
Theoretical Computer Science 347 (2005) 130–166
www.elsevier.com/locate/tcs

Efficient gossip and robust distributed
computation�

Chryssis Georgioua, Dariusz R. Kowalskib,
Alexander A. Shvartsmanc,∗

aDepartment of Computer Science, University of Cyprus, CY-1678, Nicosia, Cyprus
bInstytut Informatyki, Uniwersytet Warszawski, 02-097 Warszawa, Poland

cDepartment of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, and
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

Received 7 March 2004; received in revised form 4 March 2005; accepted 26 May 2005

Communicated by M. Mavronicolas

Abstract

This paper presents an efficient deterministic gossip algorithm for p synchronous, crash-prone,
message-passing processors. The algorithm has time complexity T = O(log2p) and message com-
plexity M = O(p1+�), for any � > 0. This substantially improves the message complexity of the
previous best algorithm that has M = O(p1.77), while maintaining the same time complexity.

The strength and utility of the new result is demonstrated by constructing a deterministic algorithm
for performing n tasks in this distributed setting. Previous solutions used coordinator or check-pointing
approaches, immediately incurring a work penalty �(n + f · p) for f crashes, or relied on strong
communication primitives, such as reliable broadcast, or had work too close to the trivial �(p · n)

� This research was supported by the NSF Grants 9988304, 0121277, and 0311368. The work of the first
author was performed in part at the University of Connecticut. The work of the second author was supported by
the NSF-NATO Award 0209588 and by KBN grant 4T11C04425. The work of the third author was supported in
part by the NSF CAREER Award 9984778. A preliminary version of this work appears as [12].

∗ Corresponding author.
E-mail addresses: chryssis@ucy.ac.cy (C. Georgiou), darek@mimuw.edu.pl (D.R. Kowalski),

aas@cse.uconn.edu (A.A. Shvartsman).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.05.019

http://www.elsevier.com/locate/tcs
mailto:chryssis@ucy.ac.cy
mailto:darek@mimuw.edu.pl
mailto:aas@cse.uconn.edu

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 131

bound of oblivious algorithms. The new algorithm uses p crash-prone processors to perform n similar
and idempotent tasks so long as one processor remains active. The work of the algorithm is W =
O(n + p · min{f + 1, log3p}) and its message complexity is M = O(fp� + p min{f + 1, log p}),
for any � > 0. This substantially improves the work complexity of previous solutions using simple
point-to-point messaging, while “meeting or beating” the corresponding message complexity bounds.

The new algorithms use communication graphs and permutations with certain combinatorial prop-
erties that are shown to exist. The algorithms are correct for any permutations, and in particular, the
same expected bounds can be achieved using random permutations.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Distributed algorithms; Processor failures; Gossip; Performing work; Combinatorial tools

1. Introduction

The effectiveness of distributed solutions for specific problems depends on our ability to
exploit parallelism in multiprocessor systems. Gathering and disseminating information in
distributed settings is a key element in obtaining efficient solutions for many computation
problems. The gossip problem is an abstraction of information propagation activity: given
a set of processors where each processor initially has some piece of information, called
rumor, the goal is to have every processor learn each rumor.

In systems of larger scale the set of processors available to a computation may dynamically
change due to failures, due to processors being reassigned to other tasks, or becoming
unavailable for other reasons. Thus it is necessary to design algorithms that combine efficient
parallelism with the ability to tolerate perturbations in the computing medium. We consider
the case where synchronous processors are subject to crashes, i.e., a processor stops and
does not perform any further actions. This models both the common failure assumption and
the situation where processors are reassigned to a new computation. In this setting, it may
not be always possible to collect the rumor of a processor that crashes, even if some other
processors learned the rumor before it crashed, since these processors may crash as well.
Hence, we consider the gossip problem solved if (a) each non-faulty processor learns the
rumors of all other non-faulty processors, and (b) for each crashed processor, all non-faulty
processors either learn its rumor or learn that the processor crashed.

In this paper we first consider the gossip problem with p processors in the synchronous
message passing system and under the adaptive adversary that can cause up to f <p pro-
cessor crashes. We present a new algorithm solving the gossip problem that obtains a
substantially better message complexity than the previous best known solution. We demon-
strate the advantage of the new algorithm by showing how to solve a standard problem of
performing work in a distributed setting. Specifically, our new gossip algorithm allows us
to derive a more efficient solution for the Do-All problem of Dwork et al. [10]: given p
processors, perform n tasks in the presence of up to f < p processor crashes. The Do-All
problem is considered solved, when all tasks are performed and at least one non-faulty
processor knows about this.

Background and prior results. The efficiency of algorithmic solutions to the gossip prob-
lem in synchronous message-passing models is measured in terms of time and the number
of point-to-point messages. The best deterministic solution for the gossip problem under

132 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

adaptive adversaries that cause processor crashes is due to Chlebus and Kowalski [7]. Other
work on the gossip problem in failure-prone settings dealt with link failures or proces-
sor failures under oblivious adversaries, or considered random failures—see the survey by
Pelc [17].

A trivial solution to the gossip problem is to have every processor send its rumor to all
other processors. This requires O(1) time and O(p2) messages. To achieve better message
complexity, Chlebus, and Kowalski [7] trade computation steps for messages. Their algo-
rithm runs in O(log2 p) time, sends O(p1.77) point-to-point messages, and tolerates up to
p − 1 crashes. They also presented a lower bound for the gossip problem that states that
the time has to be at least �(log p/ log log p) in order for the message complexity to be
O(p polylog p). They also showed how to use their gossip algorithm to obtain an efficient
synchronous algorithm for the consensus problem (processors must agree on a common
value).

Algorithms for the Do-All problem in the message-passing models are evaluated ac-
cording to the number of computation steps taken in performing the tasks (i.e., the avail-
able processor steps [14]), and according to their communication efficiency that accounts
for all point-to-point messages. Trivial solutions to Do-All are obtained by having each
processor obliviously perform each of the n tasks. Such solutions have work �(n · p) and
require no communication. To achieve better work efficiency we trade messages for
computation steps.

Algorithms solving Do-All have been provided by Dwork et al. [10], by De Prisco et al. [9],
and by Galil et al. [11]. (The analysis in [10] uses task-oriented work that allows processors
to idle.) The algorithm by Galil et al. [11] has work O(n + fp) and message complexity
O(fp�+p min{f +1, log p}), wheref is number of crashes. These deterministic algorithms
rely on single coordinators or checkpointing. Such strategies are subject to the lower bound
of �(n + (f + 1)p) on work [9]. The algorithm of Chlebus et al. [5] beats this lower
bound by using multiple coordinators. This algorithm (using the analysis in [13]) has work
O(log f (n + p log p/ log(p/f))) and message complexity O(n + p log p/ log(p/f) + pf)
when f �p/ log p, and work O(log f (n + p log p/ log log p)) and message complexity
O(n + p log p/ log log p + pf) when f > p/ log p, however it uses reliable broadcast
(the message complexity still accounts for all point-to-point messages).

We seek solutions that obtain better work and message efficiency and that use the con-
ventional point-to-point messaging. We see the key to such solutions in the ability to share
knowledge among processors by means that are less authoritarian than the use of coordi-
nators. Chlebus et al. [6] pursued such an approach and developed an algorithm with the
combined work and message complexity of O(n + p1.77), however, the work bound is still
close to the quadratic bound obtained by oblivious algorithms.

An important aspect of Do-All algorithms is the sequencing of tasks done by each pro-
cessor. The algorithms of Anderson and Woll [4] for the shared-memory model and of
Malewicz et al. [16] for partitionable networks use approaches that provide processors with
sequences of tasks based on permutations with certain combinatorial properties.

Contributions. Our objectives are to improve the efficiency of solutions for the gos-
sip problem with p processors and to demonstrate the utility of the new solution. The
first objective is achieved by providing a new solution for the gossip problem with the
help of communication over expander graphs and by using permutations with specific

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 133

combinatorial properties. The second objective is met by using the gossip algorithm to
solve the p-processor, n-task Do-All problem using an algorithmic paradigm that does not
rely on coordinators, checkpointing, or reliable broadcast. Instead we use an approach where
processors share information using our gossip algorithm, where the point-to-point messag-
ing is constrained by means of a communication graph that represents a certain subset
of the edges in a complete communication network. Our approach also equips processors
with schedules of tasks based on permutations that we show to exist. Thus the two major
contributions presented in this paper are as follows:
1. We present a new algorithm for the gossip problem that for p processors has time com-

plexity O(log2 p) and message complexity O(p1+�), for any � > 0.
Our algorithm substantially improves on the message complexity M = O(p1.77) of
the previously best known algorithm of Chlebus and Kowalski [7], that has the same
asymptotic time complexity.

2. We demonstrate the strength and utility of our gossip algorithm by presenting a new
algorithm for p processors that solves the Do-All problem with n tasks in the presence of
any pattern of f crashes (f < p) with work complexity W = O(n+p·min{f +1, log3 p})
and message complexity M = O(fp� + p min{f + 1, log p}), for any � > 0. The
algorithm uses our new gossip algorithm as a building block to implement information
sharing.
This result improves the work complexity W = O(n + fp) of the algorithm of Galil
et al. [11], while obtaining the same message complexity. We also improve on the result
of Chlebus et al. [6] that has W = O(n+p1.77) and M = O(p1.77). Unlike the algorithm
of Chlebus et al. [5] that has comparable work complexity but relies on reliable broadcast,
our algorithm uses simple point-to-point messaging.
The complexity analysis of our algorithms relies on permutations that we show to exist.

The required permutations can be identified through exhaustive search, and it is an open
problem how to construct such permutations efficiently. We show that the algorithms are
correct when using arbitrary permutations, however, in that case the efficiency cannot be
guaranteed. When using random permutations, then the time, work and message bounds be-
come expected bounds. Note that when using random permutations our algorithms compare
favorably to the previous randomized solutions for adaptive adversaries [7,6].

Document structure. We define the model of computation, the problems, and complexity
measures in Section 2. In Section 3 we develop combinatorial tools used in the analysis of
algorithms. The new gossip algorithm and its analysis is in Section 4. In Section 5 we give
the new Do-All algorithm and its analysis. Section 6 concludes the paper with a summary
of results and future work plans.

2. Models and definitions

Here we define the models, the problems we consider, and the complexity measures.
Distributed setting. We consider a system consisting of p synchronous message-passing

processors; each processor has a unique identifier (pid) from the set [p] = {1, 2, . . . , p}.
We assume that p is fixed and is known to all processors. Processor activities are structured
in terms of synchronous steps, each taking constant time.

134 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

Model of failures. We assume the fail-stop processor model [18], where a processor may
crash at any moment during the computation (including within a step). Once crashed, the
processor does not perform any other steps and it does not restart.

We let an omniscient adversary determine when to impose crashes, and we use the
term failure pattern to denote the set of events, i.e., crashes, caused by the
adversary. Following [14], we define a failure pattern F as a set of triples 〈crash, pid, t〉
where crash is the event caused by the adversary, pid is the identifier of the processor
that crashes, and t is the step of the computation in which the adversary forced processor
pid to crash. We require that any failure pattern F contains at most one triple 〈crash, pid, t〉
for any pid, i.e., if processor pid crashes, the step t during which it crashes is uniquely
defined.

When a computation occurs in the presence of a failure pattern F, we say that processor
pid ∈ [p] survives step i, if for all steps j � i, 〈crash, pid, j〉 /∈ F .

For a failure pattern F, we define its size |F | to be the number of crashes. We let f denote
the maximum number of crashes that the adversary can cause. For the purpose of this paper
we consider only the failure patterns with |F |�f < p, that is we require that the adversary
leaves at least one processor operational to ensure computational progress. Then, we define
the failure model F to be the set of all failure patterns F with |F |�f < p. The processors
have no knowledge of F, |F |, or f (in particular, we require that algorithms must be correct
for any F as long as |F | < p).

Communication. We assume a known upper bound on message delays. Specifically, each
processor can send a message to any subset of processors in one step and the message is
delivered to each (non-faulty) recipient in the next step. Messages are not corrupted and
are not lost in transit. A crash may occur at any point during a step. Any sends and receives
preceding the crash complete correctly (and no sends or receives following the crash occur).
We do not assume reliable multicast: if a processor crashes during its multicast then an
arbitrary subset of the recipients gets the message.

The Gossip problem. We define the Gossip problem as follows:
Given a set of p processors, where initially each processor has a distinct piece of

information, called a rumor, the goal is for each processor to learn all the rumors in
the presence of any pattern of crashes. The following conditions must be
satisfied:
(1) Correctness:

(a) All non-faulty processors learn the rumors of all non-faulty processors,
(b) For every crashed processor v, non-faulty processor w either knows that v has

crashed, or w knows v’s rumor.
(2) Termination: Every non-faulty processor terminates its protocol.
We let Gossip(p, f) stand for the Gossip problem for p processors (and p rumors) and any
pattern of crashes F ∈ F with |F |�f < p.

