
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Lab 9

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Classification

• Supervised Machine Learning (ML) process of predicting the class

or category of data based on a set of predefined classes

• Classification algorithms are trained on datasets containing labeled

data

• Labeled data is data observations that have already been classified

– For example, in a dataset of emails, each email might be labeled as "spam"

or "not spam“.

– These labels (target variable) then provide a clear guide for a classification

machine learning algorithm to learn from.

Types of Classification

• Binary Classification

– process of classification in which input data observations are being classified

into one of two discrete classes

– For example, a medical process which classifies patients into those that

have a specific disease versus those that do not (e.g. COVID positive vs

COVID negative)

• Multi-class Classification

– Process of classification in which input data observations are being

classified into one of three or more classes

– For example, medical profiling that classifies patients into those with kidney,

liver, lung, or stomach infection symptoms

Classification algorithms

• Popular algorithms used for both binary and multi-class

classification:

– Logistic Regression

– Support Vector Classifier (SVC)

– Multinomial Logistic Regression

– k-Nearest Neighbors (kNN)

– Decision Tree Classifier

– Gaussian Naive Bayes Classifier

– Stochastic Gradient Descent Classifier

– Linear Discriminant Analysis

– Ensemble algorithms (Random Forest, Gradient Boosting, XGBoost)

Is rescaling/unskewing needed?

• Feature scaling is recommended prior training classification

algorithms that use the notion of (Euclidean) distance between data

points to determine their similarity (whether they belong to the same

class or category) such as:

– k-Nearest Neighbors (kNN)

• Normalization (MinMax scaler) is usually more effective than standardization for KNN

because all features are mapped to the same range of values (e.g. between 0 and 1)

– Support Vector Classifier (SVC)

• Standardization (Standard or Robust scaler) is usually more effective when the rbf kernel

is used in SVC because rbf assumes that features are centered around zero

– Stochastic Gradient Descent Classifier (SGDClassifier)

• Standardization (Standard or Robust scaler) benefits SGDClassifier because it allows

faster, more stable convergence, preventing biases caused by feature scales

Is rescaling/unskewing needed?

• Unskewing techniques (e.g. BoxCox, Yeo-Johnson, Sqrt, Log) are

generally recommended on highly skewed features. In a related

study1, the use of BoxCox transformation has been shown to

increase the accuracy of various classifiers (Linear Classifier, KNN,

SVC, Bayesian)

• Rescaling/unskewing of target variable (that includes class/category

values) does not make any sense in classification problems

• Τhere is no way to know in advance if feature rescaling or unskewing

will provide better prediction results. You can always start by fitting

your model to (a) raw, (b) normalized, (c) standardized and (d)

unskewed data and then comparing the prediction performance of

each model
[1] L. Blum, M. Elgendi, C. Menon “Impact of Box-Cox Transformation on Machine-Learning Algorithms“, Frontiers in Artificial Intelligence 5:877569, April 2022

Classification model evaluation metrics

• True Positive (TP): When you predict an observation belongs to a

class and it actually does belong to that class

– Correctly (true) predicted positive class

– A passenger who is classified as COVID positive and is actually positive

• True Negative (TN): When you predict an observation does not

belong to a class and it actually does not belong to that class

– Correctly (true) predicted negative class

– A passenger who is classified as not COVID positive (negative) and is

actually not COVID positive (negative)

Classification model evaluation metrics

• False Positive (FP): When you predict an observation belongs to a

class and it actually does not belong to that class

– Incorrectly (false) predicted positive class

– A passenger who is classified as COVID positive and is actually not COVID

positive (negative)

• False Negative (FN): When you predict an observation does not

belong to a class and it actually does belong to that class

– Incorrectly (false) predicted negative class

– A passenger who is classified as not COVID positive (negative) and is

actually COVID positive

Confusion matrix

• A confusion matrix is a table that is often used to describe the

performance of a classification model (or "classifier")

Accuracy

• Accuracy is one metric which gives the fraction of predictions our

model got right

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

• Ranges from 0 to 1

Is accuracy a good metric?

• Now, let’s consider 50,000 passengers travel per day on an average.

Out of which, 10 are actually COVID positive.

