
Modeling and Analysis of Power-Aware Systems�

Oleg Sokolsky1, Anna Philippou2, Insup Lee1, and Kyriakos Christou1

1 University of Pennsylvania, USA. {sokolsky,lee,christou}@cis.upenn.edu
2 University of Cyprus, Cyprus. annap@ucy.ac.cy

Abstract. The paper describes a formal approach for designing and rea-
soning about power-constrained, timed systems. The framework is based
on process algebra, a formalism that has been developed to describe and
analyze communicating concurrent systems. The proposed extension al-
lows the modeling of probabilistic resource failures, priorities of resource
usages, and power consumption by resources within the same formalism.
Thus, it is possible to model alternative power-consumption behaviors
and analyze tradeoffs in their timing and other characteristics. This pa-
per describes the modeling and analysis techniques, and illustrates them
with examples, including a dynamic voltage-scaling algorithm.

1 Introduction

In recent years, great technological advances in wireless communication and mo-
bile computing have given rise to sophisticated embedded devices (e.g., PDA, cell
phones, smart sensors) and wireless network infrastructures that are becoming
widespreadly available. In addition, new applications with powerful functional-
ities are being developed to meet the ever-increasing demand by the users. A
serious limitation of the mobile embedded devices is the battery life available to
them. Although a great deal of power-intensive computation has to be performed
to carry out application-specific functionalities such as video streaming, this has
to be done on a limited amount of power. To cope with this fact, a number of
power-aware algorithms and protocols have been proposed aiming to make en-
ergy savings by dynamically altering the power consumed by a processor while
still achieving the required behavior. However, in time-constrained applications
often found in embedded systems, applying power-saving techniques can lead to
serious problems. This is because changing the power available to tasks can affect
their execution time which may lead to violation of timing constraints and other
undesirable properties. A challenge presented by such systems is the development
of algorithms that incorporate power-saving techniques and task management
without sacrificing timing and performance guarantees, see e.g. [14].

The main purpose of this paper is to present a unified formal framework and
associated toolset for designing and reasoning about power-constrained, timed
� This research was supported in part by NSF CCR-9988409, NSF CCR-0086147,

NSF CCR-0209024, ARO DAAD19-01-1-0473, and by the EU Future and Emerging
Technologies programme IST-1999-14186 (ALCOM-FT).

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 409–424, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

410 O. Sokolsky et al.

systems. The framework we propose is based on process algebra, a formalism
which has been developed to describe and analyze communicating, concurrent
systems. The most salient aspect of process algebras is that they support the
modular specification and verification of systems. Process algebras are being
used widely in specifying and verifying concurrent systems and they have been
extended to account for time and probabilistic behavior.

The formal framework we propose is based on the process algebra P2ACSR
which extends our previous work on formal methods for real-time [10] and prob-
abilistic systems [13] by incorporating the ability of reasoning about power con-
sumption. The Algebra of Communicating Shared Resources (ACSR) [10] is
a timed process algebra which represents a real-time system as a collection of
concurrent processes. Each process can engage in two kinds of activities: commu-
nication with other processes by means of instantaneous events and computation
by means of timed actions. Executing an action requires access to a set of re-
sources and takes a non-zero amount of time measured by an implicit global
clock. The notion of a resource, which is already important in the specification
of real-time systems, additionally provides a convenient abstraction for a vari-
ety of aspects of systems behavior. One such aspect is the failure of physical
devices: in a probabilistic extension of ACSR, PACSR [13], resources are ex-
tended with the ability to fail, and are associated with a probability of failure.
In P2ACSR, the resource model of PACSR is further extended to reason about
power consumption. Resources in P2ACSR specifications are accompanied with
information about the power consumption of each resource use. Thus, we can
compute the power consumed by system executions requiring access to a set
of power-consuming resources. We provide an operational semantics of P2ACSR
via labeled concurrent Markov chains [17], which are transition systems con-
taining both probabilistic and nondeterministic behavior. Probabilistic behavior
is present in the model due to resource failure and nondeterministic behavior
due to the fact that P2ACSR specifications typically consist of several parallel
processes producing events concurrently.

We are interested in being able to specify and verify high-level requirements
of P2ACSR specifications, and, in particular, to study their power-consumption
behavior and tradeoffs in their timing and other characteristics. To do this we
extend model-checking analysis techniques to allow reasoning about power con-
sumption properties. First, we present a probabilistic, power-aware temporal
logic for expressing properties of P2ACSR expressions by associating power-
consumption constraints with temporal operators. Second, the analysis tech-
nique allows us to compute bounds on power consumption in executions of the
model. We present model-checking algorithms both for the logic and for bound
computations. In order to allow the automatic analysis of P2ACSR specifica-
tions, we have extended the PARAGON toolset [16], which previously allowed
the specification and analysis of ACSR and PACSR processes, to accept P2ACSR
specifications and construct the probabilistic transition systems emanating from
them, and we have augmented the toolset with the model-checking algorithms
both for the logic and for the bounds computations.

Modeling and Analysis of Power-Aware Systems 411

We illustrate the usefulness of the proposed formalism using a dynamic
voltage-scaling algorithm for real-time, power-aware systems [14]. In this exam-
ple, we use resources to model the power-consuming processing unit which can
be used at different power levels with different execution speeds. We model the
probabilistic nature of task execution time in the system by employing proba-
bilistic resources. The expected savings in power consumption that the algorithm
offers were computed automatically using the PARAGON toolset extension.

