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Abstract

In earlier work, we presented a process algebra, PACSR, that uses a notion of resource failure to capture probabilistic behaviol
in reactive systems. PACSR also supports an operator for resource hiding. In this paper, we carefully consider the interaction
between these two features from an axiomatic perspective. For this purpose, we introduce a subset of PACSR, called “PACSR-
lite”, that allows us to isolate the semantic issues surrounding resource hiding in a probabilistic setting, and provide a sound

and complete axiomatization of strong bisimulation for this fragmer#001 Elsevier Science B.V. All rights reserved.
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1. Introduction

advantage of associating probabilities with resources,
rather than process terms, is that the specification of a

The real-time process algebra ACSR [7] features a process does not involve probabilities directly. Failure

notion ofresource-dependeattions. A process needs

probabilities of individual resources are defined sepa-

to have access to a set of resources specified in an acrately and are used only during analysis. This makes

tion before it can proceed with the action. Recently,
in the context of the process algebra PACSR [11], we
extended the ACSR framework with the possibility of
resource failures which happen with a given probabil-
ity.

Previous work on extending process algebra with
probability information, such as [4,14,1,3,5,13], typ-
ically associates probabilities with process terms. An
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specifications simpler and ensures a more systematic
way of applying probabilistic information. In addi-
tion, this approach allows one to explore the impact
of changing probabilities of failures on the overall be-
havior, without changing the specification.

In this paper, we explore the effects of resource fail-
ures in a setting where resources may be hidden from
the observer (i.e., private to a process). Specifically,
we present PACSR-lite, a fragment of PACSR that al-
lows us to isolate the issues surrounding resource hid-
ing, and present a sound and complete axiomatization
of strong bisimulation equivalence for this fragment.
Due to the limitation of space, proofs of some of the

(I. Lee), rance@cs.sunysb.edu (R. Cleaveland), sas@cs.sunysb.edu'€Sults are only briefly sketched. The complete proofs

(S.A. Smolka).

can be found in [12].
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2. The syntax of PACSR-lite

In P\\I the displayed occurrence of each of the
resources i is bindingwith scopeP. An occurrence

PACSR-lite is a subset of the probabilistic process of a resource in a process boundif it lies within
algebra PACSR [11]. An action of a PACSR process the scope of a binding occurrence of the resource,
specifies access to a (possibly empty) set of resourcesotherwise the occurrence is free. We writeP) for
that the process requires to perform the action. More- the set of resources that have a free occurrence in
over, each resource has an associated failure probabil-P and br(P) for the set of resources all of whose

ity. Resources can edden making their identity in-

visible to the environment, but their failures can be ob-

served.

Resources and actionsWe assume that a system

contains a finite set of serially reusable resources 0(Z) =

drawn from the infinite seRes We write Res for
the set that contains, for eaehe Res an element,
representing thdailed resourcer, andR for ResU
Res An action is drawn from the domaiR (R) with

occurrences are bound. In what follows, we work up to

a-conversion on bound resources. In this way, bound

resources in a process are assumed to be different from

each other and from the free resources.
LetZ={r1,...,rn} CR. Then

1_[ p(ri);
1<igsn
W(Z)={Z' CzZUZ|reZ iffr¢ Z'};

and

the restriction that each resource is represented at most

once. For example, the singleton actipt} denotes
the use of resource. This action cannot happen
if r has failed. On the other hand, acti¢f} takes
place given that resourgehas failed. A notation for
failed resources is useful for specifying recovery from
failures. Action? represents idling since no resource
is consumed. We leact denote the domain of actions
anda, A, B range oveAct.

For all r € Reswe denote byp(r) € [0, 1] the
probability of resource being up, whilep(r) =1 —
p(r) denotes the probability of failing. For example,
consider the actior{cpy}, where resourcepu has
probability of failure, i.e.,p(cpu = 3. Then,{cpu}
may occur with probabilit;% and fails with probability

%. We assume the existence of an infinite number of .

resources for each probability failure[i, 1].

