
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Labs 8

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Predictive modeling techniques

• Predictive modeling techniques help translate raw data into value

– Machine learning predictive techniques such as Support Vector Machines

(SVMs), Decision trees, boosting methods, learn from data and build models

• Data + Predictive Modeling Technique → Predictive Model

– 3 phases to prepare a predictive model: Training – Validation – Testing

• Split initial dataset into 3 smaller datasets (e.g. 80%-10%-10%); one for each phase

1. Learning/training phase:

• Training data are used to train a predictive modelling technique and create a model

– model represents what was learned by a machine learning algorithm

• Example:

– Predictive modelling technique to train: Polynomial equation: y = β0 + β1Χ + β2Χ
2

» Equation parameters: β0, β1, β2 will be estimated during training

» Equation hyperparameter: degree of the polynomial function (configured prior training)

– Dataset to train the algorithm and find the “best curve” that passes between points

– The outcome of training phase is the model e.g.: y = 0.45 + 0.7X+ 1.2X2

X y

0.10 1.51

0.15 0.92

0.17 1.96

0.22 0.53

0.27 0.38

Predictive modeling techniques

2. Validation phase

• Validation data (not seen during training phase) used to make predictions and measure

the performance (e.g. mean squared error) of the model and to tune hyperparameters

• Example:

– After measuring the performance of the quadratic (2nd degree) model, change the degree of the

polynomial equation e.g. to 3, re-run on training (phase) data to create a new cubic (3rd degree)

model and measure the performance of the new model on validation data – repeat by changing

the degree until the best model (with best performance, e.g. lower error) is achieved

3. Testing phase

• Estimate the performance of the final model (with “best” parameters and hyperparameters)

using test data (not seen during training and validation phases)

• This is the final performance of the model

4. Prediction (or application) phase:

• Apply the final model e.g.: y = 0.65 + 0.13X+ 1.9X2 + 0.77X3 to real-world input data (a new

value of X not in the initial dataset) and predict output y

Supervised learning

• You have input variables (X) and an output variable (y) available and

use a predictive modelling technique to build a model that captures

the relationship between input and output data

– Majority of predictive techniques are supervised learning techniques

• Supervised learning problems can be further grouped into:

– Classification problems: A classification problem is when the output variable

(y) is a category, such as “disease” or “no disease” (binary classification) and

“red” or “blue” or “green” (multiclass classification)

• Popular techniques: Logistic Regression (binary classification), Linear Discriminant

Analysis (LDA), K-Nearest Neighbors (KNN), Decision Trees (Random Forest), Support

Vector Machine (SVM), Naïve Bayes, Gaussian Naïve Bayes, XGBoost, AdaBoost

– Regression problems: A regression problem is when the output variable (y)

is a numerical value, such as “price” or “weight”

• Popular techniques: Linear Regression, Polynomial Regression, Support Vector

Regression (SVR), Random Forest Regression, XGBoost Regression, AdaBoost Regression

Supervised learning

.predict(X_test)

X_train

y_train

y_pred

A large number of supervised

learning techniques are available

in Scikit-Learn (or Sklearn)

library installed with Anaconda

• Training phase is performed
using .fit() function

• Validation and testing phase
involve .predict() function

Unsupervised learning

• You only have input vars (X) and no corresponding output variable (y)

– no mapping from input to output data

• Goal: model the underlying structure or distribution in the data in

order to learn more about the data, extract insights

• Unsupervised learning problems can be further grouped into:

– Clustering problems: A clustering problem is where you want to discover the

inherent groupings in the data, such as grouping customers by purchasing

behavior.

• Popular techniques: k-means

– Association problems: An association rule learning problem is where you

want to discover rules that describe large portions of your data, such as people

that buy X1 also tend to buy X2

• Popular techniques: Apriori algorithm

Unsupervised learning

X_train
In unsupervised learning techniques

available in Scikit-Learn (or Sklearn)

• Training phase (e.g. cluster

formation) is performed using
.fit() function

• Assigning new data into existing

clusters is performed by
.predict() function

Regression

• The process of estimating the relationships between a dependent
variable (or target variable) y which takes numerical values and one

or more independent (or input) variables (called features) X
• Example: Estimate the relationship between the house price (dependent var) and the

house area in square meters (independent var)

• House area is independent variable because we cannot mathematically determine it. But,

we can determine / predict house price value based on the house area.

• Some regression algorithms:

– Linear Regression (simple, multiple) – first degree equation

– Polynomial Regression – higher degree (2nd, 3rd, …) equations

– Support Vector Regression

– Ensemble Regression (e.g. Random Forest Regressor, Ada Boost Regressor)

Linear Regression (LR)

• Linear regression assumes that the relationships between the

dependent (target) variable and the independent variables are linear

• Therefore, the dependent variable y can be calculated from a linear

combination of the independent variables (X):

• Vector β involves initially unknown coefficients (parameters), which

will be evaluated using a dataset with values for target variable and

features

𝑦 = 𝛽0 +

𝑗=1

𝑝

𝛽𝑗 ∗ 𝑋𝑗 = 𝛽0 + 𝛽1 ∗ Χ1 + 𝛽2 ∗ Χ2 + ⋯

• Simple Linear regression: one independent variable X:

y = 𝛽0 + 𝛽1Χ +∈

– Goal: Fit the best intercept line (evaluate β0 and β1) that passes

between all data points that minimizes the error

– y : Dependent variable (target variable)

– X : Independent variable (feature)

– β0 : Intercept (the target value when X = 0)

– β1 : Slope. Explains the change in Y when X

changes by 1 unit = Δy/ΔΧ

– ∈ : Error. This represents the residual value,

i.e. the difference between the observed and

the fitted (predicted) value

Simple Linear Regression

𝛽1

X y

0.10 1.51

0.15 0.92

0.17 1.96

0.22 0.53

0.27 0.38

𝛽0

Multiple Linear Regression

• Multiple Linear regression: more than one independent variables Xi

in the linear function:

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +𝛽3 𝑋3 + ⋯ 𝛽𝑛𝑋𝑛 +∈

In this image n=2

Two independent variables:

• Weight

• Horsepower

Dependent variable:

• MPG (miles per gallon)

Regression finds the best-fitting

plane that passes through all

points minimizing the error

• Ordinary least squares (OLS) is a non-iterative method that fits a

model (line or plane) such that the

sum of squared error is

minimized.

• Gradient descent finds the

linear model coefficients

iteratively

• When the β coefficients are estimated, the equation can be used to

predict the target value y given an input X vector

Linear Regression Methods

Assumptions for using Linear Regression

• Linear relationships

– relationship between each independent variable and the dependent variable

needs to be linear – can best be tested with scatter plots / pair plots

• No or little multicollinearity

– Multicollinearity: two or more independent variables are highly correlated to

one another – can be checked with correlation matrix (visualized by heat map)

• If multicollinearity is discovered, the analyst may drop one of the two variables that are

highly correlated, or simply leave them in and note that multicollinearity is present.