Related work. This work extends our earlier work on probabilistic process al-
gebra PACSR [13]. Similar approaches process models have been considered
by [8] and [15]. Similar logics and model checking approaches were presented
in [15] and [8]. Extensions made in this work allow us to reason quantitatively
about power consumption using resource attributes as rewards. Much work on
reward-based modeling and analysis has been done in the context of performance
modeling using the formalisms of stochastic process algebras [2] and continuous-
time Markov chains [1]. The approach taken in this paper uses discrete time
and yields coarser but easier to analyze models. A difference in the modeling
approach, compared to all these papers, is that we use resource attributes to
capture probabilistic aspects of behavior as well as rewards, which offers us a
flexible and easily extensible framework.

The rest of the paper is organized as follows: the next section present
the P2ACSR syntax and semantics. Section 3 describes analysis techniques for
P2ACSR processes, and Section 4 presents the case study in which a power-aware
real-time scheduling algorithm is modeled and analyzed. We conclude with some
final remarks and discussion of future work.

2 The General Framework

We assume that a system contains a finite set of serially reusable resources
drawn from a countable infinite set of resources R and we let r range over R.
Resources correspond to physical entities, such as processor units and communi-
cation channels, or to abstract notions such as message arrival. They can have a
set of numerical attributes that let us capture quantitative aspects of resource-
constrained computations. We use three resource attributes. One attribute cap-
tures the probability of resource failure, which remains constant for each resource
throughout a system specification. The other two attributes may change with
each resource use and represent access priority and power consumption.
Probabilistic resource failures. We associate with each resource a probabil-
ity [13]. This probability captures the rate at which the resource may fail. A
failure may correspond to either a physical failure, such as a processor failure,
or a failure of some abstract condition, for example no message arrival when one
was expected. We assume that in each execution step, resources fail indepen-
dently. To capture the notion of a failed resource we also consider the set R that
contains, for each r ∈ R, its dual element r, representing the failed resource r.
For each r ∈ R, we use π(r) ∈ [0, 1] to denote the probability of resource r being

412 O. Sokolsky et al.

up in a given step, while π(r) = 1−π(r) is the probability of r failing in a given
step. Failed resources are useful when we need to model recovery from failures.
Resources and power consumption. In order to reason about power con-
sumption in distributed settings, the set of resources R is partitioned into a finite
set of disjoint classes Ri, for some index set I. Intuitively, each Ri corresponds
to a distinct power source which can provide a limited amount of power at any
given time. This limit is denoted by ci. Each resource r ∈ Ri consumes a certain
amount of power from the source Ri. As we will see below, the rate of power
consumption is specified in timed actions.

2.1 The Syntax

As PACSR, P2ACSR has three types of actions: instantaneous events, timed
actions, and probabilistic actions. We discuss these three concepts below.
Instantaneous events. Instantaneous actions are called events, and provide
the basic synchronization primitives in the process algebra. An event is denoted
as a pair (a, p), where a is the label of the event and p, a natural number, is
the priority of the event. Labels are drawn from the set L = L ∪ L ∪ {τ}, where
if a ∈ L, a ∈ L is its inverse label. The special label τ , also called the silent
action, arises when two events with inverse labels are executed concurrently.
Thus, events are similar to actions in CCS, with the distinction that here we
also impose priorities. We use DE to denote the set of events.
Timed actions. A timed action consists of several resources, each resource being
used at some priority and at some level of power consumption, and consumes
one unit of time. Formally, an action is a finite set of triples of the form (r, p, c),
where r is a resource, p is the priority of the resource usage and c is the rate
of power consumption, with the restriction that each resource is represented at
most once.

An example of an action is given by {(cpu, 2, 3),(msg, 1, 0)}. This action takes
one unit of time and uses resource cpu representing a processor unit, at priority
level two, consuming three units of power. This action also assumes that the
processor receives a message, represented by resource msg. The fact that the
processor may fail or that the message may or may not arrive is modeled by
assigning probabilities of failures to resources cpu and msg. The action takes
place only if none of the resources cpu and msg fail. On the other hand, action
{(cpu, 2, 3), (msg, 1, 0)} takes place when resource msg fails and resource cpu
does not. Such an action may be used to describe the behavior of the processor
when it does not receive a message. The action ∅ represents idling for one unit
of time, since no resource is consumed. We denote the set of resources used in
an action A as ρ(A). We use DR to denote the set of actions.
Probabilistic transitions. As already mentioned resources are associated with
a probability of failure. Thus, the behavior of a resource-consuming system has
certain probabilistic aspects to it. Consider the action {(cpu, 2, 3), (msg, 1, 0)},
where resources cpu and msg have probabilities of failure 0 and 1/3, respectively,
that is π(cpu) = 1 and π(msg) = 2/3. This action takes place with probability
π(cpu) · π(msg) = 2/3 and fails with probability 1/3.

Modeling and Analysis of Power-Aware Systems 413

Processes. We let P , Q range over processes and we assume a set of process
constants, each with an associated definition of the kind X

def= P . We write Proc
for the set of P2ACSR processes. The following grammar describes the syntax
of P2ACSR processes. We present only those operators that are used in the
examples in the paper. The complete set of operators can be found in [11].

