Baбıxés ह́vvoles tns П入прочорıxńs

1.1 Eı $\sigma \alpha \boldsymbol{\omega} \boldsymbol{\gamma} \dot{\eta}$

 $\sigma \tau \iota x \alpha ́ \alpha \alpha \iota ~ \mu o ́ v o ~ \mu \varepsilon ~ \beta \alpha ́ \sigma \eta ~ \tau o u s ~ u \pi o \lambda o \gamma เ \sigma \tau \varepsilon ́ \varsigma . ~$
 $\varepsilon \pi \iota \sigma \tau \dot{\eta} \mu \eta \tau \omega \nu \cup \pi \circ \lambda o \gamma\llcorner\sigma \tau \omega \nu$ (computer science). A $о \circ \rho \alpha ́ \tau \eta \nu \alpha \pi \circ \theta \dot{\eta} \chi \varepsilon \cup \sigma \eta$, $\varepsilon \pi \varepsilon-$

 autoús عival:

- Oı $\theta \varepsilon \omega \rho \eta \tau \iota x \varepsilon ́ \varsigma ~ \mu \varepsilon \lambda \varepsilon ́ \tau \varepsilon \varsigma ~ \varepsilon \pi i \lambda \cup \sigma \eta \varsigma ~ \pi \rho o ß \lambda \eta \mu \alpha ́ \tau \omega \nu ~(\alpha \lambda \gamma o ́ p ı \theta \mu o l, ~ \delta о \mu \varepsilon ́ \varsigma ~ \delta \varepsilon \delta o-~$ $\mu \varepsilon ́ v \omega v, \varepsilon \varphi \alpha \rho \mu о \sigma \mu \varepsilon ́ v \alpha \mu \alpha \theta \eta \mu \alpha \tau \iota \alpha \dot{\alpha}$ х. $\lambda \pi$.).
 xoú.

 x $\alpha \iota \tau \omega \nu \tau \eta \lambda \varepsilon \pi \iota \kappa o \iota v \omega \nu \iota \omega \nu$.

 $\mu \varepsilon$ то $\sigma ט ́ \sigma \tau \eta \mu \alpha \alpha \cup \tau o ́ ~ \chi \rho \varepsilon ı \alpha ́ \zeta \varepsilon \tau \alpha l ~ \nu \alpha ~ \delta ı \alpha x p i ́ v o u v ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma \varepsilon ~ \delta v ́ o ~ \mu о v \alpha ́ \chi \alpha ~ \sigma U ́ \mu \beta о \lambda \alpha, ~$
 $\nu \alpha$ ठı α хpivouv $\alpha \nu \alpha ́ \mu \varepsilon \sigma \alpha \sigma \varepsilon \pi \alpha ́ \rho \alpha \pi о \lambda \lambda \alpha ́ ~ \sigma \tilde{\mu} \mu \beta o \lambda \alpha(\alpha, \beta, \gamma, 1,5,!, x . \lambda \pi$.) $\gamma \varepsilon \gamma \circ v o ́ \varsigma$

 λ ú η.
K $\omega \delta \iota x \varepsilon \varsigma ~ \alpha \nu \tau \iota \sigma \tau o i ́ \chi \iota \sigma \eta \varsigma . ~ О ~ \pi \iota о ~ \sigma \cup \nu \eta \theta \iota \sigma \mu \varepsilon ́ v o \varsigma ~ \varkappa \omega ́ \delta \iota x \alpha \varsigma ~ \gamma \iota \alpha \lambda \alpha \tau \iota \nu \iota x о и ́ \varsigma ~ \chi \alpha \rho \alpha-$

 tous $\lambda \alpha \tau \tau \nu L x o u ́ s ~ x \alpha l ~ o ́ \lambda o u s ~ t o u s ~ \varepsilon \lambda \lambda \eta \nu \iota x o u ́ s ~ \chi \alpha p \alpha x \tau \eta ́ p \varepsilon \varsigma . ~ T \alpha ~ \tau \varepsilon \lambda \varepsilon u t \alpha i \alpha ~ \chi p o ́ v ı \alpha, ~$

$\Sigma \chi \dot{\eta} \mu \alpha$ 1.1: $\mathrm{H} \sigma \chi$ ह́ $\eta_{\eta} \alpha \nu \alpha ́ \mu \varepsilon \sigma \alpha \sigma \tau o$ bit, to byte $\chi \alpha \iota \tau \eta \lambda \varepsilon ́ \xi \eta$.

 ठıऽ byte. $\Sigma \tau \eta \nu \pi \rho \alpha \gamma \mu \alpha \tau \iota \chi o ́ \tau \eta \tau \alpha$, ó $\pi \omega \varsigma$ ч $\alpha i \nu \varepsilon \tau \alpha \iota ~ \sigma \tau o \nu \pi i \nu \alpha \chi \alpha 1.1, \chi \omega \rho \alpha ́ \varepsilon \iota 40 \star$

Σ '́́ußо入o	Mér ${ }^{\text {® }}$ os		T $\alpha \chi$ ¢́tnt α
K	Kilo	$2^{10}=1024$	1000
M	Mega	$2^{20} \approx 1.000 .000$	1.000 .000
G	Giga	$2^{30} \approx 1 \delta$ ८ऽ	1 ठıs
T	Tera	$2^{40} \approx 1$ тpıs	1 тpls

 $\chi \alpha \theta \varepsilon \mu \iota \alpha ́ \alpha \pi o ́ \alpha \nu \tau \varepsilon ́ \varsigma)$ घival ol $\varepsilon \xi \eta$ n̆s:

 xápta ńxou xal η xápta TV-video.

 $\mu \varepsilon ́ v \varepsilon \varsigma ~ \sigma \tau \iota \varsigma ~ \delta ઠ \alpha ́ \varphi о р \varepsilon \varsigma ~ \sigma \cup \sigma \chi \varepsilon \cup e ́ \varsigma . ~$

 x α ol $x \alpha ́ \theta \varepsilon ~ \lambda o \gamma \eta ́ s ~ \theta u ́ p s \varsigma . ~$

1.3 Eí $\delta \eta$ ило入оүьбт ω

(Silicon Graphics), Blue Horizon (IBM). O т $\varepsilon \lambda \varepsilon \cup \tau \alpha i o \varsigma, ~ \varepsilon \lambda \alpha \varphi \rho \alpha ́ ~ т р о \pi о \pi о \iota n \mu \varepsilon ́ v o s ~$

 $\beta \alpha \sigma \iota x \varepsilon ́ \varsigma ~(\sigma x \lambda \eta p o i ~ \delta i ́ \sigma x o \iota) ~ x \alpha \iota ~ \varepsilon \varphi \varepsilon \delta \rho \iota x \varepsilon ́ \varsigma ~(~ \mu \alpha \gamma \nu \eta \tau \iota x \varepsilon ́ \varsigma ~ \tau \alpha \iota v i \varepsilon \varsigma) . ~$

 $\sigma \mu \circ u ́ s(\varepsilon ́ \xi \cup \pi \nu \alpha$ т $\varepsilon \rho \mu \alpha \tau \iota x \alpha ́ \alpha$ - intelligent terminals). $\Sigma \varepsilon \varepsilon \varepsilon v \alpha \mu \varepsilon \gamma \alpha ́ \lambda o ~ \sigma ט ́ \sigma \tau \eta \mu \alpha$

σ б́бт $\eta \mu \alpha$.

 (minicomputers) $\mu \pi о \rho o u ́ v \nu \alpha \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha ́ \zeta о \nu \tau \alpha \iota ~ \mu ı \chi \rho o ́ \tau \varepsilon \rho о ~ o ́ \gamma \varkappa о ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega \nu ~ \alpha \pi o ́ ~$

 $\varepsilon \pi \iota \tau u \chi i \alpha, \alpha \lambda \lambda \alpha ́ \alpha \tau \iota \varsigma ~ \mu \varepsilon ́ \rho \varepsilon \varsigma ~ \mu \alpha \varsigma ~ \eta ~ \alpha \nu \alpha ́ \pi \tau u \xi ̄ \eta ~ \chi \alpha l ~ o l ~ \delta u v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ \tau \omega \nu ~ \pi \rho о \sigma \omega \pi t-~$

 $\varepsilon \tau \alpha \iota \rho \varepsilon i \varepsilon \varsigma ~ \pi о \cup ~ \chi \alpha \tau \alpha \sigma \chi \varepsilon \cup ́ \alpha \zeta \alpha \nu \sigma \cup \mu \beta \alpha \tau o u ́ \varsigma ~ \cup \pi о \lambda o \gamma เ \sigma \tau \varepsilon ́ \varsigma ~(I B M ~ P C ~ c o m p a t i b l e s) . ~$

 $\varkappa \lambda \alpha \sigma \sigma \iota$ цо́ Macintosh.