Tasks. We define a task to be a computation that can be performed by any processor in
at most one time step; its execution does not depend on any other task. The tasks are also
idempotent, i.e., executing a task many times and/or concurrently has the same effect as
executing the task once. Tasks are uniquely identified by their task identifiers from the set
T = [n]. For brevity we refer to a task identifier as tid in the rest of the paper. We assume
that n is fixed and is known to all processors.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 135

The Do-All problem. We define the Do-All problem as follows:
Given a set T of n tasks, perform all tasks using p processors, in the presence of any

pattern of crashes. The following conditions must be satisfied:
(1) Correctness: All n tasks are completed and at least one non-faulty processor knows this.
(2) Termination: Every non-faulty processor terminates its protocol.

We let Do-All(n, p, f) stand for Do-All for n tasks, p processors, and any pattern of
crashes F ∈ F with |F |�f < p.

Measuring efficiency. We define the measures of efficiency used in studying the com-
plexity of the Gossip and the Do-All problems. For the Gossip problem we consider time
complexity and message complexity. Time complexity is measured as the number of parallel
steps taken by the processors by the termination time, where the termination time is defined
to be the first step when the correctness condition is satisfied and at least one (non-faulty)
processor terminates its protocol. 1 For a given problem, if � is the termination time of a
specific execution of an algorithm, then we say that the algorithm solves the problem by
time � in that execution.

Definition 2.1. If a p-processor algorithm solves a problem in the presence of a failure
pattern F in the failure model F by time �(p, F), then its time complexity T is defined as

T (p, f) = max
F∈F , |F |�f

{�(p, F)} .

Message complexity is measured as the total number of point-to-point messages sent by
the processors by termination time. When a processor communicates using a multicast, its
cost is the resultant total number of point-to-point messages. For a p-processor computation
subject to a failure pattern F ∈ F , denote by Mi(p, F) the number of point-to-point
messages sent by the processors in step i of the computation.

Definition 2.2. If a p-processor algorithm solves a problem in the presence of a
failure pattern F in the failure model F by time �(p, F), then its message complexity M is
defined as

M(p, f) = max
F∈F , |F |�f

{ ∑
i ��(p,F)

Mi(p, F)

}
.

In the cases where message complexity M depends on the size of the problem n, we
similarly define message complexity as M(n, p, f).

In measuring work complexity, we assume that a processor performs a unit of work
per unit of time. Note that the idling processors consume a unit of work per step. For a
p-processor, n-task computation subject to a failure pattern F ∈ F , denote by Pi(n, p, F)

the number of processors that survive step i of the computation.

Definition 2.3. If a p-processor algorithm solves a problem of size n in the presence
of a failure pattern F in the failure model F by time �(n, p, F), then its work W is

1 The complexity results in this paper, except for the results in Section 5.4, also hold for a stronger definition
of the termination time that requires that each non-faulty processor terminates its protocol.

136 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

defined as

W(n, p, f) = max
F∈F , |F |�f

{ ∑
i ��(n,p,F)

Pi(n, p, F)

}
.

3. Combinatorial tools

We now develop the tools used in controlling the message complexity of our gossip
algorithm (presented in the next section).

3.1. Communication graphs

We first describe communication graphs—conceptual data structures that constrain com-
munication patterns in our gossip algorithm.

Informally speaking, the computation begins with a communication graph that contains
all nodes, where each node represents a processor and each edge represents a communi-
cation link between processors. Each processor v can send a message to any other pro-
cessor w that v considers to be non-faulty and that is a neighbor of v according to the
communication graph. As processors crash, meaning that nodes are “removed” from the
graph, the neighborhood of the non-faulty processors changes dynamically such that the
graph induced by the remaining nodes guarantees “progress in communication”: progress
in communication according to a graph is achieved if there is at least one “good” con-
nected component, which evolves suitably with time and satisfies the following properties:
(i) the component contains “sufficiently many” nodes so that collectively they have learned
“suitably many” rumors, (ii) it has “sufficiently small” diameter so that information can be
shared among the nodes of the component without “undue delay”, and (iii) the set of nodes
of each successive good component is a subset of the set of nodes of the previous good
component.

We use the following terminology and notation. Let G = (V , E) be a (undirected)
graph, with V the set of nodes (representing processors, |V | = p) and E the set of edges
(representing communication links). We denote by GQ the subgraph of G that it is induced
by the subset Q of V. Given GQ, we define NG(Q) to be the subset of V consisting of all
the nodes in Q and their neighbors in G. The maximum node degree of graph G is denoted
by �.

Let GVi
be the subgraph of G induced by the sets Vi of nodes. Each set Vi corresponds

to the set of processors that have not crashed by step i of a given computation. Hence
Vi+1 ⊆ Vi (since processors do not restart). Also, each |Vi |�p − f , since no more than
f < p processors may crash in a given computation. Let GQi

denote a component of GVi

where Qi ⊆ Vi .
Chlebus et al. [6] formulated the notion of a “good” component (i.e., subgraph) GQi

of
a subgraph GVi

of graph G by setting Qi = P(Vi), where P is a witness function that is
required by graph G in order to satisfy a certain property, called property R:

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 137

Definition 3.1 (Chlebus et al. [6]). Graph G satisfies PROPERTY R(p, f) if there is a func-
tion P, which assigns subgraph P(R) ⊆ G to each subgraph R ⊆ G of size at least p − f ,
such that the following hold:

R.1 : P(R) ⊆ R. R.3 : The diameter of P(R) is at most 30 log p + 1.

R.2 : |P(R)|� |R|/7. R.4 : If R1 ⊆ R2 then P(R1) ⊆ P(R2).

Let L(p, �0) denote the family of constructive regular graphs of p nodes and degree �0,
that have good expansion properties, and were introduced by Lubotzky et al. [15]. These
graphs are defined and can be constructed for each number p′ of the form q(q2 − 1)/2,
where q is a prime integer congruent to 1 modulo 4. The node degree �0 can be any number
such that �0 −1 is a prime congruent to 1 modulo 4 and a quadratic nonresidue modulo q. It
follows, from the properties of the distribution of prime numbers (see e.g. [8]), that �0 can
be selected to be a constant independent of p and q such that p′ = q(q2 − 1)/2 = �(p).
Since for each p there is one such number p′ = �(p), we let each processor simulate O(1)

nodes, and we henceforth assume that p is as required so that L(p, �0) can be constructed.
In [6] the authors extended the result of Upfal [19], who showed that there is a function
P ′ such that if R is a subgraph of L(p, �0) of size at least 71

72 · p then subgraph P ′(R)

of R has size at least |R|/6 and diameter at most 30 log p. (These constants in the case of
linear-size subgraphs can be improved, see [2].) Let Gk be the kth power of graph G, that
is, Gk = (V , E′), where the edge (u, v) ∈ E′ if and only if there is a path between u and v

in G of length at most k.
In [6] the following lemma was proved.

Lemma 3.1 (Chlebus et al. [6]). For every f < p there exists a positive integer j such
that graph L(p, �0)

j has PROPERTY R(p, f). Moreover, the maximum degree � of graph
L(p, �0)

j is O((p/p − f)2 log� �0), for some absolute 2 constant �, which for �0 = 74
could be taken equal to � = 27

5 .

However, the above property is too strong for our purpose and applied to the commu-
nication analysis of our gossip algorithm does not yield the desired result. Therefore, we
define a weaker property that yields the desired results with our analysis:

Definition 3.2. Graph G = (V , E) has the Compact Chain Property CCP(p, f, �), if:
(1) The maximum degree of G is at most (p/p − f)1+�,
(2) For a given sequence V1 ⊇ · · · ⊇ Vk (where V = V1), where |Vk|�p − f , there is a

sequence Q1 ⊇ · · · ⊇ Qk such that for every i = 1, . . . , k:
(a) Qi ⊆ Vi ,
(b) |Qi |� |Vi |/7, and
(c) the diameter of GQi

is at most 31 log p.

We now prove the existence of graphs satisfying the CCP property for some parameters.

2 An absolute constant is a constant whose value is absolutely the same under all circumstances and for all
parameters p and f.

138 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

Lemma 3.2. For p > 2, every f < p and constant � > 0, there is a graph G of O(p)

nodes satisfying property CCP(p, f, �).

Proof. Notice that for p−f �√
p�, the complete graph Kp satisfies property CCP(p, f, �),

for every constant � > 0. The same holds if p−f �p/4, by applying Lemma 3.1 and setting
Qi = P(Gi) (in this case � is constant). For the remainder of the proof we assume that√

p� < p − f < p/4.
Fix f and � > 0. Our candidate for graph G is a graph L(p, �), where we take the

smallest possible ��9 + (p/(p − f))1+�. (By properties of graphs L, we can find � =
O(1 + (p/(p − f))1+�).) Let � = 2

√
� − 1 be the bound for the absolute value of the

second eigenvalue of graph L(p, �) (see [15]). Alon and Chung [1] showed that for every
set R ⊆ V , the number of edges in the subgraph induced by R (denoted by e(R)) can be
bounded as follows:∣∣∣∣e(R) − � · |R|2

2p

∣∣∣∣ � �

2

(
1 − |R|

p

)
|R|. (1)

For a given graph induced by R such that
√

p� < |R| < p/4 and a subset Q ⊆ R, we denote
by SQ,R the family of sets S ⊇ Q such that S is a maximal (in the sense of inclusion) subset
of R such that no node in S has more than �(|R|/2p) neighbors outside of S in graph G. We
call a subgraph induced by S a simple expander, if for every S′ ⊆ S of size at most |S|/2,
|NS(S′)|�4|S′|/3. We assume that Q is a simple expander that has size less than |R|/7.

Claim. For p > 2, if
√

p� < |R| < p/4 then for every subset S ∈ SQ,R , S is of size
|R|/7 and a subgraph induced by S is a simple expander. Hence a diameter of the subgraph
induced by S is at most 4 log p.

We prove the claim. Consider any S ∈ SQ,R . First we show that |S|� |R|/7. Suppose
to the contrary, that |S| < |R|/7. By applying inequality (1) and setting � > 9 and � =
2
√

� − 1, we obtain that

e(V \S) � � (p − |S|)2

2p
+ �|S|

2p
(p − |S|)

� � (p − |S|)
2

− � (p − |S|)
2

|S|
p

+ � (p − |S|)
3

|S|
p

= � (p − |S|)
2

− � (p − |S|)
6

|S|
p

<
� (p − |S|)

2
− � (p − (|R|/7))

6

|S|
p

.

This contradicts the definition of S, since from the definition of S it follows that the number
of edges having one end in S and the other end outside of S, is at most �|R||S|/2p, and
consequently

e(V \S)� � (p − |S|)
2

− �|R||S|
4p

>
� (p − |S|)

2
− � (p − (|R|/7))

6

|S|
p

.

Next we show that for every S′ ⊆ S of size at most |S|/2, we have |NS(S′)|�4|S′|/3.
By definition of S, the total number of edges incident to nodes in S′ is at least

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 139

|S′|�(1 − (|R|/2p)). On the other hand, using inequality (1) we obtain

e(S′)� � · |S′|2
2p

+ �

2

(
1 − |S′|

p

)
|S′|.

Thus the number of edges having one end in S′ and the other end outside of S′ is at least

|S′|�
(

1 − |R|
2p

)
− e(S′) � |S′|�

(
1 − |R|

2p

)
− � · |S′|2

2p
− �

2

(
1 − |S′|

p

)
|S′|

� |S′|� ·
(

1 − |R| + |S′|
2p

− 1√
� + 1

)
� |S′|�/3.

Since every node in NS(S′)\S′ has at most � neighbors in S′, it follows that |NS(S′)\S′|
�(|S′|�/3)/� = |S′|/3. Consequently S is a simple expander. We show that the diameter
of S is at most 2 log3/2 p < 4 log p. Consider two nodes v, w ∈ S. By the simple-expansion
property, the number N

S
log3/2 p (v) (and also N

S
log3/2 p (w)) of nodes of distance log3/2 p

from v (and also from w) in the graph induced by S is greater than p/2. Consequently
N

S
log3/2 p (v) ∩ N

S
log3/2 p (w)
= ∅, and then the shortest path between v and w is of length at

most 2 log3/2 p < 4 log p. This completes the proof of the claim.
We now show how to construct a sequence Q1 ⊇ · · · ⊇ Qk for a sequence V1 ⊇ · · · ⊇ Vk ,

so that property CCP(p, f, �) is satisfied. We proceed inductively: we apply the claim to the
set R = Vk and define Qk to be a set from SVk,∅. If we have defined set Qi , for 1 < i�k,
we apply the claim to the set R = Vi−1 and define Qi−1 to be a set in SVi−1,Qi

including
set Qi . The inductive proof shows that the Qis are well defined and that graph G satisfies
property CCP(p, f, �). More precisely, the following invariant holds after construction of
set Qi :
(a) Qi ⊆ Vi and Qi ⊇ · · · ⊇ Qk ,
(b) |Qi |� |Vi |/7,
(c) the diameter of GQi

is at most 31 log p,
(d) every node in Qi has at most �(|R|/2p) neighbors outside of Qi in graph G.

