
University of Cyprus

Department of

Computer Science

EPL448: Data Mining

on the Web – Lab 5

Παύλος Αντωνίου

Γραφείο: B109, ΘΕΕ01

Why data visualization?

• By inspecting the raw data stored in DB tables or files we cannot infer

any direct associations between variables or properties or trends

• Data visualization translates information into a visual context

– make data easier for the human brain to understand and pull insights from

– allows to reveal/identify patterns, trends and outliers

• Data visualization is of utmost importance in Exploratory Data

Analysis (EDA)

– EDA refers to the critical process of performing initial investigations on data

so as to discover patterns, to spot anomalies, to test hypothesis and to

check assumptions using summary statistics and graphical representations

• This initial analysis can help to easily rule out the models that won’t

be suitable for such a data – then we will only use suitable models,

without wasting our valuable time and computational resources

Data Visualization Libraries in Python

• Matplotlib

– Most prominent plotting lib

– import it to a notebook using: import matplotlib.pyplot as plt

• Seaborn

– Visually appealing plots

– Based on Matplotlib

– import it to a notebook using: import seaborn as sns

• Plotly

– Interactive charts and maps

– Not pre-installed in Anaconda. Run: conda install -c plotly plotly

on Anaconda prompt

Matplotlib Figure

• Matplotlib plots the data on Figures each of which can contain one

or more Axes

• An Axes is attached to a Figure and contains a region for plotting

data and sets the coordinate system

1 Figure with 1 Axes 1 Figure with 4 (2x2) Axes

Figure anatomy

• The Figure keeps track of all the

child Axes, and of the group of

'special’ objects (titles, figure

legends, xlabel, ylabel, etc)

belonging to each Axes

Simple example

• The simplest way of creating a Figure is by using plt.subplots

which returns an Axes object. We can then use plot function on the

Axes object to draw some data:

• Alternatively, we can create a figure

with no axes object. We can then use
plt.plot to draw data

Create a figure containing a single axes

fig, ax = plt.subplots()

Plot some data on the axes

ax.plot([1, 2, 3, 4], [1, 4, 2, 3])

(1, 1)

(2, 4)

(3, 2)

(4, 3)

Create a figure with no axes

plt.figure()

Plot some data on the current figure

an axes will be created automatically

plt.plot([1, 2, 3, 4], [1, 4, 2, 3])

Simple example

• The simplest way of creating a Figure is by using plt.subplots

which returns an Axes object. We can then use plot function on the

Axes object to draw some data:

• Alternatively, we can create a figure

with no axes object. We can then use
plt.plot to draw data

Create a figure containing a single axes

fig, ax = plt.subplots()

Plot some data on the axes

ax.plot([1, 2, 3, 4], [1, 4, 2, 3]);

(1, 1)

(2, 4)

(3, 2)

(4, 3)

Create a figure with no axes

plt.figure()

Plot some data on the current figure

an axes will be created automatically

plt.plot([1, 2, 3, 4], [1, 4, 2, 3]);

plt.subplots(nrows, ncols)

• Used when we want 2 or more axes plots in a single figure

• One of the most useful features when we need to compare two or

more plots hand to hand instead of having them separately

Subplots – Option 1: Axes-level plotting
import matplotlib.pyplot as plt

import numpy as np

Some example data to display

x = [1, 2, 4, 7] # x values

y = [1, 3, 6, 8] # y values

Create a figure containing 2x2 axes

fig, axs = plt.subplots(2,2, figsize=(8,8))

Plot some data on the axes

axs[0, 0].plot(x, y)

axs[0, 0].set_title('Axis [0, 0]')

axs[0, 1].plot(x, y, color='orange')

axs[0, 1].set_title('Axis [0, 1]')

axs[1, 0].plot(x, y, color='green')

axs[1, 0].set_title('Axis [1, 0]')

axs[1, 0].set_xlabel('xlabel')

axs[1, 0].set_ylabel('ylabel')

axs[1, 1].plot(x, y, color='red')

axs[1, 1].set_title('Axis [1, 1]')

Specifies the width and height of the figure in unit inches.

By default, the figure has the dimensions as (6.4, 4.8)

Subplots – Option 2: Figure-level plotting
import matplotlib.pyplot as plt

import numpy as np

Some example data to display

x = [1, 2, 4, 7]

y = [1, 3, 6, 8]

Create a figure with no axes

plt.figure(figsize=(8, 8))

Plot some data

plt.subplot(221)

plt.plot(x, y)

plt.title('Plot 221')

plt.subplot(222)

plt.plot(x, y, color='orange')

plt.title('Plot 222')

plt.subplot(223)

plt.plot(x, y, color='green')

plt.xlabel('xlabel')

plt.ylabel('ylabel')

plt.title('Plot 223')

plt.subplot(224)

plt.plot(x, y, color='red')

plt.title('Plot 224')

3-digit integer where:

1st num = No of rows

2nd num = No of columns

3rd num = index of that plot

Different types of analysis

• There are different types of graphical analysis as mentioned below.