• There are some techniques to remove multicollinearity such as centering each correlated

variable (remove mean value from all observed values of each variable) -- StandardScaler

• Normality of residuals

– LR requires the residuals (error terms) of the model to be normally distributed,

with mean equal to 0 – can best be checked with a histogram of the residuals;

normality test functions are also available

Linear Regression Assumptions

• No auto-correlation of residuals

– Autocorrelation in residuals occurs when the values of residuals are dependent

from each other – use the Ljungbox test on residuals

• i.e. the current value of a residual is dependent of the previous (historic) residual values

– this is more evident in time series data as there is a pattern of time (e.g. in stock markets, people

tend to buy stocks more towards the beginning of weekends and tend to sell more on Mondays)

• Homoscedasticity of residuals

– Homoscedasticity means that the residuals (error) are constant along the

values of the dependent variable

Linear Regression: Get to know data
import pandas as pd

import numpy as np

df = pd.read_csv('Advertising.csv')

df.head()

df.describe()

Dataset description: Sales (in

thousands of units) for a particular

product based on the advertising

budgets (in thousands of dollars)

for TV, radio, and newspaper

media.

Independent variables

(features)

target

variable

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB07/Advertising.csv

Linear Regression: Testing assumptions

• Linearity

sns.pairplot(df,x_vars=["TV","Radio","Newspaper"],y_vars= "Sales",kind="reg")

By looking at the plots we can see that none of the independent variables has an accurately linear

relationship with Sales but TV and Radio do still better than Newspaper which seems to hardly have any

specific shape. So, it shows that a linear regression fitting might not be the best model for it. A linear model

might not be able to efficiently explain the data in terms of variability, prediction accuracy etc.

Linear Regression: Testing assumptions

• Multicollinearity

– Independent variables seem to be uncorrelated (there is no correlation

between independent variables > 0.75)

df_features = df[["TV", "Radio", "Newspaper"]]

sns.heatmap(data=df_features.corr())

plt.show()

• Rest of the assumptions require us to perform the regression and

calculate the residuals (error terms)

Linear Regression: Prepare variable vectors

get the values of the dataframe that will be used in the regression model

dataset = df.values

extract the features (independent variables)

X = dataset[:,1:4]

print(X[0:10])

extract the dependent (target) variable

y = dataset[:,4]

print(y[0:10])

[[230.1 37.8 69.2]

 [44.5 39.3 45.1]

 [17.2 45.9 69.3]

 [151.5 41.3 58.5]

 [180.8 10.8 58.4]

 [8.7 48.9 75.]

 [57.5 32.8 23.5]

 [120.2 19.6 11.6]

 [8.6 2.1 1.]

 [199.8 2.6 21.2]]

[22.1 10.4 9.3 18.5 12.9 7.2 11.8 13.2 4.8 10.6]

Linear Regression: Testing assumptions
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

Non standardized independent values

[[230.1 37.8 69.2]

 [44.5 39.3 45.1]

 [17.2 45.9 69.3]

 [151.5 41.3 58.5]

 [180.8 10.8 58.4]

 [8.7 48.9 75.]

 [57.5 32.8 23.5]

 [120.2 19.6 11.6]

 [8.6 2.1 1.]

 [199.8 2.6 21.2]]

[22.1

 10.4

 9.3

 18.5

 12.9

 7.2

 11.8

 13.2

 4.8

 10.6]

X_train

X_2

y_train

y_2

LinearRegression class uses

Ordinary Least Squares (OLS)

solver from scipy

Training data size: 80%

Remaining data (X_2, y_2) size: 20%

Linear Regression: Testing assumptions
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size=0.50)

Non standardized independent values

[[230.1 37.8 69.2]

 [44.5 39.3 45.1]

 [17.2 45.9 69.3]

 [151.5 41.3 58.5]

 [180.8 10.8 58.4]

 [8.7 48.9 75.]

 [57.5 32.8 23.5]

 [120.2 19.6 11.6]

 [8.6 2.1 1.]

 [199.8 2.6 21.2]]

[22.1

 10.4

 9.3

 18.5

 12.9

 7.2

 11.8

 13.2

 4.8

 10.6]

X_train

X_test

y_train

y_test

LinearRegression class uses

Ordinary Least Squares (OLS)

solver from scipy

Validation data size: 50% of remaining

Testing data size: 50% of remaining

X_val y_val
Training data size: 80%

Validation data size: 10%

Testing data size: 10%

Linear Regression: Testing assumptions
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size=0.50)

train model (Fit linear model) and evaluate model β coefficients

model = legr.fit(X_train, y_train)

print model intercept (β0)

print("β0 =", model.intercept_)

print model coefficients

print("[β1,β2,β3] =", model.coef_)

Non standardized independent values

β0 = 2.99489303049533

[β1,β2,β3] = [0.04458402 0.19649703 -0.00278146]

Residuals: [0.11256448 2.16206142 -9.18318566

0.21444367 0.62679197 -1.90974587

 -2.03802209 0.9477193 0.30597666 0.03544328]

We apply knowledge (X_train, y_train) to explain the phenomenon and create a

“model” of reality

Model is a function (with that you may accept or reject as) being representative of
describing your phenomenon: y = 2.99 + 0.044*x1 + 0.196*x2 - 0.0027*x3

LinearRegression class uses

Ordinary Least Squares (OLS)

solver from scipy

Linear Regression: Testing assumptions
from sklearn.linear_model import LinearRegression

lregr = LinearRegression()

from sklearn.model_selection import train_test_split

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size=0.80)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size=0.50)

train model (Fit linear model) and evaluate model β coefficients

model = legr.fit(X_train, y_train)

print model intercept (β0)

print("β0 =", model.intercept_)

print model coefficients

print("[β1,β2,β3] =", model.coef_)

estimate residuals

predict

y_pred = model.predict(X_val)

residuals is the differences between real y values (y_val) and predicted y values

residuals = y_val - y_pred

print("Residuals:", residuals[:10])

Non standardized independent values

β0 = 2.89257005115115

[β1,β2,β3] = [0.04416235 0.19900368 0.00116268]

Residuals: [1.2505431 0.96947665 1.72847857

1.23621333 -0.30215643 2.15665355

 -5.89526331 -1.75879164 -1.80528358 0.32765447]

LinearRegression class uses

Ordinary Least Squares (OLS)

solver from scipy

"TV", "Radio", "Newspaper"

We cannot say that Radio has the most

influence on sales (even if β2 > β1 > β3)

Data scaling/standardization

• The values of β coefficients represent the influence of each input

feature on the target variable:

• We cannot compare the size of the various β coefficients if the input

variables are measured on different scales
• For example, number of bedrooms (X1) in a house can be measured on a scale from 0 to

10. Area (X2) can be measured on a scale from 50 to 1600 sqm. By looking at the values of

coefficients β1 and β2 we cannot directly tell which independent variable has the most

effect/influence on the dependent variable Y (house price)

• Rescale input features

– Using MaxMinScaler, StandardScaler, RobustScaler shown in Lab 4

• With scaled/standardized variables, coefficients are directly

comparable to one another, with the largest coefficient indicating

which independent variable has the greatest influence on the

dependent variable

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +𝛽3 𝑋3 + ⋯ 𝛽𝑛𝑋𝑛 +∈

When to rescale features?

• Min-max scaler rescales each feature individually into a given

range, e.g. [0, 1]

• Standard scaler rescales each feature individually to make values

have zero mean (𝜇 = 0) and unit variance (𝜎2 = 1)

– Assumes that feature fits a Gaussian distribution (bell curve) with a well-

behaved mean and standard deviation

– Centers data around zero

• Robust scaler rescales each feature individually to make values

have zero median (median=0) and unit interquartile range (IQR=1)

– Center data around zero

– Robust to outliers

When to rescale features?