We show that for i > 1 the set Qi−1 is well defined and satisfies the invariant. For i = k

it follows directly from the claim. Consider 1 < i < k. From property (d) in the invariant
after step i it follows that if we apply the claim to the set R = Vi−1 then Qi is included
in some S ∈ SVi−1,Qi

. Consequently the definition of Qi−1 is correct. By the thesis of the
claim applied to such R and S we obtain properties (b) and (c) of invariant after step i − 1.
Properties (a) and (d) follow directly from the definition of Qi−1. �

Remark 3.1. In the presentation up to this point we included among the properties of
interest the property that Q1 ⊇ · · · ⊇ Qk . We believe that it is a potentially valuable
property of independent interest that can be used in the analysis of fault-tolerant algorithms.
As it happens with our algorithms in this paper, we can obtained the needed results without
resorting to using this chain property.

140 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

3.2. Sets of permutations and their properties

We now deal with sets of permutations that satisfy certain properties. These permutations
are used by the processors in the gossip algorithm to decide to what subset of processors they
send their rumor in each step of a given execution. Consider the group St of all permutations
on set {1, . . . , t}, with the composition operation ◦, and identity et (t is a positive integer).
For permutation � = 〈�(1), . . . , �(t)〉 in St , we say that �(i) is a d-left-to-right maximum
(d-lrm in short), if there are less than d previous elements in � of value greater than �(i),
i.e., |{�(j) : �(j) > �(i) ∧ j < i}| < d.

Let Υ and �, Υ ⊆ �, be two sets containing permutations from St . For every � in St ,
let � ◦ Υ denote the set of permutation {� ◦ � : � ∈ Υ }. For a given permutation �, let
(d)-LRM(�) denote the number of d-left-to-right maxima in �. Now we define the notion
of surfeit. 3 For a given Υ and permutation � ∈ St , let (d, |Υ |)-Surf(Υ, �) be equal to∑

�∈Υ (d)-LRM(�−1 ◦ �). We then define the (d, q)-surfeit of set � as (d, q)-Surf(�) =
max{(d, q)-Surf(Υ, �) : Υ ⊆ � ∧ |Υ | = q ∧ � ∈ St }. Finally, we let Hx denote the
Harmonic function of x, where x is a positive natural number.

We obtain the following results for (d, q)-surfeit.

Lemma 3.3. Let Υ be a set of q random permutations from St . For every fixed positive
integer d, the probability of event (d, q)-Surf (Υ, et) > t ln t + 10qd ln(t + p) is at most
e−[t ln t+9qdHt+p] ln(9/e).

Proof. First observe, that for d � t/e the thesis is obvious. In the rest of the proof we assume
d < t/e.

First we describe the way of generating random permutations. This is done by induction on
the number of elements i� t that are permuted. When i = 1, there is only one permutation
and this permutation is random. Suppose we can generate random permutation of i − 1
different elements, we show how to permute i elements. First we choose randomly one
element from the i elements and put it as the last element in the permutation. By induction
we generate a random permutation from the remaining i − 1 elements and we put these
elements as the first i − 1 elements in the permutation. Simple induction proof shows that
every permutation of i elements has equal probability, since it is a concatenation of two
independent and random events.

It follows that the random set of permutation Υ can be selected by applying the above
rule q times, independently. Let X(�, i), for i = 1, . . . , t , be the random value such that
X(�, i) = 1 if �(i) is a d-lrm in �, and X(�, i) = 0 otherwise.

Claim. Using the above method of generating random permutation we can show that if �
is a random permutation, then X(�, i) = 1 with probability min{d/i, 1}, independently of
other values X(�, j), for j > i. More precisely, Pr[X(�, i) = 1|∧j>i X(�, j) = aj] =
min{d/i, 1}, for any 0–1 sequence ai+1, . . . , at .

3 We will show that surfeit relates to the redundant activity in our algorithms, i.e., “overdone” activity, or literally
“surfeit”.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 141

This is because �(i) might be a d-lrm if during the (t − i − 1)th step of the generation of
� we selected randomly one of the d greatest remaining elements (there are i�d remaining
elements in this step of generation; if i = d , then by definition �(i) is a d-lrm with probability
one). Hence the claim is proved.

First notice that for every � ∈ Υ and every i = 1, . . . , d, �(i) is d-lrm. Second, observe
that E

[∑
�∈Υ

∑t
i=d+1X(�, i)

] = qd ·∑t
i=d+1

1
i

= qd(Ht − Hd). We use Chernoff bound
(see [3])

Pr

[∑
j

Yj > E

[∑
j

Yj

]
(1 + b)

]

<

(
eb

(1 + b)1+b

)E[∑j Yj]
< e−E[∑j Yj](1+b) ln(1+b)/e

,

where Yj are independent random 0–1 variables and b > 0 is any constant, to prove
the lemma.

We use Chernoff bound and derive the following (for some p < t):

Pr

[∑
�∈Υ

t∑
i=d+1

X(�, i) > t ln t + 9qdHt+p

]

= Pr

[∑
�∈Υ

t∑
i=d+1

X(�, i) > qd(Ht − Hd) · t ln t + 9qdHt+p

qd(Ht − Hd)

]

�e
−qd(Ht−Hd)

t ln t+9qdHt+p
qd(Ht −Hd)

ln
t ln t+9qdHt+p
e·qd(Ht −Hd)

�e−[t ln t+9qdHt+p] ln(9/e)

since t ln t+9qdHt+p

qd(Ht−Hd)
> 1 (the condition for using Chernoff bound of this type).

From the above and the fact that ln i�Hi � ln i + 1, we obtain that

Pr

[∑
�∈Υ

t∑
i=1

X(�, i) > t ln t + 10qd ln(t + p)

]

�Pr

[∑
�∈Υ

t∑
i=d+1

X(�, i) > t ln t + 9qdHt+p

]

�e−[t ln t+9qdHt+p] ln(9/e).

This completes the proof of the lemma. �

Theorem 3.4. Let � be a set of p random permutations from St . The probability of event
“there are positive integers d and q �p, (d, q)-Surf (�) > t ln t + 10qd ln(t + p)” is at
most e−t ln t ·ln(9/e2).

Proof. Observe that for d � t/e the result is straightforward. In the rest of the proof we
assume that d < t/e.

First notice, that if Υ is a random set of permutations, then for an arbitrary permutation
� on the set {1, . . . , t}, the set �−1 ◦ Υ is also a random set of permutations, since con-
traction with permutation is a bijective operation on sets of q permutations. Consequently,

142 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

by Lemma 3.3, (d, q)-Surf(Υ, �) > t ln t + 10qd ln(t + p) holds with probability at most
e−[t ln t+9qdHt+p] ln(9/e).

Hence the probability that a random set � of p permutations satisfies (d, q)-Surf(�) >

t ln t + 10qd ln(t + p) is at most

t ! ·
(

p

q

)
· e−[t ln t+9qdHt+p] ln(9/e) � et ln t+q ln(ep/q)−[t ln t+9qdHt+p] ln(9/e)

� e−[t ln t+8qdHt+p] ln(9/e2).

It follows, that the probability of event:
“there are positive integers d and q such that (d, q)-Surf(�) > t ln t + 10qd ln(t + p)”,

is at most

�t/e�−1∑
d=1

p∑
q=1

e−[t ln t+8qdHt+p] ln(9/e2)
∞∑

d=�t/e�

p∑
q=1

0�e−t ln t ·ln(9/e2),

for p�1 and t �3. �

Using the probabilistic method [3] we obtain the following result.

Corollary 3.5. There is a set of p permutations � from St such that, for every positive
integers d and q �p, (d, q)-Surf (�)� t ln t + 10qd ln(t + p).

The efficiency of our gossip algorithm relies on the existence of the permutations in the
thesis of the corollary (however the algorithm is correct for any permutations).

4. The gossip algorithm

Our new gossiping algorithm, called GOSSIP�, improves on the algorithm in [7]. The
improvement is obtained by using the better properties of communication graphs described
in Lemma 3.2, the set of permutations with certain properties stated in Corollary 3.5, and
by using many epochs instead of the two epochs in [7] (epochs are referred to as phases in
[7]). Moreover, the communication graphs we consider have dynamically changing degree,
as opposed to [7] where the authors consider graphs with fixed degree. The challenges
motivating our techniques are: (i) how to assure low communication during every epoch,
and (ii) how to switch between epochs without a “huge complexity hit”.

4.1. Description of algorithm GOSSIP�

Suppose a constant � is given such that 0 < � < 1/3. The algorithm proceeds in a loop
that is repeated until each non-faulty processor v learns either the rumor of every processor
w or that w has crashed. A single iteration of the loop is called an epoch. The algorithm
terminates after �1/�� − 1 epochs. Each of the first �1/�� − 2 epochs consists of 	 log2 p

phases, where 	 is such that 	 log2 p is the smallest integer that is larger than 341 log2 p.
Each phase is divided into two stages, the update stage, and the communication stage.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 143

Initialization

statusv = collector;
ACTIVEv = 〈1, 2, . . . , p〉;
BUSYv = 〈�v(1),�v(2), . . . ,�v(p)〉;
WAITINGv = 〈�v(1),�v(2), . . . ,�v(p)〉\〈v〉;
RUMORSv = 〈(v, rumorv)〉;
NEIGHBv = NG1 (v)\{v};
CALLINGv = {};
ANSWERv = {};

Gossip Algorithm

for � = 1 to �1/�� − 2 do % iterating for each epoch �

if BUSYv is empty then set statusv to idle;
NEIGHBv = {w : w∈ ACTIVEv ∧ w∈ NG�

(v)\{v}};
repeat 	 log2 p times % iterating phases

update stage; % see description in Section 4.1.3
communication stage; % see description in Section 4.1.2

update stage; % Terminating epoch begins
if statusv = collector then

send 〈ACTIVEv , BUSYv , RUMORSv , call〉 to each processor in WAITINGv ;
receive messages;
send 〈ACTIVEv , BUSYv , RUMORSv , reply〉 to each processor in ANSWERv ;
receive messages;
update RUMORSv ; % see description in Section 4.1.4

Fig. 1. Algorithm GOSSIP�, stated for processor v; �v(i) denotes the ith element of permutation �v .

In the update stage processors update their local knowledge regarding other processors’
rumor (known/unknown) and condition (crashed/operational) and in the communication
stage processors exchange their local knowledge (more momentarily). We say that processor
v heard about processor w if either v knows the rumor of w or it knows that w has crashed.
Epoch �1/�� − 1 is the terminating epoch where each processor sends a message to all the
processors that it has not been heard about, requesting their rumor.

The pseudocode for the algorithm is given in Fig. 1. The details of the algorithm are
explained in the rest of this section. (In the code we assume, where needed, that every
if–then has an implicit else clause containing the necessary number of no-ops to match the
length of the code in the then clause; this is used to ensure the synchrony of the system.)

4.1.1. Local knowledge and messages
Initially each processor v has its rumorv and permutation �v from a set � of permutations

on [p], such that � satisfies the thesis of Corollary 3.5. Moreover, each processor v is
associated with the variable statusv . Initially statusv = collector (and we say that v is a
collector), meaning that v has not heard from all processors yet. Once v hears from all
other processors, then statusv is set to informer (and we say that v is an informer), meaning

144 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

that now v will inform the other processors of its status and knowledge. When processor v

learns that all non-faulty processors w also have statusw = informer then at the beginning
of the next epoch, statusv becomes idle (and we say that v idles), meaning that v idles until
termination, but it might send responses to messages (see call-messages below).

Each processor maintains several lists and sets. We now describe the lists maintained by
processor v:
• List ACTIVEv: it contains the pids of the processors that v considers to be non-faulty.

Initially, list ACTIVEv contains all p pids.
• List BUSYv: it contains the pids of the processors that v consider as collectors. Initially list

BUSYv contains all pids, permuted according to �v .
• List WAITINGv: it contains the pids of the processors that v did not hear from. Initially list

WAITINGv contains all pids except from v, permuted according to �v .
• List RUMORSv: it contains pairs of the form (w, rumorw) or (w, ⊥). The pair (w, rumorw)

denotes the fact that processor v knows processor w’s rumor and the pair (w, ⊥) means
that v does not know w’s rumor, but it knows that w has crashed. Initially list RUMORSv

contains the pair (v, rumorv).
(Note that the lists ACTIVE and RUMORS are used as sets. Since the other structures need to
be lists, for presentation purposes we adopt the convention that list structures are used for
collecting information, while set structures are used for sending information.)

A processor can send a message to any other processor, but to lower the message com-
plexity, in some cases (see communication stage) we require processors to communicate
according to a conceptual communication graph G�, �� �1/�� − 2, that satisfies property
CCP(p, p −p1−��, �) (see Definition 3.2 and Lemma 3.2). When processor v sends a mes-
sage m to another processor w, m contains lists ACTIVEv , BUSYv , RUMORSv , and the variable
type. When type = call, processor v requires an answer from processor w and we refer to
such message as a call-message. When type = reply, no answer is required—this message
is sent as a response to a call-message.

We now present the sets maintained by processor v:
• Set NEIGHBv: it contains the pids of the processors that are in ACTIVEv and that according

to the communication graph G�, for a given epoch �, are neighbors of v (NEIGHBv = {w :
w∈ACTIVEv ∧ w∈NG�

(v)\{v}}). Initially, NEIGHBv contains all neighbors of v (all nodes
in NG1(v)\{v}).

