈op.cmap, op.acc, op.value〉
← 〈truncate(cmap),∅, v〉

Effect:
op.phase = done

Output read-ack(v)i
Precondition:
¬failed
status = active
op.type = read
op.phase = done
v = op.value

Effect:
op.phase = idle

Output write-acki
Precondition:
¬failed
status = active
op.type = write
op.phase = done

Effect:
op.phase = idle

Input faili
Effect:

failed← true

Fig. A.5. Continued

Input:
init(v)k,c,i , v ∈ V , i ∈ members(c)
faili , i ∈ members(c)

Output:
decide(v)k,c,i , v ∈ V , i ∈ members(c)

Fig. A.6. Cons(k, c): External signature (an external consensus service).

Signature:

Input:
join(recon)i
recon(c, c′)i , c, c′ ∈ C, i ∈ members(c)
decide(c)k,i , c ∈ C, k ∈ N+
recv(〈config, c, k〉) j,i , c ∈ C , k ∈ N+,

i ∈ members(c), j ∈ I − {i}
recv(〈init, c, c′, k〉) j,i , c, c′ ∈ C , k ∈ N+,

i, j ∈ members(c), j 6= i
faili

Output:
join-ack(recon)i
new-config(c, k)i , c ∈ C, k ∈ N+
init(c, c′)k,i , c, c′ ∈ C, k ∈ N+, i ∈ members(c)
recon-ack(b)i , b ∈ {ok, nok}
report(c)i , c ∈ C
send(〈config, c, k〉)i, j , c ∈ C , k ∈ N+,

j ∈ members(c)− {i}
send(〈init, c, c′, k〉)i, j , c, c′ ∈ C, k ∈ N+,

i, j ∈ members(c), j 6= i

State:

status ∈ {idle, active}, initially idle.
rec-cmap ∈ CMap, initially rec-cmap(0) = c0

and rec-cmap(k) = ⊥ for all k 6= 0.
did-new-config ⊆ N+, initially ∅
reported ⊆ C , initially ∅

op-status ∈ {idle, active}, initially idle
op-outcome ∈ {ok, nok,⊥}, initially ⊥
cons-data ∈ (N+ → (C × C)), initially everywhere ⊥
did-init ⊆ N+, initially ∅
failed, a Boolean, initially false

Fig. A.7. Reconi : Signature and state.
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Input join(recon)i
Effect:

if ¬failed then
if status = idle then

status← active
Output join-ack(recon)i
Precondition:
¬failed
status = active

Effect:
none

Output new-config(c, k)i
Precondition:
¬failed
status = active
rec-cmap(k) = c
k /∈ did-new-config

Effect:
did-new-config← did-new-config ∪ {k}

Output send(〈config, c, k〉)i, j
Precondition:
¬failed
status = active
rec-cmap(k) = c

Effect:
none

Input recv(〈config, c, k〉) j,i
Effect:

if ¬failed then
if status = active then

rec-cmap(k)← c

Output report(c)i
Precondition:
¬failed
status = active
c = rec-cmap(k)

∀` > k : rec-cmap(`) = ⊥

c 6∈ reported
Effect:

reported← reported ∪ {c}

Input recon(c, c′)i
Effect:

if ¬failed then
if status = active then

op-status← active
let k = max({` : rec-cmap(`) ∈ C})
if c = rec-cmap(k) ∧ cons-data(k + 1) = ⊥ then

cons-data(k + 1)← 〈c, c′〉
op-outcome←⊥

else
op-outcome← nok

Output init(c′)k,c,i
Precondition:
¬failed
status = active
cons-data(k) = 〈c, c′〉
if k ≥ 1 then k − 1 ∈ did-new-config
k 6∈ did-init

Effect:
did-init← did-init ∪ {k}

Output send(〈init, c, c′, k〉)i, j
Precondition:
¬failed
status = active
cons-data(k) = 〈c, c′〉
k ∈ did-init

Effect:
none

Input recv(〈init, c, c′, k〉) j,i
Effect:

if ¬failed then
if status = active then
if rec-cmap(k − 1) = ⊥ then

rec-cmap(k − 1)← c
if cons-data(k) = ⊥ then

cons-data(k)← 〈c, c′〉

Input decide(c′)k,c,i
Effect:

if ¬failed then
if status = active then

rec-cmap(k)← c′

if op-status = active then
if cons-data(k) = 〈c, c′〉 then

op-outcome← ok
else

op-outcome← nok

Output recon-ack(b)i
Precondition:
¬failed
status = active
op-status = active
op-outcome = b

Effect:
op-status = idle

Input faili
Effect:

failed← true

Fig. A.8. Reconi : Transitions.
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