• Technically, feature scaling does not make a difference in linear

regression (if the OLS method is used), however can be used to

make β coefficients directly comparable to one another and reveal

the influence of each feature on target

• In gradient descent based algorithms (such as SGDRegressor used

in linear regression) feature scaling is needed to speed up the

process of convergence

When to unskew features/target variable?

• Unskewing transformations attempt to make long-tail distribution of a

variable symmetric as Gaussian/normal distribution

– None of the previous scaling techniques changes the distribution shape

– Unskewing transformation: BoxCox, Sqrt, Log

• Linear regression (using the OLS method) does not require feature

and target variable distributions to be normal but requires normality

of residuals

– But, the presence of highly skewed features and/or target variable can, more

likely, influence the distribution of residuals making them, in turn, non-normal

– Thus, for very skewed features it might be a good idea to transform the data

to eliminate the harmful effects

Linear Regression: Target variable distribution

• We prefer distribution of target variable to be symmetric (unskewed)

=> predictive algorithm will learn all sales values without bias

• Distribution plot of the target value: right skewed (long tail to the right)

Distribution is skewed (not symmetrical) -- that it has a higher number of data points having low values, i.e., products

with less Sales. So, when we train our model on this data, it will perform better at predicting the Sales of products with

lower Sales as compared to those with higher Sales ➔ Solution: Unskew target variable (See Lab4)

import seaborn as sns

distribution plot of the target variable

sns.displot(df['Sales'], kde=True)

computing the p-value for the null-hypothesis that

this distribution is a normal distribution

from scipy import stats

_, p = stats.normaltest(y)

p-value of 0.05 or greater means that the distribution

is a normal distribution

print(p) # => 0.025430412805360583, not normal distrib.

[[0.96985227 0.98152247 1.77894547]

 [-1.19737623 1.08280781 0.66957876]

 [-1.51615499 1.52846331 1.78354865]

 [0.05204968 1.21785493 1.28640506]

 [0.3941822 -0.84161366 1.28180188]

 [-1.61540845 1.73103399 2.04592999]

 [-1.04557682 0.64390467 -0.32470841]

 [-0.31343659 -0.24740632 -0.87248699]

 [-1.61657614 -1.42906863 -1.36042422]

 [0.61604287 -1.39530685 -0.43058158]]

[8.62268888 4.96674482 4.54776147 7.61169565

5.8546036 3.6846038 5.47381496 5.95604738

2.55346522 5.04087376]

Linear Regression: Standardize data

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_scaled = sc.fit_transform(X)

print(X_scaled[0:10])

y_scaled, lambda_bc = boxcox(y)

print(y_scaled[0:10])

Target variable values are

transformed to be unskewed

Transformed vector

Selected lambda (λ) value

(λ value can be used in

reverse Box Cox

transformation)

Linear Regression: Testing assumptions
create a new model to be trained on scaled data

lregr_scaled = LinearRegression()

split the dataset to X_scaled(_train, _val, _test), y_scaled(_train, _val, _test)

train model (Fit linear model) and evaluate model β coefficients

model_scaled = lregr_scaled.fit(X_scaled_train, y_scaled_train)

print model intercept

print("β0 =", model_scaled.intercept_)

print model coefficients

print("[β1,β2,β3] =", model_scaled.coef_)

estimate residuals

predict and estimate residuals

y_scaled_pred = model_scaled.predict(X_scaled_val)

residuals_scaled = y_scaled_val - y_scaled_pred

print("Residuals:", residuals_scaled[:10])

Standardized independent values

β0 = 6.10377923104033

[β1,β2,β3] = [1.28474958 0.91806823 -0.01296285]

Residuals: [0.14146777 0.6577312 -4.39407098

0.21187781 0.09952789 -0.56718007

 -0.63370272 0.25698273 0.18450472 0.02443209]

• Standardization changes the interpretation of coefficients.

• Reveals the “importance” (influence) of each independent variable in predicting the dependent variable.

• TV has the highest coefficient, thus can be inferred that it is the most important factor for increasing sales.

"TV", "Radio", "Newspaper"

Linear Regression: Testing assumptions
from sklearn.linear_model import SGDRegressor

sgdr_scaled = SGDRegressor()

train model (Fit linear model) and evaluate model β coefficients

model_sgdr = sgdr_scaled.fit(X_scaled_train, y_scaled_train)

print model intercept

print("β0 =", model_sgdr.intercept_)

print model coefficients

print("[β1,β2,β3] =", model_sgdr.coef_)

estimate residuals

predict and estimate residuals

y_sgdr_pred = model_sgdr.predict(X_scaled_val)

residuals_sgdr = y_scaled_val - y_sgdr_pred

print("Residuals:", residuals_sgdr[:10])

Standardized independent values

β0 = [6.08596269]

[β1,β2,β3] = [1.28237186 0.90856964 -0.00590614]

Residuals: [0.16586702 0.6620378 -4.36274108

0.23261795 0.13181271 -0.54991989

 -0.620275 0.26857194 0.19853716 0.0364894]

• SGRRegressor uses the iterative method gradient descent to estimate the coefficients

• The main reason why gradient descent is used for linear regression (compared to LinearRegressor) is the

computational complexity: it's computationally cheaper (faster) to find the solution using the gradient descent

in datasets with large number of features.

SGDRegression object uses

stochastic gradient descent

method

Linear Regression: Testing assumptions

• Normality of residuals

– Residuals (error terms) of unstandardized input

does not seem to be normally distributed

– Run normality check to test whether the

residuals differ from a normal distribution

_, p = stats.normaltest(residuals)

p-value of 0.05 or greater means that the

distribution is a normal distribution

print(p) # => 3.463801353587156e-10, residuals

differ from normal distrib.

Non standardized independent values

Linear Regression: Testing assumptions

• Normality of residuals

– Residuals (error terms) of standardized input

does not seem to be normally distributed as well

– Run normality check to test whether the

residuals differ from a normal distribution

_, p = stats.normaltest(residuals_scaled)

p-value of 0.05 or greater means that the

distribution is a normal distribution

print(p) # => 4.668655843075813e-16, residuals

differ from normal distrib.