• One of the easiest ways to increase the accuracy is to classify every

passenger as COVID negative. So, our confusion matrix looks like:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
49,990

50,000
= 0.9998 or 99.98%

• We achieve more accuracy than we

have ever seen in any model, but this

does not solve our purpose which is:

• We need to identify COVID positive

passengers!

Is accuracy a good metric?

• Not labeling 10 of actually positive passengers entering the country

will result in increasing the spread in the community

• Accuracy in this context is a terrible measure because its easy to

get extremely good accuracy but that’s not what we are interested in

• But is accuracy always a poor measure? When the data is

balanced, accuracy is a good measure of evaluating a model. On

the other hand if data is imbalanced (as in our case), then

accuracy is not a correct measure of evaluation

– What is data imbalance: number of samples between classes is uneven

Recall (Sensitivity or True Positive rate)

• Recall gives the fraction you correctly identified as positive out of all

actual positives – a measure of a classifier’s completeness

– how “sensitive” the classifier is to detecting positive cases

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑁

– Out of all positive passengers what fraction you identified correctly

– Going back to our previous strategy of labeling every passenger as COVID

negative that will give recall of zero: Recall = 0/10 = 0

– So, in this context, Recall is a good measure. It says that the terrible strategy

of identifying every passenger as COVID negative leads to zero recall

– We want to maximize the recall → 1

– Is Recall alone good enough to evaluate the performance of a classification

model?

Recall

• To answer the previous question, consider another scenario of

labeling every passenger as COVID positive

• The confusion matrix will look like:

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

10

10+0
= 1

• So, recall independently may not

a good measure

Precision

• Fraction of correctly identified as positive out of all predicted as

positives – a measure of a classifier's exactness

– Refers to a model's ability to correctly interpret positive observations

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑃

• Considering our second bad strategy of labeling every passenger as

positive, the precision would be :

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

10

10+49990
= 0.0002

Recall vs Precision

• While this bad strategy has a good recall value of 1 but it has a

terrible precision value of 0.0002

• This clarifies that recall alone is not a good measure, we need to

consider precision value as well

• Considering another case of labeling only one passenger (correctly)

as COVID positive whereas the rest as COVID negative. The

confusion matrix in this case will be:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

1

1 + 0
= 1

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

1

1 + 9
= 0.1

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
=

49991

50000
= 0.99984

Recall vs Precision

• In some cases, we want to maximize either recall or precision at the

cost of others

– As in this case of labeling passengers, we really want to get the predictions

right for COVID positive passengers because it is really expensive to not

predict the passenger right as allowing COVID positive person to proceed will

result in increasing the spread. So, we are more interested in recall here.

• Unfortunately, sometimes it’s difficult to have it both ways: often,

increasing precision reduces recall and vice versa. This is called

precision/recall tradeoff.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

High scores for both show that the
classifier is returning accurate results
(high precision), as well as returning a
majority of all positive results (high
recall).

F-1 score

• Often convenient to combine precision and recall into a single metric

• F1 score is the harmonic mean of the model’s precision and recall

• 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃+
1

2
𝐹𝑃+𝐹𝑁

• Why harmonic mean and not simple average?

– Not sensitive to extremely large values, unlike simple averages

– Example: a model with a precision of 1, and recall of 0 gives a simple average

as 0.5 and an F-1 score of 0

– If one of the parameters is low, the second one no longer matters in the F-1

score.

– F-1 score favors classifiers that have similar precision and recall

– F-1 score is a better measure to use if you are seeking a balance between

Precision and Recall

F-1 score

• Previous formula can be only used in a binary classification problem

• In a multi-class classification problem, we obtain one F1-score per
class (instead of a single overall F1-score)

– instead of having multiple per-class F1-scores, it would be better to average
them to obtain a single number to describe overall performance

• Macro average: mean of all the per-class F1 scores. This method treats all classes
equally regardless of the number of samples in each class. Not recommended for
unbalanced datasets.

• Weighted average: weighted mean of all the per-class F1 scores. Each class F1-score is
multiplied by the percentage of samples belonging to this class (e.g. majority class is
given higher weight). Recommended for unbalanced multi-class datasets.

