
University of Cyprus

Department of 

Computer Science

EPL660: Information 

Retrieval and Search 

Engines – Lab 11

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01



Text Clustering & Classification



• Input: a set of text-based, un-labeled documents 

(e.g. newspaper articles, emails, movie reviews, 

movie abstracts)

• Output: partition unlabeled unclustered docs into

disjoint subsets – clusters – (hard clustering) such 

that:

– Docs within a cluster are very similar

– Docs in different clusters are very different

Text Clustering Problem

Inter-cluster 

distances 

are maximized

Intra-cluster 

distances 

are minimized



Text Classification Problem

• Input: a set of text-based, labeled documents

– newspaper articles classified as sports / politics, …

– emails classified as spam / not spam

– movie reviews classified as positive / negative / neutral

and a set of text-based, un-labeled documents

• Output: choose correct class label for each 

un-labeled document

Clustering: Unsupervised learning

Classification: Supervised learning



Text Clustering Applications

• Improving search applications

– Improving search recall

• When a query matches a document its whole cluster can be 

returned

– Better user interface and navigation: search with less 

typing

– Speeding up vector space retrieval

• Cluster-based retrieval gives faster search

• Forensic data analysis

– analyze patterns and detect suspicious & fraudulent 

activities in a large set of unstructured text files (emails, 

log files, social media accounts, etc.)



Text Clustering Applications

• Detect the current hot topics on twitter

• Find what people are talking about (generally or in a 

specific geographic area)

• Find what topics people at a conference talk 

about, such as, what paper they liked most  or 

who to network with as likes similar topics

• Use the cluster to pre-populate suggest-box to 

autocomplete tags when users type

• Cluster movies based on abstract and description 

and show related movies (augment 

recommendations)



Preprocessing steps

• Obtain dataset

• Clean dataset

– Remove unneeded information from documents e.g. 

html tags (if text comes from websites), numbers

– Convert to lowercase

• Tokenization

– Parse documents into smaller units (tokens) such as 

words and phrases (n-grams)

• Token separators: whitespaces and punctuation

– Create vocabulary (list of words)

• Remove stop words

– Stop words: frequently occurring words that don't carry 

much meaning e.g. and, of, in, …



Preprocessing steps

• Stemming and lemmatization

– Different tokens might carry out similar information (e.g. 

tokenization and tokenizing)

– Avoid calculating similar information repeatedly by 

reducing all tokens to its base form using various 

stemming and lemmatization dictionaries

• Features Creation

– Transform dataset in a format supported by machine 

learning algorithms → create features for each document

• e.g. convert document to a numerical vector: [0,2,1,0,0,7]

– bag of words model, tf/idf model (see appendix)

• Feature extraction (minimize # of features)

– singular vector decomposition (SVD), principal 

component analysis (PCA), Linear Discr. Analysis  (LDA)

https://en.wikipedia.org/wiki/Stemming
https://en.wikipedia.org/wiki/Lemmatization


Machine Learning Methods

• Standard (text) clustering methods:

– K-means

– Bisecting K-means [N/A sklearn; download here]

– Agglomerative Hierarchical Clustering

• Standard (text) classification methods:

– Support Vector Classifier

– Random Forest (decision tree) Classifier

– Naïve Bayes Classifier

https://pypi.python.org/pypi/pyclust/0.2.0


Hands-on

• All software needed in installed on VM. If you 

want to install software to your machine:

– Install Anaconda Data Science Platform

– Install Natural Language Toolkit that involves 

tokenizers, stopwords, stemmers, datasets, etc
• conda install nltk

– Install html parsing library
• conda install beautifulsoup4

• Download lab tutorial and go through the steps

• After finalizing lab instructions submit the python 

file to Moodle.

https://www.cs.ucy.ac.cy/courses/EPL660/labs/LAB11/Lab11-description.pdf


Appendix

Vector Space Model: Bag of words & tf/idf models



Data as Vectors

• The vector denoted by point (5, 3) is simply 5 x + 3 y

• Array([5,  3]) or HashMap([0 => 5], [1 => 3])

(5, 3)

Y

X
5

3

weights

• Machine learning text clustering/classification 

methods require vectors of numbers → convert 

raw text documents into vectors (vector space 

model)



Data as Vectors

• Document vector: v = a1*v1 + a2*v2 + …

– a1, a2, … : weights

– v1, v2, … : components (terms in document vectors)

• The weight of a component of a document vector 

can be represented by term frequency (tf) and 

combination of term frequency and inverse 

document frequency (idf)

• Term Frequency denoted by tf, is the number of 

occurrences of a term t in the document D

– E.g. given document “hello world hello”, 

document vector = 2 * “hello” + 1 * “world”

– This is the Bag of words model



Data as Vectors

• Problem: all terms are equally important

– certain terms have little or no discriminating power in 

determining relevance on a query

• e.g. collection of documents on the auto industry is likely to 

have the term auto in almost every document

• Inverse Document Frequency of a term t, denoted 

by idf, is log(N/df), where: 

– N: total number of documents in the space,

– df: total number of documents that contain the term t

• small idf: 

– a term occurs in many documents

• high idf:

– a term occurs in a small number of docs



Vectors: the tf-idf model

• The combination of tf and idf is the most popular 

weight used in case of documents similarity 

exercises

• tf-idft,d = tft,d * idft

• Weight is the highest, when term t occurs many 

times within a small number of documents

• Weight is the lowest, when term t occurs fewer 

times in a document or occurs in many 

documents



tf-idf example
• D1 = “Shipment of gold damaged in a fire”

• D2 = “Delivery of silver arrived in a silver truck”

• D3 = “Shipment of gold arrived in a truck”

Terms tfi IDFi Weights = tfi * IDFi

D1 D2 D3 dfi N/dfi D1 D2 D3

a 1 1 1 3 1 0 0.0000 0.0000 0.0000

arrived 0 1 1 2 1.5 0.1761 0.0000 0.1761 0.1761

damaged 1 0 0 1 3 0.4771 0.4771 0.0000 0.0000

delivery 0 1 0 1 3 0.4771 0.0000 0.4771 0.0000

gold 1 0 1 2 1.5 0.1761 0.1761 0.0000 0.1761

fire 1 0 0 1 3 0.4771 0.4771 0.0000 0.0000

in 1 1 1 3 1 0 0.0000 0.0000 0.0000

of 1 1 1 3 1 0 0.0000 0.0000 0.0000

shipment 1 0 1 2 1.5 0.1761 0.1761 0.0000 0.1761

silver 0 2 0 1 3 0.4771 0.0000 0.9542 0.0000

truck 0 1 1 2 1.5 0.1761 0.0000 0.1761 0.1761

Document vector of D1



Improving search recall

• Cluster hypothesis - Documents in the same 

cluster behave similarly with respect to relevance 

to information needs

• Therefore, to improve search recall:

– Cluster docs in corpus a priori

– When a query matches a doc D, also return 

other docs in the cluster containing D

• Hope if we do this: The query “car” will also return 

docs containing automobile

– Because clustering grouped together docs 

containing car with those containing 

automobile. Why?



Speeding up vector space retrieval

• Using vector space retrieval model, documents 

closest to the query need to be found

• Calculate the similarity of the query to each 

document in the corpus

– Very slow!

• Cluster docs in corpus a priori

– Calculate similarity of the query to centroids

– Return documents in the cluster of the most similar 

centroid