Standardized independent values

Linear Regression: Testing assumptions

• Homoscedasticity

– Data is not fully homoscedastic since the residuals (error) are not always

constant along the values of the dependent variable

plt.figure(figsize=(10,5))

sns.lineplot(x=y_pred,y=residuals,marker='o',color='blue')

plt.xlabel('y_pred (predicted values)')

plt.ylabel('Residuals')

plt.ylim(-10,10)

plt.xlim(0,26)

sns.lineplot(x=[0,26],y=[0,0],color='red')

plt.title('Residuals vs fitted values plot

for homoscedasticity check')

plt.show()

Linear Regression: Model evaluation

• Model evaluation is a core part of building an effective machine

learning model

• Evaluation metrics provide a measure of how good a model

performs and how well it approximates the relationship between the

dependent variable and the independent variables

• Some regression evaluation metrics:

– MSE: Mean Squared Error

• Error is squared: Large prediction errors are penalized

– MAE: Mean Absolute Error

• Does not penalize large prediction errors

– RMSE: Root Mean Squared Error

– R-squared (R2): a statistical measure of how close the data are to the fitted

regression line on a convenient 0-1.0 scale (0: poor fitting, 1: perfect fitting)

m
in

im
iz

e
m

a
x
im

iz
e

n = number of data points

 = observed value i

 = predicted value i

Evaluation metrics discussion

• The idea behind the squared (MSE) and the absolute error (MAE) is

to avoid mutual cancellation of the positive and negative errors

– MSE and MAE have only non-negative values

• In MSE, error is squared => prediction error is being heavily penalized

– In case of data outliers, MSE will become much larger compared to MAE

– Based on the application, this property may be considered positive or negative:

• For example, emphasizing large errors may be a desirable discriminating measure when

evaluating models

• MAE preserves the same units of measurement

• In MSE, the unit of measurement is squared

• RMSE is used then to return the MSE error to the original unit by

taking the square root of it, while maintaining the property of

penalizing higher errors

Linear Regression: Evaluate model

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

prediction on validation data

Model trained on unstandardized features and non-transformed target values

y_pred = model.predict(X_val)

print(y_pred[0:10])

Mean Squared Error (MSE)

MSE = mean_squared_error(y_val, y_pred)

Root Mean Squared Error (RMSE)

RMSE = np.sqrt(MSE)

r2 = r2_score(y_val, y_pred)

print("MSE:", MSE, ", RMSE:", RMSE , ", R2:", r2)

[15.48743552 6.53793858 10.78318566 11.58555633 21.17320803

15.10974587 18.13802209 7.4522807 12.29402334 10.46455672]

MSE: 7.289025693003447 , RMSE: 2.699819566749498 , R2:

0.7703057423991149

Linear Regression: Evaluate model
prediction on validation data

Model trained on standardized features and (box-cox) transformed target values

y_scaled_pred = model_scaled.predict(X_scaled_val)

print(y_scaled_pred[0:10])

Mean Squared Error (MSE)

MSE_scaled = mean_squared_error(y_scaled_val, y_scaled_pred)

Root Mean Squared Error (RMSE)

RMSE_scaled = np.sqrt(MSE_scaled)

r2_scaled = r2_score(y_scaled_val, y_scaled_pred)

print("MSE:", MSE_scaled, ", RMSE:", RMSE_scaled, ", R2:", r2_scaled)

[6.59363166 3.65266796 4.93409818 5.26193715 8.44170914

6.52322744 7.52455855 3.93214744 5.56765427 4.9794517]

MSE: 1.276160482816573 , RMSE: 1.129672732616209 , R2:

0.6769041124104881

Note: if the target values used in training (y_train) were transformed, the predicted target values are also in

the same transformation scale and need to revert them back to the original scale. Therefore, we apply the
inverse box-cox transformation and the re-calculate the MSE, RMSE and r2:

Predicted values for Sales are transformed!!

(normal values for Sales are 5-26)

y_unscaled_pred = inv_boxcox(y_scaled_pred, lambda_bc)

[15.15165194 7.12667986 10.31242981 11.20594497 21.43577544

14.93058249 18.2024254 7.77902257 12.06723119 10.43416896]

MSE: 6.105524793692385 , RMSE: 2.47093601570182 , R2:

0.8076006254035979

Predicted sales:

Polynomial (or non-linear) regression

• Let’s consider a case where during testing for linearity assumption

between dependent and independent variables (scatter plot) a non-

linear relationship (curve) is observed

• This is where polynomial Regression comes to the play which predicts

the best fit line that follows the pattern (curve) of the data, as shown in

the pic below:

• Polynomial Regression is generally used when the points in the data are not

captured by the Linear Regression Model and the Linear Regression fails in

describing the best result (in terms of low error) clearly

Polynomial regression

• Relationship between the independent variable(s) x and the

dependent variable y are modelled as an nth degree polynomial in x

• Example (for one independent variable X):

– quadratic model (2nd degree) : y = 𝛽0 + 𝛽1Χ + 𝛽2X2 +∈

– cubic model (3rd degree) : y = 𝛽0 + 𝛽1Χ + 𝛽2X2 + 𝛽3X3 +∈

• Predictive performance of the model tends to increase (i.e. error is

getting lower) as we increase the degree of the model

Polynomial regression: of which degree?

• Increasing the degrees of the model also increases the risk of over-

fitting the data

• The degree of the polynomial to fit is a hyperparameter that cannot

be inferred while fitting the machine to the training set because it

needs to be set prior the learning phase

Error when making predictions

on the training dataset

Error when making predictions

on the validation dataset

(unseen data that was not

used during training phase)

Common methodological

mistake to make predictions

on the training dataset which

was used to train the model.

How to find the right degree of the equation?

• In order to find the right degree for the model to prevent over-fitting

or under-fitting, we can use any of the two approaches below:

– Forward Degree Selection:

• Start with a model of degree=1 and at each step gradually increase the model’s degree

until the best possible model (e.g. that minimizes MSE, RMSE) is reached

– Backward Degree Selection:

• Start with model of a large degree and at each step gradually decrease the model’s

degree until the best possible model is reached

– At each step:

• Train the model using the training dataset

• Predict the target value using the validation dataset

• Evaluate the performance of the model using any evaluation measure (MSE, RMSE, R2)

– At the end, when the best model is chosen, evaluate its final performance

by predicting the target value using the testing dataset.

Training Polynomial regression model using Linear Regressor

• Let’s say we have dataset of one input feature, and we need to build a

polynomial regression model of 3rd degree (cubic model)

– y = 𝛽0 + 𝛽1Χ + 𝛽2X2 + 𝛽3X3

• Polynomial regression model can be trained using linear regressor

(LR) since LR doesn’t know that X2 and X3 are the square of X and

the cube of X respectively, it just thinks they are another features

– Prior running LR we expand the dataset, i.e. beyond the column X of the

dataset, we create the extra columns X2 and X3

• The unknown parameters to be estimated after training are β0, β1, β2, β3

• In a two-feature dataset X1, X2

– 2nd degree polynomial model : y = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1
2 + 𝛽4𝑋1𝑋2 + 𝛽5𝑋2

2

• You apply linear regression for five inputs: 𝑥₁, 𝑥₂, 𝑥₁², 𝑥₁𝑥₂, and 𝑥₂²

• Result of regression: the values of six parameters β0, β1, β2, β3, β4, β5

Interaction term

Is rescaling/unskewing needed?

• While creating power terms (e.g. 𝑋1
2 , 𝑋1

3), if X1 is not centered first

(using StandardScaler or RobustScaler), the squared and cubic

terms will be highly correlated with X1

• While creating interaction terms (e.g. 𝑋1𝑋2), if both X1 and X2 are

not centered first, some amount of collinearity will be induced, i.e.