P ::= NIL | (a, n). P | A:P | b → P | P + P | P‖P | P\F | X

Process NIL represents the inactive process. There are two prefix operators,
corresponding to the two types of actions. The first, (a, n). P , executes the in-
stantaneous event (a, n) and proceeds to P . When it is not relevant for the
discussion we omit the priority of an event in a process and simply write a. P .
The second, A : P , executes a resource-consuming action A during the first time
unit and proceeds to P . An action can take place if none of the resources used
by it fail and also if it does not violate the power constraints of the system.
Otherwise, A : P cannot execute the action and behaves as NIL. As a short-
hand notation, we will write An : P for a process that performs n consecutive
actions A and then behaves as P . Process b → P behaves as P if condition b
is true, otherwise it behaves as NIL. Process P + Q represents a nondetermin-
istic choice between the two summands. Process P‖Q describes the concurrent
composition of P and Q: the component processes may proceed independently
or interact with one another while executing events, and they synchronize on
timed actions. In P\F , where F ⊆ L, the scope of labels in F is restricted to
process P ; that is, components of P may use these labels to interact with one
another but not with P ’s environment.

As an example of a process, consider the process

P
def= {(cpu, 2, 3), (msg, 1, 0)} : P1 + {(cpu, 2, 2), (msg, 1, 0)} : P2 .

Process P represents a processor that can accept messages from a channel. De-
pending on whether the message arrives or not, P has two alternative behaviors.
If the message arrives, that is, resource msg is up, P processor receives the mes-
sage, consuming 3 units of power, and proceeds to process it as P1. Otherwise,
msg is up, P consumes only 2 units of power and continues as P2.

As a syntactic convenience, we allow P2ACSR processes to be parameterized
by a set of index variables, allowing us to represent collections of similar processes
concisely. Each index variable is given a fixed range of values. For example, the
parameterized process Pt

def= t < 2 → (at, pt).Pt+1, t ∈ {0..2} is equivalent to
the following three processes: P0

def= (a0, p0).P1, P1
def= (a1, p1).P2, P2

def= NIL.

2.2 Operational Semantics

In this section we give an informal account of the operational semantics for
P2ACSR. The detailed account can be found in [11] and is an extension of the
PACSR semantics presented in [13]. The behavior of a P2ACSR process depends
on the status of the resources it requires during its first time step. For example,

414 O. Sokolsky et al.

the process P in the previous section, will evolve depending of whether the
processor is available or failed and whether or not a message arrives. In order to
capture this relation between process behavior and resource status we introduce
the notion of a world. A world is a set of resources W such that it cannot
contain both a resource and its failed counterpart. When r ∈ W , r is known
to be available, when r ∈ W , r is known to be failed. Then, we introduce the
notion of a configuration as a pair of the form (P, W) ∈ Proc × 2R, representing
a P2ACSR process P in world W . We write S for the set of all configurations.
Further, given world W we write W(W) for the set of worlds that give status
to the same resources as W , and π(W) is the probability of the world, given by
the product of π(r), r ∈ W .

The intuition for the semantics is as follows: for a process P , we begin with
the configuration (P, ∅). As computation proceeds two types of transitions may
be performed: (1) for any configuration (P, W) where the world W does not
contain information regarding the status of all of P ’s immediately relevant
resources, probabilistic transitions are taken to a number of new configurations
each of which spells out a possible world of these resources. Such configurations
are called probabilistic and denoted Sp. Otherwise, (2) for all configurations
holding all necessary information about the status of resources, nondeterministic
transitions (which can involve events or actions) are taken. Such configurations
are called nondeterministic and denoted Sn. The set of immediately relevant
resources, denoted imr(P), is defined inductively on the structure of the process.
Intuitively, immediately relevant resources are contributed by the timed actions
that may be taken by the process in the first step and also resources added by
the resource closure operator. After the status of a resource is determined by a
probabilistic transition, it cannot change until the next timed action occurs. Once
a timed action occurs, the state of resources has to be determined anew, since
in each time unit resources can fail independently from any previous failures.

Thus the semantics is given in terms of a labeled transition system whose
states are configurations and whose transitions are either probabilistic or non-
deterministic. Each probabilistic transition originates from configurations in Sp

and leads to a configuration in Sn. Probabilistic transitions are labeled with the
probability of reaching a new world with the updated resource status. The rule
for the probabilistic transition relation describes the manipulation of the worlds
as a result of the transition.

As an example, consider the process P
def= {(r1, 2, 1), (r2, 2, 2)} : P1+(e, 1).P2

in the initial configuration (P, ∅). The immediate resources of P are {r1, r2}.
Since there is no knowledge in the configuration’s world regarding these re-
sources, the configuration belongs to the set of probabilistic configurations Sp,
from where we have four probabilistic transitions that determine the status of
r1 and r2:

(P, ∅)
π(r1)·π(r2)−→p (P, {r1, r2}), (P, ∅)

π(r1)·π(r2)−→p (P, {r1, r2}),

(P, ∅)
π(r1)·π(r2)−→p (P, {r1, r2}), (P, ∅)

π(r1)·π(r2)−→p (P, {r1, r2}).

Modeling and Analysis of Power-Aware Systems 415

All of the resulting configurations are nondeterministic since they contain full
information about P ’s immediate resources.

Nondeterministic transitions are labeled with either an event or a timed
action. The rules for nondeterministic transitions are, for the most part, the
same as for PACSR and can be found in [13]. The difference comes in the side
conditions in the rules for action prefix and parallel composition. An action
can take place if it does not violate the power consumption constraints. The
predicate valid(A) =

∧
i∈I(

∑
r∈Ri

pcr(A) ≤ ci) captures this requirement. The
action prefix rule requires that the action appearing in the action prefix be valid.
The rule for parallel composition requires that processes in a parallel composition
need to synchronize on a timed action, that is, a process advances only if both
of its subprocesses can take action steps labeled by actions A1 and A2 that use
disjoint resources, and the resulting action A1 ∪ A2 is valid.

