EPL660: Information Retrieval and Search Engines – Lab 11

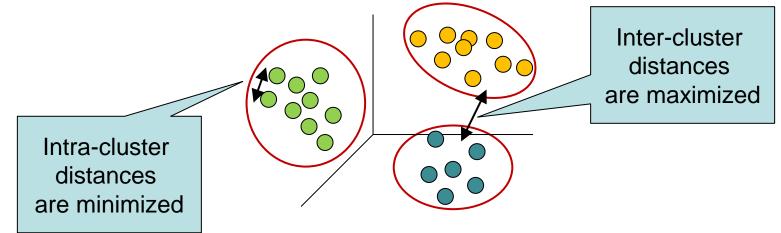
University of Cyprus Department of Computer Science

Παύλος Αντωνίου Γραφείο: Β109, ΘΕΕ01

Text Clustering & Classification

Text Clustering Problem

- Input: a set of text-based, <u>un-labeled</u> documents (e.g. newspaper articles, emails, movie reviews, movie abstracts)
- Output: partition unlabeled unclustered docs into disjoint subsets – *clusters* – (hard clustering) such that:
 - Docs within a cluster are very similar
 - Docs in different clusters are very different



Text Classification Problem

- Input: a set of text-based, <u>labeled</u> documents
 - newspaper articles classified as sports / politics, ...
 - emails classified as spam / not spam
 - movie reviews classified as positive / negative / neutral and a set of text-based, <u>un-labeled</u> documents
- Output: choose correct class label for each un-labeled document

Clustering: Unsupervised learning Classification: Supervised learning

Text Clustering Applications

- Improving search applications
 - Improving search recall
 - When a query matches a document its whole cluster can be returned
 - Better user interface and navigation: search with less typing
 - Speeding up vector space retrieval
 - Cluster-based retrieval gives faster search
- Forensic data analysis
 - analyze patterns and detect suspicious & fraudulent activities in a large set of unstructured text files (emails, log files, social media accounts, etc.)

Text Clustering Applications

- Detect the current hot topics on twitter
 - Find what people are talking about (generally or in a specific geographic area)
- Find what topics people at a conference talk about, such as, what paper they liked most or who to network with as likes similar topics
- Use the cluster to pre-populate suggest-box to autocomplete tags when users type
- Cluster movies based on abstract and description and show related movies (augment recommendations)

Preprocessing steps

- Obtain dataset
- Clean dataset
 - Remove unneeded information from documents e.g.
 html tags (if text comes from websites), numbers
 - Convert to lowercase
- Tokenization
 - Parse documents into smaller units (tokens) such as words and phrases (n-grams)
 - Token separators: whitespaces and punctuation
 - Create vocabulary (list of words)
- Remove stop words
 - Stop words: frequently occurring words that don't carry much meaning e.g. and, of, in, …

Preprocessing steps

- Stemming and lemmatization
 - Different tokens might carry out similar information (e.g. tokenization and tokenizing)
 - Avoid calculating similar information repeatedly by reducing all tokens to its base form using various stemming and lemmatization dictionaries
- Features Creation
 - Transform dataset in a format supported by machine learning algorithms → create features for each document
 - e.g. convert document to a numerical vector: [0,2,1,0,0,7]
 - bag of words model, tf/idf model (see <u>appendix</u>)
- Feature extraction (minimize # of features)
 - singular vector decomposition (SVD), principal component analysis (PCA), Linear Discr. Analysis (LDA)

Machine Learning Methods

- Standard (text) clustering methods:
 - K-means
 - Bisecting K-means [N/A sklearn; download here]
 - Agglomerative Hierarchical Clustering
- Standard (text) classification methods:
 - Support Vector Classifier
 - Random Forest (decision tree) Classifier
 - Naïve Bayes Classifier

Hands-on

- All software needed in installed on VM. If you want to install software to your machine:
 - Install Anaconda Data Science Platform
 - Install Natural Language Toolkit that involves tokenizers, stopwords, stemmers, datasets, etc
 - conda install nltk
 - Install html parsing library
 - conda install beautifulsoup4
- Download <u>lab tutorial</u> and go through the steps
- After finalizing lab instructions submit the python file to Moodle.