• Set CALLINGv: it contains the pids of the processors that v will send a call-message. Initially
CALLINGv is empty.

• Set ANSWERv: it contains the pids of the processors that v received a call-message. Initially
set ANSWERv is empty.

4.1.2. Communication stage
In this stage the processors communicate in an attempt to obtain information from other

processors. This stage contains four sub-stages:
• First sub-stage: every processor v that is either a collector or an informer (i.e., statusv
=

idle) sends message 〈ACTIVEv , BUSYv , RUMORSv , call〉 to every processor in CALLINGv . The
idle processors do not send any messages in this sub-stage.

• Second sub-stage: all processors (collectors, informers and idling) collect the information
sent to by the other processors in the previous sub-stage. Specifically, processor v collects

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 145

lists ACTIVEw, BUSYw and RUMORSw of every processor w that received a call-message from
and v inserts w in set ANSWERv .

• Third sub-stage: every processor (regardless of its status) responds to each processor that
received a call-message from. Specifically, processor v sends message 〈ACTIVEv , BUSYv ,
RUMORSv , reply〉 to the processors in ANSWERv and empties ANSWERv .

• Fourth sub-stage: the processors receive the responses to their call-messages.

4.1.3. Update stage
In this stage each processor v updates its local knowledge based on the messages it

received in the last communication stage. 4 If statusv = idle, then v idles. We now present
the six update rules and their processing. Note that the rules are not disjoint, and we apply
them in the order from (r1) to (r6):
(r1) Updating BUSYv or RUMORSv: For every processor w in CALLINGv (i) if v is an informer,

it removes w from BUSYv , (ii) if v is a collector and RUMORSw was included in one of
the messages that v received, then v adds the pair (w, rumorw) in RUMORSv and, (iii) if
v is a collector but RUMORSw was not included in one of the messages that v received,
then v adds the pair (w, ⊥) in RUMORSv .

(r2) Updating RUMORSv and WAITINGv: For every processor w in [p], (i) if (w, rumorw) is
not in RUMORSv and v learns the rumor of w from some other processor that received
a message from, then v adds (w, rumorw) in RUMORSv (updating RUMORSv), (ii) if both
(w, rumorw) and (w, ⊥) are in RUMORSv , then v removes (w, ⊥) from RUMORSv (up-
dating RUMORSv), (iii) if either of (w, rumorw) or (w, ⊥) is in RUMORSv and w is in
WAITINGv , then v removes w from WAITINGv (updating WAITINGv).

(r3) Updating BUSYv: For every processor w in BUSYv , if v receives a message from processor
v′ so that w is not in BUSYv′ , then v removes w from BUSYv .

(r4) Updating ACTIVEv and NEIGHBv: For every processor w in ACTIVEv (i) if w is not in
NEIGHBv and v received a message from processor v′ so that w is not in ACTIVEv′ , then
v removes w from ACTIVEv , (ii) if w is in NEIGHBv and v did not receive a message from
w, then v removes w from ACTIVEv and NEIGHBv , and (iii) if w is in CALLINGv and v did
not receive a message from w, then v removes w from ACTIVEv .

(r5) Changing status: If the size of RUMORSv is equal to p and v is a collector, then v becomes
an informer.

(r6) Updating CALLINGv: Processor v empties CALLINGv and (i) if v is a collector then it
updates set CALLINGv to contain the first p(�+1)� pids of list WAITINGv (or all pids of
WAITINGv if sizeof(WAITINGv) < p(�+1)�) and all pids of set NEIGHBv , and (ii) if v is
an informer then it updates set CALLINGv to contain the first p(�+1)� pids of list BUSYv

(or all pids of BUSYv if sizeof(BUSYv) < p(�+1)�) and all pids of set NEIGHBv .

4.1.4. Terminating epoch
Epoch �1/��−1 is the last epoch of the algorithm. In this epoch, each processor v updates

its local information based on the messages it received in the last communication stage of
epoch �1/��−2. If after this update processor v is still a collector, then it sends a call-message

4 In the first update stage of the first phase of epoch 1, where no communication has yet to occur, no update of
the lists or sets takes place.

146 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

to every processor that is in WAITINGv (list WAITINGv contains the pids of the processors that
v does not know their rumor, or does not know whether they have crashed). Then every
processor v receives the call-messages sent by the other processors (set ANSWERv is updated
to include the senders). Next, every processor v that received a call-message sends its local
knowledge to the sender (i.e. to the members of set ANSWERv). Finally each processor v

updates RUMORSv based on any received information. More specifically, if a processor w

responded to v’s call-message (meaning that v now learns the rumor of w), then v adds
(w, rumorw) in RUMORSv . If w did not respond to v’s call-message, and (w, rumorw) is not
in RUMORSv (it is possible for processor v to learn the rumor of w from some other processor
v′ that learned the rumor of w before processor w crashed), then v knows that w has crashed
and adds (w, ⊥) in RUMORSv .

4.2. Correctness of algorithm GOSSIP�

We show that algorithm GOSSIP� solves the Gossip(p, f) problem correctly, meaning that
by the end of epoch �1/�� − 1 each non-faulty processor has heard about all other p − 1
processors. First we show that no non-faulty processor is removed from a processor’s list
of active processors.

Lemma 4.1. In any execution of algorithm GOSSIP�, if processors v and w are non-faulty
by the end of any epoch � < �1/�� − 1, then w is in ACTIVEv .

Proof. Consider processors v and w that are non-faulty by the end of epoch � < �1/��−1.
We show that w is in ACTIVEv . The proof of the inverse is done similarly. The proof proceeds
by induction on the number of epochs.

Initially all processors (including w) are in ACTIVEv . Consider phase s of epoch 1 (for
simplicity assume that s is not the last phase of epoch 1). By the update rule, a processor w

is removed from ACTIVEv if v is not idle and
(a) during the communication stage of phase (s − 1), w is not in NEIGHBv and v received a

message from a processor v′ so that w is not in ACTIVEv′ ,
(b) during the communication stage of phase (s − 1), w is in NEIGHBv and v did not receive

a message from w, or
(c) v sent a call-message to w in the communication stage of phase (s − 1) of epoch 1 and

v did not receive a response from w in the same stage.
Case (c) is not possible: Since w is non-faulty in all phases s′ of epoch 1, w receives the

call-message from v in the communication stage of phase (s − 1) and adds v in ANSWERw.
Then, processor w sends a response to v in the same stage. Hence v does not remove w

from ACTIVEv . Case (b) is also not possible: Since w is non-faulty and w is in NEIGHBv ,
by the properties of the communication graph G1, v is in NEIGHBw as well (and since v

is non-faulty). From the description of the first sub-stage of the communication stage, if
statusw
= idle, w sends a message to its neighbors, including v. If statusw = idle, then w

will not send a message to v in the first sub-stage, but it will send a reply to v′ call-message
in the third sub-stage. Therefore, by the end of the communication stage, v has received a
message from w and hence it does not remove w from ACTIVEv . Case (a) is also not possible:
This follows inductively, using points (b) and (c): no processor will remove w from its set

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 147

of active processors in a phase prior to s and hence v does not receive a message from any
processor v′ so that w is not in ACTIVEv′ .

Now, assuming that w is in ACTIVEv by the end of epoch � − 1, we show that w is still
in ACTIVEv by the end of epoch �. Since w is in ACTIVEv by the end of epoch � − 1, w is
in ACTIVEv at the beginning of the first phase of epoch �. Using similar arguments as in the
base case of the induction and from the inductive hypothesis, it follows that w is in ACTIVEv

by the end of the first phase of epoch �. Inductively it follows that w is in ACTIVEv by the
end of the last phase of epoch �, as desired. �

Next we show that if a non-faulty processor w has not heard from all processors yet then
no non-faulty processor v removes w from its list of busy processors.

Lemma 4.2. In any execution of algorithm GOSSIP� and any epoch � < �1/�� − 1, if
processors v and w are non-faulty by the end of epoch � and statusw = collector, then w

is in BUSYv .

Proof. Consider processors v and w that are non-faulty by the end of epoch � < �1/�� − 1
and statusw = collector. The proof proceeds by induction on the number of epochs.

Initially all processors w have status collector and w is in BUSYv (CALLINGv\NEIGHBv is
empty). Consider phase s of epoch 1. By the update rule, a processor w is removed from
BUSYv if
(a) at the beginning of the update stage of phase s, v is an informer and w is in CALLINGv , or
(b) during the communication stage of phase s, v receives a message from a processor v′

where w is not in BUSYv′ .
Case (a) is not possible: Since v is an informer and w is in CALLINGv at the beginning

of the update stage of phase s, this means that in the communication stage of phase s − 1,
processor v was already an informer and it sent a call-message to w. In this case, w would
receive this message and it would become an informer during the update stage of phase s.
This violates the assumption of the lemma.

Case (b) is also not possible: For w not being in BUSYv′ it means that either
(i) in some phase s′ < s, processor v′ became an informer and sent a call-message to w,

or
(ii) during the communication stage of a phase s′′ < s, v′ received a message from a

processor v′′ so that w was not in BUSYv′′ .
Case (i) implies that in phase s′ +1, processor w becomes an informer which violates the

assumption of the lemma. Using inductively case (i) it follows that case (ii) is not possible
either.

Now, assuming that by the end of epoch � − 1, w is in BUSYv we would like to show that
by the end of epoch �, w is still in BUSYv . Since w is in BUSYv by the end of epoch � − 1, w

is in BUSYv at the beginning of the first phase of epoch �. Using similar arguments as in the
base case of the induction and from the inductive hypothesis, it follows that w is in BUSYv

by the end of the first phase of epoch �. Inductively it follows that w is in BUSYv by the end
of the last phase of epoch �, as desired. �

We now show that each processor’s list of rumors is updated correctly.

148 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

Lemma 4.3. In any execution of algorithm GOSSIP� and any epoch �<�1/��−1,
(i) if processors v and w are non-faulty by the end of epoch � and w is not in WAITINGv ,

then (w, rumorw) is in RUMORSv , and
(ii) if processor v is non-faulty by the end of epoch � and (w, ⊥) is in RUMORSv , then w is

not in ACTIVEv .

Proof. We first prove part (i) of the lemma. Consider processors v and w that are non-faulty
by the end of epoch � and that w is not in WAITINGv . The proof proceeds by induction on
the number of epochs. The proof for the first epoch is done similarly as the proof of the
inductive step (that follows), since at the beginning of the computation each w
= v is in
WAITINGv and RUMORSv contains only the pair (v, rumorv), for every processor v.

Assume that part (i) of the lemma holds by the end of epoch � − 1, we would like to
show that it also holds by the end of epoch �. First note the following facts: no pair of the
form (w, rumorw) is ever removed from RUMORSv and no processor identifier is ever added
to WAITINGv . We use these facts implicitly in the remainder of the proof (cases (a) and (b)).
Suppose, to the contrary, that at the end of epoch � there are processors v, w which are
non-faulty by the end of epoch � and w is not in WAITINGv and (w, ⊥) is in RUMORSv . Take
v such that v put the pair (w, ⊥) to its RUMORSv as the earliest node during epoch � and this
pair has remained in RUMORSv by the end of epoch �. It follows that during epoch � at least
one of the following cases must have happened:
(a) Processor v sent a call-message to processor w in the communication stage of some

phase and v did not receive a response from w (see update rule (r1)). But since w

is not-faulty by the end of epoch � it replied to v according to the third sub-stage of
communication stage. This is a contradiction.

(b) During the communication stage of some phase processor v received a message from
processor v′ so that (w, ⊥) is in RUMORSv′ (see update rule (r2)). But this contradicts the
choice of v.

Hence part (i) is proved.
The proof of part (ii) of the lemma is analogous to the proof of part (i). The key argument

is that the pair (w, ⊥) is added in RUMORSv if w does not respond to a call-message sent
by v which in this case w is removed from ACTIVEv (if w was not removed from ACTIVEv

earlier). �

Finally we show the correctness of algorithm GOSSIP�.

Theorem 4.4. By the end of epoch �1/�� − 1 of any execution of algorithm GOSSIP�, every
non-faulty processor v either knows the rumor of processor w or it knows that w has
crashed.

Proof. Consider a processor v that is non-faulty by the end of epoch �1/�� − 1. Note that
the claims of Lemmas 4.1, 4.2, and 4.3 also hold after the end of the update stage of the
terminating epoch. This follows from the fact that the last communication stage of epoch
�1/�� − 2 precedes the update stage of the terminating epoch and the fact that these last
communication and update stages are no different from the communication and update
stages of prior epochs (hence the same reasoning can be applied to obtain the result).

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 149

If after this last update, processor v is still a collector, meaning that v did not hear from
all processors yet, according to the description of the algorithm, processor v will send a
call-message to the processors whose pid is still in WAITINGv (by Lemma 4.3 and the update
rule, it follows that list WAITINGv contains all processors that v did not hear from yet). Then
all non-faulty processors w receive the call-message of v and then they respond to v. Then
v receives these responses. Finally v updates list RUMORSv accordingly: if a processor w

responded to v’s call-message (meaning that v now learns the rumor of w), then v adds
(w, rumorw) in RUMORSv . If w did not respond to v’s call-message, and (w, rumorw) is not
in RUMORSv (it is possible for processor v to learn the rumor of w from some other processor
v′ that learned the rumor of w before processor w crashed), then v knows that w has crashed
and adds (w, ⊥) in RUMORSv .