In the example, the nondeterministic configuration (P, {r1, r2}), where P
def=

{(r1, 2, 1), (r2, 2, 2)} : P1 + (e, 1).P2 has two nondeterministic transitions:

(P, {r1, r2})
{(r1,2,1),(r2,2,2)}−→ (P1, ∅) and (P, {r1, r2}) e−→ (P2, {r1, r2}).

The other configurations, (P, {r1, r2}), (P, {r1, r2}), and (P, {r1, r2}), allow only
the e-labeled transition since either r1 or r2 is failed and the action cannot occur.

The prioritized transition system for P2ACSR is based on the notion of pre-
emption and refines the unprioritized transition relation −→ by taking priorities
into account. It is given by the pair of transition relations −→p and −→n, the
latter of which is defined below. The preemption relation ≺ on Act is defined as
for ACSR, specifying when two actions are comparable with respect to priorities.
For example, ∅ ≺ A for all actions A, that is, the idle action ∅ is preempted by
all other timed actions, and (a, p) ≺ (a, p′), whenever p < p′. For the precise
definition of ≺ we refer to [10]. The basic idea behind −→n is that a nonde-
terministic transition of the form (P, W) α−→ (P ′, W ′) is included in −→n if
and only if there are no higher-priority transitions enabled in (P, W). Thus, the
prioritized nondeterministic transition system is obtained from the unprioritized
one by pruning away preemptable transitions.

3 Analysis

In this section we discuss possible analysis that can be performed on P2ACSR
specifications. We begin by presenting the formal model underlying P2ACSR
processes which is that of labeled concurrent Markov chains [17].

Definition 1. A labeled concurrent Markov chain (LCMC) is a tuple 〈Sn, Sp,
Act,−→n,−→p, s0〉, where Sn is the set of nondeterministic states, Sp is the set
of probabilistic states, Act is the set of labels, −→n⊂ Sn ×Act× (Sn ∪Sp) is the
nondeterministic transition relation, −→p⊂ Sp × [0, 1] × Sn is the probabilistic
transition relation, satisfying Σ(s,π,t)∈−→p

π = 1 for all s ∈ Sp, and s0 ∈ Sn ∪Sp

is the initial state. �

416 O. Sokolsky et al.

We may see that the operational semantics of P2ACSR yields transition sys-
tems that are LCMCs with Act = DE ∪ DR, and the sets Sn, Sp are the sets of
nondeterministic and probabilistic configurations, respectively. In what follows,
we let � range over Act ∪ [0, 1].

A computation in T = 〈Sn, Sp,Act,−→n,−→p, s0〉 is either a finite sequence
c = s0 �1 s1 . . . �k sk, where sk has no transitions, or an infinite sequence c =
s0 �1 s1 . . . �k sk . . ., such that si ∈ Sn∪Sp, �i+1 ∈ Act∪[0, 1] and (si, �i+1, si+1) ∈
−→p ∪ −→n, for all 0 ≤ i. We denote by comp(T) the set of all computations of
T and by Pcomp(T) the set of all partial computations of T , that is the set of
initial subsegments of computations of T .

To define probability measures on computations of an LCMC the nonde-
terminism present must be resolved. To achieve this, the notion of a scheduler
has been employed [17,8]. A scheduler σ is an entity that, given a partial com-
putation ending in a nondeterministic state, chooses the next transition to be
executed. This gives rise to computation trees that can be viewed as labeled
Markov chains. Each path through a computation tree is a scheduled computa-
tion of the LCMC and can be assigned a probability by taking a product of the
probabilistic labels along the path. See [11] for the details.

3.1 Model Checking for P2ACSR

The first technique we propose for analyzing P2ACSR specifications is that of
model-checking. Model checking is a verification technique aimed at determining
whether a system specification satisfies a property typically expressed as a tem-
poral logic formula. To allow model checking on P2ACSR specifications, in this
section we introduce a probabilistic temporal logic that allows one to associate
power consumption constraints with fragments of behaviors. Behavioral frag-
ments of interest are expressed in terms of regular expressions over Act, the set
of observable actions. The associated model-checking algorithm, also presented
in this section, is used to check whether these constraints are satisfied and thus
whether formulae of the logic are satisfied by system specifications.

Our logic for P2ACSR is an extension of the logic of [13], which, in turn,
is based on the Hennessy-Milner Logic (HML) with until [7]. The extension
established allows for quantitative analysis of power consumption properties of
a system by associating a condition with the until operator. The condition takes
a form such as ≤ pc or ≥ pc for a constant pc. In this way we can express a
property that an execution, timed or untimed, satisfies a power consumption
constraint, with a certain probability (which may be equal to one). We also
include a second construct that allows a similar type of reasoning but specifying
the power sources for which analysis is to be performed.
Definition 2. (Power-aware PHML with until) The syntax of Lpc

PHMLu is de-
fined by the following grammar, where f, f ′, range over Lpc

PHMLu-formulae, Φ is
a regular expression over Act, R is a subset of the set of resources R, p a number
in [0, 1] representing a probability, t a number representing a time limit, pc a
number representing a power consumption, and �	∈ {≤, <,≥, >}:

f ::= tt | ¬f | f ∧f ′ | f〈Φ〉��′pc
��p f ′ | f〈Φ〉��′pc

��p,t f ′ | f〈Φ〉��′pc,R
��p f ′ | f〈Φ〉��′pc,R

��p,t f ′. �

Modeling and Analysis of Power-Aware Systems 417

Lpc
PHMLu-formulae are interpreted over states of LCMCs. Informally, formu-

lae of the form f〈Φ〉f ′ state that there is some execution and some integer l such
that f holds for the first l − 1 steps and f ′ becomes true in the l-th step and the
observable behavior of the l-step execution involves some behavior from Φ. The
subscript �	 p denotes that the probability of paths fulfilling the formula is �	 p
and the use of subscript t denotes that the paths of interest are only those that
achieve the goal in at most t time units. Finally, the superscript �	′ pc requires
paths to use �	′ pc units of power, and the use of R, restricts power consump-
tion calculations to the set of resources R. For instance, formula tt〈Act∗〉≤pc