 $\nu \alpha$ ह́ χ оuv $\mu \alpha \zeta$ 亿i tous ह́vav u

 $\lambda \varepsilon \iota \tau o u p \gamma i \alpha$ тous. Гı' $\alpha \cup \tau o ́ ~ t o ~ \lambda o ́ \gamma o ~ \varepsilon \varphi o \delta ı \alpha ́ \zeta o v \tau \alpha l ~ \sigma u \chi v \alpha ́ ~ \mu \varepsilon ~ \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma ~ \pi о \sigma o ́ \tau \eta \tau \varepsilon \varsigma ~$

1.4 H жєขтрı久ท́ $\mu о \nu \alpha ́ \delta \alpha \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma$

 $\varepsilon \nu \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \eta$ $\sigma \tau \eta \mu \eta \tau \rho เ x \eta \dot{\eta} \pi \lambda \alpha x \varepsilon ́ \tau \alpha$.

 ol α кó入ouөsऽ:

- Ol $\chi \alpha \tau \alpha \chi \omega \rho \eta \tau \varepsilon ́ \varsigma . ~ O l ~ x \alpha \tau \alpha \chi \omega \rho \eta \tau \varepsilon ́ \varsigma ~ \varepsilon i v \alpha l ~ \mu о v \alpha ́ \delta \varepsilon \varsigma ~ \gamma \iota \alpha ~ \tau \eta \nu ~ \pi \rho о \sigma \omega \rho เ \nu \eta ́ \alpha \pi o-$

 ท́ $\theta \alpha$ үра́ $\psi \varepsilon \iota ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha$.

 бибชєบモ́ऽ.

 тાऽ $\delta \iota \alpha \sigma \cup \vee \delta$ モ́ $\sigma \varepsilon ા \varsigma ~ \tau о \cup . ~$

 GHz).

$T \alpha \beta \alpha \sigma \iota x \alpha ́ \chi \alpha p \alpha x \tau \eta \rho เ \sigma \tau \iota x \alpha ́ \tau \omega \nu \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \omega \nu . \quad \Sigma \cup v o \psi i \zeta \circ \nu \tau \alpha \varsigma, \theta \alpha \lambda \varepsilon ́ \gamma \alpha \mu \varepsilon$

- H $\sigma \cup \chi \nu o ́ t \eta \tau \alpha ~ \lambda \varepsilon \iota \tau o u p \gamma i \alpha \varsigma ~(\mu \varepsilon \tau \rho \alpha ́ \tau \alpha l ~ \sigma \varepsilon ~ G H z) . ~ Е \pi \eta \rho \varepsilon \alpha ́ \zeta \varepsilon ı ~ \tau \eta \nu ~ \tau \alpha \chi и ́ \tau \eta \tau \alpha ~$ тои $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \eta$.

- To عúpos tou $\delta \iota \alpha \delta \rho o ́ \mu o u ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega \nu ~(\mu \varepsilon \tau р \alpha ́ \tau \alpha l ~ \sigma \varepsilon ~ b i t) . ~ E \pi n \rho \varepsilon \alpha ́ \zeta \varepsilon ı ~ \tau \eta \nu ~$

 عival ol $\varepsilon \xi \dot{\eta} \varsigma$:
 бцротоьoúvtal xupícs $\sigma \tau \alpha$ PC.

 λ дүótєро $\alpha \pi o ́ ~ \tau o u s ~ P e n t i u m . ~$
 voí $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \varepsilon ́ \varsigma ~ \alpha \pi o ́ ~ \tau о \cup \varsigma ~ P e n t i u m, ~ \alpha \lambda \lambda \alpha ́ \alpha ~ \eta ~ เ \sigma \chi u ́ \varsigma ~ \tau o u s ~ \varepsilon i v \alpha l ~ \mu ı x \rho o ́ \tau \varepsilon \rho \eta . ~$

 пoooúvtal otous Macintosh.

 $\nu \tau \alpha l ~ \sigma \varepsilon ~ \cup \pi \varepsilon \rho \cup \pi о \lambda о \gamma เ \sigma \tau \varepsilon ́ \varsigma ~ \varkappa \alpha l ~ \sigma \varepsilon ~ \sigma \cup \sigma \tau \eta \dot{\mu} \alpha \tau \alpha \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \eta \varsigma ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma$.

 $\chi \alpha ́ \theta \varepsilon \varepsilon \vee \alpha ́ \mu \iota \sigma \iota ~ \chi p o ́ v o, \chi \alpha \tau \alpha ́ ~ \mu \varepsilon ́ \sigma o ~ o ́ \rho o . ~$

 тÚ̃ou Pentium γ) H ठouń モvóऽ chip

 ol $\varepsilon \lambda \varepsilon \gamma \kappa \tau \varepsilon ́ \varsigma ~ D M A, ~ \pi о \cup ~ \varepsilon \pi \iota \tau \varepsilon \lambda o u ́ v ~ \alpha ́ \mu \varepsilon \sigma \eta ~ \pi \rho о \sigma \pi \varepsilon ́ \lambda \alpha \sigma \eta ~ \mu \nu \eta \eta_{\mu} \eta \varsigma$ (Direct Memory

1.5 H $\mu \nu \eta \dot{\mu} \boldsymbol{\eta}$

- Г८ $\nu \alpha \pi \rho о \sigma \pi \varepsilon \lambda \alpha ́ \sigma о \cup \mu \varepsilon ~ \chi \alpha ́ \pi о ь \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \sigma \tau \eta ~ \mu \nu \eta ́ \mu \eta, ~ \delta \varepsilon ~ \chi р \varepsilon ı ́ ́ \zeta \varepsilon \tau \alpha l ~ \nu \alpha ~$

 $\alpha \cup \tau$ ó $\lambda \varepsilon ́ \mu \varepsilon$ ótı $\pi \rho o ́ x \varepsilon \iota \tau \alpha \iota ~ \gamma \iota \alpha ~ \mu \nu \eta ́ \mu \eta \eta ~ \tau \cup \chi \alpha i \alpha \varsigma ~ \pi \rho о \sigma \pi \varepsilon ́ \lambda \alpha \sigma \eta \varsigma ~(R a n d o m ~ A c-~$ cess Memory - RAM). O ópos RAM عival $\gamma \varepsilon v ı x o ́ s, ~ \alpha \lambda \lambda \alpha ́ \alpha \tau \tau о ~ \varepsilon \mu \pi o ́ p ı o ~$

 $\alpha \pi \lambda \omega \varsigma$ тоข $\chi \lambda \varepsilon і \sigma о \cup \mu \varepsilon$.
 үраф́́, óбo xal $\gamma \downarrow \alpha \alpha \nu \alpha ́ \gamma \nu \omega \sigma \eta$.

ह́vaৎ $\sigma \tau \alpha \theta \varepsilon \rho o ́ \varsigma ~ \alpha \rho ı \theta \mu o ́ \varsigma ~ \alpha \pi o ́ ~ \delta \nu \alpha \delta ı x \alpha ́ ~ \psi \eta \varphi i \alpha ~(b i t s) . ~ Г i \alpha ~ v \alpha ~ \mu \pi о р о u ́ \mu \varepsilon ~ v \alpha ~ \alpha v \alpha \varphi \varepsilon \rho-~$

 $\Sigma \eta \mu \varepsilon \iota \omega$ vочия о́ть $128 \mathrm{MB}=128 \star 2^{20}$ byte $=134.217 .728$ byte. Av טлоө́́бочив

 $\lambda \alpha \sigma \eta s($ Random Access Memory - RAM). O χ póvos π ou $\alpha \pi \alpha \iota \tau \varepsilon i ́ \tau \alpha l ~ \gamma ı \alpha$
 тทтоৎ $\alpha \pi o ́ ~ \tau \eta ~ \delta \iota \varepsilon ט ́ \theta u v \sigma \eta ~ \chi \alpha l ~ \varepsilon i v \alpha l ~ \pi \alpha ́ v \tau \alpha ~ o ~ i ́ \delta ı o \varsigma . ~ H ~ \pi р о \sigma \pi \varepsilon ́ \lambda \alpha \sigma \eta ~ \gamma i v \varepsilon \tau \alpha l ~$