• Micro average: computes a global average F1 score by counting the sums of the True
Positives (TP), False Negatives (computes the proportion of correctly
classified observations FN), and False Positives (FP) for all classes collectively. In other
words, it out of all observations which is the same as measuring the accuracy.

from sklearn.metrics import f1_score

f1_score(y_true, y_pred, average='macro')

or weighted or micro

F-beta score

• The F-beta score calculation follows the same form as the F-1 score,

however it also allows you to decide how to weight the balance

between precision and recall using the beta parameter

• 𝐹𝑏𝑒𝑡𝑎 𝑠𝑐𝑜𝑟𝑒 =
1+𝑏𝑒𝑡𝑎2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑏𝑒𝑡𝑎2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙

– When beta=1, the F-beta score is equivalent to the F-1 Score

– When beta=0.5, this score is the F-0.5 score which raises the importance of

precision and lowers the importance of recall (goal: minimize False Positives)

– When beta=2, this score is the F-2 score which raises the importance of recall

and lowers the importance of precision (goal: minimize False Negatives)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Balanced vs unbalanced target variable

• Data imbalance: typical problem for real-world datasets:

– number of samples between classes is uneven

• When size of the majority class gets more than twice the size of

the minority class, dataset begins to be considered unbalanced

• Machine learning model tends to be better at

predicting the class with more samples (majority

class) than the other with fewer samples (minority classes)

– The greater this imbalance, the higher the bias of the model towards the

majority class

• Class imbalance is affected by both the absolute size of the

minority class and the imbalance ratio. Even with enough data,

extreme class imbalance can still cause the model to perform poorly

on the minority class, necessitating additional strategies to address it.

Balanced vs unbalanced target variable

• Methods for balancing data are available – see here

• However, the problem of (artificially) balanced data can be worse

than the unbalanced case – see Appendix (model affected by rare points)

• Effective metrics for unbalanced datasets:

– Precision, Recall, F-1 score (with weighted average)

Synthetic Minority Oversampling

Technique (SMOTE)

https://towardsdatascience.com/machine-learning-target-feature-label-imbalance-problem-and-solutions-98c5ae89ad0

Balanced vs unbalanced target variable

• Rule of thumb: you can always track performance of unbalanced

classification with Precision/Recall/F-1 score metrics first and then

decide whether you need to proceed towards balancing or not

– If the F1 score is acceptably high and both precision and recall are

reasonable, you may decide that balancing isn’t necessary potentially saving

time and computational resources

• High Scores: Typically 0.8 or above (80%+) → strong model performance

• Moderate Scores: Between 0.6 and 0.8 (60%-80%) → model is doing reasonably well

but may still miss a portion of minority class instances (try applying balancing techniques)

– if the metrics are low, they indicate that the model struggles with minority

class predictions, signaling a need to consider techniques such as

undersampling or oversampling (e.g., SMOTE) to help balance performance

• Low Scores: Below 0.6 (less than 60%) → model struggles to recognize the minority

class or is heavily biased toward the majority class

Stratified Cross Validation

• Let’s assume you are doing a multiclass classification and have an

imbalanced dataset that has 5 different classes. The randomized

train-test split used in Kfold CV totally disregards the percentage of

samples for each class in the resulting splits

• What happens in this scenario is that you end up with train and a

test sets with totally different data distributions for each class?

– A model trained on a vastly different data distribution than the test set, will

perform poorly at evaluation step

• The solution to this problem is called stratification

– StratifiedKFold is a variation of KFold which preserves the percentage of

samples for each class in train and test sets

• In GridSearchCV, StratifiedKFold is automatically used when

estimator is classifier, and y is either binary or multiclass

Example: Telco Dataset

• A fictional telco company that provided home phone and Internet

services to 7043 customers in California in Q3

• Dataset available here

– 11 rows have missing values => removed

• Each row represents a customer with 21 features

– Both categorical and numerical

• Target value: Churn – customers decision whether to leave (Yes/No)

• Binary classification problem

– Predict whether a customer will leave or stay at the end of the quarter

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/telco.csv

Explore dataset

• 4 Numerical Features

– SeniorCitizen

• customer is 65 or older: 1 (Yes), 0 (No)

– Tenure

• months that the customer has been with the company

– MonthlyCharges

• customer’s current total monthly charge for all their services

– TotalCharges

• Tenure*MonthlyCharges

• 16 Categorical Features (most of them are Yes/No, other are categorical)

– Services that each customer has signed up for – phone, multiple lines, internet, online

security, online backup, device protection, tech support, streaming TV and streaming movies