≥1 f
expresses that there is some execution of the system for which eventually f be-
comes true, with probability 1, without consuming more than pc units of power.
Similarly, ¬(tt〈Act∗〉≥pc

>0 tt), specifies that the power consumption never exceeds
the threshold of pc units, whereas ¬(tt〈Act∗〉≥pc,{cpu}

>0 tt), specifies that the power
consumption of resource cpu never exceeds the threshold of pc units.

In order to present the semantics of the four until operators, we need to
compute the probabilities that certain behaviors occur. Consider now the formula
f〈Φ〉≤pc,R

��p,t f ′. Given two sets of states A, B of an LCMC T and a sequence of
actions Φ ⊆ Act∗, we consider following set of partial computations of T . The
computations lead to a state in B via Φ, with intermediate states in A, and take
less than time t and consume no more than pc units of power on resources in
R. Given a scheduler σ, the set of complete scheduled computations that are
extensions of the partial computations above is measurable in the probability
space of T . We denote its probability PrA(T, Φ, B,≤ pc, R, t, σ). Similarly, we
can define probabilities for other kinds of formulas.

Finally, the satisfaction relation |= ⊆ (Sn ∪ Sp) × Lpc
PHMLu, stating when

an LCMC state satisfies a given formula, is defined inductively as follows. Let
T = (Sn, Sp,Act,−→n,−→p, s0), be an LCMC. Then:

s |= tt always
s |= ¬f iff s �|= f
s |= f ∧ f ′ iff s |= f and s |= f ′

s |= f 〈Φ〉��′pc,R
��p,t f ′ iff there is σ ∈ Sched(s) such that PrA(s, Φ, B, ��′ pc, R, t, σ) �� p,

where A = {s′ | s′ |= f}, B = {s′ | s′ |= f ′}
Similar definitions are given for the other variants of the until operator.

The Model-Checking Algorithm. Let closure(f) denote the set of formulae
{ f ′,¬f ′ | f ′ is a subformula of f }. Our model-checking algorithm is similar
to the CTL model-checking algorithm of [5]. In order to check that LCMC T
satisfies some formula f ∈ Lpc

PHMLu, the algorithm labels each state s of T with
a set F ⊆ closure(f), such that for every f ′ ∈ F , s |= f ′. T satisfies f if and
only if s0, the initial state of T , is labeled with f . The algorithm starts with
the atomic subformulae of f and proceeds to more complex subformulae. The
labeling rules are straightforward from the semantics of the operators, with the
exception of the until operator.

In order to decide whether a state s satisfies one of the four until operators,
we compute the maximum or minimum probability of the specified behavior Φ.

418 O. Sokolsky et al.

The maximum value of PrA(s, Φ, B,≤ pc, σ) over all σ is computed by solving a
linear programming problem. Specifically, it is given as the smallest value of the
variable Xs

f〈Φ〉≤pcf ′ satisfying the following set of equations:

Xs
f〈Φ〉≤pcf ′ =

∑

s
π−→ps′

π · Xs′
f〈Φ〉≤pcf ′ if s ∈ Sp

max({Xs′
f〈Φ−α〉≤pc−pow (α)f ′ | s

α−→n s′}) if s ∈ Sn, s |= f

1 if s ∈ Sn, s |= f ′, ε ∈ Φ, pc ≥ 0
0 otherwise

where Φ − α is {φ | αφ ∈ Φ} if α = τ and Φ, otherwise. A solution for
this set of equations can be computed as follows: for all equations of the form
X = max{X1, . . . Xn}, we introduce, the set of inequalities X ≥ Xi aiming to
minimize the function

∑
i Xi. Using algorithms based on the ellipsoid method,

this problem can be solved in time polynomial in the number of variables (see,
e.g. [9]). The number of variables is O(|T | × 2|f |). Clearly, for each state s of
T , there is one variable labeled s for each subformula of f that is considered by
the algorithm. However, the number of subformulae of an until formula f〈Φ〉f ′

depends on the number of regular expressions derived by the operation Φ − α,
which is exponential in the size of Φ in the worst case. We think that it is possi-
ble to make the algorithm polynomial in the size of the formula by constructing
equations differently. However, this is still left for future research.

Example. Consider two systems requiring the use of a resource. Suppose the
first system employs a highly reliable resource r that never fails, π(r) = 1, but
consumes a large amount of power during each of its uses. On the other hand the
second system opts on using a less reliable resource r′ with probability of failure
1/2 but consumes less power. The description of these systems is as follows:

P
def= rec X.{(r, 1, 2)} : succ.X

Q
def= rec X.({(r′, 1, 1)} : succ.X + {(r′, 1, 0)} : X)

We observe that Q attempts to use resource r′ and if it is up then it consumes r′,
performs the event succ and returns to its initial state, otherwise, if r′ is down,
it retries to use r′ until it succeeds. The LCMCs corresponding to processes P ,
Q are given in Figure 1.