Processes. The setPr of PACSR-lite processes,
ranged over by? and Q, is given by:

P:=NIL|A:P|P+P|P\I,

wherel C Res The process NIL represents the inac-

tive processA : P executes a resource-consuming ac-

tion and proceeds to proce#s The process + Q

reSZ)={reRegreZorreZj.

ThusW(Z) denotes the set of all possible worlds in-
volving resourceg, that is, the set of all combinations
of the resources i@ being up or down, ances(Z) the
world where all resources i# are up. For example,

W({r1.72}) = {{r1. 72}, (71, r2}. {r. 72} {re. 2} )
res({r1.72}) = {r1, ra}.

Note thatp(¥) = 1 and W(@) = {d}. We also write
reg(P) for res(fr(P) Ubr(P)). Finally, functionimr(P),
defined below, associates each process with the set of
resources on which its behavior immediately depends:

imr(NIL) =@,

imr(P1 + P2) =imr(Pp) Uimr(Pp),
imr(A: P) =res(A),

imr(P\\/) =imr(P).

3. Operational semantics

A configurationis a pair of the form(P, W) €
Prx 2R, representing a procegsin world W. A world

represents a nondeterministic choice between the two captures the state (up or down) of resources relevant

summandsP\\/ hides resources if so that they are
not visible to the environment. The full process alge-
bra, PACSR, additionally contains constructs for re-
cursion, parallel composition, restriction, etc.

to P. We writeS for the set of configurations. The se-
mantics of PACSR-lite is given in terms of a labeled
transition system whose states are configurations and
whose transitions are either probabilistic (labeled by
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Table 1
The probabilistic and nondeterministic transition relations

(P,W) € Sp, Z1 =imr(P) —res(W), Zo € W(Z1)

(PROB) i
(P’W)F')_2> (P,WUZp)
(Act) (A:P, W) (), ifACW
(sum) (PL.W) 2 (P.W)
(PL+ P, W) 5 (P, W)
(Hide) (P, W) 4, (PP W), AA=A—1

(PN W) 5 (P2 W)

a probability) or nondeterministic (labeled by an ac-  The probabilistic transition relation is given by
tion). The idea is that, for a procegs computation the rule PROB) in Table 1. Note that configuration
begins in thenitial configuration (P, @). Probabilis- (P, W) evolves into(P, W U Z2) which is, by defin-
tic transitions are performed to determine the status of ition, a nondeterministic configuration. Further, it can
resources immediately relevant for execution (as spec- be shown that for alf € Sp,

ified by imr(P)) but for which there is no knowledge

in the configuration’s world. The status of a resource Z{Ip | (s, p,s)er)=1,

does not change until an action-labeled transition oc-

curs; moreover, actions erase all previous knowledge where{ and} are multiset brackets and the summation
of the configuration’s world (see lawA¢t)). Nonde- over the empty multiset is 1.

terministic transitions are possible from configurations  The nondeterministic transition relation is given

containing all necessary knowledge regarding the state by rules @ct), (Sum), and @ide) of Table 1. The

of resources. o N symmetric version of ruleSum) has been omitted.
With this view of computation in mind, we partition  Note that in rule Act), the occurrence of an action
S as follows: A re-initializes the world tg/. It can be shown that
Sy = {(P, W) € S|imr(P) — resSW) =}, the_ semanti_c§ of PACSR-lite processes _define alter-
o _ _ nating transition systems, that is, transition systems
the set ofnondeterministic configurationand where nondeterministic and probabilistic states alter-
S, =1(P,W) eS|imr(P)—reW) # @, nate [4].
b {( ) | 1mr(P) W) # } To illustrate the semantics, consider prodessrz} :
the set ofprobabilistic configurations P, which, in a world where resoureg is up andrp

The operational semantics of PACSR-lite processes is down, may evolve taP. Let p(r1) = p(r2) = 0.5.
is given as a combination of two labeled transition Then, by PROB),

relations:

_ 0.25 _
—>C S, x[0,1] x S, ({r1,72): P,0) == ({r1, 72} : P, W}),
is the probabilistic transition relation and for eachW € W({r1, r2}), and, by Act),

—C Sy, xActx S . RN
. o . . o ({re.m2y: P T2Y) = (P.D),

is the nondeterministic trf[;}nsmon relation. We write

elements of— as (P, W) — (P, W') and elements  whereas the remainder of the configurations have no

of — as(P, W) > (P, W'). transitions.
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4. Strong bisimulation

We introduce the notion of (strong) bisimulation [8,
10] for PACSR-lite processes. It captures formally
the notion that equivalent systems exhibit the same
behavior, including probabilistic behavior, at their
interfaces with the environment. Our definition of
probabilistic strong bisimulation is closely related to
those studied by [6,4].

Definition 4.1. Fors e Sand M C S,

pis, My= Y {pl s, p.s)erl.
s'eM

That is, u(s, M) denotes the probability that may
perform a probabilistic transition to a configuration
in M.

Definition 4.2. An equivalence relatio® € S x S'is

astrong bisimulationf, whenevers R ¢

(1) foralla € Act, if 5,7 € S, ands — s’ thens = ¢/
ands’ Rt';

(2) forallM e S/R,ifs,t € Sp, u(s, M) = u(t, M).

Two configurations and¢ arestrong bisimulation
equivalent written s ~ ¢, if there exists a strong
bisimulationR such that R z.

Thus, two configurations are related by a strong
bisimulation R if they can reach all equivalence
classes of the relation with the same probability and
they can simulate each other's behavior. It can be
shown that~ is the largest strong bisimulation [4].

We say that two PACSR-lite processds and
Q are bisimilar, writtenP ~ Q, when their initial
configurations are bisimilar; i.e(,P,?) ~ (Q, ?). It
can be proved that is a congruence with respect to
the PACSR-lite operators.

5. Thelaws

Tables 2 and 3 contain our axiomatization of strong
bisimulation for PACSR-lite, which we refer to a&.
We shall subsequently show that is a sound and
complete axiomatization of strong bisimulation. In the
sequel, we will use the equality symbet" when two
processes can be shown to be equivalent uging

Table 2
Laws for sum and hiding
Choice(1l) P+NIL=P
Choice(2) P+P=P
Choice(3) P+ Q=0+ P
Choice(4) (P+Q)+R=P+(Q+R)
Hide(1)  NIL\\7 = NIL
Hide(2) (P + O\ =(P\)+(Q\\)) ifimr(P)Nimr(Q)NI=9
Hide(3)  (A:P)\ =(A:(P\I)\\res(A)N/
Hide(d) P\JI\\J =P\IUJ
Hide(5) P\J=P
Hide(6) P\/ =P\ U{r} if r ¢res(P)
Down A:P=NIL, ifforsomereA,p(r)=0
Up A:P\I=(A={r):P)\I, reAnUUD,pr) =1
Rename P\\I =P[r'/rI\U = {rHU{r'} ifrel, v ¢res(P)andp(r) =p(r')
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Table 3
Laws for reintroduction of hidden resources

Extend Qier Ai : POV = Qjerrga; (AjULrD: Pj+(AjU{FD: P)j)
+ Y jerrea; Aj i PNV wherer eV
Standard(1) (Zz!=1 ijlzl Zliil(Aik UB;j): Pip)\\V
= YN (AU PNV Ulpr, ..., p1)

if 3W e W, ; Bij) Vi, j - Bij £ W, and

whenever, j #m,n, res(B;;) =reS(Bmn), Bij # Bmn and

WhereUi’j BjjCV, (Ui’k ANV =40,
C;= Ul<j<l~{,0_j} U{p;}, wherepq, ..., p; are fresh
resources, such thatC;) = Z]J."Zl p(B;j)