𝑋1𝑋2 will be correlated with X1 and X2

• Both situations can negatively affect the estimation of the β

coefficients, therefore centering can be applied on all input features

prior creating power and interaction terms (see here)

• Feature and target variable distributions are not required to be

Gaussian, but unskewing transformation is generally recommended

if distributions are heavily skewed

Polynomial Regression: Boston Housing Dataset

• Dataset: 506 houses by 13 features

• Objective: predict house prices
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

boston = pd.read_csv('Boston.csv')

boston.head()

distribution of the target values

sns.displot(boston['medv'], kde=True)

plt.show()

statistical test

p-value >= 0.05 means that the

distribution is a normal distribution

from scipy import stats

_, p = stats.normaltest(boston['medv'])

print(p) # => 1.76 e-20

Distribution is skewed (not symmetrical): The mean is

around 20 and the first part already looks quite like a

normal distribution. But there is a large right tail of higher

MEDV values. This could lead to the problem, that the

model better predicts the MEDV values around the mean

but is quite bad at predicting the MEDV values from the

right tail. This is because most of the time the model sees

values around the mean and is therefore biased towards

these MEDV values. ➔ Solution: Unskew target variable

(See Appendix)

https://www.cs.ucy.ac.cy/courses/DSC510/data/Boston.csv

Target value transformation

• Use boxcox transformation

• Distribution of the transformed target

variable

– This distribution already looks quite similar to

a normal distribution and achieves a p-value

of 0.1, which is larger than 0.05. Therefore,

we can say that the distribution equals a

normal distribution

• Create boston2 (copy of boston)

having target value unskewed

y - transformation (box cox)

from scipy.stats import boxcox

y_bc, lambda_bc = boxcox(boston['medv'])

_, p = stats.normaltest(y_bc)

print(p) # => 0.1046886692817602

sns.displot(y_bc, kde=True)

boston2 = boston.copy()

boston2['medv_boxcox']=y_bc

boston2.drop(columns=['medv'], inplace=True)

Transformed vector

Selected lambda (λ) value

(λ value can be used in

reverse Box Cox transf.)

• Create correlation matrix of the

boston2 dataframe

• Observations:

– As we can see, only the features rm,

and lstat are highly correlated with

the output variable medv_boxcox

– Avoid using high correlated features

together to avoid multi-collinearity

• rad / tax are strongly correlated

• dis / indus / age are strongly correlated

Feature Selection – Correlation matrix

Feature Importance using ExtraTreeClassifier

from sklearn.ensemble import GradientBoostingRegressor

Build an estimator and compute the feature importances

estimator = GradientBoostingRegressor(n_estimators=100, random_state=0)

X = boston.values[:,0:-1]

y = boston.values[:,-1]

estimator.fit(X,y)

Lets get the feature importances.

Features with high importance score higher.

importances = estimator.feature_importances_

std = np.std([tree[0].feature_importances_ for tree in estimator.estimators_], axis=0)

indices = np.argsort(importances)[::-1]

Print the feature ranking

print("Feature ranking:")

for f in range(X.shape[1]):

 print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))

Plot the feature importances

plt.figure()

plt.title("Feature importances")

plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center")

plt.xticks(range(X.shape[1]), indices)

plt.xlim([-1, X.shape[1]])

plt.ylim([0, 0.7])

plt.show()

Feature Selection – Importance

Feature ranking:

1. feature 12 (0.571671)

2. feature 5 (0.187518)

3. feature 7 (0.058690)

4. feature 0 (0.058230)

5. feature 4 (0.047488)

6. feature 10 (0.036242)

7. feature 11 (0.017130)

8. feature 9 (0.012743)

9. feature 6 (0.005091)

10. feature 2 (0.002358)

11. feature 8 (0.002353)

12. feature 3 (0.000354)

13. feature 1 (0.000133)

As we can see, the features lstat, and rm achieve the

highest importance among all features for predicting the

target variable medv_boxcox

Feature Selection

• We decide to keep only these two features (lstat and rm)

• We use both Linear and Polynomial regression to build a predictive

model for predicting the target variable

We can see that lstat

doesn’t vary exactly

in a linear way.

Hyperparameter/parameter tuning

• Tuning (training) the hyperparameters and the parameters of a

predictive modelling technique (predictor / classifier) and testing its

performance on the same data is a methodological mistake

– High accuracy on seen data

– May fail to predict / classify unseen data

• Solution: split available dataset into 3 parts; training, validation and

testing datasets

Overfitting

OverfittingUnderfitting

Data Preparation

• Extract features and the target value to X and y respectively from

boston2 (involving transformed target variable)

• Split train/test dataset

extract 2 features

X = boston2[['lstat', 'rm']]

extract target variable

y = boston2['medv_boxcox']

from sklearn.model_selection import train_test_split

splits dataset to training, validation and testing datasets: 80% / 10% / 10%

X_train, X_2, y_train, y_2 = train_test_split(X, y, train_size = 0.8)

X_val, X_test, y_val, y_test = train_test_split(X_2, y_2, train_size = 0.5)

Linear Regression
from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

lr = LinearRegression()

model training

lin_model = lr.fit(X_train, y_train)

model evaluation for validation set

y_val_predict = lin_model.predict(X_val)

root mean square error of the model

rmse = (np.sqrt(mean_squared_error(y_val, y_val_predict)))

r-squared score of the model

r2 = r2_score(y_val, y_val_predict)

print("Model performance on validation dataset")

print("--------------------------------------")

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

Model performance on validation dataset

RMSE is 0.48347898587331134

R2 score is 0.578350023179578

Linear Regression (results on original scale)

from scipy.special import inv_boxcox

inverse Box Cox transformation

y_val_init = inv_boxcox(y_val, lambda_bc)

y_pred_init = inv_boxcox(y_val_predict, lambda_bc)

rmse_init = (np.sqrt(mean_squared_error(y_val_init,

y_pred_init)))

r2_init = r2_score(y_val_init, y_pred_init)

print('RMSE is {}'.format(rmse_init))

print('R2 score is {}'.format(r2_init))

Model Sales predictions are in the Box-Cox scale

We can transform them back to the original scale

RMSE is 4.770862055815939

R2 score is 0.6900277569655442

Model performance on validation dataset

RMSE is 0.48347898587331134

R2 score is 0.578350023179578

Model performance if target is not transformed?

• Extract features and target value from the original boston dataframe

 (target variable was not transformed)

• Split X_original, y_original into training, validation, testing

• Train linear regression model using X_train_orig, y_train_orig

• Use X_val_orig to predict y_val_predict_orig

• Evaluate model performance using RMSE, R2

• Using boston2 (with box cox applied on y):

• Better performance is experienced when target variable is unskewed

extract 2 features

X_original = boston[['lstat', 'rm']]

extract target variable

Y_original = boston['medv']

RMSE is 5.203457199881524

R2 score is 0.631266105649837

RMSE is 4.770862055815939

R2 score is 0.6900277569655442

Linear Regression (with hyperparameters)

• No hyperparameters used thus far: lr = LinearRegression()

• If hyperparameters are to be used, they need to be set prior training

• Linear regression can set the fit_intercept hyperparameter

– The intercept term (often labeled the constant β0) is the expected mean value

of Y when all X=0

– Default value is true: β0 is part of the model

• Set lr = LinearRegression(fit_intercept=False) and

follow the process (training, prediction on validation dataset, model

evaluation) using the boston2 dataset

– Slight improvement of the model

Model performance on validation dataset (without intercept term)

--

RMSE is 0.4449854229486139

R2 score is 0.642818921239515

Problem with dataset splitting

• Results (RMSE, R2) may depend on a particular choice (split) for

the training, validation & testing datasets

– What if split isn’t random?

– What if one subset of our data has only data from a certain category?

→ Overfitting again !!!