– Customer account information – id, contract, payment method, paperless billing

– Demographic info about customers – gender, and if they have partners and dependents

• Target Variable: Churn

df.describe()

Observations: Unbalanced

• Dataset (target variable) is imbalanced

– Churn “No" is almost 3 times as “Yes"

– Accuracy is not the right model evaluation metric and it seems we need to

consider Precision, Recall and F-1/F-beta Score

Observations: Tenure vs Churn

• Customer who left the Telco are mostly

customers within 1st month (600+) and

churn steady declines over time

• If customer can be retained between

10-20 months, there are high chances,

customer will stay very long

• Customer at 72-month tenure, mostly

stayed (Churn=0)

• Tenure seems to be a significant feature

since its values are significantly related

to the customer churn rate (high

variance in churn rate for different

values of tenure)

(number of months with the company)

Observations: MonthlyCharges vs Churn

• Majority of customers pay low small

monthly charges ($18 – 20) and tend to

be loyal

• Customer leaving are mostly in the

band of $75-100 who have opted for

multiple services

• MonthlyCharges seems to be a

significant feature that can used to

predict which customers are expected

to leave

Observations

• gender: Difficult to determine churn using this field. Counts are

almost same in either category – not significant feature

• SeniorCitizen: Almost 50% of senior customers tend to leave

– Since the share of senior customers is 16% of the total amount of

customers, this indicator requires further research with additional data

• Partner: Customers with partner have lower chance of leaving

Significant feature Significant feature

Observations

• Dependents: Customer with dependents have lower chance of leaving

• Contract: Month to Month customers have likely higher chances to

leave; Old customers are more likely to stay

• PaperlessBilling: Customers with paperless billing have higher

chances of leaving compared to more customers preferring traditional

paper billing

Significant feature Significant feature Significant feature

Old fashioned

people

Feature Selection (SFS technique)

• Categorical data are converted to

numerical using one hot encoding

– End up with 30 numerical features

• Sequential Forward Selection (SFS)

technique used for feature selection

(eliminination)

– keep 15 most important features that

maximize the weighted F-1 score

(weighted average)

Highest F1-score achieved

using 15 features

Initial Evaluation

• Run a large set of classifiers using default hyper-parameters values

(no GridSearchCV) with 10-fold CV to have an initial feeling of the performance

– LogisticRegression, KNeighborsClassifier*, SGDClassifier*,GaussianNB,

SVC*, DecisionTreeClassifier, RandomForestClassifier, AdaBoostClassifier

– Consider confusion matrix, Precision, Recall, F-1 score (weighted average)

Recall=0.503

Precision=0.639

Weighted F1=0.784

Logistic Regression Results

Recall=0.471

Precision=0.571

Weighted F1=0.758

K Nearest Neighbors Results

(*) Feature re-scaling is

recommended prior training.

It was not applied in these

experiments though.

• Logistic Regression and Adaboost classifier model look promising

achieving highest Average Accuracy and Weighted F1 score

• Let's try to improve both models by selecting the best combination

of hyper-parameter values (use of GridSearchCV)

Initial Evaluation: results

Best model selection

• GridSearchCV on a grid hyper parameters

– Logistic Regression and Ada Boost Classifier do not require feature scaling

• Logistic Regression Classifier

• AdaBoost Classifier

• Source code for all classification experimentations can be found here

Final accuracy score on the testing data: 0.7925

Final F-score on the testing data: 0.7839

LogisticRegression(C=10, max_iter=10000, solver='newton-cg’)

Final accuracy score on the testing data: 0.7846

Final F1-score on the testing data: 0.7748

AdaBoostClassifier(algorithm='SAMME', n_estimators=500)

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab08-classification.ipynb

Best practices for approaching a data science project

• Jupyter notebook acting as a comprehensive roadmap for

approaching a data science project, covering all major steps - from

exploratory data analysis and data preprocessing to hyperparameter

tuning - to create the most effective predictive model:

– Exploratory Data Analysis (EDA)

– dataset splitting early on to avoid data leakage

– missing values imputation

– encoding (categorical data -> numerical data)