- ROM. H Mvク́uŋ Móvo Avárvcons (Read Only Memory - ROM) घival $\mu \nu \eta ́ \mu \eta ~ \tau \cup \chi \alpha i \alpha \varsigma ~ \pi \rho о \sigma \pi \varepsilon ́ \lambda \alpha \sigma \eta \varsigma ~ \pi о \cup ~ \varepsilon \pi เ \tau \rho \varepsilon ́ \pi \varepsilon เ ~ \mu o ́ v o ~ \tau \eta \nu ~ \alpha \nu \alpha ́ \gamma \nu \omega \sigma \eta ~ \chi \alpha l ~ o ́ \chi し ~$

 Read Only Memory - PROM) \&ival tútos ROM бтov опоio η a $\alpha о \theta \dot{\eta} \nless \varepsilon \cup \sigma \eta$
 бибथєuńs.
 Programmable Read Only Memory - EPROM) qíval tútos PROM otov

 $\tau \eta \lambda \varepsilon ́ \varphi \omega \nu \alpha, x . \dot{\alpha}$.$) .$

 $\lambda o u \theta \alpha$:

 1024 MB. $\Sigma \varepsilon \pi о \lambda \lambda \varepsilon ́ \varsigma ~ \pi \varepsilon \rho \iota \pi \tau \omega \sigma \varepsilon \iota \varsigma, \eta \alpha 0 ́ \xi \eta \sigma \eta$ т $\eta \varsigma \chi \omega \rho \eta \tau \iota \chi o ́ \tau \eta \tau \alpha \varsigma ~ \tau \eta s ~ \mu \nu \eta \eta^{-}$

 $\mu \vee \dot{n} \mu \eta$.

 x $\alpha \iota$ ठı α ह́т $\varepsilon \iota ~ \tau \eta \nu ~ \cup \psi \eta \lambda o ́ \tau \varepsilon \rho \eta ~ \tau \alpha \chi u ́ \tau \eta \tau \alpha ~ \alpha \nu \alpha ́ \gamma \nu \omega \sigma \eta \varsigma / \varepsilon \gamma \gamma \rho \alpha \varphi \eta ́ \varsigma ~ \alpha \pi o ́ ~ o ́ \lambda \varepsilon \varsigma ~ \tau \iota \varsigma ~ \sigma \cup-$

 жа́т ω) $\pi о \cup ~ \varphi \varepsilon ́ \rho о \cup \nu ~ \mu \alpha \gamma \nu \eta \tau \iota x o ́ ~ \cup \lambda \iota \varkappa o ́ ~ \gamma \iota \alpha ~ \tau \eta \nu ~ \alpha \pi о \theta \eta ́ x \varepsilon \cup \sigma \eta ~ \tau \omega \nu ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega \nu . ~ K \alpha ́ \theta \varepsilon ~$

 $\tau \eta \mu \varepsilon \tau \alpha x i \nu \eta \sigma \eta \tau \omega \nu x \varepsilon \varphi \alpha \lambda \omega \nu \pi \rho \circ \varsigma \tau \alpha \varepsilon \mu \pi \rho o ́ \varsigma ~ \dot{\eta} \pi \rho \circ \varsigma \tau \alpha \pi i \sigma \omega$ عiv αl $\delta u \nu \alpha \tau \eta ́ \eta \pi \rho o-$ $\sigma \pi \varepsilon ́ \lambda \alpha \sigma \eta ~ x \alpha ́ \theta \varepsilon ~ \sigma \eta u \varepsilon i o u ~ \tau \omega \nu ~ \varepsilon \pi \iota \varphi \alpha \nu \varepsilon เ \omega \nu . ~ О ~ \sigma x \lambda \eta \rho o ́ \varsigma ~ \delta i ́ \sigma \chi o \varsigma ~ \varepsilon \pi \iota x о \iota \nu \omega \nu \varepsilon i ́ ~ \mu \varepsilon ~ \tau \iota \varsigma ~$

 $\pi \lambda \eta р о \varphi о р і є \varsigma ~ \alpha \pi о ́ ~ т о ~ \sigma х \lambda \eta р о ́ ~ \delta i ́ \sigma x о ~ \sigma \tau \eta ~ \mu \nu \eta ́ \mu \eta ~ R A M ~ \chi \alpha \iota ~ \tau \iota \varsigma ~ \cup \pi o ́ \lambda о \iota \pi \varepsilon \varsigma ~ \sigma \cup \sigma \varkappa \varepsilon \cup \varepsilon ́ \varsigma ~$ ж $\alpha \iota ~ \alpha \nu \tau i \sigma \tau \rho о \varphi \alpha$.

 $\mu \varepsilon 1$ бьбєжатоции́pı byte.

 $\nu \tau \alpha ́ \delta \varepsilon \varsigma \mathrm{MB} / \mathrm{sec}$.

 vovtal aлó 5.000 દ́ $\omega \varsigma ~ 15.000$ бтрочє́ऽ аvá $\lambda \varepsilon \pi \tau o ́$.

 $\alpha \pi o ́ ~ t o u s ~ \alpha v t i \sigma t o r \chi o u s ~ \delta i ́ \sigma \chi o u s ~ I D E . ~$

- O μ ह́боऽ χ рóvos $\mu \varepsilon \tau \alpha \xi \dot{\prime} \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega \nu$ (Mean Time Between Failures -

 uגเxó tou.
 $\alpha \rho ı \theta \mu o ́ s ~ \iota \chi \nu \omega \nu \nu \alpha \nu \alpha ́ ~ \varepsilon \pi \iota \varphi \alpha ́ \nu \varepsilon ı \alpha, ~ o ~ \alpha p ı \theta \mu o ́ \varsigma ~ \varepsilon \pi \iota \varphi \alpha \nu \varepsilon ı \omega \nu ~ x . \lambda \pi$.

 $\sigma \chi o ́ \pi \iota \mu о \nu \alpha \xi \alpha \nu \alpha \gamma i \nu \varepsilon \iota ~ \eta \delta \iota \alpha \mu o ́ p \varphi \omega \sigma \eta$. $\Sigma \tau \eta \nu \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta \alpha \cup \tau \eta ́$, ó $\lambda \alpha \tau \alpha \delta \varepsilon \delta o \mu \varepsilon ́ v \alpha$

 $\tau \alpha \varepsilon \xi \dot{\eta} \varsigma:$
- T α DAT (Digital Audio Tape). X ω poúv 1-10 GB.
- T α DLT (Digital Linear Tape). X ω poúv $\mu \varepsilon ́ \chi$ pı xal 40 GB .
- Ta QIC. X ω poúv μ éxpı 2 GB.
- T α 9-track. X ω poúv μ é χ pı 225 MB.

 $\alpha \nu \tau \alpha \nu \alpha x \lambda \alpha ́ \tau \alpha l$ бтo $\cup \lambda \iota x o ́ ~ \tau o u ~ \delta i ́ \sigma \chi o u ~ x \alpha l ~ \alpha \nu l \chi \nu \varepsilon \cup ́ \varepsilon \tau \alpha l ~ \alpha \pi o ́ ~ ह ́ v \alpha \nu ~ \alpha \nu \iota \chi \nu \varepsilon u \tau \dot{n} ~ \pi o u ~$

- CD-ROM (Compact Disk - Read Only Memory). Прóx\&ıт $\alpha \downarrow$ ү α CD $\pi o u$

$\Sigma \chi \dot{\eta} \mu \alpha$ 1.14: Mová $\delta \alpha \alpha \nu \alpha ́ \gamma \nu \omega \sigma \eta s$ sí $\alpha \omega \nu$ CD.

 700 MB .

 $\eta \pi \rho o ́ \sigma \theta \varepsilon \sigma \eta$ $\delta \varepsilon \delta o \mu \varepsilon ́ v \omega \nu$ x $\alpha l ~ \eta ~ \delta \iota \alpha \gamma \rho \alpha \varphi \eta ́ ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega \nu$. To $\mu o ́ v o ~ \pi \rho o ́ \beta \lambda \eta \mu \alpha$

- DVD - (Digital Versatile Disk). To xúpıo $\chi \alpha p \alpha x \tau n p ı \sigma \tau \iota x o ́ ~ \alpha u \tau \omega \nu ~ \tau \omega \nu$

 $\tau \omega \nu$ CD.

$\Sigma \chi \dot{\eta} \mu \alpha$ 1.15: α. $\operatorname{Av\alpha ́\gamma \nu \omega \sigma \eta ~\delta \varepsilon \delta o\mu \varepsilon ́v\omega \nu ~\alpha \pi ó~CD.~} \beta$. $\mathrm{H} \sigma \pi \varepsilon ı \rho о \varepsilon \iota \delta \dot{\eta} \varsigma ~ \delta о \mu \dot{\eta} \tau \omega \nu$

 (PC).