Hence the last update that each non-faulty processor v performs on RUMORSv maintains the
validity that the list had from the previous epochs (guaranteed by the above three lemmas).
Moreover, the size of RUMORSv becomes equal to p and v either knows the rumor of each
processor w, or it knows that v has crashed, as desired. �

Note from the above that the correctness of algorithm GOSSIP� does not depend on whether
the set of permutations � satisfy the conditions of Corollary 3.5. The algorithm is correct
for any set of permutations of [p].

4.3. Analysis of algorithm GOSSIP�

Consider some set V�, |V�|�p1−��, of processors that are not idle at the beginning of
epoch � and do not crash by the end of epoch �. Let Q� ⊆ V� be such that |Q�|� |V�|/7
and the diameter of the subgraph induced by Q� is at most 31 log p. Q� exists because of
Lemma 3.2 applied to graph G� and set V�.

For any processor v, let CALLv = CALLINGv\NEIGHBv . Recall that the size of CALL is equal
to p(�+1)� (or less if list WAITING, or BUSY, is shorter than p(�+1)�) and the size of NEIGHB is at
most p(�+1)�. We refer to the call-messages sent to the processors whose pids are in CALL as
progress-messages. If processor v sends a progress-message to processor w, it will remove
w from list WAITINGv (or BUSYv) by the end of current stage. Let d = (31 log p + 1)p(�+1)�.
Note that d �(31 log p + 1) · |CALL|.

We begin the analysis of the gossip algorithm by proving a bound on the number of
progress-messages sent under certain conditions.

Lemma 4.5. The total number of progress-messages sent by processors in Q� from the
beginning of epoch � until the first processor in Q� will have its list WAITING (or list BUSY)
empty, is at most (d, |Q�|)-Surf (�).

Proof. Fix Q� and consider some permutation � ∈ Sp that satisfies the following property:
“Consider i < j �p. Let �i (respectively �j) be the time step in epoch � where some
processor in Q� hears about �(i) (respectively �(j)) the first time among the processors in
Q�. Then �i ��j .” (We note that it is not difficult to see that for a given Q� we can always find
� ∈ Sp that satisfies the above property.) We consider only the subset Υ ⊆ � containing
permutations of indexes from set Q�. To show the lemma we prove that the number of

150 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

messages sent by processors from Q� is at most (d, |Υ |)-Surf(Υ, �)�(d, |Q�|)-Surf(�).
Suppose that processor v ∈ Q� sends a progress-message to processor w. It follows from
the diameter of Q� and the size of set CALL in epoch �, that no processor v′ ∈ Q� had sent a
progress-message to w before 31 log p phases, and consequently the position of processor
w in permutation �v is at most d − |CALL|�d − p(�+1)� greater than the position of w in
permutation �v′ .

For each processor v ∈ Q�, let Pv contain all pairs (v, i) such that v sends a progress-
message to processor �v(i) by itself during the epoch �. We construct function h from the set⋃

v∈Q�
Pv to the set of all d-lrm of set �−1 ◦� and show that h is a one-to-one function. We

run the construction independently for each processor v ∈ Q�. If �v(k) is the first processor
in the permutation �v to whom v sends a progress-message at the beginning of epoch �, we
set h(v, k) = 1. Suppose that (v, i) ∈ Pv and we have defined function h for all elements
from Pv less than (v, i) in the lexicographic order. We define h(v, i) as the first j � i such
that (�−1 ◦ �v)(j) is a d-lrm not assigned yet by h to any element in Pv .

Claim. For every (v, i) ∈ Pv , h(v, i) is well defined.

We prove the claim. For the first element in Pv function h is well defined. For the first
d elements in Pv it is also easy to show that h is well defined, since the first d elements in
permutation �v are d-lrms. Suppose h is well defined for all elements from Pv less than (v, i)

and (v, i) is at least the (d + 1)st element in Pv . We show that h(v, i) is also well defined.
Suppose to the contrary, that there is no position j � i such that (�−1◦�v)(j) is a d-lrm and j is
not assigned by h before the step of construction for (v, i) ∈ Pv . Let j1 < · · · < jd < i be the
positions such that (v, j1), . . . , (v, jd) ∈ Pv and (�−1 ◦ �v)(h(j1)), . . . , (�−1 ◦ �v)(h(jd))

are greater than (�−1 ◦ �v)(i). They exist from the fact, that (�−1 ◦ �v)(i) is not d-lrm
and every “previous” d-lrms in �v are assigned by L. Obviously processor w = �v(h(j1))

received a first progress-message at least d/ |CALL|�31 log p + 1 phases before it received
a progress-message from v. From the choice of �, processor w′ = �v(i) had received a
progress-message from some other processor in Q′

� at least 31 log p + 1 phases before w′
received a progress-message from v. This contradicts the remark at the beginning of the
proof of the lemma. This completes the proof of the claim.

The fact that h is a one-to-one function follows directly from the definition of h. It follows
that the number of progress-messages sent by processors in Q� until the list WAITING (or list
BUSY) of a processor in Q� is empty, is at most (d, |Υ |)-Surf(Υ, �)�(d, |Q�|)-Surf(�), as
desired. �

We now define an invariant, that we call I�, for � = 1, . . . , �1/�� − 2:

I�: There are at most p1−�� non-faulty processors having status collector or informer
in any step after the end of epoch �.

Using Lemma 4.5 and Corollary 3.5 we show the following:

Lemma 4.6. In any execution of algorithm GOSSIP�, I� holds for any epoch � = 1, . . . ,

�1/�� − 2.

Proof. For p = 1 it is obvious. Assume p > 1. We will use Lemma 3.2 and Corollary
3.5. Consider any epoch � < �1/�� − 1. Suppose to the contrary, that there is a subset V�

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 151

of non-faulty processors after the end of epoch � such that each of them has status either
collector or informer and |V�| > p1−��. Since G� satisfies CCP(p, p − p1−��, �), there is
a set Q� ⊆ V� such that |Q�|� |V�|/7 > p1−��/7 and the diameter of the subgraph induced
by Q� is at most 31 log p. Applying Lemma 4.5 and Corollary 3.5 to the set Q�, epoch �,
t = p, q = |Q�| and d = 31p(�+1)� log p, we obtain that the total number of messages
sent until some processor v ∈ Q� has list BUSYv empty, is at most

2 · (31(log p + 1)p(�+1)�, |Q�|)-Surf(�) + 31|Q�|p(�+1)� log p

�341|Q�|p(�+1)� log2 p.

More precisely, until some processor in Q� has status informer, the processors in Q�

send at most (31(log p + 1)p(�+1)�, |Q�|)-Surf(�) messages. Then, every processor in Q�

has status informer after the processors in Q� send at most 31|Q�|p(�+1)� log p messages.
Finally, after the processors in Q� send at most (31(log p + 1)p(�+1)�, |Q�|)-Surf(�)

messages, some processor in Q� ⊆ V� has its list BUSY empty.
Notice that since no processor in Q� has status idle in epoch �, each of them sends in

every phase of epoch � at most |CALL|�p(�+1)� progress-messages. Consequently the total
number of phases in epoch � until some of the processors in Q� has its list BUSY empty, is
at most

341|Q�|p(�+1)� log2 p

|Q�|p(�+1)� = 341 log2 p.

Recall that 	 log2 p > 341 log2 p. Hence if we consider the first 341 log2 p phases of
epoch �, the above argument implies that there is at least one processor in V� that has status
idle, which is a contradiction. Hence, I� holds for epoch �. �

We now show the time and message complexity of algorithm GOSSIP�.

Theorem 4.7. Algorithm GOSSIP� solves the Gossip(p, f) problem with time complexity
T = O(log2 p) and message complexity M = O(p1+3�).

Proof. First we show the bound on time. Observe that each update and communication
stage takes O(1) time. Therefore each of the first �1/�� − 2 epochs takes O(log2 p) time.
The last epoch takes O(1) time. From this and the fact that � is a constant, we have that the
time complexity of the algorithm is in the worst case O(log2 p).

We now show the bound on messages. From Lemma 4.6 we have that for every 1�� <

�1/�� − 2, during epoch � + 1 there are at most p1−�� processors sending at most 2p(�+2)�

messages in every communication stage. The remaining processors are either faulty (hence
they do not send any messages) or have status idle—these processors only respond to call-
messages and their total impact on the message complexity in epoch � + 1 is at most as
large as the others. Consequently the message complexity during epoch � + 1 is at most
4(log2 p) · (p1−��p(�+2)�)�4	p1+2� log2 p�4	p1+3�. After epoch �1/�� − 2 there are,
per I�1/��−2, at most p2� processors having list WAITING not empty. In epoch �1/�� − 1
each of these processors sends a message to at most p processors twice, hence the message
complexity in this epoch is bounded by 2p · p2�. From the above and the fact that � is a
constant, we have that the message complexity of the algorithm is O(p1+3�). �

152 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

5. The Do-All algorithm based on gossip

We now put the gossip algorithm to use by constructing a new Do-All algorithm called
algorithm DOALL�.

5.1. Description of algorithm DOALL�

The algorithm proceeds in a loop that is repeated until all the tasks are executed and all
non-faulty processors are aware of this. A single iteration of the loop is called an epoch.
Each epoch consists of
 log p + 1 phases, where
 > 0 is a constant integer. We show
that the algorithm is correct for any integer
 > 0, but the complexity analysis of the
algorithm depends on specific values of
 that we show to exist. Each phase is divided
into two stages, the work stage and the gossip stage. In the work stage processors perform
tasks, and in the gossip stage processors execute an instance of the GOSSIP�/3 algorithm to
exchange information regarding completed tasks and non-faulty processors (more details
momentarily). Computation starts with epoch 1. We note that (unlike in algorithm GOSSIP�)
the non-faulty processors may stop executing at different steps. Hence we need to argue
about the termination decision that the processors must take. This is done in the paragraph
“Termination decision”.

The pseudocode of the algorithm is given in Fig. 2. The details are explained in the rest
of this section. (Again we assume that every if–then has an implicit else containing no-ops
as needed to ensure the synchrony of the system.)

Local knowledge. Each processor v maintains a list of tasks TASKv it believes not to be
done, and a list of processors PROCv it believes to be non-faulty. Initially TASKv = 〈1, . . . , n〉
and PROCv = 〈1, . . . , p〉. The processor also has a Boolean variable donev , that describes
the knowledge of v regarding the completion of the tasks. Initially donev is set to false, and
when processor v is assured that all tasks are completed donev is set to true.

Task allocation. Each processor v is equipped with a permutation �v from a set � of
permutations on [n]. 5 We show that the algorithm is correct for any set of permutations
on [n], but its complexity analysis depends on specific set of permutations � that we show
to exist.

Initially TASKv is permuted according to �v and then processor v performs tasks according
to the ordering of the tids in TASKv . In the course of the computation, when processor v learns
that task z is performed (either by performing the task itself or by obtaining this information
from some other processor), it removes z from TASKv while preserving the permutation
order.

Work stage. For epoch �, each work stage consists of T� = �n + p log3 p/(p/2l) log p�
work sub-stages. In each sub-stage, each processor v performs a task according to TASKv .
Hence, in each work stage of a phase of epoch �, processor v must perform the first T� tasks
of TASKv . However, if TASKv becomes empty at a sub-stage prior to the T th

� sub-stage, then
v performs no-ops in the remaining sub-stages (each no-op operation takes the same time
as performing a task). Once TASKv becomes empty, donev is set to true.

5 This is distinct from the set of permutation on [p] required by the gossip algorithm.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 153

Initialization

donev = false;
TASKv = 〈�v(1),�v(2), . . . ,�v(p)〉;
PROCv = 〈1, 2, . . . , p〉;

Do-All Algorithm

repeat % iterate epochs until termination

repeat
 log p + 1 times % iterating phases

repeat T� = � n+p log3 p
p

2l
log p

� times % work stage of a phase begins

if TASKv not empty then
perform task whose id is first in TASKv ;
remove task’s id from TASKv ;

elseif TASKv empty and donev = false then
set donev to true;

if TASKv empty and donev = false then
set donev to true;

run GOSSIP�/3 with rumorv=(TASKv, PROCv ,donev); % gossip stage of a phase begins
if donev = true and donew = true for all w received rumor from then

TERMINATE;
else

update TASKv and PROCv ; % see paragraph Gossip stage

Fig. 2. Algorithm DOALL� stated for processor v; �v(i) denotes the ith element of permutation �v .