Standard(2) (Y/_q X7y Yply (Aik U Bij) : P)\V
=L Y8 A e Py

if VW e WU, ; Bij) -3i, j Aix U Bij €W, and

whenevel, j #m,n, res(B;;) = res(Bmn), Bij # Bmn and

WhereUi’j Bj;CV, (Ui’k ANV =4,
Ci=Uigj<ilpjtUlpi}, 1<i<I -1, Cr={p1.....pr-1}
wherepy, ..., py_1 are fresh resources, such that
P(Ci) =71 P(B;)

Law Hide(2) describes how the hiding operator dis- the state of a new hidden resource, thus replacing
tributes over summation. In order to push a summa- each processt : P with the summation(A U {r}) :
tion outside a hiding operator, we must ensure that no P 4 (4 U {r}) : P, assuming ¢ res(A).
pair of summands share any bound resources; other- | aws Standard provide a standard form for a sum-
wise a resource that was shared by the two summandsmation of processes. Each of the laws assumes that all
of the left-hand side process will become two differ-  symmands of the left-hand side process have the same
ent resources in the right-hand side. This can result in piggen resources, although different summands may
processes that exhibit different probabilistic behavior. ~,ncern different worlds of these resources. Then, it
Law Down states that a process which is only willing identifies the possible observable behavigis Ay U
to engage in an action involving a failed resource is.in B; : P, that can arise in a single world of the hidden
fact a failed process, and law Up shows that employing resourcesp;, and finally groups together the worlds

a bound resource that never fails is equivalent to not . .
. . B;; which present the same observable behaviors,
using the resource at all. Law Rename establishes the_ 7/,

equivalence of processes that only differ by a change 2 j—1 Yty (Aik U Byj) : Pix. On the right-hand side

of bound resources that have the same probability of of the laws each of these similar branches of branches

failure. (of which it is assumed there af¢ is collapsed into a
The laws of Table 3 are central for the complete- single set of branche¥ ;" (A U C;) : Pi, which

ness of the strong bisimulation characterization. Law involves a world of some newly-defined hidden re-

Extend allows us to rewrite a summation of prefixes sources{p;};. The number of new resources used dif-

by enriching each summand with information about fers in the two laws: Law Standard(1) covers the case
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where theB;;’s do not constitute all worlds of the hid-  branches that lead to the same processes, arriving at a
den resources of the process, that is, there exists atbisimilar process

least some wor!d of the hidden resources for which no 0=(C:PL+C:P)\VUC,

behavior is defined. Therd, new resources are used, . o i .

and C; = U1<j<i{p_j} Ul{p), foralli, 1<i < 1. as illustrated in Fig. 1(b). In this case’,_: {p} with

Law Standard(2) handles the case where behavior isP(C) = P(B1) + p(Bz). For a more detailed example,
described for all worlds of the hidden resources. In consider the process

this casel — 1 resources are used and th@ossible P = ({r,r2}: Pr+{r1,r2}: P2+ {r1,72} : P3

behaviors of the process are captured by the resource (P o) P )\\{r r2)

combinations; = ;< ; {77} Ulpi}, 1<i <1 -1, L r2i- F3) WL, 12)-
C; ={p1,...,pi—1}. Thus, a set of new resources is If both resources, r are available,P can silently
used to create a number of mutually exclusive worlds, €volve into eitherP, or P. If either one of the re-
each of which is used to represent different behaviors Sources is availablg? can evolve intaPs. Otherwise,

of the left-hand side process. The probabilities of each P is deadlocked. We need to group together the cases

of the required resources can be obtained by solving Where P evolves intoPs into a single term, introduc-
the set of equations ing new hidden resources in order to match the proba-
bility of arriving at P3. Applying Law Standard(1), we
Ji obtain the process
p(C) =) p(Bij), foralli. B
= 0 = ({pa}: PL+{p1} : P2+ {p1, p2} : P3)\\

It can be shown that a unique solution exists to this {r1, 72, p1, p2},

set of equations with each of the solutiongn1], as where the failure probabilities are assignegtoand

required. In particular, we have that, p2 in such a way thap(p1) = p(r1) - p(r2) andp(pz) -
p(p2) =p(r1) - p(r2) +p(r1) - p(r2).