Méбo		
Mvńun	128 MB-1 GB	$1 \mathrm{~GB} / \mathrm{sec}$
इx入noós סírxos	$40 \mathrm{~GB}-300 \mathrm{~GB}$	30-300 MB/sec
	1,44 MB	$62,5 \mathrm{~KB} / \mathrm{sec}$
CD	$650 \mathrm{MB}-700 \mathrm{MB}$	$8 \mathrm{MB} / \mathrm{sec}$
DVD	4-17 GB	$30 \mathrm{MB} / \mathrm{sec}$
	100-300 MB	$1 \mathrm{MB} / \mathrm{sec}$
M $\alpha \gamma \sim \eta \pi \iota \times \dot{\eta} \tau \alpha<v i \alpha$	1-40 GB	$500 \mathrm{~KB} / \mathrm{sec}$

Пivaxas 1.2: Σ '́ $\gamma x p \iota \sigma \eta \tau \omega \nu \mu \varepsilon ́ \sigma \omega \nu \alpha \pi 0 \theta \dot{\eta} \not x \varepsilon \cup \sigma \eta ร$.

 $\delta \varepsilon \delta o \mu \varepsilon ́ v \omega \omega$. B $\alpha \sigma i \zeta \varepsilon \tau \alpha \iota ~ \sigma \tau о ~ \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ ~ \tau \eta \varsigma ~ \gamma \rho \alpha \varphi о \mu \eta \chi \alpha \nu \eta ̆ s, \mu \varepsilon \tau \eta ~ \delta \iota \alpha \varphi о \rho \alpha ́ ~ o ́ \tau \iota ~$

 $\pi \varepsilon p i \pi \tau \omega \sigma \eta$, $\sigma u v \delta \dot{o} o v \tau \alpha l ~ \sigma \tau \eta ~ \theta u ́ p \alpha$ PS/2 $\dot{\eta} \sigma \tau \eta$ $\theta u ́ p \alpha$ USB.

 тро́үрациа.
 $\nu \eta \dot{\eta} \theta \omega \varsigma ~ \sigma \varepsilon ~ \sigma \cup v \delta \cup \alpha \sigma \mu o ́ ~ \mu \varepsilon ~ \chi \alpha ́ \pi о ь \alpha ~ \alpha ́ \lambda \lambda \alpha$.

- T $\alpha \pi \lambda \eta \dot{\varkappa \tau} \rho \alpha \mu \varepsilon \tau \alpha \varkappa i \sim \eta \sigma \eta \varsigma(\beta \varepsilon \lambda \alpha ́ x ı \alpha$, Home, End, PageUp, PageDn $x . \lambda \pi$.).

 $\tau \varkappa(\omega \nu \quad \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v$.

 pad), évas $\delta \varepsilon i x \tau \eta s ~ \sigma \tau \eta \nu ~ o \theta o ́ v \eta ~ \pi \alpha p \alpha x o \lambda o u \theta \varepsilon i ~ x \alpha \tau \alpha ́ ~ \pi o ́ \delta \alpha ~ \alpha u \tau \eta ́ ~ \tau \eta \nu ~ x i v \eta \sigma \eta$. O

 $\sigma \tau \eta \nu$ o日óv η тou $\cup \pi o \lambda o \gamma เ \sigma \tau \eta ́$.
- T α олтıx́́ $\pi о \nu \tau i x ı \alpha$ (optical mouses). Xp $\sigma \not \mu о \pi о \iota o u ́ v \mu \iota \alpha$ $\delta \varepsilon ́ \sigma \mu \eta ~ \varphi \omega \tau o ́ \varsigma ~$

 $\pi \alpha p \alpha x \alpha ́ \tau \omega \beta \alpha \sigma \iota x \varepsilon ́ \varsigma ~ \varepsilon \nu \varepsilon ́ p \gamma \varepsilon เ \varepsilon \varsigma:$

1. Па́ $\eta \mu \alpha$ (click). $\mathrm{M} \varepsilon$ тоv ópo $\pi \alpha ́ \tau \eta \mu \alpha, ~ \varepsilon \nu \nu о o u ́ \mu \varepsilon ~ \tau о ~ \pi \alpha ́ \tau \eta \mu \alpha ~ \tau o u ~ \alpha p ı \sigma \tau \varepsilon-~$

2. $\Delta \iota \pi \lambda o ́ ~ \pi \alpha ́ \tau \eta \mu \alpha$ (double click). Мє тоข ópo $\alpha \cup \tau o ́ ~ \varepsilon \nu \nu о o u ́ \mu \varepsilon ~ \tau о ~ \pi \alpha ́ \tau \eta \mu \alpha ~ \tau o \cup ~$
 ठט́o $\pi \alpha \tau \eta \mu \alpha ́ \tau \omega \nu ~ \pi \rho \varepsilon ́ \pi \varepsilon \iota ~ \nu \alpha \mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon i ́ ~ \varepsilon \lambda \alpha ́ \chi เ \sigma \tau о ~ \chi р о \nu \iota x o ́ ~ \delta ı \alpha ́ \sigma \tau \eta \mu \alpha . ~ П \alpha \tau \alpha ́ \mu \varepsilon ~$

3. $\Delta \varepsilon \xi \iota o ́ ~ \pi \alpha ́ \tau \eta \mu \alpha$ (right click). Мє тоข ópo $\alpha \cup \tau o ́ ~ \varepsilon \nu \nu о о u ́ \mu \varepsilon ~ \tau о ~ \pi \alpha ́ \tau \eta \mu \alpha ~ \tau o u ~$

 عンós $\alpha \nu \tau \iota \varkappa \varepsilon เ \mu \varepsilon ́ v o u . ~$
4. Мعт $\alpha \varphi \circ \rho \alpha \dot{\alpha} \varkappa \alpha \iota ~ \alpha \pi o ́ \theta \varepsilon \sigma \eta ~(D r a g ~ a n d ~ D r o p) . ~ H ~ \lambda \varepsilon \iota \tau o u p \gamma i ́ \alpha ~ \alpha \cup \tau ท ́ \eta ~ \alpha \pi o \varkappa \alpha \lambda \varepsilon i ́ \tau \alpha \iota ~$
 тоง $\theta \varepsilon ́ \sigma \eta ~ \chi \alpha \iota ~ \tau \eta \nu ~ \tau о \pi о \theta \varepsilon ́ \tau \eta \sigma \dot{\eta} ~ \tau о \cup ~(~ \alpha \pi o ́ \theta \varepsilon \sigma \eta) ~ \sigma \varepsilon ~ \mu \iota \alpha ~ \alpha ́ \lambda \lambda \eta ~ \theta \varepsilon ́ \sigma \eta . ~ Г ı \alpha ~ \nu \alpha ~$ то $\pi \varepsilon \tau \cup ́ \chi о \cup \mu \varepsilon \alpha \cup \tau о ́, ~ \tau о \pi о \theta \varepsilon \tau о и ́ \mu \varepsilon ~ т о ~ \delta \varepsilon i x \tau \eta ~ \tau о \cup ~ \pi о \nu \tau \iota x เ o u ́ ~ \pi \alpha ́ \nu \omega ~ \sigma \tau о ~ \alpha \nu \tau \iota-~$ жві́ $\mu \varepsilon \nu о$ тои $\theta \varepsilon ́ \lambda о \cup \mu \varepsilon ~ \nu \alpha ~ \mu \varepsilon \tau \alpha \varkappa เ \nu \eta ́ \sigma о \cup \mu \varepsilon, ~ \pi \alpha \tau \alpha ́ \mu \varepsilon ~ \chi \alpha l ~ \chi р \alpha \tau \alpha ́ \mu \varepsilon ~ \pi \alpha \tau \eta \mu \varepsilon ́ v o ~$

 вүүpápou.

 $\sigma \tau \varepsilon ́ \lambda \nu \varepsilon \iota \sigma \tau 0 \nu$ טло入oүเ $\sigma \tau \dot{n}$.

 үра́ $\mu \mu \alpha \tau о \varsigma$ OCR, $\mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi о \cup \mu \varepsilon ~ \tau \eta \nu ~ \eta \lambda \varepsilon x \tau \rho о \nu \iota x \grave{~} \varphi \omega \tau о \gamma \rho \alpha \varphi i \alpha \mu \iota \alpha \varsigma \sigma \varepsilon \lambda i \delta \alpha \varsigma ~ \sigma \varepsilon$

 $\varepsilon \omega \omega \varsigma 2400$ dpi (dots per inch - xоuxxíठєऽ $\alpha \nu \alpha ́$ iv $\tau \sigma \alpha$).