Gossip stage. Here processors execute algorithm GOSSIP�/3 using their local knowledge
as the rumor, i.e., for processor v, rumorv = (TASKv, PROCv, donev). At the end of the stage,
each processor v updates its local knowledge based on the rumors it received. The update
rule is as follows: (a) If v does not receive the rumor of processor w, then v learns that w

has crashed (guaranteed by the correctness of GOSSIP�/3). In this case v removes w from
PROCv . (b) If v receives the rumor of processor w, then it compares TASKv and PROCv with
TASKw and PROCw, respectively, and updates its lists accordingly—it removes the tasks that
w knows are already completed and the processors that w knows that have crashed. Note
that if TASKv becomes empty after this update, variable donev remains false. It will be set
to true in the next work stage. This is needed for the correctness of the algorithm (see
Lemma 5.4).

Termination decision. We would like all non-faulty processors to learn that the tasks are
done. Hence, it would not be sufficient for a processor to terminate once the value of its
done variable is set to true. It has to be assured that all other non-faulty processors’ done
variables are set to true as well, and then terminate. This is achieved as follows: If processor
v starts the gossip stage of a phase of epoch � with donev = true, and all rumors it receives
suggest that all other non-faulty processors know that all tasks are done (their done variables
are set to true), then processor v terminates. If at least one processor’s done variable is set

154 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

to false, then v continues to the next phase of epoch � (or to the first phase of epoch � + 1
if the previous phase was the last of epoch �).

Remark 5.1. In the complexity analysis of the algorithm we first assume that n�p2 and
then we show how to extend the analysis for the case n > p2. In order to do so, we assume
that when n > p2, before the algorithm DOALL� starts executing, the tasks are partitioned
into n′ = p2 chunks, where each chunk contains at most �n/p2� tasks. In this case it is
understood that in the above description of the algorithm, n is actually n′ and when we refer
to a task we really mean a chunk of tasks.

5.2. Correctness of algorithm DOALL�

We show that the algorithm DOALL� solves the Do-All(n, p, f) problem correctly, mean-
ing that the algorithm terminates with all tasks performed and all non-faulty processors
are aware of this. Note that this is actually a stronger correctness condition than the one
required in the definition of Do-All.

First we show that no non-faulty processor is removed from a processor’s list of non-faulty
processors.

Lemma 5.1. In any execution of algorithm DOALL�, if processors v and w are non-faulty
by the end of the gossip stage of phase s of epoch �, then processor w is in PROCv .

Proof. Let v be a processor that is non-faulty by the end of the gossip stage of phase
s of epoch �. By the correctness of algorithm GOSSIP�/3 (called during the gossip stage),
processor v receives the rumor of every non-faulty processor w and vice-versa. Since there
are no restarts, v and w were alive in all prior phases of epochs 1, 2, . . . , �, and hence, v

and w received each other rumors in all these phases as well. By the update rule it follows
that processor v does not remove processor w from its processor list and vice versa. Hence
w is in PROCv and w is in PROCv by the end of phase s, as desired. �

Next we show that no undone task is removed from a processor’s list of undone tasks.

Lemma 5.2. In any execution of algorithm DOALL�, if a task z is not in TASKv of any processor
v at the beginning of the first phase of epoch �, then z has been performed in a phase of one
of the epochs 1, 2, . . . , � − 1.

Proof. From the description of the algorithm we have that initially any task z is in TASKv

of a processor v. We proceed by induction on the number of epochs. At the beginning of
the first phase of epoch 1, z is in TASKv . If by the end of the first phase of epoch 1, z is not
in TASKv then by the update rule either (i) v performed task z during the work stage (hence
the result follows), or (ii) during the gossip stage v received rumorw from processor w in
which z was not in TASKw. For the latter case, since this is the first epoch of the first phase,
from the above and by the description of the algorithm we have that processor w performed
task z during the work stage (hence the result follows). Continuing in this manner we have
that if z is not in TASKv at the beginning of the first phase of epoch 2, then z was performed
in one of the phases of epoch 1.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 155

Assuming that the thesis of the lemma holds for any epoch �, we show that it also holds
for epoch � + 1. Consider two cases:

Case 1: If z is not in TASKv at the beginning of the first phase of epoch �, then since no
tid is ever added in TASKv , z is not in TASKv neither at the beginning of the first phase of
epoch � + 1. By the inductive hypothesis, z was performed in one of the phases of epochs
1, . . . , � − 1.

Case 2: If z is in TASKv at the beginning of the first phase of epoch � but it is not in TASKv

at the beginning of the second phase of epoch �, then by the update rule and the description
of the algorithm it follows that either (i) v performed task z during the work stage of the
second phase of epoch �, or (ii) during the gossip stage of the second phase of epoch �, v

received rumorw from processor w in which z was not in TASKw. For the latter case, from
the above and the description of the algorithm we have that processor w performed task z
during the work stage of the second phase of epoch � or it learned that z was done in the
gossip stage of the first phase of epoch �. In either case, task z was performed. Continuing
in this manner it follows that if z is not in TASKv at the beginning of the first phase of epoch
� + 1, then z was performed in one of the phases of epoch �. �

Next we show that under certain conditions, local progress is guaranteed. First we intro-
duce some notation. For processor v we denote by TASK

(�,s)
v the list TASKv at the beginning

of phase s of epoch �. Note that if s is the last phase—(
 log2 p)th phase—of epoch �, then
TASK

(�,s+1)
v = TASK

(�+1,1)
v , meaning that after phase s processor v enters the first phase of

epoch � + 1.

Lemma 5.3. In any execution of algorithm DOALL�, if processor v enters a work stage of
a phase s of epoch � with donew = false and TASKv not empty, then sizeof (TASK

(�,s+1)
v) <

sizeof (TASK
(�,s)
v).

Proof. Let v be a processor that starts the work stage of phase s of epoch � with donew =
false. According to the description of the algorithm, the value of variable donev is initially
false and it is set to true only when TASKv becomes empty (it is possible however for TASKv

to be empty and donev to be still set on false, as donev is updated only in the work stage).
Hence, if donew = false and TASKv is not empty at the beginning of the work stage of phase
s of epoch � there is at least one task identifier in TASK

(�,s)
v , and therefore v performs at least

one task. From this and the fact that no tid is ever added in a processor’s task list, we get
that sizeof(TASK

(�,s+1)
v) < sizeof(TASK

(�,s)
v). �

We now show that when during a phase s of an epoch �, a processor learns that all tasks
are completed and it does not crash during this phase, then the algorithm is guaranteed to
terminate by phase s + 1 of epoch �; if s is the last phase of epoch �, then the algorithm is
guaranteed to terminate by the first phase of epoch � + 1. For simplicity of presentation, in
the following lemma we assume that s is not the last phase of epoch �.

Lemma 5.4. In any execution of algorithm DOALL�, for any phase s of epoch � and any
processor v, if donev is set to true during phase s and v is non-faulty by the end of phase
s, then the algorithm terminates by phase s + 1 of epoch �.

156 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

Proof. Consider phase s of epoch � and processor v. According to the code of the algorithm,
the value of variable donew is updated during the work stage of a phase (the value of the
variable is not changed during the gossip stage). Hence, if the value of variable donew is
changed during the phase s of epoch � this happens before the start of the gossip stage. This
means that TASKv contained in rumorv in the execution of algorithm GOSSIP�/3 is empty.
Since v does not fail during phase s, the correctness of algorithm GOSSIP�/3 guarantees that
all non-faulty processors learn the rumor of v, and consequently they learn that all tasks
are performed. This means that all non-faulty processors w start the gossip stage of phase
s + 1 of epoch � with donew = true and all rumors they receive contain the variable done
set to true.

The above, in conjunction with the termination guarantees of algorithm GOSSIP�/3, leads
to the conclusion that all non-faulty processors terminate by phase s + 1 (and hence the
algorithm terminates by phase s + 1 of epoch �). �

Finally we show the correctness of algorithm DOALL�.

Theorem 5.5. In any execution of algorithm DOALL�, the algorithm terminates with all
tasks performed and all non-faulty processors being aware of this.

Proof. By Lemma 5.1, no non-faulty processor leaves the computation, and by our model
at least one processor does not crash (f < p). Also from Lemma 5.2 we have that no
undone task is removed from the computation. From the code of the algorithm we get that a
processor continues performing tasks until its TASK list becomes empty and by Lemma 5.3
we have that local progress is guaranteed. The above, in conjunction with the correctness
of algorithm GOSSIP�/3, leads to the conclusion that there exist a phase s of an epoch � and
a processor v so that during phase s processor v sets donev to true, all tasks are indeed
performed and v survives phase s. By Lemma 5.4 the algorithm terminates by phase s + 1
of epoch � (or by the first phase of epoch � + 1 if s is the last phase of epoch �). Now, from
the definition of T� it follows that the algorithm terminates after at most O(log p) epochs:
consider epoch log p; Tlog p = �(n + p log3 p)/ log p� = �n/ log p + p log2 p�. Recall
that each epoch consists of
 log p + 1 phases. Say that
 = 1. Then, when a processor
reaches epoch log p, it can perform all n tasks in this epoch. Hence, all tasks that are not
done until epoch log p − 1 are guaranteed to be performed by the end of epoch log p and
all non-faulty processors will know that all tasks have been performed. �

Note from the above that the correctness of algorithm DOALL� does not depend on the set
of permutations that processors use to select what tasks to do next. The algorithm works
correctly for any set of permutations on [n]. It also works for any integer
 > 0.

5.3. Analysis of algorithm DOALL�

We now derive the work and message complexities for algorithm DOALL�. Our analysis
is based on the following terminology. For the purpose of analysis, we number globally all
phases in the execution by positive integers starting from 1. Consider phase i which belongs
to some epoch �. For a given failure pattern F, let Vi(F) denote the set of processors that

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 157

Fig. 3. Classification of a phase i of epoch �; the failure pattern F is implied.

are non-faulty at the beginning of phase i. Let pi(F) = |Vi(F)|. Let Ui(F) denote the set
of tasks z such that z is in some list TASKv , for some v ∈ Vi(F), at the beginning of phase i.
Let ui(F) = |Ui(F)|.

Now we classify the possibilities for phase i as follows. If at the beginning of phase i,
pi(F) > p/2�−1, we say that phase i is a majority phase. Otherwise, phase i is a minority
phase. If phase i is a minority phase and at the end of i the number of surviving processors is
less than pi(F)/2, i.e., pi+1(F) < pi(F)/2, we say that i is an unreliable minority phase. If
pi+1(F)�pi(F)/2, we say that i is a reliable minority phase. If phase i is a reliable minority
phase and ui+1(F)�ui(F)− 1

4pi+1(F)T�, then we say that i is an optimal reliable minority
phase (the task allocation is optimal; the same task is performed only by a constant number
of processors on average). If ui+1(F)� 3

4ui(F), then i is a fractional reliable minority phase
(a fraction of the undone tasks is performed). Otherwise we say that i is an unproductive
reliable minority phase (not much progress is obtained). The classification possibilities for
phase i of epoch � are depicted in Fig. 3.

Our goal is to choose a set � of permutations and a constant
 > 0 such that for any failure
pattern there will be no unproductive and no majority phases. To do this we analyze sets of
random permutations, prove certain properties of our algorithm for such sets (in Lemmas
5.6 and 5.7), and finally use the probabilistic method to obtain an existential deterministic
solution.

We now give the intuition why the phases, with high probability, are neither majority
nor minority reliable unproductive. First, in either of such cases, the number of processors
crashed during the phase is at most half of all operational processors during the phase.
Consider only those majorities of processors that survive the phase and the tasks performed
by them. If there are a lot of processors, then all tasks will be performed if the phase is a
majority phase, or at least min{ui(F), |Q|T�}/4 yet unperformed tasks are performed by the
processors if the phase is a minority reliable unproductive phase, all with high probability.
Hence we can derandomize the choice of suitable set of permutations such that for any
failure pattern there are neither majority nor minority reliable unproductive phases.

Note that these observations suggest an approach to a failure-sensitive algorithm. How-
ever, our algorithm is not optimal (in asymptotic sense) with respect to failure-sensitivity,
so we propose a modified approach to this problem in Section 5.4.

Lemma 5.6. Consider a fixed nonempty subset Q of processors in phase i of epoch � of algo-
rithm DOALL�. Then the probability of event “for every failure pattern F such that Vi+1(F) ⊇
Q and ui(F) > 0, the following inequality holds ui(F)−ui+1(F)� min{ui(F), |Q|T�}/4”
is at least 1 − e−|Q|T�/8.

158 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

Proof. Let c = min{ui(F), |Q|T�}/4. Let F be a failure pattern such that Vi+1(F) ⊇ Q

and ui(F) > 0. Let Si(F) be the set of tasks z such that z is in every list TASKv for v ∈ Q,
at the beginning of phase i. Let si(F) = |Si(F)|. Note that Si(F) ⊆ Ui(F), and that
Si(F) describes some properties of set Q, while Ui(F) describes some properties of set
Vi(F) ⊇ Q.

Consider the following two cases:
Case 1: si(F)�ui(F) − c. Then after the gossip stage of phase i we obtain the required

inequality with probability 1.
Case 2: si(F) > ui(F)−c. We focus on the work stage of phase i. Consider a conceptual

process in which the processors in Q perform tasks sequentially, the next processor takes
over when the previous one has performed all its T� steps during work stage of phase i.
This process takes |Q|T� steps to be completed. Let U

(k)
i (F) denote the set of tasks z such

that: z is in some list TASKv , for some v ∈ Q, at the beginning of phase i and z has not been
performed during the first k steps of the process, by any processor. Let u(k)

i (F) = |U(k)
i (F)|.