– feature scaling, encoding, unskewing

– feature extraction

– automated hyperparameter tuning using GridSearchCV with pipelines and

parameter grids

• Available here

https://www.cs.ucy.ac.cy/courses/DSC510/labs/DataScienceProject.ipynb

Clustering

• Unsupervised Machine Learning process (no target variable) of

dividing the dataset into groups consisting of similar data points

• Each group is called a cluster and contains data points with high

similarity and low similarity with data points in other clusters

Samples in two-dimensional (2 features) space

BEFORE clustering

Samples in two-dimensional (2 features) space

AFTER clustering in three groups

The number of clusters (k) is a hyper parameter of clustering models: needs to be defined prior performing clustering

K-means: prominent clustering algorithm

• User provides the number of clusters K

• K-means iterative process involves the following steps:

1. Selects K samples from data, or generates K points to be used

as centroids (array of centroids is referred to as code book)

2. Assigns all samples to the closest cluster centroid (referred

to as mapping from code book)

3. Recomputes the centroids of newly formed clusters

4. Repeats steps 2 and 3

• Stopping criteria for K-means:

– Centroids of newly formed clusters do not change

– Samples remain in the same cluster

– Maximum number of iterations is reached

K-means Issues

• Works only with numerical data

– Encoding techniques needed to convert categorical data to numerical

• Distance-based algorithm: Euclidean distance

– Features should be of similar scale – data scaling needed e.g. Standard

scaler, Robust scaler, etc.

• Depends on initial centroid selection

– The more optimal the positioning of these initial centroids, the fewer iterations

of the k-means algorithm will be required for convergence

• Strategic consideration to the initialization of these initial centroids could prove useful

– Available initialization strategies:

• Random selection: prone to bad selection (e.g. very close to each other)

• K-means++ is a smart centroid initialization technique which selects centroids being as far

as possible from one another

K-means bottom line

• Easy to implement and use

• Needs to scale features if in different scales

• Good initial centroid selection method available: K-means++

• Need to set K prior running the algorithm

Choosing the best K (number of clusters)

• How can we determine the “best” value of K?

– Is there an objective method?

• An estimation can be obtained using the following techniques:

– Elbow method

– Silhouette analysis

Elbow method parameters

• Inertia: The sum of squared distances* from each sample (data point)

to its assigned cluster centroid

– (*) Typically, the Euclidean distance metric is used

• Distortion: Weighted (by the cluster size) sum of squared distances

from each sample (data point) to its assigned cluster centroid

• Example: use K-means, with K=2, to cluster 7 data points from a

dataset having only 2 features in order to be able to visualize the distances in the 2-

dimensional space and better understand the calculations below:

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = 0.472 + 0.192 + 0.342 + 0.252 + 0.442 + 0.362 + 0.582

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =
 0.472+0.192 + 0.342

3
+

0.252 + 0.442 + 0.362 + 0.582

4

centroids

• Run K-means algorithm for different values of K and plot the values

of inertia and distortion for each iteration

• “Best” number of clusters: value of K at the “elbow” i.e the point

after which the distortion/inertia start decreasing in a linear fashion

– adding another cluster doesn't give much better modeling of the data

– smaller and tighter clusters explain less variation

Elbow method using inertia / distortion

Overfitting

region

Overfitting

region

Silhouette score

• Measures how similar a data point is to its own cluster (cohesion)

compared to other clusters (separation)
• Silhouette score for data point i :

𝑠 𝑖 =
𝑏 𝑖 − 𝑎 𝑖

𝑚𝑎𝑥 𝑎 𝑖 , 𝑏 𝑖

• ranges from -1 to 1

– high value indicates that the data point is

well matched to its own cluster and

poorly matched to neighboring clusters

– values near 0 indicate overlapping clusters

– negative values generally indicate that a

sample has been assigned to the wrong

cluster, as a different cluster is more similar

• Find mean value of silhouette score of all

data points => if most objects have a high

value, then mean value is close to 1 and

the clustering configuration is appropriate

α(i)

b(i)

Example: Drivers Dataset

• Includes 4000 drivers

• Each observation has 3 columns:

– Driver_ID

– Distance_Feature: mean distance covered per day

– Speeding_Feature: mean percentage of time a driver was >5 mph over

the speed limit

• No target variable (no notion of groups, labels)

• Load dataset, drop Driver_ID column, scale features

 dataset = pd.read_csv('fleet_data.csv')
 dataset = dataset.drop(columns=['Driver_ID'])

scaler = RobustScaler()

X = scaler.fit_transform(dataset)