- To $\beta \alpha ́ \theta o s ~ \tau \omega \nu ~ \chi p \omega \mu \alpha ́ \tau \omega \nu ~(c o l o r ~ d e p t h ~ \eta ́ ~ b i t ~ d e p t h) . ~ A \nu \tau \iota \sigma \tau o \iota \chi \varepsilon i ́ ~ \sigma \tau o \nu ~$

 $\pi \rho \circ \varsigma \tau \eta \nu \varepsilon \pi \iota \theta \cup \mu \eta \tau \eta \prime x \alpha \tau \varepsilon \cup ́ \theta u \nu \sigma \eta, \varepsilon \nu \omega$ то $\pi \varepsilon \rho i \beta \lambda \eta \mu \alpha \pi \alpha \rho \alpha \mu \varepsilon ́ v \varepsilon \iota \alpha x i \nu \eta \tau o$. To $\pi \lambda \varepsilon$ -

 тou $\delta \alpha x \tau \cup \cup \lambda o u ~ \tau o u ~ \chi p \eta ́ \sigma \tau \eta ~ x \alpha l ~ \sigma \tau \eta ~ \sigma u v \varepsilon ́ \chi \varepsilon ı \alpha ~ v \alpha ~ \mu \varepsilon \tau \alpha x \iota \nu \eta ́ \sigma \varepsilon \iota ~ \tau o ~ \delta \varepsilon i ́ x \tau \eta ~ \sigma \tau \eta \nu ~$

 (x, y) tns otóvns.

 $\delta \iota \omega$.

тоиऽ $\varkappa \rho \alpha \delta \alpha \sigma \mu о u ́ \varsigma, ~ \tau ı \varsigma ~ \pi เ \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \chi \alpha ı ~ \alpha ́ \lambda \lambda \alpha ~ \sigma \tau о \iota \chi \varepsilon i \alpha . ~$

 $\varepsilon เ x o ́ v \alpha \varsigma ~ x \alpha l ~ \alpha \nu ~ \varepsilon \pi ı \theta \cup \mu \varepsilon i ́ ~ \nu \alpha ~ \tau \eta \nu ~ \tau \cup \pi \omega \sigma \varepsilon \iota ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha \nu ~ \varepsilon x \tau \cup \pi \omega \tau \eta ́ . ~$
 $\nu \eta ́ s ~ \varepsilon i v \alpha l \tau \alpha \varepsilon \xi ́ s:$

- $\mathrm{H} \mu \varepsilon ́ \gamma \iota \sigma \tau \eta ~ \alpha \nu \alpha ́ \lambda \cup \sigma \eta ~ \varphi \omega \tau о \gamma \rho \alpha \varphi i \alpha s ~ \pi о \cup \mu \pi о р \varepsilon i ́ ~ \nu \alpha ~ \alpha \pi o \theta \eta x \varepsilon u ́ \sigma \varepsilon \iota . ~$
- To $\mu \varepsilon ́ \gamma \varepsilon \theta о \varsigma ~ \tau \eta \varsigma ~ \mu \nu \eta ́ \mu \eta \varsigma ~ \pi o \cup ~ \delta \iota \alpha \theta \varepsilon ́ \tau \varepsilon \iota . ~$
- H סuvatótทta $\alpha \cup \tau o ́ \mu \alpha \tau \eta s ~ \varepsilon \sigma \tau i \alpha \sigma \eta \varsigma$.
- To $\varepsilon \lambda \alpha ́ \chi เ \sigma \tau o ~ \chi \alpha l ~ \mu \varepsilon ́ \gamma ı \sigma \tau o ~ \delta ı \alpha ́ \varphi p \alpha \gamma \mu \alpha . ~$

廿пऽ.

 $\sigma \chi \varepsilon \tau \iota x \alpha ́ \chi \alpha \mu \eta \lambda \varepsilon ́ \varsigma ~ \alpha \nu \alpha \lambda \cup ́ \sigma \varepsilon ı \varsigma ~ \varepsilon เ x o ́ v \alpha \varsigma ~(\sigma \pi \alpha ́ \nu ı \alpha ~ \xi \varepsilon \pi \varepsilon p \nu o u ́ \nu ~ \tau \eta \nu ~ \alpha \nu \alpha ́ \lambda \cup \sigma \eta ~ 640 x 480) . ~$

 $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$ т $\lambda \lambda \varepsilon \delta \alpha \dot{\alpha} \sigma x \varepsilon \psi \eta$ s вival to NetMeeting tns Microsoft.

 ($\psi \eta \varphi \stackrel{\circ}{\text { о }}$

 үદ́ऽ т $\eta \lambda \varepsilon \delta \alpha \alpha ́ \sigma \varkappa \varepsilon \psi \eta \varsigma$.

 тท $\mu \varepsilon ́ \theta o \delta o$.

$1.8 \Sigma \cup \sigma \varkappa \varepsilon \cup \varepsilon ́ \varsigma ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma ~ x \alpha l ~ \varepsilon \xi o ́ \delta o u ~$

 o日óvns عival t α ахóخou θ :

- H $\mu \varepsilon ́ \gamma \iota \sigma \tau \eta ~ \sigma \cup \chi \nu o ́ \tau \eta \tau \alpha ~ \alpha \nu \alpha \nu \varepsilon ́ \omega \sigma \eta \zeta ~(r e f r e s h ~ r a t e) . ~ T o ~ \mu \varepsilon ́ \gamma \varepsilon \theta o \varsigma ~ \alpha u \tau o ́ ~ \mu \varepsilon-~$

- $\mathrm{H} \mu \varepsilon ́ \gamma \iota \sigma \tau \eta \varphi \omega \tau \varepsilon \iota \nu o ́ \tau \eta \tau \alpha$.
- To $\pi \lambda \dot{\eta} \theta 0 \varsigma \tau \omega \nu \chi \rho \omega \mu \alpha ́ \tau \omega \nu \tau \alpha$ олоí $\mu \pi$ оряí $\nu \alpha \alpha \pi \varepsilon \iota x o v i ́ \sigma \varepsilon เ$.
- H тобótทta tns $\alpha x \tau \iota \nu o \beta o \lambda i \alpha s ~ \pi о \cup ~ \varepsilon \chi \pi \varepsilon ́ \mu \pi \varepsilon \iota . ~$

$\Sigma \chi \eta ́ \mu \alpha 1.23: \alpha$. OӨóvn CRT. β. OӨóvŋ TFT.

 sistor - Tраข广íбтор $\Lambda \varepsilon \pi \tau \eta ́ s ~ М \varepsilon \mu \beta р \alpha ́ \nu \eta \varsigma), ~ o ́ \pi \omega \varsigma ~ \alpha \cup \tau \eta ́ ~ \pi о \cup ~ \varphi \alpha i \nu \varepsilon \tau \alpha l ~ \sigma \tau о ~ \sigma \chi \eta ́ \mu \alpha ~$

 $\mu \varepsilon \gamma \varepsilon ́ \theta o u \varsigma$.

H xá $\tau \alpha$ ү $\rho \alpha \varphi \varkappa \omega \dot{\nu}$ (display adapter $\dot{\eta}$ video adapter) $\varepsilon i \downarrow \alpha \iota \sigma \cup \sigma \varkappa \varepsilon \cup \dot{\eta} \varepsilon \pi \varepsilon \xi \varepsilon \rho-$

 $\chi \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \eta \gamma \iota \alpha$ т ν 人 $\alpha \pi \varepsilon เ \varkappa o ́ v เ \sigma \eta ́ ~ \tau o \cup \varsigma ~ \sigma \tau \eta \nu$ oӨóv η. Av $\alpha \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota \delta \eta \lambda \alpha \delta \dot{\eta} \tau \eta \nu \varepsilon \pi \varepsilon-$

 $\alpha \nu \alpha \nu \varepsilon ́ \omega \sigma \eta \varsigma ~ \pi o u ~ \cup \pi о \sigma \tau \eta \rho i \zeta \varepsilon!$.

 xal ol $\varepsilon \chi \tau \cup \pi \omega \tau \varepsilon$ ह́ऽ $\lambda \varepsilon ́ \iota \zeta \varepsilon \rho$.