Define the random variables Xk , for 1�k� |Q|T�, as follows:

Xk =
{

1 if either ui(F) − u
(k)
i (F)�c or u

(k)
i (F)
= u

(k−1)
i (F),

0 otherwise.

Suppose some processor v ∈ Q is to perform the kth step. If ui(F) − u
(k)
i (F) < c then we

also have the following:

si(F) −
(
ui(F) − u

(k)
i (F)

)
> si(F) − c�ui(F)/2�sizeof (TASKv)/2,

where TASKv is taken at the beginning of phase i, because 3c�3ui(F)/4�si(F). Thus at
least a half of the tasks in TASKv , taken at the beginning of phase i, have not been performed
yet, and so Pr[Xk = 1]� 1

2 .
We need to estimate the probability Pr[∑Xk �c], where the summation is over all

|Q|T� steps of all the processors in Q in the considered process. Consider a sequence 〈Yk〉
of independent Bernoulli trials, with Pr[Yk = 1] = 1

2 . Then the sequence 〈Xk〉 statistically
dominates the sequence 〈Yk〉, in the sense that

Pr
[∑

Xk �d
]
�Pr

[∑
Yk �d

]
for any d > 0. Notice that E[∑Yk] = |Q|T�/2 and c�E[∑Yk]/2, hence we can apply
Chernoff bound to obtain

Pr
[∑

Yk �c
]
�1 − Pr

[∑
Yk <

1

2
E
[∑

Yk

]]
�1 − e−|Q|T�/8.

Hence the number of tasks in Ui(F), for any F such that Vi+1(F) ⊇ Q, performed by
processors from Q during work stage of phase i is at least c with probability
1 − e−|Q|T�/8. �

Lemma 5.7. Assume n�p2 and p�28. There exists a constant integer
 > 0 such that for
every phase i which is in some epoch � > 1, if there is a task unperformed by the beginning

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 159

of phase i then
(a) the probability that phase i is a majority phase under some failure pattern F is at most

e−p log p, and
(b) the probability that phase i is a minority reliable unproductive phase under some failure

pattern F is at most e−T�/16.

Proof. We first prove clause (a). Assume that phase i belongs to epoch �, for some � > 1.
First we group failure patterns F such that phase i is a majority phase in F, according
to the following equivalence relation: failure patterns F1 and F2 are in the same class
iff Vi+1(F1) = Vi+1(F2). Every such equivalence class is represented by some set of
processors Q of size greater than p/2�−1, such that for every failure pattern F in this class
we have Vi+1(F) = Q. In the following claim we define conditions for
 for satisfying
clause (a).

Claim. For constant
 = 9 and under any failure pattern F in the class represented by Q,
where |Q| > p/2�−1, all tasks were performed by the end of epoch � − 1 with probability
at least 1 − e−p log p−p.

We prove the claim. Let F be any failure pattern from a class represented by Q.
Consider all steps taken by processors in Q during phase j of epoch � − 1. By Lemma
5.6, since Vj+1(F) ⊇ Q, we have that the probability of event “if uj (F) > 0 then
uj (F) − uj+1(F)� min{uj (F), |Q|T�−1}/4”, is at least 1 − 1/e|Q|T�−1/8. If the above
condition is satisfied we call phase j productive (for consistency with the names optimal
and fractional; the difference is that these names are used only for minority phases—now
we use it according to the progress made by processors in Q). Phase j might be productive
with probability at least 1 − 1/e|Q|T�−1/8. Since the total number of tasks is n, we have that
the number of productive phases during epoch � − 1 sufficient to perform all tasks using
only processors in Q is either at most

n

|Q|T�−1/4
� n

n/(4 log p)
= 4 log p

or, since n�p2, at most

log4/3 n = 5 log p.

Therefore there are a total of 9 log p productive phases, which are sufficient to perform
all the tasks. Furthermore, every phase in epoch � − 1 is productive. Hence, all tasks are
performed by processors in Q during
 log p phases, for constant
 = 9, of epoch � − 1
with probability at least

1 − 9 log p · e−|Q|T�−1/8 �1 − eln 9+ln log p−(p log2 p)/4 �1 − e−p log p−p,

since p�8. Consequently all processors terminate by the end of phase
 log p + 1 with
probability at least 1 − e−p log p−p. This follows by the correctness of the gossip algorithm
and the argument of Lemma 5.4, since epoch � − 1 lasts
 log p + 1 phases and processors
in Q are non-faulty at the beginning of epoch �. This completes the proof of the claim.

160 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

There are at most 2p possible sets Q of processors, hence by the claim the probability
that phase i is a majority phase is at most

2p · e−p log p−p �e−p log p,

which proves clause (a) for phase i.
Now we prove clause (b) for phase i. Assume that phase i in epoch � is a minority reliable

phase. Similarly as above, we partition all failure patterns F according to the following
equivalence relation: failure patterns F1 and F2 are in the same class if there is a set Q such
that H = Vi+1(F1) = Vi+1(F2). Set Q is a representative of a class. By Lemma 5.6 applied
to phase i and set Q we obtain that the probability that phase i is unproductive for every
failure pattern F such that Vi+1(F) = Q is e−|Q|T�/8. Hence the probability that for every
failure pattern F phase i is a minority reliable unproductive phase is at most

p/2�−1∑
x=1

(
p

x

)
· e−xT�/8 �

p/2�−1∑
x=1

2x log p · e−xT�/8 �
p/2�−1∑
x=1

ex log p−xT�/8

� elog p−T�/8 · 1

1 − elog p−T�/8
�e−T�/16,

(since p�28), showing clause (b) for phase i. �

Recall that epoch � consists of
 log p + 1 phases for some
 > 0 and that T� =
�n + p log3 p/(p/2�) log p�. Also by the correctness proof of algorithm DOALL� (Theo-
rem 5.5), the algorithm terminates in O(log p) epochs, hence, the algorithm terminates in
O(log2 p) phases. Let g� be the number of steps that each gossip stage takes in epoch �,
i.e., g� = �(log2 p).

We now show the work and message complexity of algorithm DOALL�.

Theorem 5.8. There is a set of permutations � and a constant integer
 > 0 (e.g.,
 = 9)
such that algorithm DOALL�, using permutations from �, solves the Do-All(n, p, f) problem
with work W = O(n + p log3 p) and message complexity M = O(p1+2�).

Proof. We show that for any execution E of algorithm DOALL� that solves the Do − All
(n, p, f) problem under a failure pattern F, there exists a set of permutations � and an
integer
 > 0 so that the complexity bounds are as desired. Let
 be from Lemma 5.7.
We consider two cases:

Case 1: n�p2. Consider phase i of epoch � of algorithm DOALL� for randomly chosen set
of permutations �. We reason about the probability of phase i belonging to one of the classes
illustrated in Fig. 3, and about the work that phase i contributes to the total work incurred
in the execution, depending on its classification. From Lemma 5.7(a) we get that phase i
may be a majority phase under any failure pattern F with probability e−�(p log p) which is
a very small probability. More precisely, the probability that for some failure pattern F and
set of permutations �, in execution E obtained for F and � there is a majority phase, is
O(log2 p · e−p log p) = e−�(p log p) (recall that the execution has O(log2 p) phases), and
consequently using the probabilistic method argument we obtain that for almost any set of
permutations � there is no execution in which there is a majority phase.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 161

Therefore, we focus on minority phases that occur with high probability (per Lemma
5.7(a)). We cannot say anything about the probability of a minority phase to be reliable or
unreliable, since this depends on F. Note however, that by definition, we cannot have more
than O(log p) unreliable minority phases in any execution E (at least one processor must
remain operational). Moreover, the work incurred in an unreliable minority phase i of an
epoch � in any execution E is bounded by

O (pi(F) · (T� + g�)) = O

(
p

2�−1
·
(

n + p log3 p

p/2� log p
+ log2 p

))

= O

(
n

log p
+ p log2 p

)
.

Thus, the total work incurred by all unreliable minority phases in any execution E is
O(n + p log3 p).

From Lemmas 5.6 and 5.7(b) we get that a reliable minority phase may be fractional or
optimal for some failure pattern F with high probability 1 − e−T�/16, whereas it may be
unproductive for some failure pattern F with very small probability e−T�/16 �e−(log2 p)/16.
Using a similar argument as for majority phases, we get that for almost all sets of permuta-
tions � (probability 1 − O(log2 p · e−T�/16)�1 − e−�(T�)) and for every failure pattern F,
and hence for every execution E , there is no minority reliable unproductive phase. The work
incurred by a fractional phase i of an epoch �, under any failure pattern F and execution
E , is bounded by O(pi(F) · (T� + g�)) = O(n/log p + p log2 p). Also note that by defi-
nition, there can be at most O(log4/3 n) (= O(log p) since n�p2) fractional phases in any
execution E and hence, the total work incurred by all fractional reliable minority phases in
any execution E is O(n + p log3 p). We now consider the optimal reliable minority phases
under any failure pattern F and execution E . Here we have an optimal allocation of tasks
to processors in Vi(F). By definition of optimality, in average one task in Ui(F)\Ui+1(F)

is performed by at most four processors from Vi+1(F), and by definition of reliability, by
at most eight processors in Vi(F). Therefore, in optimal phases, each unit of work spent
on performing a task results to a unique task completion (with a constant overhead), for
any execution E . It therefore follows that the work incurred in all optimal reliable minority
phases is bounded by O(n) in any execution E .

Therefore, from the above we conclude that when n�p2, for random set of permutations
� the work complexity of algorithm DOALL� executed on such set � and under any failure
pattern F is W = O(n + p log3 p) with probability 1 − e−�(p log p) − e−�(T�) = 1 −
e−�(T�) (the probability appears only from the analysis of majority and unproductive reliable
minority phases). Consequently such set � exists. Also, from Lemma 5.7 and the above
discussion,
 > 0 (e.g.,
 = 9) exists. Finally, the bound on messages using selected set �
and constant
 is obtained as follows: there are O(log2 p) executions of gossip stages. Each
gossip stage requires O(p1+�) messages (message complexity of one instance of GOSSIP�/3).
Thus, M = O(p1+� log2 p) = O(p1+2�).

Case 2: n > p2. In this case, the tasks are partitioned into n′ = p2 chunks, where
each chunk contains at most �n/p2� tasks (see Remark 5.1). Using the result of Case 1
and selected set � and constant
, we get that W = O(n′ + p log3 p) · �(n/p2) =
O(p2 · n/p2 + n/p2 · p log3 p) = O(n). The message complexity is derived with the same
way as in Case 1. �

162 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

5.4. Sensitivity training and failure-sensitive analysis

We note that the complexity bounds we obtained in the previous section do not show how
the bounds depend on f, the maximum number of crashes. In fact it is possible to subject
the algorithm to “failure-sensitivity-training” and obtain better results. To do so we slightly
modify algorithm DOALL�/2 and obtain an algorithm we call DOALL′

�. We first describe and
analyze the modified version of algorithm GOSSIP�, called GOSSIP′

�, which algorithm DOALL′
�

uses as a building block (in a similar manner that algorithm DOALL� uses algorithm GOSSIP�)
to solve the Do-All problem. Then we present algorithm DOALL′

� and its analysis.

5.4.1. Algorithm GOSSIP′
�

Algorithm GOSSIP′
� is a modified version of algorithm GOSSIP�. In particular, algorithm

GOSSIP′
� contains a new epoch, called epoch 0. Epochs 1, . . . , �1/��−1 are the same epochs

as in algorithm GOSSIP�. Assume for simplicity of presentation that p/ log2 p is an even
integer. Epoch 0 is similar to the epoch 1 of algorithm GOSSIP�, except from the following:
• Epoch 0 contains 	′ log2 p phases, for some positive constant 	′, possibly different than

	 from algorithm GOSSIP�;
• The communication graph G0 used in epoch 0 is defined as follows: let V ′ be the set

consisting of arbitrarily chosen 2p/ log2 p processors from V, where V denotes the set
of all processors (V = [p]); G0 is a graph on the set of nodes V ′ satisfying PROPERTY

R(|V ′|, |V ′|/2).
• The processors in V ′ perform the normal phase of an epoch of algorithm GOSSIP�.
• To every processor inV ′ we attach one permutation from the set� consisting of 2p/ log2 p

permutations from set Sp; we show in the analysis that suitable set � exists.
• For every processor v ∈ V ′, the size of set CALLINGv\ NEIGHBv is equal 1.
• The processors that are not in V ′ perform a different code of the phase: they begin with a

new status answer and do not change it by the end of epoch 0; if during epoch 0 processor
v /∈ V ′ receives a message from a processor of status collector or informer, it answers
to this processor in the same communication stage.

• If at the end of epoch 0, for processor v, sizeof (RUMORSv) = p, then v sets its status to
idle and removes its pid from list BUSYv , otherwise v sets its status to collector.