• Source code for all clustering experimentations can be found online

Driver_ID,Distance_Feature,Speeding_Feature

3423311935,71.24,28.0

3423313212,52.53,25.0

3423313724,64.54,27.0

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/fleet_data.csv

K-Means

• Python implementation: sklearn.cluster.Kmeans() class

• Run algorithm to define groups (clusters)
from sklearn.cluster import Kmeans

create K-means object and run clustering on the input values (X)

default k (n_clusters param) → 8

default centroid initialization method (init param) → k-means++

kmeans = KMeans(n_clusters=2).fit(X)

print(kmeans.labels_) # labels of each sample

print(kmeans.centroids_)

• Assign new data samples to the most related cluster (closest centroid)
new_data = …

y_pred = kmeans.predict(new_data)

• Run the K-means clustering algorithm for a range of K values

• Review the results

Visualizing results

K=2 K=4
Urban drivers Rural drivers

Urban drivers

that follow

speed limits

Urban drivers that are

speeding frequently

Elbow method

• We run the K-means algorithm for the values of k from 2 to 10 and

plot the values of inertia and distortion for each iteration

• It seems that the best number of clusters for grouping drivers is 4

Silhouette score

• We run the K-means algorithm for the values of k from 2 to 10 and

plot the mean Silhouette score for each iteration

• Silhouette score confirms that the best number of clusters for

grouping drivers is 4

Task: Wine Analysis

• Goal: Build a classifier to detect wine types

• Given dataset contains data of a chemical analysis of wines grown

in the same region in Italy but derived from three different cultivars

• Analysis determined the quantities of 13 constituents (features)

found in each of the three types of wines.

• Dataset snapshot:

class,alcohol,malic_acid,ash,alcalinity_of_ash,magnesium,total_...

1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065

1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050

1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/wine_data.csv

Task: Wine Analysis

• Your analysis will answer the questions:

– How many wines of each type are there in the dataset?

– Which of the following classification algorithms:

• Decision Trees, Random Forest, AdaBoost, Gradient Boosting, K-Nearest Neighbors,

Gaussian Naïve Bayes, Support Vector Machines

gives the best accuracy?

• Complete the given WineAnalysis.ipynb notebook file

– Replace the keyword None with the appropriate source code based on the

comments. There is also a question to answer. No worries if your results are

slightly different than the results shown in the given notebook file.

• Submit the completed notebook file to Moodle by Tuesday 25th of

March @ 09:00 am

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB09/WineAnalysis.ipynb

Appendix – Problem with artificial balancing

• Let's say you're recognizing hand-written letters from English alphabet (26

letters). Overbalancing every letter appearance will give every letter a

probability of being classified (correctly or not) roughly 1/26, so classifier will

forget about actual distribution of letters in the original sample. And it's ok when

classifier is able to generalize and recognize every letter with high accuracy.

• But if accuracy and most importantly generalization isn't "so high" (I can't give

you a definition - you can think of it just as a "worst case") - the misclassified

points will most-likely equally distribute among all letters, something like:

– "A" was misclassified 10 times

– "B" was misclassified 10 times

– "C" was misclassified 11 times

– "D" was misclassified 10 times

– ...and so on

Appendix – Problem with artificial balancing

• As opposed to without balancing (assuming that "A" and "C" have much higher

probabilities of appearance in text)

– "A" was misclassified 3 times

– "B" was misclassified 14 times

– "C" was misclassified 3 times

– "D" was misclassified 14 times

– ...and so on

• So frequent cases will get fewer misclassifications. Whether it's good or not

depends on your task. For natural text recognition, one could argue that letters

with higher frequencies are more viable, as they would preserve semantics of

the original text, bringing the recognition task closer to prediction (where

semantics represent tendencies). But if you're trying to recognize something

like screenshot of ECDSA-key (more entropy -> less prediction) - keeping data

unbalanced wouldn't help. So, again, it depends.

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

Appendix – Problem with artificial balancing

• The most important distinction is that the accuracy estimate is, itself,

getting biased (as you can see in the balanced alphabet example), so you

don't know how the model's behavior is getting affected by most rare or most

frequent points.