– Univariate: In univariate analysis we will be using a single feature

(variable) to analyze almost of its properties

– Bivariate: When we compare the data between exactly 2 features then it’s

called bivariate analysis

– Multivariate: Comparing more than 2 features is called as Multivariate

analysis

• Plot types discussed in the next slides will be marked as (U),(B) &

(M) to represent them as Univariate, Bivariate and Multivariate plots

correspondingly.

Distribution plots (U/B)

• An early step in any effort to analyze or model data should be to

understand how the variables are distributed

• Techniques for distribution visualization can provide quick answers

to many important questions:

– What range do the observations cover?

– What is their central tendency?

– Are they heavily skewed in one direction?

– Is there evidence for bimodality?

– Are there significant outliers?

– Do the answers to these questions vary

across subsets defined by other variables?

Datasets for plotting

• In order to better explain the usage of each plot we introduce two

popular datasets:

– Haberman dataset

– Iris dataset

Haberman dataset

• Dataset contains 306 cases (rows or observations) from a study that

was conducted between 1958 and 1970 at the University of

Chicago's Billings Hospital on the survival of patients who had

undergone surgery for breast cancer

• Features of each patient:

– Age of patient at time of operation (numerical)

– Patient's year of operation (year - 1900, numerical)

– Number of positive axillary nodes detected (numerical)

• Target value

– Survival status (class attribute)

• 1 = the patient survived 5 years or longer

• 2 = the patient died within 5 year

Haberman dataset

• DataFrame structure

age op_year axil_nodes surv_status

0 30 64 1 1

1 30 62 3 1

2 30 65 0 1

3 31 59 2 1

4 31 65 4 1

..

301 75 62 1 1

302 76 67 0 1

303 77 65 3 1

304 78 65 1 2

305 83 58 2 2

df1 = pd.read_csv('haberman.csv', names=['age', 'op_year', 'axil_nodes', 'surv_status'])

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB05/haberman.csv

Iris dataset

• Small dataset with 150 observations of iris flowers

– each observation (row) has 4 columns of measurements

(or variables or features) of the flowers (in centimeters)

– target column (the 5th column) is the species (class) of the

flower observed

• all observed flowers belong to one of three species

(setosa, versicolor, virginica)

• More info: https://en.wikipedia.org/wiki/Iris_flower_data_set

https://en.wikipedia.org/wiki/Iris_flower_data_set

Dataset Overview

• Features:

– sepal length in cm

– sepal width in cm

– petal length in cm

– petal width in cm

• Target:

– target column (class attribute)

• Iris Setosa : 0

• Iris Versicolour: 1

• Iris Virginica: 2

Iris dataset

• DataFrame structure

df1 = pd.read_csv('iris.csv')

sepal_length_(cm) sepal_width_(cm) petal_length_(cm) petal_width_(cm) target

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

..

145 6.7 3.0 5.2 2.3 2

146 6.3 2.5 5.0 1.9 2

147 6.5 3.0 5.2 2.0 2

148 6.2 3.4 5.4 2.3 2

149 5.9 3.0 5.1 1.8 2

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB05/iris.csv

Seaborn plotting functions

• Each seaborn module has a single figure-level function, which

offers a unitary interface to its various axes-level functions

axes-level

functions

figure-level

functions

Relational plots

(show relationship

between two

continuous numerical

features/variables)
Distribution

plots

Categorical plots (show the

relationship between a

numerical and one or more

categorical features/variables)

Continuous (numerical) vs categorical data

• Continuous numerical variable/feature: contains data that can take

on any value within a defined range and is often measured on a

continuous scale, such as weight, height, or temperature

• Categorical variable/feature: contains data consisting of discrete

values that fall into distinct categories or groups, such as gender,

ethnicity, or product types. The values can be either strings or

limited-range integer numbers

– Example:

• product type: electronics, food, furniture

• product type: 0, 1, 2

Distribution plots (U/B)

• Understand data distribution ➔ tailor-made Machine Learning

models to best fit our case study

• Machine Learning models are designed to work best under some

distribution assumption

– ML models such as LDA, Gaussian Naive Bayes, Logistic Regression and

Linear Regression require all variables (features) to be bivariate or

multivariate normal

• Knowing with which distributions we are working with, can help us to

identify which models are best to use or if we are in need of

transforming data before applying any machine learning model

Histogram plot (U) – displot() – Seaborn

• By default, displot() creates histogram (histplot() can be used instead)