Oı $\varepsilon \varkappa \tau \cup \pi \omega \tau \varepsilon ́ \varsigma ~ \psi \varepsilon \varkappa \alpha \sigma \mu o u ́ ~(i n k j e t) ~ \delta ı \alpha \theta \varepsilon ́ t o u v ~ \varkappa \varepsilon \varphi \alpha \lambda \varepsilon ́ \varsigma ~ \mu \varepsilon ~ о \pi \varepsilon ́ \varsigma, ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ о \pi о i \varepsilon \varsigma ~$

 $\alpha \pi o ́ ~ \tau \iota \varsigma ~ \alpha x \tau i v \varepsilon \varsigma ~ \lambda \varepsilon ́ \iota \zeta \varepsilon \rho, ~ \tau \eta ~ \varphi \omega \tau о \gamma р \alpha \varphi i ́ \alpha ~ x \alpha \iota ~ \tau \alpha ~ \varphi \omega \tau о \alpha \nu \tau \iota \gamma \rho \alpha \varphi \iota x \alpha ́ \mu \eta \chi \alpha \nu \eta ́ \mu \alpha \tau \alpha$.

 $\tau \varepsilon \lambda เ x o ́ \alpha \pi \sigma \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$ тŋร $\varepsilon x \tau \cup ́ \pi \omega \sigma \eta \varsigma \pi \alpha ́ \nu \omega$ $\sigma \tau \circ \chi \alpha \rho \tau i$.

 (dots per inch - dpi).

 $\sigma \chi \varepsilon \delta \iota \gamma \rho \alpha \dot{\varphi} \varphi \omega v$:

 ג́ $\xi_{0 \vee \varepsilon \varsigma ~} \mathrm{X}$ ж $\alpha \mathrm{Y}$).

 $\sigma \varepsilon \mu \nu \alpha \varepsilon \pi \iota \varphi \alpha \nu \varepsilon \iota \alpha$, ón $\omega \varsigma$ бтоиऽ $\varepsilon \pi i \pi \varepsilon \delta o \cup \varsigma, \alpha \lambda \lambda \alpha ́ \alpha u \lambda \iota \gamma \mu \varepsilon ́ v o ~ \sigma \varepsilon ~ p o \lambda o ́ . ~ E \pi i-~$

- $\eta \tau \alpha \chi \dot{\tau} \tau \eta \tau \alpha \sigma \chi \varepsilon \delta i \alpha \sigma \eta ร$.
- то $\mu \varepsilon ́ \gamma \iota \sigma \tau о ~ \mu \varepsilon ́ \gamma \varepsilon \theta о \varsigma ~ \tau о \cup ~ \chi \alpha p \tau ь o u ́ ~ \sigma \tau о ~ о \pi о i ́ o ~ \mu \pi о р \varepsilon i ́ ~ \nu \alpha ~ \tau и \pi \omega ́ \sigma \varepsilon ь . ~$
- $\eta \alpha \nu \alpha ́ \lambda \cup \sigma \eta$ ($\varepsilon \lambda \alpha ́ \chi \iota \sigma \tau \eta$ xív $\eta \sigma \eta$ т $\eta \varsigma ~ \gamma \rho \alpha \varphi i \delta \alpha \varsigma)$.
- $\eta \pi \sigma \sigma o ́ \tau \eta \tau \alpha \mu \nu \eta ́ \mu \eta \varsigma \pi o \cup \delta \iota \alpha \theta$ ह́тєl (buffer).

 $\alpha \nu \alpha \lambda$ оүъкó (Digital to Analog Converter - DAC), о отоios тара́үعı $\eta \lambda \varepsilon-$
 tos.

 ńxou عival:

 $\nu \tau \rho \iota \chi o ́ ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \eta$.

 vàou ń $\chi o u$.

 عival ol $\mathfrak{\xi}^{\text {そnj }}$:

 Ethernet.

 $\sigma \tau \iota \varepsilon \varepsilon ́ \varsigma \pi \lambda \eta \rho \circ \varphi о \rho i \varepsilon \varsigma$ ($\tau \alpha \downarrow \nu i \varepsilon \varsigma, \varepsilon x \pi о \mu \pi \varepsilon ́ \varsigma ~ x . \lambda \pi$.) $\alpha \pi o ́ ~ \tau \eta \nu ~ \tau \eta \lambda \varepsilon o ́ \rho \alpha \sigma \eta$, то $\beta i-$ $\nu \tau \varepsilon \circ \dot{\eta}$ то DVD. $\Sigma \tau \eta ~ \sigma \cup v \varepsilon ́ \chi \varepsilon เ \alpha, \mu \pi о \rho \circ \cup ั \mu \varepsilon \nu \alpha \tau \iota \varsigma \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma \tau \circ \cup ́ \mu \varepsilon \mu \varepsilon \varepsilon \varepsilon \delta \iota x \alpha ́$ троүра́ $\mu \mu \tau \alpha$.

$1.9 \mathrm{H} \alpha \pi o ́ \delta o \sigma \eta$ тou $\cup \pi 0 \lambda o \gamma เ \sigma \tau \eta ́$

- η т $\alpha \chi$ и́ $\eta \tau \alpha$ тои $\sigma x \lambda$ прои́ $\delta i ́ \sigma \chi o u$
- $\eta \tau \alpha \chi$ út $\eta \tau \alpha$ тои CD-ROM $\dot{\eta}$ тои DVD-ROM
- η taxútnta tns xáptas үрарıx́ш

1.10 Моүьбиเхо́

 ware) $\theta \varepsilon \omega \rho о и ́ \mu \varepsilon$ то $\sigma и ́ v o \lambda o ~ \tau \omega \nu ~ \pi \rho о ү р \alpha \mu \mu \alpha ́ \tau \omega \nu ~ \pi о и ~ \alpha \pi \alpha เ \tau о u ́ v \tau \alpha l ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \chi \tau \varepsilon ́-~$

 үเ $\sigma \mu \varkappa$ ќ в $\varphi \alpha \rho \mu о \gamma \omega \nu$ (application software).

－$\tau \alpha$ 入हıтоирүヶх́́ $\sigma \cup \sigma \tau \eta ́ \mu \alpha \tau \alpha ~(\pi . \chi$. Windows）
 точpүгxó σ ט́бтпиа Unix）

 бпиочілвіऽ катпүорієऽ：
－$\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha$ 久 $\varepsilon \mu \varepsilon ́ v o u(\pi . \chi$ ．Microsoft Word）

－$\delta \iota \alpha \chi \varepsilon i \rho \iota \sigma \eta$ $\beta \alpha ́ \sigma \varepsilon \omega \nu$ $\delta \varepsilon \delta o \mu \varepsilon ́ v \omega \nu$（ $\pi . \chi$ ．Oracle）

－$\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varepsilon \varkappa o ́ v \omega v$（ $\pi . \chi$ ．Adobe PhotoShop）
－$\sigma \chi \varepsilon \delta i \alpha \sigma \eta ~ \gamma \iota \alpha \mu \eta \chi \alpha \nu \iota x o u ́ s ~(\pi . \chi$ ．AutoCad）
－$\varepsilon \pi \iota \sigma \tau \eta \mu о \nu \iota \varkappa \varepsilon ́ \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ s ~(\iota \alpha \tau \rho \iota x \alpha ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha, \mu \alpha \theta \eta \mu \alpha \tau \iota x \alpha ́, \sigma \tau \alpha \tau \iota \sigma \tau \iota x \alpha ́$ $x_{.} \lambda \pi$ ．）

－$\varepsilon \gamma \chi \cup x \lambda о \pi \alpha i \delta \varepsilon \varepsilon \varepsilon \varsigma ~ \chi \alpha \iota ~ \lambda \varepsilon \xi เ \chi \alpha ́ ~(\pi . \chi$. Britannica）
－$\varepsilon \pi \iota \tau \rho \alpha \pi \varepsilon ́ \zeta \iota \alpha$ ह́x $\delta \circ \sigma \eta$ हvtú $\pi \omega \nu$（ $\pi \cdot \chi$ ．Quark Express）

 look）
 рıх́́ үpapsía x．$\lambda \pi$ ．）

 $\mu \varepsilon p \alpha$ uта́pXouv $\pi о \lambda \lambda \varepsilon ́ \varsigma ~ \varepsilon x \delta o ́ \sigma \varepsilon ı \varsigma), ~ t o ~ L i n u x ~(\delta \eta u ı o u p r i \alpha ~ \tau o u ~ L i n u s ~ T o r v a l d s, ~$

 $\mu \alpha \tau \alpha$ бто $\varkappa \varepsilon \varphi \dot{\alpha} \lambda \alpha \iota \circ 2$.

 pizৎ.