Remark 5.2. Note that each processor that sets its status to idle at the end of epoch 0
might have its list BUSY not empty, as opposed to the processors that become idle after
epoch greater than 0, where their list BUSY is empty. However, this does not affect the
correctness of the epochs of number greater than 0: list BUSY is used by each processor to
decide the subset of the processors it sends a call-message at each step of the computation
(when the processor has status informer) and once it becomes empty, the processor sets it
status to idle. According to the code of the algorithm, processors that are idle do not send
call messages (they only respond to such messages). Therefore, the processors that become
idle by the end of epoch 0 no longer use their list BUSY (whether is empty or not). However,
it is important to notice that they remove their pid from their list BUSY so that when their
local information is propagated to other processors (via responses to call messages), the
other processors get to know that these processors are no longer collectors.

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 163

We now prove the complexity of algorithm GOSSIP′
�.

Theorem 5.9. There exist constant 	′ and set � such that algorithm GOSSIP′
�, using set

�, solves the Gossip(p, f) problem with time complexity T = O(log2 p) and message
complexity M = O(p) when f �p/log2 p, and with T = O(log2 p) and M = O(p1+3�)

otherwise.

Proof. First we consider the case where there are at most p/log2 p failures by the end of
epoch 0. Let Q′ ⊆ V ′ be a set of processors such that |Q′|� |V ′|/2�p/log2 p. By PROPERTY

R(|V ′|, |V ′|/2) there exists Q ⊆ Q′ such that |Q|� |Q′|/7 and the diameter of graph GQ

is at most 31 log p. Consider all failure patterns F such that every processor in Q′ is not
crashed by the end of epoch 0, and choose � randomly. We may look at the process of
collecting rumors by processors in Q (when every processor in Q works as a collector) as a
performing tasks: if a rumor of processor w (or information that processor w is crashed), for
every processor w, is known by some processor in Q then we say that task w is performed.
We partition every execution into consecutive blocks, each containing 31 log p consecutive
phases. Notice that during each block all processors in Q exchange information between
themselves, by definition of Q. We may use Lemma 5.6 to bound progress: the probability
that “for every considered failure pattern F (such that all processors in Q are not crashed at
the end of epoch 0) after every consecutive block in epoch 0 the number of rumors unknown
by processors in Q decreases either by (3/4)|Q| log p or by factor 3/4” is 1− e−�(|Q| log p).
Consequently, for every considered failure pattern F, O(p/|Q| log p+log3/4 p) = O(log p)

number of blocks are sufficient to collect all rumors by processors in Q, with probability at
least 1 − log p · e−�(|Q| log p) �1 − e−�(|Q| log p). Using the probabilistic method we choose
one such �, which additionally satisfies the thesis of Theorem 3.4 (to assure that � is good
also for the other cases in this proof) and constant 	′ follows from the fact that O(log p)

blocks, each of 31 log p phases, suffice to collect all rumors by processors in Q for every
failure pattern F.

The process in which processors in Q, acting as informer, inform all other processors
about collected rumors and the status of all processors, is similar to the process of collecting,
and do not influence the asymptotic complexity. In this case performing task w, for every
processor w, is defined as informing processor w by some processor in Q.

Since the communication graph G has constant degree and in every phase the size of set
CALLINGv\NEIGHBv is equal to 1, the number of messages sent in every phase is O(|V ′|) =
O(p/log2 p), which, in view of the number O(log2 p) of phases in epoch 0, gives message
complexity O(p) in epoch 0.

Consider the case where at the end of epoch 0 there are more than p/log2 p faulty
processors. In this case there may be some processor v ∈ V which has its list RUMORS not
filled at the end of epoch 0 (if not then all non-faulty processors become idle at the end
of epoch 0 and we are done). It follows that all such processors start executing epoch 1 of
algorithm GOSSIP′

� which is the same as in algorithm GOSSIP�.
Using the same argument as in the proof of Theorem 4.7 and by the fact that � was

chosen to satisfy the thesis of Theorem 3.4, we obtain that the message complexity during
execution of GOSSIP′

� is O(p1+2� log3 p) = O(p1+3�), which together with O(p) messages
sent in epoch 0 yields the thesis of the theorem, with respect to message complexity. The

164 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

time complexity yields from the fact that epoch 0 runs O(log2 p) phases, and the remaining
epochs run also for O(log2 p) phases. �

5.4.2. Algorithm DOALL′
�

Algorithm DOALL′
� is a modified version of algorithm DOALL�/2. In particular, algorithm

DOALL′
� contains two new epochs, called epoch −1 and epoch 0. Epochs 1, . . . , log p are

the same epochs as in algorithm DOALL�/2.
Epoch −1 of algorithm DOALL′

� uses the check-pointing algorithm from [9], where the
check-pointing and the synchronization procedures are taken from [11]. We refer to the algo-
rithm used in epoch −1 as algorithm DGMY. The goal of using this algorithm in epoch −1 is
to solve Do-All with work O(n+p(f +1)) and communication O(fp�+p min{f +1, log p})
if the number of failures is small, mainly concerning the case f � log3 p. Hence, in epoch
−1, we execute DGMY only until step a · (n/p + log3 p), for some constant a such that
the early-stopping condition of DGMY holds for every f � log3 p.

Epoch 0 of algorithm DOALL′
� is similar to an epoch of algorithm DOALL�/2, except that

instead of algorithm GOSSIP�/3, we use algorithm GOSSIP′
�/6 in each gossip stage of every

phase of epoch 0. Each gossip stage lasts g0 = 	′ log2 p steps, for a fixed constant 	′ which
depends on algorithm GOSSIP′

�/6.
We now show the work and message complexity of algorithm DOALL′

�.

Theorem 5.10. There exists a set of permutations � and a constant integer
 > 0 such that
algorithm DOALL′

� solves the Do-All(n, p, f) problem with work W = O(n + p · min{f +
1, log3 p}) and message complexity M = O(fp� + p min{f + 1, log p}).
Proof. We consider three cases:

Case 1: If the number of failures f during the execution of DGMY (recall that we execute
the algorithm up to step a · (n/p + log3 p)) is not greater than log3 p then by the early
stopping property of algorithm DGMY, all non-faulty processors terminate by the end of
this execution of DGMY. The work performed by the algorithm is O(n + (f + 1)p) and
the message complexity is O(fp� + p min{f + 1, log p}). This follows from the results in
[9] and [11].

Case 2: If the number of failures f during the execution of DGMY is greater than log3 p

and some processor terminates in epoch −1, then by the correctness of algorithm DGMY
all tasks are performed. Hence, as in the previous case, work performed by the algorithm is
O(n + (f + 1)p) and the message complexity is O(fp� + p min{f + 1, log p}).

Case 3: If the number of failures f during the execution of DGMY is greater than log3 p

and no processor terminates during the execution of DGMY, then every non-faulty proces-
sor, unlike the previous two cases, starts executing epoch 0 of DOALL′

�, each at the same time.
The work during the execution of DGMY is O(n+p log3 p) = O(n+p·min{f +1, log3 p})
and the message complexity is O(f ′p� + p min{f ′ + 1, log p}), where f ′ �f is the num-
ber of crashes occurred during epoch −1. We now analyze the work and communication
complexity of the remaining epochs.

The analysis of the remaining epochs, starting from epoch 0, is done similarly as in
Theorem 5.8. The only difference in the analysis is that we use one more epoch (epoch
0), in which the message complexity of every gossip stage is O(p), if f �p/ log2 p

C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166 165

(per Theorem 5.9). Notice that the total number of phases is still O(log2 p), as used in
the proof of Theorem 5.8 (but the constant may differ from the original). Hence the choice
of set � is the same as in the proof of Theorem 5.8, as well as the conditions for an integer
constant
 > 0, where
 log p + 1 is the number of phases in one epoch (only the constants
hidden in asymptotic notation may differ, and this may increase the constant
 with respect
to the original one). The analysis for the general case where f < p is the same as in the proof
of Theorem 5.8. Therefore, we only consider failure patterns F such that f �p/ log2 p. We
have |Vi(F)|�p − p/ log2 p for every phase i in epoch 0, and consequently the number of
phases in epoch 0 sufficient to perform all the tasks, which (by the proof of Theorem 5.8
means performing work O(n + p log3 p)) is

O

(
n + p log3 p

T0 · (p − p/ log2 p)

)
= O

(
n + p log3 p

[n/(p log p) + log2 p] · (p − p/ log2 p)

)

= O(log p).

The constant integer
 > 0 must satisfy the conditions imposed to it in the proof of
Theorem 5.8. In addition,
 must be such, that the constant hidden in the above O(log p)

notation must be less than
. If we choose a
 that satisfies all the above-mentioned condi-
tions, then we have that for every failure pattern F, and hence (since � is fixed) for every
execution E such that f �p/ log2 p, algorithm DOALL′

� terminates by the end of epoch 0.
Also, by the complexity of algorithm GOSSIP′

�/6 shown in Theorem 5.9, we have that the

total number of messages sent is O(p · log p) = O(p min{f +1, log p}) (since f > log3 p

and f �p/ log2 p).
The thesis of the theorem follows from Theorem 5.8 and the three cases. �

6. Discussion and future work

In this paper we presented two new algorithms, the first solves the gossip problem for
synchronous, message-passing, crash-prone processors, the second solves the problem of
performing a collection of tasks in a distributed setting, called Do-All. The gossip algorithm
substantially improves the message efficiency of the best previous result. Using the new
gossip algorithm as a building block, our new algorithm for the Do-All problem achieves
better work and message complexity than any previous Do-All algorithms in the same
model, for the full range of crashes (f < p).

Our techniques involve the use of conceptual communication graphs and sets of per-
mutations with specific combinatorial properties. A future direction is to investigate how
to efficiently construct permutations with the required combinatorial properties. Another
direction is to extend the techniques developed in this paper to other models, for exam-
ple, for synchronous restartable fail-stop processors. Note that the adversarial model with
restartable processors needs to be carefully defined to eliminate the uninteresting situations
where the adversary repeatedly crashes then restarts all processors, or where the crashes
involving the loss of state perpetually prevent rumors from being propagated to restarted
processors.

Finally, it is interesting to consider other distributed computing problems where the use
of our efficient gossip algorithm can lead to better results.

166 C. Georgiou et al. / Theoretical Computer Science 347 (2005) 130–166

References

[1] N. Alon, F. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1988) 15–19.
[2] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, J. Stern, Scalable secure storage when half the system is

faulty, in: 27th Internat. Colloq. on Automata, Languages and Programming, 2000, pp. 577–587.
[3] N. Alon, J.H. Spencer, The Probabilistic Method, second ed., Wiley, New York, 2000.
[4] R.J. Anderson, H. Woll, Algorithms for the certified Write-All problem, SIAM J. Comput. 26 (5) (1997)

1277–1283.
[5] B. Chlebus, R. De Prisco, A.A. Shvartsman, Performing tasks on restartable message-passing processors,

Distributed Comput. 14 (1) (2001) 49–64.
[6] B.S. Chlebus, L. Gasieniec, D.R. Kowalski, A.A. Shvartsman, Bounding work and communication in robust

cooperative computation, 16th Internat. Symp. on Distributed Computing, 2002, pp. 295–310.
[7] B.S. Chlebus, D.R. Kowalski, Gossiping to reach consensus, 14th Symp. on Parallel Algorithms and

Architectures, 2002, pp. 220–229.
[8] H. Davenport, Multicative Number Theory, second ed., Springer, 1980.
[9] R. De Prisco, A. Mayer, M. Yung, Time-optimal message-efficient work performance in the presence of

faults, 13th Symp. on Principles of Distributed Computing, 1994, pp. 161–172.
[10] C. Dwork, J. Halpern, O. Waarts, Performing work efficiently in the presence of faults, SIAM J. Comput.

27 (5) (1998) 1457–1491.
[11] Z. Galil, A. Mayer, M. Yung, Resolving message complexity of byzantine agreement and beyond, 36th Symp.

on Foundations of Computer Science, 1995, pp. 724–733.
[12] Ch. Georgiou, D. Kowalski, A.A. Shvartsman, Efficient gossip and robust distributed computation,

17th Internat. Symp. on Distributed Computing, 2003, pp. 224–238.
[13] Ch. Georgiou, A. Russell, A.A. Shvartsman, The complexity of synchronous iterative Do-All with crashes,

Distributed Comput. 17 (1) (2004) 47–63.
[14] P.C. Kanellakis, A.A. Shvartsman, Efficient parallel algorithms can be made robust, Distributed Comput.

5 (4) (1992) 201–217.
[15] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988) 261–277.
[16] G. Malewicz, A. Russell, A.A. Shvartsman, Distributed cooperation during the absence of communication,

14th Internat. Symp. Distributed Computing on 2000, 119–133.
[17] A. Pelc, Fault-tolerant broadcasting and gossiping in communication networks, Networks 28 (1996)

143–156.
[18] R.D. Schlichting, F.B. Schneider, Fail-stop processors: an approach to designing fault-tolerant computing

systems, ACM Trans. Comput. Systems 1 (3) (1983) 222–238.
[19] E. Upfal, Tolerating a linear number of faults in networks of bounded degree, Inform. and Comput. 115

(1994) 312–320.