• Solution: Repeat the process of randomly splitting data into subsets

and average error results => Cross Validation (CV)

K-folds Cross Validation

• Prior running Cross-Validation, split initial dataset into train/test

• Split train dataset randomly into k subsets called folds

• Repeat:

– Train model on k-1 folds

– Use kth fold as validation dataset to measure model performance

• Measure score (e.g. RMSE, R2 for regression, accuracy, f1-score for classification)

• Until each of k folds has served as validation fold

• Combine (average) k recorded scores to estimate the
error/accuracy of the model: cross-validation score

• Modify model hyperparameters and re-run cross validation
to find the best hyperparameter values

• Test dataset is used for the final evaluation of the model with the
best model parameters and hyperparameters

C
ro

s
s
 v

a
lid

a
ti
o
n

k-folds Cross Validation

• The unified sklearn scoring API always maximizes the score, so

scores which need to be minimized like RMSE are negated in order

for the unified scoring API to work correctly

from sklearn import model_selection

initialize k-folds cross-validator, with k=10

kfold = model_selection.KFold(n_splits=10)

perform cross validation using k-folds cv

lr = LinearRegression()

rmse = model_selection.cross_val_score(lr, X_train,

y_train, cv=kfold, scoring = "neg_root_mean_squared_error")

print("Mean RMSE:", -rmse.mean())

print("Standard deviation RMSE:", rmse.std())

k-folds Cross Validation

Mean RMSE: 0.43850956855296425

Standard deviation RMSE: 0.06639513033656468

Polynomial Regression (degree = 2)
from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2)

transform training set features to higher degree features

X_train_poly = poly_features.fit_transform(X_train)

print(X_train[0:5])

print(X_train_poly[0:5])

fit the transformed features to Linear Regression

poly_model = LinearRegression()

train the model

poly_model.fit(X_train_poly, y_train)

transform validation set features to higher degree features

X_val_poly = poly_features.fit_transform(X_val)

predicting on validation dataset

y_val_predict = poly_model.predict(X_val_poly)

lstat rm

33 18.35 5.701

283 3.16 7.923

418 20.62 5.957

502 9.08 6.120

402 20.31 6.404

[[1. 18.35 5.701 336.7225 104.61335 32.501401]

[1. 3.16 7.923 9.9856 25.03668 62.773929]

[1. 20.62 5.957 425.1844 122.83334 35.485849]

[1. 9.08 6.12 82.4464 55.5696 37.4544]

[1. 20.31 6.404 412.4961 130.06524 41.011216]]

convert the original features (X_train) into their

higher order terms (X_train_poly) via the

PolynomialFeatures class

lstat rm lstat2 rm2lstat * rm

Bias column: Feature in

which all polynomial powers

are zero. Acts as an intercept

term in a linear model.

Polynomial Regression (degree = 2)
evaluating the model on validation dataset

rmse_val = np.sqrt(mean_squared_error(y_val, y_val_predict))

r2_val = r2_score(y_val, y_val_predict)

print("Model performance on validation dataset")

print("---")

print("RMSE is {}".format(rmse_val))

print("R2 score is {}".format(r2_val))
The model performance for the validation set

RMSE of training set is 0.4235493601190515

R2 score of training set is 0.676402665405311

We can observe that the RMSE error has reduced after using polynomial regression as

compared to linear regression. However, CV needs to be performed along with

hyperparameter tuning:

• explore different polynomial degrees beyond 2

• keep interaction_only features (e.g. remove lstat2 and rm2), default is False

• try without include_bias, default is True

Exhaustive param search: GridSearchCV

• Exhaustive search with Cross-Validation over specified hyper

parameter combination for a predictive technique [see here]

• Grid of parameter values is specified with the param_grid list

– For example, for Polynomial Features with degree, interaction_only and

include_bias hyperparameters:

– specifies that two grids should be explored:

• combination of degree values [1, 2, 3, 4] and interaction_only True/False,

• combination of degree values [1, 2, 3, 4] and include_bias True/False

param_grid = [

 { "degree": [1, 2, 3, 4], "interaction_only": [True, False] },

 { "degree": [1, 2, 3], "include_bias ": [True, False] }

]

grid = GridSearchCV(Predictive Technique, parameter grid, scoring = 'neg_root_mean_squared_error',

cv=10, n_jobs=-1) # default cv value is 5, n_jobs = 1 mean run using all processors

grid.fit(X_train, y_train)
n_jobs parameter is provided by many sklearn estimators (e.g. in RandomForest, GridsearchCV, Extratree, etc.). It accepts number

of cores to use for parallelization. If value of -1 is given then it uses all cores. It uses joblib parallel processing library for running things

in parallel in background. Therefore, I would like to recommend to you to use n_jobs=-1 where applicable to speed-up your

computations.

https://scikit-learn.org/stable/modules/grid_search.html#exhaustive-grid-search

Pipeline

• Previous (polynomial regression) process involves two sequential

steps:

– Create polynomial features

– Run linear regression

• With scikit learn, it is possible to create a pipeline combining these

two steps (PolynomialFeatures and LinearRegression).

• We can also run this pipeline with a combination of

hyperparameters of both steps through GridSearchCV

Polynomial regression: Pipeline with GridSearchCV
from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

Define a pipeline involving PolynomialFeatures

and LinearRegression steps

pf = PolynomialFeatures()

lr = LinearRegression()

name each step

pipe = Pipeline(steps=[("poly", pf), ("linear", lr)])

Parameters of pipelines can be set using ‘__’ separated parameter names:

param_grid = [

 { "poly__degree": [1, 2, 3, 4, 5], "poly__interaction_only": [True, False], "poly__include_bias": [True, False] },
 { "poly__degree": [1, 2, 3, 4], "poly__interaction_only": [True, False], "poly__include_bias": [True, False], "linear__fit_intercept": [True,

False] }

]

make grid object for GridSearchCV and fit the dataset

search = GridSearchCV(pipe, param_grid, scoring = 'neg_root_mean_squared_error', cv=10, n_jobs=-1)

search.fit(X_train, y_train)

print results

print(" Results from Grid Search ")

print("\n The best estimator across ALL searched params:\n", search.best_estimator_)

print("\n The best score across ALL searched params:\n", -search.best_score_)

print("\n The best parameters across ALL searched params:\n", search.best_params_)

The best score across ALL searched params:

0.402418593698313

The best parameters across ALL searched params:

{'poly__degree': 2, 'poly__include_bias’: True,

'poly__interaction_only': True}

Support Vector Regression

• Basic idea of support vector regression

– Find optimal hyperplane that has maximum

number of points

• Hyperplane: A hyperplane is a decision surface that is used to

predict the continuous output. The data points on either side of the

hyperplane that are closest to the hyperplane are called

Support Vectors. These are used to plot the required surface that

shows the predicted output of the algorithm

Support Vector Regression

• Decision Boundaries: These are the two surfaces that are drawn

around the hyperplane at a distance of ε (epsilon).

– SVR basically considers the points that are within the decision boundaries

– Best fit: the hyperplane that has a maximum number of points.

Support Vector Regression

• Kernel: A kernel is a set of mathematical functions that takes data

as input and transform it into the required form. These are generally

used for finding a better hyperplane in a higher dimensional space

– The most widely used kernels include linear, polynomial (poly), radial basis

function (rbf) and sigmoid. By default, RBF is used as the kernel. Each of

these kernels are used depending on the dataset.