Appendix – Logistic Regression

• Logistic regression name comes from the logistic sigmoid function

• Logistic function outputs a value

(a probability) between 0 and 1

– Output y can be seen as the probability

of belonging to the positive class, 𝑃 𝑦=1

– The returned probability can be

converted to a binary category

• 𝑧 ≥ 0 ⇒ 𝑃 𝑦=1 ≥ 0.5 ⇒ 𝑆𝑎𝑚𝑝𝑙𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 (e.g. spam)

• 𝑧 < 0 ⇒ 𝑃 𝑦=1 < 0.5 ⇒ 𝑆𝑎𝑚𝑝𝑙𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 (e.g. not spam)

• Input z can be expressed as z = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑛𝑋𝑛, where

Xi are independent variables (features) of the classification problem

y

z

𝑦 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑧) =
1

1 + 𝑒−𝑧

Appendix – Logistic Regression Interpretation

• The interpretation of the coefficients (β0, β1, etc.) in logistic

regression differs from the interpretation of the coefficients in linear

regression

• Coefficients do not influence the probability linearly any longer

• Reformulate the equation so that only the linear term is on the right

side of the formula

• We call the term in the ln() function “odds” and wrapped in the

logarithm it is called log odds

• This formula shows that the logistic regression model is a linear

model for the log odds

𝑦 = 𝑃 𝑦=1 =
1

1 + 𝑒−𝑧
⇒ ln

𝑃 𝑦=1

1 − 𝑃 𝑦=1
= ln

𝑃 𝑦=1

𝑃 𝑦=0
= 𝑧 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑛𝑋𝑛

Appendix – Logistic Regression Assumptions

• Linear relationships between X and ln(y)

• No or little multicollinearity

– Multicollinearity: two or more of the independent variables are highly correlated

to one another

𝑦 =
1

1 + 𝑒−𝑧
⇒ ln

𝑦

1 − 𝑦
= 𝑧 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑛𝑋𝑛

	Slide 1: EPL448: Data Mining on the Web – Lab 9
	Slide 2: Classification
	Slide 3: Types of Classification
	Slide 4: Classification algorithms
	Slide 5: Is rescaling/unskewing needed?
	Slide 6: Is rescaling/unskewing needed?
	Slide 7: Classification model evaluation metrics
	Slide 8: Classification model evaluation metrics
	Slide 9: Confusion matrix
	Slide 10: Accuracy
	Slide 11: Is accuracy a good metric?
	Slide 12: Is accuracy a good metric?
	Slide 13: Recall (Sensitivity or True Positive rate)
	Slide 14: Recall
	Slide 15: Precision
	Slide 16: Recall vs Precision
	Slide 17: Recall vs Precision
	Slide 18: F-1 score
	Slide 19: F-1 score
	Slide 20: F-beta score
	Slide 21: Balanced vs unbalanced target variable
	Slide 22: Balanced vs unbalanced target variable
	Slide 23: Balanced vs unbalanced target variable
	Slide 24: Stratified Cross Validation
	Slide 25: Example: Telco Dataset
	Slide 26: Explore dataset
	Slide 27: Observations: Unbalanced
	Slide 28: Observations: Tenure vs Churn
	Slide 29: Observations: MonthlyCharges vs Churn
	Slide 30: Observations
	Slide 31: Observations
	Slide 33: Feature Selection (SFS technique)
	Slide 34: Initial Evaluation
	Slide 35: Initial Evaluation: results
	Slide 36: Best model selection
	Slide 37: Best practices for approaching a data science project
	Slide 38: Clustering
	Slide 39: K-means: prominent clustering algorithm
	Slide 40: K-means Issues
	Slide 41: K-means bottom line
	Slide 42: Choosing the best K (number of clusters)
	Slide 43: Elbow method parameters
	Slide 44: Elbow method using inertia / distortion
	Slide 45: Silhouette score
	Slide 46: Example: Drivers Dataset
	Slide 47: K-Means
	Slide 48: Visualizing results
	Slide 49: Elbow method
	Slide 50: Silhouette score
	Slide 51: Task: Wine Analysis
	Slide 52: Task: Wine Analysis
	Slide 53: Appendix – Problem with artificial balancing
	Slide 54: Appendix – Problem with artificial balancing
	Slide 55: Appendix – Problem with artificial balancing
	Slide 56: Appendix – Logistic Regression
	Slide 57: Appendix – Logistic Regression Interpretation
	Slide 58: Appendix – Logistic Regression Assumptions