We may see that although Q risks a delay in successfully using resource
r′, on average, it consumes less power than P per successful resource use.
Specifically, it is easy to show that letting Φ be the regular expression
{{(r, 1, 2) {(r′, 1, 1)}, {(r′, 1, 0)}}∗ succ, we have that (Q, ∅) |= tt〈Φ〉≤1

≥1tt, since,
with probability 1, configuration (Q, ∅) can eventually successfully use resource
r′ using 1 unit of power. On the other hand, (P, ∅) |= tt〈Φ〉≤1

≥1tt, since a successful
usage of resource r consumes two units of power. Introducing a time limit to the
property to be checked we can see the tradeoff with respect to the time delay
between using resource r′ and using resource r: although (P, ∅) |= tt〈{Φ〉≤2

≥1,1tt,
(Q, ∅) |= tt〈Φ〉≤2

≥1,1tt, instead (Q, ∅) |= tt〈Φ〉≤1
≥0.5,1tt, and (Q, ∅) |= tt〈Φ〉≤2

≥0.75,2tt.

Modeling and Analysis of Power-Aware Systems 419

Fig. 1. The LCMCs of processes P and Q

3.2 Probabilistic Bounds on Power Consumption

Model checking P2ACSR processes with respect to logical formulae allows us
to verify important properties of a process. A disadvantage of this approach,
however, is that to reason about power consumption we need to guess and specify
a bound on power consumption in the formula. These bounds may come from
the requirements for the process, but often we do not have them a priori. In this
case, we need to compute bounds on power consumption of a process over a fixed
interval of time. In this section we show how such bounds can be calculated.

Let T be an LCMC and σ a finite scheduler, where by σ being finite we mean
that it can schedule a finite number of transitions. We consider the set of sched-
uled computations of σ and would like to compute their expected power con-
sumption, which we denote by Pow(T, σ). This expected value is Pow(s0, σ, σ0),
where s0 is the initial state of T , given by the solution to the following set of
equations:

Pow(s, σ, c) =

{
0 σ(c) =⊥
pow (α) + Pow(s′, σ, cαs′) s ∈ Sn, σ(c) = (s, α, s′)
Σs′π(s, s′) · Pow(s′, σ, cπ(s, s′)s′) s ∈ Sp

Given a finite P2ACSR process P , we may use the same scheme to compute
the maximum expected power consumption pow(P) over the set of all its sched-
ulers. This can be achieved by the following algorithm for the initial state s0.
Minimum expected power consumption is obtained by replacing function max()
with min(). By replacing pow (α) by pow (α, R), we can also compute the ex-
pected power-consumption bounds regarding the set of resources R.

compute bounds(s)
if s ∈ Sn then

if s has no outgoing transitions then pow(s) = 0
else for each s′, s

α−→n s′

compute bounds(s′); pow(s) = max
s

α−→ns′(pow (α) + pow(s′));
if s ∈ Sp then

for each s′, s
α−→n s′

compute bounds(s′); pow(s) = Σ
s

p−→ps′p · pow(s′)

420 O. Sokolsky et al.

4 Case Study: Power-Aware Real-Time Scheduling

In this section, we describe the case study of a power-aware application, based
on the work of [14] and concerning the use of dynamic voltage scaling [3] in an
embedded real-time system. Dynamic voltage scaling allows to make a trade-off
between performance and power consumption. A processor can lower its oper-
ating frequency, using a lower supply voltage and thus consuming less power.
At the same time, a lower-frequency execution means that tasks take longer
to compute. A power-aware real-time operating system has to decide when it
can to operate at a lower frequency while maintaining the system’s real-time
requirements.

In [14], Pillai and Shin propose extensions to real-time scheduling algorithms
to make use of dynamic voltage scaling. We concentrate on the extension of
the Earliest Deadline First (EDF) scheduling algorithm [12] that utilizes cycles
unused by the tasks to lower the operating frequency for other tasks. The algo-
rithm assumes a set of independent periodic tasks T1, . . . , Tn to be executed on
the same processor. Each task Ti has a period pi, a worst-case execution time ci,
and a deadline di by which execution must be completed. The ratios of execution
time to period in each task define the nominal utilization of the processor by the
task set that determines whether the tasks can be scheduled. In reality, tasks
often take much less than the worst case to execute. Thus effective utilization of
the task set may be much lower than the nominal one.

When the processor operates at a lower frequency, execution times of tasks
grow accordingly, increasing nominal utilization so that the task set may become
unschedulable. However, the effective utilization may be small enough even for a
lower frequency. The power-aware scheduling algorithm of [14] computes effective
utilization during execution and switches frequencies to use the lowest frequency
for which the task set remains effectively schedulable.

For the case study, we use the example from [14]. The task set contains
three tasks with the following parameters: c1 = 3, p1 = 8; c2 = 3, p2 = 10;
c3 = 1, p3 = 14. In each case, the deadline of the task is the same as its period.
Execution times are shown for the maximum processor frequency. We assume
that the processor has two possible operating frequencies. For simplicity, we
assume that at the reduced frequency tasks take twice as long to execute and
consume half of the power. We demonstrate that the timing constraints of the
tasks are maintained even at the lower frequency and compute the savings in
power consumption offered by the power-aware scheduling.

The ACSR representation of the EDF scheduling algorithm has been pre-
sented in [4]. Here, we extend that representation in P2ACSR to incorporate
probabilistic completion time of the tasks. An instance of the scheduling prob-
lem is modeled as a collection of processes T1, . . . , Tn. Process Ti is shown in
Figure 2. A task is represented as a parallel composition of two processes: Jobi

and Activatori.
The role of the activator is to keep track of the timing constraint of the task.