Support Vector Regression

• SVR important hyperparameters:

– kernel: default value is rbf

– C: Regularization parameter. The strength of the regularization is inversely

proportional to C. Must be strictly positive. Default value is 1.0

– epsilon: boundary threshold (ε), default value is 0.1

– gamma: kernel coefficient for rbf, poly and sigmoid, default value is ‘scale’

– degree: degree of the polynomial kernel (poly)

• In distance-based regression algorithms (such as Support Vector

Regressor - SVR) that use (Euclidean or Manhattan) distances

between data points, feature scaling is needed so that all the

features contribute equally to the distance otherwise distance may

be dominated by features with larger scales

• E.g. D𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋1, 𝑋2 = 3 − 1027 2 + 4 − 2123 2 distance is dominated by X2 values

Support Vector Regression
from sklearn.svm import SVR

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.preprocessing import RobustScaler

scale the input features

scaler = RobustScaler()

X_scaled = scaler.fit_transform(X)

svr = SVR()

model training

svr_model = svr.fit(X_train, y_train)

model evaluation for testing set

y_test_predict = svr_model.predict(X_test)

root mean square error of the model

rmse = (np.sqrt(mean_squared_error(y_test, y_test_predict)))

r-squared score of the model

r2 = r2_score(y_test, y_test_predict)

print("Model performance on testing dataset")

print("--------------------------------------")

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

The model performance for validation set

RMSE is 0.41430394276538857

R2 score is 0.690375720858043

We can observe that the RMSE error (with default hyperparameter values) has slightly

increased compared to polynomial regression. However, we need to re-evaluate the model

with different combinations of hyperparameters (kernel, C, gamma, epsilon)

SVR with GridSearchCV

• Exhaustive search over specified parameter values for an estimator
from sklearn.model_selection import GridSearchCV

Define a pipeline involving Robust Scaler and SVR

rs = RobustScaler()

svr = SVR()

pipe_svr = Pipeline(steps=[("scaler", rs), ("svr", svr)])

parameter grid (as described in previous slide)

parameter_grid = [

 {'svr__C': [1, 10, 100, 1000], 'svr__kernel': ['linear']},

 {'svr__C': [1, 10, 100, 1000], 'svr__gamma': [0.001, 0.0001], 'svr__kernel': ['rbf']},

 {'svr__C': [1, 10, 100, 1000], 'svr__degree': [1, 2, 3, 4, 5, 6], 'svr__kernel': ['poly']}

]

make grid_SVC object for GridSearchCV and fit the dataset

grid_SVR = GridSearchCV(pipe_svr, parameter_grid, scoring = 'neg_root_mean_squared_error', n_jobs=-1)

grid_SVR.fit(X_train, y_train)

print results

print(" Results from Grid Search ")

print("\n The best estimator across ALL searched params:\n", grid_SVR.best_estimator_)

print("\n The best score across ALL searched params:\n", -grid_SVR.best_score_)

print("\n The best parameters across ALL searched params:\n", grid_SVR.best_params_)

The best estimator across ALL searched params:

Pipeline(steps=[('scaler', RobustScaler()), ('svr',

SVR(C=1000, gamma=0.001))])

The best score across ALL searched params:

0.40327382455884486

The best parameters across ALL searched params:

{'svr__C': 1000, 'svr__gamma': 0.001, 'svr__kernel':

'rbf'}

SVR model is still unable to outperform the polynomial model. Both achieve similar RMSE.

Ensemble learning

• Ensemble learning: train multiple ML algorithms (learners) and

combine their predictions in some way

• Ensemble model is a model that consists of many base (weak)

models

• Tends to make more accurate predictions than individual (weak)

base models

• We have three kinds of ensemble methods using:

• Sequential Homogeneous Learners (Boosting)

• Parallel Homogeneous Learners (Bagging)

• Parallel Heterogeneous Learners (Stacking)

Basic Types of Ensemble Learning

• Sequential Ensemble Learning (boosting)

– Key ideas:

• base learners are dependent on the results from previous base learners

• every subsequent base model corrects the prediction made by its predecessor fixing the

errors in it

• overall performance can be gradually increased

– Cons: tends to overfit the training data

– Examples: AdaBoost, Stochastic Gradient Boosting, XGBoost, CatBoost

Basic Types of Ensemble Learning

• Parallel ensemble learning using homogeneous learners (also

called bagging)

– all base learners are homogeneous (same machine learning algorithm) and

execute in parallel on different random subsets of the original dataset

– no dependency between the base learners

– results of all base models are combined in the end (using averaging for

regression and voting for classification problems)

• Averaging: every learner make a prediction (predicted value) for each data point, and

the final predicted value for that point is the average of all predicted values

• Voting: every learner makes a prediction (votes) for each data point (row in dataset) to

which category should be assigned to and the final output prediction for that point is the

category that receives more than half (or the majority) of the votes

– See more here

– Examples: sklearn.ensemble.BaggingRegressor,

sklearn.ensemble.RandomForestRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Basic Types of Ensemble Learning

• Parallel ensemble learning using heterogeneous learners (also

called stacking)

– all base learners are heterogeneous (different machine learning algorithm)

and execute in parallel

• Base Learners are trained using the available data

– meta learner combines predictions of base learners

• Meta Learner is trained to make a final prediction using the Base Learners’ predictions

on the input data – base models’ predictions are used as input features to meta learner

– stacking obtains better performance results than any of the individual weak

learners

– Example: sklearn.ensemble.StackingRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

Random Forest Regression

• A Random Forest is a bagging ensemble technique

• Performs both regression and classification tasks with the use of

multiple decision trees as base models

• The name “Random Forest” comes from the bootstrapping idea of

data randomization (training datasets for each tree taken from

random subsets of the initial training dataset) and building multiple

Decision Trees (Forest)

• RandomForestRegressor class

– sklearn.ensemble.RandomForestRegressor

– More info here

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=randomforest#sklearn.ensemble.RandomForestRegressor

Is rescaling/unskewing needed?

• Ensemble methods (Random Forest, XGBoost, AdaBoost) do not

require feature rescaling to be performed as they are not sensitive

to the variance in the data

• A skewed dependent variable is not necessarily a problem for

ensemble methods per se – there are no assumptions as for

example the normality of residuals (errors) that need to be met like

in the linear model

Random Forest Regression
from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error, r2_score

rf = RandomForestRegressor()

model training

rf_model = rf.fit(X_train, y_train)

model evaluation for validation set

y_val_predict = rf_model.predict(X_val)

root mean square error of the model

rmse = (np.sqrt(mean_squared_error(y_val, y_val_predict)))

r-squared score of the model

r2 = r2_score(y_val, y_val_predict)

print("Model performance on validation dataset")

print("--------------------------------------")

print('RMSE is {}'.format(rmse))

print('R2 score is {}'.format(r2))

Model performance on validation dataset

RMSE is 0.4995876150283884

R2 score is 0.5497847487449045

Random Forest Regressor with the default hyper parameters achieves slightly worse

performance compared to the polynomial model but a combination of hyper parameters

needs to be considered.