Ji
if > p(Bij) =i,
j=1 6. Soundness
=
0<p(pi)=—=——<1 Brémond-Grégoire et al. [2] provide a sound ax-
1-Xam iomatization for the nonprobabilistic process algebra
We illustrate the intuition behind the two Standard ACSR. We note that every PACSR-lite term is also an
laws with two examples. First, let = 1 and J, = ACSR term, and that all Choice and Hide laws in Ta-

K1 = 2. Then, assuming all resources are hidden and Pl€ 2 hold for ACSR as well. We refer to these laws

omitting the index, the left-hand side process of both @S A’. Their soundness with respect to probabilistic
Standard laws i = (By: P1+ B1: P2+ By : P+ strong bisimulation can be derived as a consequence
Bz : P2)\\V. Fig. 1(a) gives the transitions foP, ). of these facts. In the sequel we will uge=" O to de-

Law Standard(1) allows us to merge the probabilistic N°t€ that? and Q can be shown to be equivalent by
using lawsA’, ~' to refer to strong nonprobabilistic

bisimulation, and~" to refer to the transition relation

a) b) of ACSR, as defined in [2]. We introduce the notion
(P.0) (©.0) of compatibility between PACSR-lite processes as fol-
o(B 1) 1-p(B)- p(B») p(%l— p(C) lows.
p(B
Nil Nil Definition 6.1. An equivalence relatiolR €~ is a
0] 1) @A@ @A@ compatibility relationif, wheneverP R Q,

(1) imr(P) =imr(Q), and

a! a!
(2) for all @ € Act, if P — P’ thenQ — Q' and
Fig. 1. Law Standard(1). P'RQ.

Py P, P P P P
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Two processe® and Q arecompatibleif there exists
a compatibility relatioriR such thatP R Q.

A useful fact that we will be using is that # =" O
thenP andQ are compatible to each other. This can be
easily proved by induction on the size of th&-proof.

The following theorem achieves that, if two PACSR-

(1) ifr ¢ A; and eitherd; U{r} S WorA; U{r} C W,
then(P, W) “= (P, W) and

(2) if r € A; andA; € W, then(P, W) = (P, W).

(Q, W) has exactly the same transitionsr  imr(P)

thenimr(P) = imr(Q), and(P, ) > (P, W) iff (Q, )

L (Q, W). Otherwise, for every such that P, ¢) LS

lite processes can be shown to be equivalent by using (P, W), Q reaches, with the same probabilify,

laws in.A’, then they are bisimilar.
Theorem 6.2. If P =" Q thenP ~ Q.

Proof. Let

R = {(P.9),(Q.9)) | P, Q are compatiblp U
{((P,W),(Q,W)) | P, Q are compatible
(P,W),(Q. W) € S,}.

The proof involves showing th& < ~. This follows
easily given the compatibility of the processes in
the two types of configurations. Then, sinée=’

Q implies that P and Q are compatible, we may
conclude thatP ~ Q as required. O

It remains to establish the soundness of laws Re-
name, Down, Up, and the laws of Table 3.

Lemma 6.3. If P and Q are related by the laws Re-
name, Down, Up, Extend, Stand&tyl, or Standard2),
thenP ~ Q.

Proof. The proof follows easily from the definition
of strong bisimulation. We consider the two most
interesting laws:

Extend Let

P= (ZAi : Pi)\\V

iel

(

and

0

D> ((AjUr): P+ (A;UF): P;)

JELr¢A;

+ Y Aj: P,-)\\V, rev.
JELreA;
Clearly, {r} U imr(P) = imr(Q). For each worldW
where (Q, W) € S,,, (P,W) € S, and (P, W) has
exactly the following transitions:

the set{(Q, W U {r}), (Q, W U {r}}, where, clearly,
(Q,WU{r}) ~(Q,WU{r}). The result follows.