 $\varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ s \varepsilon x \varphi \rho \alpha ́ \zeta \varepsilon \tau \alpha l \mu \varepsilon$ то $\alpha x \rho \omega \nu$ v́́uло WYSIWYG (What You See Is What

 $\mu \eta v i \varepsilon \varsigma, ~ \pi о \sigma о \sigma \tau \alpha ́, ~ \sigma \tau \alpha \tau \iota \sigma \tau \iota \chi \alpha ́ ~ \sigma \tau о \iota \chi \varepsilon i \alpha ~ x . \lambda \pi$. To $\pi \iota o ~ \delta \iota \alpha \delta \varepsilon \delta о \mu \varepsilon ́ v o ~ \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$

$\Delta \iota \alpha \chi \varepsilon i \rho \iota \sigma \eta \beta \alpha ́ \sigma \varepsilon \omega \nu \nu \varepsilon \delta o \mu \varepsilon ́ v \omega \nu$ (DataBase Management): $\mathrm{M} \varepsilon \tau \alpha \pi \alpha x \varepsilon ́ \tau \alpha$

 7.

 катnүopias عival to QuarkXPress.

 тทऽ Microsoft. $\Sigma \tau \iota \varsigma ~ \pi \alpha \rho о \cup \sigma \iota \alpha ́ \sigma \varepsilon ı \varsigma ~ \theta \alpha ~ \alpha \nu \alpha \varphi \varepsilon \rho \theta о \cup ́ \mu \varepsilon ~ \alpha \nu \alpha \lambda \cup \tau \iota \chi \alpha ́ ~ \sigma \tau о ~ \chi \varepsilon \varphi \alpha ́ \lambda \alpha \iota o ~ 6 . ~$

- T $\alpha \pi \alpha \rho \alpha ́ \theta u \rho \alpha$

 χ 久ท́бтท.

- Ta μ عvoú
- T α عıжoví $\delta ı \alpha$

2. О $\sigma \chi \varepsilon \delta \iota \alpha \sigma \mu$ о́s тทs $\delta о \mu \eta ́ s ~ \tau о \cup ~ \lambda о \gamma เ \sigma \mu ı x о u ́ . ~$
3. О $\chi \omega \rho เ \sigma \mu o ́ \varsigma ~ \tau o u ~ \varepsilon ́ p \gamma o u ~ \sigma \varepsilon ~ \alpha \nu \varepsilon \xi ̆ \alpha ́ \rho \tau \eta \tau \varepsilon \varsigma ~ \varepsilon \nu o ́ \tau \eta \tau \varepsilon \varsigma . ~$
4. Н $\varepsilon \pi \iota \lambda о \gamma \dot{\eta} \tau \eta \varsigma \chi \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \eta \varsigma \gamma \lambda \omega \sigma \sigma \alpha \varsigma \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma \mu \circ$ и́ $\gamma \iota \alpha$ то $x \alpha ́ \theta \varepsilon \tau \mu \eta \dot{\mu} \mu \alpha$.

5. Н $\mu \varepsilon \tau \alpha \gamma \lambda \omega \tau \tau \iota \sigma \eta ~ \tau о \cup ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \chi \alpha l ~ \eta ~ \delta \iota o ́ \rho \theta \omega \sigma \eta ~ \tau \omega \nu ~ \sigma \varphi \alpha \lambda \mu \alpha ́ \tau \omega \nu$.

 $\varepsilon \mu \pi \varepsilon \iota \rho i \alpha$ тои $\sigma \cup \lambda \lambda \varepsilon ́ \gamma \varepsilon \tau \alpha \iota \alpha \pi o ́$ тоטऽ $\chi \rho \eta ́ \sigma \tau \varepsilon \varsigma . ~$

$1.11 \Delta i x \tau \cup \alpha \pi \lambda \eta р о \varphi о р ь \omega \nu$

Toлıxд́ $\delta i x \tau \cup \alpha$ (LAN). T α то $\quad \iota x \alpha ́ \alpha i x \tau \cup \alpha$ (Local Area Networks - LAN)

 $24 \omega \rho \eta$ $\sigma \cup \nu \varepsilon \chi \dot{\eta} \sigma u ́ v \delta \varepsilon \sigma \eta \mu \varepsilon$ тo Internet $\chi \alpha \iota \mu \pi о \rho \varepsilon i \quad \nu \alpha \mu \varepsilon \tau \alpha \varphi \varepsilon ́ \rho \varepsilon \iota \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon \varsigma$ лобó-

 Internet $\theta \alpha \alpha \nu \alpha \lambda \cup \theta$ oúv $\pi \varepsilon \rho \alpha \iota \tau \varepsilon ́ \rho \omega$ бто $\chi \varepsilon \varphi \alpha ́ \lambda \alpha \iota \circ ~ 7$.

1.13 O ило入оүเбти́s $\sigma \tau \eta \nu \varkappa \alpha \theta \eta \mu \varepsilon \rho เ \nu \dot{\eta} \zeta \omega \dot{\eta}$

- Y $\pi \alpha ́ \rho \chi \varepsilon \iota \mu \varepsilon \gamma \alpha ́ \lambda o s ~ o ́ \gamma \chi о \varsigma ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \omega \nu . ~ П \alpha р \alpha ́ \delta \varepsilon ı \gamma \mu \alpha: ~ \eta ~ \alpha \pi о \theta \dot{\eta} \chi \varepsilon \cup \sigma \eta \mu ı \alpha \varsigma ~ o \lambda o ́-~$

 тย́тоь $\pi \rho \circ \beta \lambda \dot{\eta} \mu \alpha \tau \alpha$.

 хратьж $\omega \nu$ т $\rho о \beta \lambda \eta \mu \alpha ́ \tau \omega \nu$.

 xoús 入orapıaбuoús．

－H $\sigma ט ́ v \tau \alpha \xi \eta$ тои $\pi \rho \circ$ ӥпо入оүьбиоú．

 axó入ouӨธs：

 $\theta \iota \sigma \mu \varepsilon ้ v \omega \nu$ เ ω ．

 $\alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon \omega \varsigma$ ．

 $\eta \alpha \pi \varepsilon \iota<$ óvı $\eta \eta$ наү $\eta \tau \iota x$ oú $\sigma \cup \nu \tau o v \iota \sigma \mu o u ́$ (Magnetic Resonance Imaging MRI) жаı η тоноүрафі́ $\mu \varepsilon \varepsilon \chi \pi о \mu \pi \dot{\eta} \pi о \zeta \iota \tau \rho o v i(\omega \nu$ (Positron Emission Tomography - PET).

 $\mu \alpha \tau \alpha$.

 $\mu \alpha ́ \theta \eta \sigma \eta \zeta$ (e-learning), $\delta \eta \lambda \alpha \delta \dot{\eta}$ пns $\varepsilon x \pi \alpha \iota \delta \varepsilon \cup \tau \iota \varkappa \dot{\prime} s ~ \delta ı \alpha \delta \iota \alpha \alpha \sigma i \alpha s ~ \pi о \cup ~ \pi \rho \alpha \gamma \mu \alpha-$ $\tau \omega \nu \varepsilon \tau \alpha l \mu \varepsilon ́ \sigma \omega \tau \omega \nu \sigma \dot{\gamma} \gamma \chi \rho \circ \nu \omega \nu \tau \varepsilon \chi \nu 0 \lambda о \gamma\llcorner\omega \nu \tau \eta \zeta \pi \lambda \eta \rho \circ \varphi о \rho \iota x \eta ́ s$.
 $\chi \tau v o x . \lambda \pi$.
 $\sigma \tau \omega \downarrow$. O ópos $\mu \dot{\alpha} \theta \eta \sigma \eta \varepsilon \xi$ $\alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon \omega \varsigma ~(d i s t a n c e ~ l e a r n i n g) ~ \pi \varepsilon \rho i \lambda \alpha \mu \beta \alpha ́ v є ~$

- $\sigma \tau \eta$ $\delta \iota \alpha$ ßiou $\varepsilon \varkappa \pi \alpha i ́ \delta \varepsilon \cup \sigma \eta, \eta$ o ooí $\theta \alpha \pi \alpha \rho \varepsilon ́ \chi \varepsilon \tau \alpha l ~ \sigma \tau o ~ \mu \varepsilon ́ \lambda \lambda o v ~ \sigma \varepsilon ~ \mu \varepsilon \gamma \dot{\alpha} \lambda \alpha$ $\sigma \tau \rho \omega \mu \alpha \tau \alpha$ тои $\pi \lambda \eta \theta \cup \sigma \mu о$ ú.
 $\mu о \gamma \omega \nu$.

 xoús χ ต́pous.
 $\mu \varepsilon ́ \sigma \omega$ tou Δ เ $\alpha \delta \iota x$ túou.