RandomForestRegressor with GridSearchCV
Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 1000, num = 10)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]

max_depth.append(None)

Minimum number of samples required to split a node

min_samples_split = [2, 5, 10]

Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2, 4]

Method of selecting samples for training each tree

bootstrap = [True, False]

Create the random grid

parameter_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'bootstrap': bootstrap}

rf = RandomForestRegressor()

make grid_SVC object for GridSearchCV and fit the dataset

grid_SVR = GridSearchCV(rf, parameter_grid, scoring = 'neg_root_mean_squared_error', n_jobs=-1)

grid_SVR.fit(X_train, y_train)

print results

print(" Results from Grid Search ")

print("\n The best estimator across ALL searched params:\n", grid_SVR.best_estimator_)

print("\n The best score across ALL searched params:\n", -grid_SVR.best_score_)

print("\n The best parameters across ALL searched params:\n", grid_SVR.best_params_)

The best estimator across ALL searched params:

RandomForestRegressor(max_depth=10,

max_features='sqrt', min_samples_leaf=4,

 n_estimators=200)

The best score across ALL searched params:

0.39623826398974954

The best parameters across ALL searched params:

{'bootstrap': True, 'max_depth': 10,

'max_features': 'sqrt', 'min_samples_leaf': 4,

'min_samples_split': 2, 'n_estimators': 200}

Slightly better results than SVR

model but still slightly worse than

the polynomial model.

Warning: This may run several minutes!!

Appendix: Scaling vs correlation

• Correlation among original features, power and interaction terms

• There is minimal correlation when

centering-based scalers (Standard,

Robust) are applied

• Source code is found here

Without scaling With MinMax scaling

With Standard scaling

With Robust scaling

https://www.cs.ucy.ac.cy/courses/DSC510/labs/Lab6_scaling_vs_correlation.ipynb

Appendix: Bagging in detail
• Parallel Ensemble Learning of homogeneous learners:

Bootstrapping (resampling) => Aggregating => Bagging

1. To start with, let’s assume you have some original data that you

want to use as your training set (dataset D with N samples). You

want to have K base models in our ensemble.

2. In order to promote model variance, Bagging requires training

each model in the ensemble on a randomly drawn subset of the

training set. The number of samples in each subset is usually

equal to the original dataset (N), although it can be smaller.

3. To create each subset, you need to use a bootstrapping

technique:

a) First, randomly pull a sample from your original dataset D and put it

to your subset

b) Second, return the sample to D (this technique is called sampling

with replacement)

c) Third, perform steps (a) and (b) N (or less) times to fill your subset

d) Then perform steps (a), (b), and (c) K – 1 time to have K subsets for

each of your K base models

4. Train each of K base models on its subset, make predictions

using test (unseen) dataset

5. Combine (aggregate) the prediction of each sample (row) from

the test dataset and evaluate the final result for each sample

If you are solving a Classification problem, you

should use a voting process to determine the final

result. The result is usually the most frequent class

among K model predictions. In the case of

Regression, you should just take the average of

the K model predictions.

Training dataset: D

N samples

Appendix: Bagging in detail (sampling with replacement)

• Boostrapping process creates a new training dataset for each base

model

• Some samples (rows) of the initial training dataset can be selected

multiple times within a base model’s training dataset

• Build multiple base models – each one trained on its own dataset

• Use each base model to make a prediction using the test dataset

• Combine (average) predictions to provide the final ensemble

algorithm prediction

Original dataset 1 2 3 4 5 6 7 8 9 10

Base Model 1 dataset 7 8 10 8 2 5 10 10 5 9

Base Model 2 dataset 1 4 9 1 2 3 2 7 3 2

Base Model 3 dataset 1 8 5 10 5 5 9 6 3 7

Training datasets (with 10 samples/rows each)

	Slide 1: EPL448: Data Mining on the Web – Labs 8
	Slide 2: Predictive modeling techniques
	Slide 3: Predictive modeling techniques
	Slide 4: Supervised learning
	Slide 5: Supervised learning
	Slide 6: Unsupervised learning
	Slide 7: Unsupervised learning
	Slide 8: Regression
	Slide 9: Linear Regression (LR)
	Slide 10: Simple Linear Regression
	Slide 11: Multiple Linear Regression
	Slide 12: Linear Regression Methods
	Slide 13: Assumptions for using Linear Regression
	Slide 14: Linear Regression Assumptions
	Slide 15: Linear Regression: Get to know data
	Slide 16: Linear Regression: Testing assumptions
	Slide 17: Linear Regression: Testing assumptions
	Slide 18: Linear Regression: Prepare variable vectors
	Slide 19: Linear Regression: Testing assumptions
	Slide 20: Linear Regression: Testing assumptions
	Slide 21: Linear Regression: Testing assumptions
	Slide 22: Linear Regression: Testing assumptions
	Slide 23: Data scaling/standardization
	Slide 24: When to rescale features?
	Slide 25: When to rescale features?
	Slide 26: When to unskew features/target variable?
	Slide 27: Linear Regression: Target variable distribution
	Slide 28: Linear Regression: Standardize data
	Slide 29: Linear Regression: Testing assumptions
	Slide 30: Linear Regression: Testing assumptions
	Slide 31: Linear Regression: Testing assumptions
	Slide 32: Linear Regression: Testing assumptions
	Slide 33: Linear Regression: Testing assumptions
	Slide 34: Linear Regression: Model evaluation
	Slide 35: Evaluation metrics discussion
	Slide 36: Linear Regression: Evaluate model
	Slide 37: Linear Regression: Evaluate model
	Slide 38: Polynomial (or non-linear) regression
	Slide 39: Polynomial regression
	Slide 40: Polynomial regression: of which degree?
	Slide 41: How to find the right degree of the equation?
	Slide 42: Training Polynomial regression model using Linear Regressor
	Slide 43: Is rescaling/unskewing needed?
	Slide 44: Polynomial Regression: Boston Housing Dataset
	Slide 45: Target value transformation
	Slide 46: Feature Selection – Correlation matrix
	Slide 47: Feature Selection – Importance
	Slide 48: Feature Selection
	Slide 49: Hyperparameter/parameter tuning
	Slide 50: Data Preparation
	Slide 51: Linear Regression
	Slide 52: Linear Regression (results on original scale)
	Slide 53: Model performance if target is not transformed?
	Slide 54: Linear Regression (with hyperparameters)
	Slide 55: Problem with dataset splitting
	Slide 56: K-folds Cross Validation
	Slide 57: k-folds Cross Validation
	Slide 58: k-folds Cross Validation
	Slide 59: Polynomial Regression (degree = 2)
	Slide 60: Polynomial Regression (degree = 2)
	Slide 61: Exhaustive param search: GridSearchCV
	Slide 62: Pipeline
	Slide 63: Polynomial regression: Pipeline with GridSearchCV
	Slide 64: Support Vector Regression
	Slide 65: Support Vector Regression
	Slide 66: Support Vector Regression
	Slide 67: Support Vector Regression
	Slide 68: Support Vector Regression
	Slide 69: SVR with GridSearchCV
	Slide 70: Ensemble learning
	Slide 71: Basic Types of Ensemble Learning
	Slide 72: Basic Types of Ensemble Learning
	Slide 73: Basic Types of Ensemble Learning
	Slide 74: Random Forest Regression
	Slide 75: Is rescaling/unskewing needed?
	Slide 76: Random Forest Regression
	Slide 77: RandomForestRegressor with GridSearchCV
	Slide 78: Appendix: Scaling vs correlation
	Slide 79: Appendix: Bagging in detail
	Slide 80: Appendix: Bagging in detail (sampling with replacement)