Standardl) Let P, Q denote the left-hand and
right-hand sides of this law, respectively. We prove the
soundness of a restricted version of this law where

QO have no free resources aikd = 1, for all i. This
allows us to concentrate on the essence of the law, that
is, the effect of renaming bound resources. The full
result follows easily given that the processes on each
side of the equation have the same behavior under each
valuation of the bound resources. Let

I Ji
P= (ZZB,-,- : Pi>\\V

i=1j=1
and

1
0= (Zci : P,-)\\VU{pl,...,m}.
i=1

We observe that both processes can evolve into the
equivalence classe8; = [0 : Pi]~,1<i < I and

the equivalence clasgNIL]~. Then, u(P, M;) =
Y1 p(Bij) = p(C) = u(Q, M;). Therefore,P ~

0. O

7. Completeness of the axiomatization

In this section we will prove that the laws given
in Tables 2 and 3 are complete for PACSR-lite. The
completeness proof is carried out in the standard way:
First, we develop a kind of standard set of equations
and show that it is satisfied by any PACSR-lite process.
We then show that two bisimilar processes can be
shown to satisfy a common set of standard equations
and, finally, we appeal to the result that such sets of
equations have a unique solution up to bisimulation.
While this approach may seem unnecessarily compli-
cated, given that PACSR-lite processes exhibit only fi-
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nite behaviors, we want to be able to reuse the argu- y € br(P), x is a new name, ang(x) = p(y), also
ments for the case of the full PACSR which uses re- satisfy standard sets of equations.

cursion to express infinite behaviors.
7.1. Standard set of equations

In this section we show that an§ € Pr_provably
satisfies a particular set of equations. Letbe a set

of variables andd be terms. We say that a process

P provably satisfies a set of equatiois X=Hif
there is a set of termg = {P1, Po, ..., P,} such that
P= H[P/X] andP = Py

A set of equations : X = H is said to bestandard

Proof. The proof follows by explicitly constructing
the sets of standard equations satisfiedrbyV and

P[x/y]l, transforming the set of standard equations

satisfied byP. O

Theorem 7.2. Every PACSR-lite proces® provably
satisfies a standard set of equations.

Proof. By induction on the structure dt. We present
the most interesting cas& = P + Q. By the induc-

ifforall i >1

X = (Z > A,-kUBj:X,-k)\\v,-,

jelJikek;

tion hypothesispP provably satisfies : X =HandQ
provably satisfies” : Y =G. This implies that there
exist termsP and Q such thatP = P; and Q = 01
andP + Q has the form

<Z Z AjrUB;: ij>\\v

jeJikeKy

whereX;, X jx € X, forall i, j, k, and
(1) Ujes ke, Ajk N Vi =8, Aji € fr(Xp), and for
alr e Uje];,keKi Ajr, p(r) #0,

(2) Uje; Bj =Vi and for allr € J;c;. Bj, p(r) ¢
{0.1}, and € + ( >3 cwmuD: le>\\U.
(3) for all ji, jm € Jiy ji # jm. eitherB;, € B;, or leLymeMy
Bj, C Bj,. Using Rename, we can rewrite both summands

Note in this definition that the hide operator cannot so that all the bound immediate resources of each
be eliminated from standard sets of equations: the summand are fresh and different from the resources of
probabilistic information that accompanies a hidden the other summand. Then using Hide(6) and Hide(2)
resource is necessary for defining the semantics of we can pull the hide operation to the outer level of the
a process and it cannot be encoded by any otherterm, andP + Q:

means. (In ACSR this is possible and standard sets of

equations can be given as unrestricted summations.) = (Z Z AjrUB): P]/-k>\\V/

However, the Hide laws allow us, after possibly jeJikeKy

renaming some resources, to partially push the hiding N, /
operatorginwards in a given process. Thus in a + <Z Z Cim U Dy : Ql’”>\\U