 бє $\eta \lambda \varepsilon x$ троиькй $\mu о р \varphi$ й.

 $\tau \omega \nu$ epractív tou.

 عтаирієऽ!

 $\pi \varepsilon \rho เ \sigma \sigma o ́ t \varepsilon \rho о ~ \pi \rho о \sigma \omega \rho เ \nu \eta ́ ~ \pi \alpha \rho \alpha ́ ~ \mu o ́ v \iota \mu \eta$.

 ठроивio, $\mu \pi о \rho о и ̆ \mu \varepsilon ~ \nu \alpha \alpha \nu \tau \alpha \lambda \lambda \alpha ́ \xi о \cup \mu \varepsilon ~ \mu \eta \nu \cup ́ \mu \alpha \tau \alpha ~ \mu \varepsilon ~ \pi \rho o ́ \sigma \omega \pi \alpha ~ \sigma \varepsilon ~ o ́ \lambda о ~ \tau о \nu ~ \chi o ́ \sigma \mu о . ~$

 $x . \lambda \pi$.

 $\beta \alpha ́ \sigma \varepsilon \omega \nu$ ठ $\delta \delta \circ \mu \dot{\varepsilon} v \omega \nu$.

- Еழариоү६́s $\pi \alpha \rho о \cup \sigma ı \alpha ́ \sigma \varepsilon \omega \nu ~ \gamma ı \alpha ~ \tau \eta \nu ~ \pi \alpha р о \cup \sigma i \alpha \sigma \eta ~ \tau \omega \nu ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha ́ \tau \omega \nu ~ \dot{\eta} \tau \omega \nu$ $\pi \rho о т \alpha ́ \sigma \varepsilon \omega$.
- $\Sigma \tau \alpha \tau \iota \sigma \tau \iota \chi \alpha ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \gamma ı \alpha ~ \tau \eta \nu \varepsilon \chi \pi o ́ v \eta \sigma \eta ~ \mu \varepsilon \lambda \varepsilon \tau \omega ́ \omega ~ \chi \alpha l ~ \tau \eta \nu ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha$

- $\Sigma \tau \iota \varsigma \beta \iota o \mu \eta \chi \alpha v i \varepsilon \varsigma, \chi \alpha ́ \theta \varepsilon \alpha \cup \tau o ́ \mu \alpha \tau о ~ \sigma \cup ́ \sigma \tau \eta \mu \alpha \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \cup \pi о \lambda о-~$

 xńs $\delta \iota \alpha \delta \iota x \alpha \sigma \dot{\alpha} \varsigma ~ x . \lambda \pi$.).
 отє $\sigma \cup \sigma \tau \dot{n} \mu \alpha \tau \alpha \alpha \cup \tau o ́ \mu \alpha \tau \eta s ~ \lambda \grave{\psi} \psi \eta s ~ \alpha \pi о \varphi \alpha ́ \sigma \varepsilon \omega \nu$.
 $\mu \varepsilon ́ \sigma \omega$ Internet, $\mu \varepsilon ́ \sigma \omega \mu \eta \chi \alpha \nu \eta \mu \alpha ́ \tau \omega \nu$ ATM $x . \lambda \pi$.).
- H $\lambda \varepsilon \kappa \tau \rho o \nu \iota \varkappa \dot{\eta} \alpha \nu \tau \alpha \lambda \lambda \alpha \gamma \eta$ 元 $\delta \delta o \mu \varepsilon ́ v \omega \nu$ (Electronic Data Interchange - EDI) $\gamma \omega \alpha \tau \nu \nu \alpha \tau \alpha \lambda \lambda \alpha \gamma \eta \dot{\eta} \varepsilon \gamma \gamma \rho \alpha ́ \varphi \omega \nu \mu \varepsilon \tau \alpha \xi \dot{\prime} \varepsilon \pi \iota \chi \varepsilon ı \rho \eta \sigma \varepsilon \omega \omega$.

 Bay ($\delta \eta \mu о \pi \rho \alpha \sigma i \varepsilon \varsigma) ~ \varepsilon ́ \chi o u v ~ \gamma i \nu \varepsilon ı ~ \pi \alpha \gamma \varkappa o ́ \sigma \mu ı \alpha ~ \gamma \nu \omega \sigma \tau \varepsilon ́ \varsigma ~ \pi о и \lambda \omega \omega \tau \alpha \varsigma ~ \pi \rho о i o ́ v \tau \alpha ~$

 ขєро́, $\eta \lambda \varepsilon \varkappa \tau \rho เ \chi o ́) ~ x . \lambda \pi$.

 （Visa，Mastercard $x . \lambda \pi$ ．）．To عúpos $\tau \omega \nu \pi \rho o i ̈ o ́ v \tau \omega \nu \pi o u \mu \pi o \rho \varepsilon i ́ v \alpha \alpha \gamma o p \alpha ́ \sigma \varepsilon \iota$ $x \alpha \nu \varepsilon i \varsigma ~ \alpha \pi o ́ ~ \tau о ~ \Delta ı \alpha \delta i x \tau \cup o ~ \varepsilon i ́ v \alpha l ~ \tau \varepsilon р \alpha ́ \sigma \tau ı o ~ x \alpha l ~ \pi \varepsilon р ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \beta ı \beta \lambda i \alpha, ~ C D, ~ \beta ı \nu \tau \varepsilon о \chi \alpha-~$

 $\nu \tau о \varsigma . ~ Т о ~ \pi \iota о ~ \sigma \eta \mu \alpha \nu \tau \iota x o ́ ~ \pi \lambda \varepsilon о \nu \varepsilon ́ x \tau \eta \mu \alpha ~ o ́ ~ \mu \omega \varsigma ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \eta ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \varepsilon ~ \pi \rho о і ̈ o ́ v \tau \alpha ~$

1．14 $\mathrm{Y} \gamma \varepsilon i \alpha \alpha \alpha<\pi \varepsilon \rho เ \beta \alpha ́ \lambda \lambda о \nu$

入oүเбтท́n عíval ol axó入ou日ol：

 $\delta \iota \alpha \chi \varepsilon ́ \varepsilon \tau \alpha l$ бто $\delta \omega \mu \alpha ́ \tau \iota \circ$ ，$\omega \sigma \tau \varepsilon$ v $\alpha \mu$ ب $\alpha i v o \nu \tau \alpha l$ ol $\pi \eta \gamma \varepsilon ́ s ~ \tau о \cup ~ \varphi \omega \tau o ́ \varsigma ~ \sigma \tau \eta \nu$
 $\gamma \iota \alpha \nu \alpha \mu \varepsilon \iota \omega \nu \varepsilon \tau \alpha l \eta$ $\alpha \nu \tau \alpha \nu \alpha ́ x \lambda \alpha \sigma \eta$ тทs оӨóvŋร．

－H бта́бף тоu $\sigma \omega \mu \alpha \tau о \varsigma ~ \pi \rho \varepsilon ́ \pi \varepsilon є ~ \nu \alpha ~ \varepsilon i v \alpha l ~ \varepsilon \nu \tau \varepsilon \lambda \omega ́ \varsigma ~ \chi \alpha ́ \theta \varepsilon \tau \eta ~ \chi \alpha l ~ \eta ~ \pi \lambda \alpha ́ \tau \eta ~ \nu \alpha ~$
 оріЂóvтıа．Мє $\alpha \cup \tau o ́ \nu ~ \tau о \nu ~ \tau р о ́ \pi о ~ \alpha \pi о \varphi \varepsilon \cup ́ \gamma o v \tau \alpha l ~ \tau \alpha ~ \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha ~ \sigma \tau \eta ~ \mu \varepsilon ́ \sigma \eta$, $\sigma \tau \eta \nu \pi \lambda \alpha ́ \tau \eta \chi \alpha ル \sigma \tau o \nu \alpha \cup \chi \varepsilon ́ v \alpha$.
－T $\alpha \pi \lambda \eta x \tau \rho о \lambda o ́ \gamma \iota \alpha \pi о \cup \beta \alpha \varphi \tau i \zeta о \nu \tau \alpha l ~ \omega \varsigma ~ \varepsilon \rho \gamma о \nu о \mu ı x \alpha ́ ~ \delta \varepsilon \nu ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho o u v ~ \alpha \pi о-~$

 $\lambda o ́ \gamma \iota \alpha 105 \pi \lambda \eta ́ x \tau \rho \omega \nu$.
 $\varepsilon \quad \varepsilon \alpha$ mousepad $\chi \alpha \lambda \eta \dot{\eta}$ тоוóт $\eta \tau \alpha \varsigma$ ．