At the beginning of every period, Activatori sends the signal starti to Jobi,
releasing the task for execution, and then idles until the end of the period. If,

Modeling and Analysis of Power-Aware Systems 421

by the end of the period, the task has not finished its execution, it will not be
able accept the next starti signal, resulting in a deadlock that will signify the
scheduling failure.

The other process, Jobi, upon receiving the starti signal, begins its execution.
At each time step, the task has a priority that is increased as the task approaches
its deadline. The task that has been released t time units ago, has pi − t time
units remaining until the deadline and has priority pmax −(pi −t), where pmax =
max(p1, . . . , pn) + 1. When the task receives the processor resource, it executes
for one time unit and its accumulated execution time e, is increased together with
the elapsed time t. At any time step, the task can be interrupted by another task
that has a closer deadline. In this case, the task makes an idling step and its
accumulated execution time stays the same while the elapsed time is increased.

In order to model the potential for early termination, we associate, with each
task, a probability distribution on the time it takes to complete the task. For
simplicity, we assume that the execution time of a task conforms to the geo-
metric distribution. That is, after every execution step, the task may terminate
with probability π and continue its execution with probability 1 − π. Thus the
probability that the task takes i time units to execute is (1 − π)i−1 · π. We as-
sume that this distribution is the same for all tasks. We introduce an additional
resource cont that represents continuation of the task execution. When the re-
source fails, the task terminates its execution, becoming Jobi. Otherwise, the
execution continues, up to the worst-case execution time.

To model slower or faster execution of the task, depending on the operating
frequency, we introduce events fast and slow to determine whether the proces-
sor is in the fast or slow mode. If the processor is in the slow mode, the next
computation step takes two time units. The task also uses two additional events,
releasei and end i,j , which are used to drive the voltage scaling algorithm and
correspond to the release of task Ti and the completion of Ti after j time units,
respectively.

The algorithm of [14] recomputes effective utilization every time a task is
released for execution or ends its execution. Then, it selects the least operating
frequency for the processor that would still guarantee schedulability of the task
set. The algorithm maintains, for each task Ti its effective utilization Ui, which
is set initially, and also whenever the task Ti is released, to ci/pi. When Ti

completes its execution for the current period, Ui is set to cact
i /pi, where cact is

the actual time used by the task. Every time one of the Ui values is changed,
the algorithm selects the lowest operating frequency f from the set of possible
frequencies such that U1+. . .+Un ≤ f/fmax, where fmax is the highest operating
frequency.

Resources used in the model of the task do not consume power since both
represent abstract notions: scheduling priorities and probabilistic completion.
Power consumed by the processor is captured by a separate resource power that
is used by the process DV S, shown in Figure 3, consists of two parallel parts.
The first part, represented by the process Scalee1,e2,e3 , represents the voltage
scaling algorithm itself. Triggered by an event releasei or endi,c that correspond

422 O. Sokolsky et al.

Jobi = ∅ : Jobi + (start i, 0).(releasei, i).Execi,0,0

Execi,e,t= e < ci → ((fast, i).({(cpu, pmax − (pi − t), 0), (cont, 1, 0)} : Execi,e+1,t+1

+{(cpu, pmax − (pi − t), 0), (cont, 1, 0)} : (endi,e+1, i).Jobi

+∅ : Execi,e,t+1)
+(slow, i).({(cpu, pmax − (pi − t), 0)} :

({(cpu, pmax − (pi − t), 0), (cont, 1, 0)} : Execi,e+1,t+2

+{(cpu, pmax − (pi − t), 0), (cont, 1, 0)} : (endi,e+1, i).Jobi)
+∅ : Execi,e,t+1)

+ e = ci → (endi,ci , i).Jobi e ∈ {0..ci}, t ∈ {0..pi}

Fig. 2. A speed-sensitive task

to the release or, respectively, completion of the task Ti after executing for
c time units, the process SetNew computes the effective utilization and sends
signal fdown if a lower operating frequency is possible and signal fup otherwise.
The other component of the process DVS keeps the information at the current
operating frequency. It has two states, DVS fast and DVS slow . In the former
state, the process uses the resource power at the power consumption level of
pwfast and in the latter state the same resource is used with power consumption
of pwslow , where pwfast and pwslow are parameters of the model.

DV S = (Scalec1,c2,c3‖DVS fast)\{fup , fdown}

Scalee1,e2,e3 = (release1, 0).SetNewc1,e2,e3 + (release2, 0).SetNewe1,c2,e3

+ (release3, 0).SetNewe1,e2,c3

+ Σc∈{1..c1}(end1,c, 0).SetNewc,e2,e3 +Σc∈{1..c2}(end2,c, 0).SetNewe1,c,e3

+ Σc∈{1..c3}(end3,c, 0).SetNewe1,e2,c+∅ : Scalee1,e2,e3

SetNewe1,e2,e3= e1/p1 + e2/p2 + e3/p3 < 1/2 → (fdown , 4).Scalee1,e2,e3

+ e1/p1 + e2/p2 + e3/p3 >= 1/2 → (fup , 4).Scalee1,e2,e3)

DVS fast = {(power , 1, pwfast)} : DVS fast + (fast , 1).DVS fast

+ (fdown , 0).DVS slow + (fup, 0).DVS fast+
DV Sslow = {(power , 1, pwfast)} : DVS slow + (slow , 1).DVS slow

+ (fdown , 0).DVS slow + (fup, 0).DVS fast

Fig. 3. P2ACSR representation of voltage scaling

Analysis. We began the analysis of the case study by checking that the task
set remains schedulable by the power-aware scheduling algorithm. The resulting
system does not have any deadlocks, which means that all timing constraints
are satisfied. Then we used the algorithm described in Section 3.2 to compute
the expected power consumption of our task set for the duration of one major
frame, that is, the product of periods of all tasks, p1 · p2 · p3 (1120 time units).