. . . leLymeM
standard set of equations, an equation contains the rmet

summation of a set of prefixed variables restricted only = ( Z Z Ajr U B} D P

by resources immediately relevant to the process. The jeJikeky

conditions stipulate thad ;; are the visible resources ’oA ) / /
. . + CinUDy: Vuu’,

of the process, all of which have non-zero probability, ZEXL:l mgl:ll m O Dpz Qi A\

andV; = {J,., B; the hidden resources, all of which N y
have probability O< p < 1. Moreover, theB;’s where, ifyy = res({; B;j)Nres(Q), y2 =res(J; DN
represent mutually distinct worlds. re(P), and X1, x2, are fresh resources such that
We will show that everyP e Pr satisfies a standard ~ for all i, j, p(x1,) = p(y1), p(x2;) = p(yz)), V' =
set of equations. Before doing this we present a useful V[¥1/31l. P}, = Pjx[¥1/51], B = B[¥1/51], and
lemma. U' =UlX2/32], Q),, = Quml¥2/¥2], D} = Di[X2/72].
To transform the above process to standard form
and in particular to satisfy condition (1), we will

need to apply Laws Extend and Standard. First, we

Lemma 7.1. SupposeP provably satisfies a standard
set of equationss. Then P\\V and P[x/y], where
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close the summands of the process with information variableX{". ThenP + Q, satisfies the standard set of
about allimmediate hidden resources of the process byequations:
applying Law Extend once for everye |

JE/l . :
Ujer, Dj to obtain: {Xl = (Z > AL UG X’f)\\ﬁ} s o
iel nen; i,n
!/ . /

(Z Z Z AjkUBjUEn: Pj 7.2. Common set of standard equations

neN jeJ1keKy

+ Z Z Z CinUD|UF, : Q§m>\\V uy’, Theorem 7.3. Let P and Q provably satisfy two

neN’ €Ly meMy standard sets of equation$ and 7. If P and Q

are bisimilar, then there exists a third standard set of
where thelJ,.y E» are the possible combinations equationsS’ satisfied by bottP and Q.
of the immediate bound resources of proce3s
Uier, D;» and similarly, thé_J, . F, are the possible  proof. We will again restrict our attention to processes
combinations of the immediate bound resources of with standard sets of equations containing no visible
processP, [ , B;. Now it remains to rearrange the  resources, an&; = {1}. This allows us to focus on
last two summands in the style of the left-hand side of the central aspects of the proof that involve the renam-
the Standard-laws by grouping together all processesing of bound resources.
that can take place under the same evaluation of Suppose thaX andY are disjoint sets of varlables
the hidden resources, and then isolating all worlds and that the given sets_ of equatlons areX = 1-1
that exhibit the same behavior. So, using Choice(3), T : ¥ = G. Further, let? and Q be such thatP =
Choice(4) and finally Standard ((1) or (2) depending H[P/X], O = G[Q/Y], with P = P, Q = Q1, SO
on theBlfj 's), we have that that

+0 Pi:(ZBj:Pj)\\Ui, and
<ZZZA UBj: ;k>\\VUU/ sel
iel .

el jeJikek; Ql:(ZDl:Ql>\\‘/i‘
Al UCi:Ri,,)\\VUU’U,é feki
ln
151 nEN Let us consider the relatioR such that(u,v) € R
, , B iff P, ~ Q,. Clearly,(1,1) e R. Let (u,v) € R and
= <Z Z Ain Uit (Rin\\V UU )>\\p’ considerP, and Q,. Suppose that there existg
i€l neN; W(; Bj) such that for allj, B; £ W. (The other
) _ _ case follows similarly with the exception that law
where for alli; # i,, eitherC;, < C;, or C;, < C;. Standard(2) is used instead of Standard(1).) We may
Further, by Laws Down and Up, construct a partitiom = {J1, ..., j,} of J,, such that
if j,j’ € jn, Pj~ Py, and vice versa. Similarly, let
P+Q= (Z Z Al UC): (Rin\\V U U/)>\\5/, A ={01,...,1,} be the equivalent partition of?,.
iel neN; Since P, and Q, must have equal transitions, the