Vector Space Model: Bag of words & tf/idf models

Appendix

Data as Vectors

weights

 Machine learning text clustering/classification methods require vectors of numbers → convert raw text documents into vectors (vector space model) Y
 3

• The vector denoted by point (5, 3) is simply 5 x + 3 y

5

Array([5, 3]) or HashMap([0 => 5], [1 => 3])

Data as Vectors

- Document vector: v = a1*v1 + a2*v2 + ...
 - a1, a2, ... : weights
 - v1, v2, … : components (terms in document vectors)
- The weight of a component of a document vector can be represented by term frequency (tf) and combination of term frequency and inverse document frequency (idf)
- Term Frequency denoted by tf, is the number of occurrences of a term t in the document D
 - E.g. given document "hello world hello", document vector = 2 * "hello" + 1 * "world"
 - This is the Bag of words model

Data as Vectors

- Problem: all terms are equally important
 - certain terms have little or no discriminating power in determining relevance on a query
 - e.g. collection of documents on the auto industry is likely to have the term auto in almost every document
- Inverse Document Frequency of a term t, denoted by idf, is log(N/df), where:
 - N: total number of documents in the space,
 - df: total number of documents that contain the term t
- small idf:
 - a term occurs in many documents
- high idf:
 - a term occurs in a small number of docs

Vectors: the tf-idf model

- The combination of tf and idf is the most popular weight used in case of documents similarity exercises
- $tf-idf_{t,d} = tf_{t,d} * idf_t$
- Weight is the highest, when term t occurs many times within a small number of documents
- Weight is the lowest, when term t occurs fewer times in a document or occurs in many documents

tf-idf example

- D1 = "Shipment of gold damaged in a fire"
- D2 = "Delivery of silver arrived in a silver truck"
- D3 = "Shipment of gold arrived in a truck"

Document vector of D1

Terms	tf _i					IDF _i	Weights = tf _i * IDF _i		
	D1	D2	D3	df_i	N/df _i		D1	D2	D3
а	1	1	1	3	1	0	0.0000	0.0000	0.0000
arrived	0	1	1	2	1.5	0.1761	0.0000	0.1761	0.1761
damaged	1	0	0	1	3	0.4771	0.4771	0.0000	0.0000
delivery	0	1	0	1	3	0.4771	0.0000	0.4771	0.0000
gold	1	0	1	2	1.5	0.1761	0.1761	0.0000	0.1761
fire	1	0	0	1	3	0.4771	0.4771	0.0000	0.0000
in	1	1	1	3	1	0	0.0000	0.0000	0.0000
of	1	1	1	3	1	0	0.0000	0.0000	0.0000
shipment	1	0	1	2	1.5	0.1761	0.1761	0.0000	0.1761
- silver	0	2	0	1	3	0.4771	0.0000	0.9542	0.0000
truck	0	1	1	2	1.5	0.1761	0.0000	0.1761	0.1761

Improving search recall

- Cluster hypothesis Documents in the same cluster behave similarly with respect to relevance to information needs
- Therefore, to improve search recall:
 - Cluster docs in corpus a priori
 - When a query matches a doc *D*, also return other docs in the cluster containing *D*
- Hope if we do this: The query "car" will also return docs containing *automobile*
 - Because clustering grouped together docs containing *car* with those containing *automobile. Why?*

Speeding up vector space retrieval

- Using vector space retrieval model, documents closest to the query need to be found
- Calculate the similarity of the query to each document in the corpus

- Very slow!

- Cluster docs in corpus a priori
 - Calculate similarity of the query to centroids
 - Return documents in the cluster of the most similar centroid