Modeling and Analysis of Power-Aware Systems 423

The probability of the task completion after a computation step was taken to
be 0.3, and parameters pwfast and pwslow were 2 and 1, respectively.

The expected minimum and maximum power consumption were calculated
to be 1906.66 and 1922.65, respectively. Without the dynamic voltage scaling,
when each step would take pwfast power units, the power consumption for the
same period would be 2240 units. As a result, expected savings from the dynamic
voltage scaling are between 14% and 14.8%.

We also verified several obvious properties of the task set. For example, con-
sider the first iteration of the first task in the set. The system, which starts
in the fast mode, will switch into the slow mode if the first task finishes after
the first step, which happens with probability 0.3. Executions of the other two
tasks will not then affect the power mode, and the first eight steps of the sys-
tem will consume only 9 units of power. All other executions will consume more
power. Thus, the system satisfies the property tt〈power8〉<10

≤0.3tt. Here, expression
power8 denotes eight consecutive actions that utilize the resource power.

5 Conclusions

We have presented P2ACSR, a process algebra for resource-constrained real-
time systems. The formalism allows one to model the power consumption of
resources and perform power-oriented analysis of a system’s behavior. We have
also described two techniques for analysing P2ACSR specifications. First, we have
presented a probabilistic temporal power-aware logic in which one can express
properties of interest regarding the behavior of power-aware, real-time systems.
Second, we have presented an algorithm for computing probabilistic bounds on
power consumption.

Furthermore, to allow for the automatic analysis of power-aware real-time
systems, we have extended the PARAGON toolset [16], which previously al-
lowed the specification and analysis of ACSR and PACSR processes, to handle
the power consumption model of P2ACSR. The toolset may accept P2ACSR
specifications, construct the LCMCs emanating from them, and perform model-
checking as well as compute probabilistic bounds on power consumption. We
have successfully applied our techniques for modeling and analysing a couple of
examples, including a dynamic-voltage algorithm.

Another useful measure to be computed on P2ACSR specifications which is
currently being implemented in PARAGON, is that of long-run average per-
formance. Average power consumption can be computed per unit of time or, if
desired, per user-defined periods of interest, as shown in [6]. Finally, we intend to
define ordering relations by which to relate processes that, although behaviorally
similar, differ in their power consumption rates.

References

1. C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical charac-
terisation of performability properties. In Proceedings of ICALP 00, volume 1853
of LNCS, pages 780–792, 2000.

424 O. Sokolsky et al.

2. M. Bernardo. An algebra-based method to associate rewards with empa terms. In
Proceedings of ICALP 97, volume 1256 of LNCS, pages 358–368, July 1997.

3. T. D. Burd and R. W. Brodersen. Energy efficient CMOS microprocessor design. In
Proceedings of IEEE Hawaii International Conference on System Sciences. Volume
1: Architecture, pages 288–297, 1995.

4. J-Y. Choi, I. Lee, and H.-L. Xie. The specification and schedulability analysis of
real-time systems using ACSR. In Proceedings of Real-Time Systems Symposium,
December 1995.

5. E. Clarke, E. Emerson, and A. Prasad Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2), 1986.

6. L. de Alfaro. How to specify and verify the long-run average behavior of probabilis-
tic systems. In Proceedings of IEEE Symposium on Logic in Computer Science,
pages 454–465, 1998.

7. R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation. In
Proceedings of LICS ’90, 1990.

8. H. Hansson. Time and probability in formal design of distributed systems. In
Real-Time Safety Critical Systems, volume 1. Elsevier, 1994.

9. H. Karloff. Linear Programming. Progress in Theoretical Computer Science.
Birkhauser, 1991.

10. I. Lee, P. Brémond-Grégoire, and R. Gerber. A process algebraic approach to the
specification and analysis of resource-bound real-time systems. Proceedings of the
IEEE, pages 158–171, Jan 1994.

11. I. Lee, A. Philippou, and O. Sokolsky. Formal modeling and analysis of power-aware
real-time systems. Technical Report MIS-CIS-02-12, Department of Computer and
Information Science, University of Pennsylvania, 2002.

12. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM 20, 1:46–61, 1973.

13. A. Philippou, O. Sokolsky, R. Cleaveland, I. Lee, and S. Smolka. Probabilistic
resource failure in real-time process algebra. In Proceedings of CONCUR 98, pages
389–404, 1998.

14. P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In Proceedings of ACM Symposium on Operating Systems
Principles, 2001.

15. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Proceedings CONCUR 94, Uppsala, Sweden, volume 836 of LNCS, pages 481–496,
1994.

16. O. Sokolsky, I. Lee, and H. Ben-Abdallah. Specification and analysis of real-time
systems with PARAGON. Annals of Software Engineering, 7:211–234, 1999.

17. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proceedings of the Symposium on Foundations of Computer Science, pages 327–
338, 1985.

	Introduction
	The General Framework
	The Syntax
	Operational Semantics

	Analysis
	Model Checking for P${}^2mskip -thinmuskip $ACSR
	Probabilistic Bounds on Power Consumption

	Case Study: Power-Aware Real-Time Scheduling
	Conclusions