following statement is true:
whereC/ = {r | p(r) # 1,r € C;} andp’ =res(|J; C)). - s
Since eachR;, is either aPj = Pyli1/31], ora  n=n',andforeachj e 4, there exists; € A’
Q) = Qiml¥2/32], and by the induction hypothe- suchthatforany € ji, L€ ly, (j,1) € R,
sis eachPjx, Q;,, provably satisfies a standard set of
equations], by Lemma 7.1, eafl), satisfies a standard Z P(B)) = Z P(D1)
set of equationss” : X" = Hi" with distinguished €/ 1l
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ThusP, andQ, can be rewritten as follows
wandg, A;Z{ZAuZaHl,ZAuDHz,
(2”: Z <A r<j M <i r<j
P, = Bj:Pj)\\Uu,
A A
Py YA +Zar}.
n A <i r<j
Oy = (ZZDI : Ql)\\Vvv Similarly, if I € I;,, lete} = p(D;)/y;., and let
}‘=116i)L

where we assume that the summations are ordered sosz = { Z Ay + Z e +1, Z AN+ Z &) +2,
that for all 1< A < n, classes),, [, are matching, in < r<l A< r<l
the sense of the above statement. A A

However, despite the bisimilarity of the two proces- Z + Zer }
ses and the fact that they have the same cumulative
probability of regching each equivalence classof We may see thaUM-{Aﬁ} and UU{E}} are parti-
they may be using different sets of bound resources tions of {1, ..., A}. By laws Extend and Standard(1),
and thus may have different branching structures. Our we have that the two processes satisfy the following
intention is to show thaP, and Q, can be rewritten  equations:
into equal processes having identical branching struc- ( n )

\Duv,

A <i r<l

tures. To do this we will employ a set of new hid- p, — Z Z Z v P
den resources, and rewrite the two processes in such A=l i, veat

a way that each probabilistic transition of the initial !
processes with probability is replaced by a set of
probabilistic transitions with cumulative probability Qv = (
p. In particular, given an equivalence classve will

use the greatest common divisgy, of the probabili-
tiesp(B;), p(Dy), wherej € i, 1 € I, and, ifp(B;) =
p, we will replace the ternB; : P; by a summation of
the form ZveN’_ pv : Pj, where eachp(p,) = ;. and

INj| = p/vx, for some appropriately chosen worlds of - . ~
. X,= (33 3 v X o,

fZZm@Nm

A=lel, veE}

Let X’ and Y, be disjoint sets of variables, and
consider the sets of equatiofis: X' = H', T": Y' =
G’, where

bound resourceg,. A similar treatment will be ap-
plied for each ternD; : Q;. This will ensure that both
resulting processes have exactly the same probabilistic
v (

r=ljej,ved)

transitions to each equivalence class-ofWe achieve
this as follows:
For everyx, let y, be the greatest common divisor

fz P Y/)\\ﬁuv-

A=1iel, veE}

of the probabilitiep(B;), p(Dy), for all j € ji, 1 € ;. It can be shown thaf’ and 7"’ are satisfied by? and
Further, let Q, respectively. o
S - p(B)) Let us now consider the set of equatiofis= F,
A= ZIERTTTT and A= Z A*. defined for all(u, v) € R by
Y x

n A
By the definition ofy;, A* and thusA are integers. Let ~ Zuv = (Z Z Z Pv - Zi,’) \Puv
Buv = p1, ..., pa, e New resources ani, ..., ga, A=1v=1(heKuvy
mutually exclusive worlds involving these resources, with K,,, = {(j, 1)} s.t. p, : P; is a summand of,,
as defined in Law Standard(1), such that the first p, : Q; is a summand oD, (j,l) € R. Again, it is
Al worlds have probabilityy;, the nextA? worlds easy to prove that this is a set of standard equations.
probability 2, and so on. Finally, ifj € j;, let 8? = Now take the set of processe®;; = P;, for
p(Bj)/yx, and let all . TermsF; ;[R/Z] contain the same summands
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