– A histogram aims to approximate the underlying probability density function

that generated the data by binning (grouping) and counting observations

plt.figure()

sns.displot(data=df1, x='age')

plt.xlabel('Age')

fig,ax = plt.subplots()

sns.histplot(data=df1, x='age')

ax.set_xlabel('Age')

OR

Histogram plot (Β) – displot() – Seaborn

• Once you understand the distribution of a variable, the next step is

often to ask whether the behavior of that distribution differs across

other variables in the dataset - use of hue, usually with categorical var
plt.figure()

colors = ['red', 'blue']

sns.displot(data=df1, x='age', hue='surv_status', palette=colors,)

plt.xlabel('Age')

multiple='stack' multiple='dodge'

Distribution plot (U) – displot() – Seaborn

• displot() with kind='kde'

– same behavior as kdeplot()

– rather than using discrete bins, a

Kernel density estimation (KDE) plot

smooths the observations with a

Gaussian kernel, producing a

continuous density estimate:

plt.figure()

colors = ['red', 'blue']

sns.displot(data=df1, x='age', kind='kde')

plt.xlabel('Age')

fig,ax = plt.subplots()

sns.kdeplot(data=df1, x='age')

ax.set_xlabel('Age')

OR

Distribution plot (B) – displot() – Seaborn

• Assigning a variable to hue will draw a separate kde plot for each of

its unique values and distinguish them by color
colors = ['red', 'blue']

sns.displot(data=df1, x='age', kind='kde', hue='surv_status', palette=colors)

plt.xlabel('Age')

multiple='stack'

Box plots (or box-and whisker plots) (U)

• Used to extract the statistical details of a dataset

• Box plots also give a clear overview of outlier points

• Interquartile range (IQR): where the bulk of values lie

– contains the middle half of the data set

• Straight lines at the maximum and minimum are called

as whiskers

– Maximum: Q3 + 1.5 * IQR

– Minimum: Q1 – 1.5 * IQR

• Points outside of whiskers can be inferred as outliers

• The box plot gives us a representation of 25th percentile

(or 1st quartile), 50th percentile (or 2nd quartile or

median), 75th percentile (or 3rd quartile)

(I
Q

R
)

Percentiles

• Percentile is the percent of cases occurring at or below a score

• Example: You are the fourth tallest person in a group of 20

– 80% of people are shorter than you:

– That means you are at the 80th percentile.

• If your height is 1.85m then "1.85m" is the 80th percentile height in that group.

• Q1 = 25th percentile = 1st quartile

• Q2 = 50th percentile (Median) = 2nd quartile

• Q3 = 75th percentile = 3rd quartile

• Q4 = 100th percentile = 4th quartile

Box plots (U) – Seaborn

• boxplot() function is available in the seaborn library

– data parameter: dataset for plotting

– x, y, hue parameters: names of features (variables) in data

• Box plots offer univariate analysis when we are exploring one

variable, however, multivariate analysis can be performed (see next

slides)

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age')

ax.set_ylabel('Age')

print(df1['age'].describe())

count 306.000000

mean 52.457516

std 10.803452

min 30.000000

25% 44.000000

50% 52.000000

75% 60.750000

max 83.000000

max

min

Q3 (75%)

Q1 (25%)

Q2 (50%) - median

Box plots (B) – Seaborn

• Assign a variable to x-axis to examine the statistical details for a

combination of two variables

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age', x='surv_status')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age', x='op_year')

ax.set_ylabel('Age')

Box plots (B) – Seaborn

• Print both plots on the same figure

fig, axs = plt.subplots(1,2,figsize=(8, 4))

sns.boxplot(data=df1, y='age', x='surv_status', ax=axs[0])

sns.boxplot(data=df1, y='age', x='op_year', ax=axs[1])

axs[0].set_ylabel('Age')

axs[1].set_ylabel('')

Box plots (M) – Seaborn

• Assigning a variable to hue will draw a separate box plot for each of

its unique values and distinguish them by color

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age', x='op_year', hue='surv_status')

ax.set_xlabel('Operation year')

ax.set_ylabel('Age')

Box plots (B) for outlier detection

• Observations:

– For the class 1 we can see that there

are very few/no data is present

between the 1st quartile and the

median (2nd quartile)

– High number of outlier points for class

1 in feature axillary nodes

• Why is outlier observation important?
– Many machine learning models, like linear & logistic regression,

are easily impacted by the outliers in the training data.

– Models like AdaBoost increase the weights of misclassified

points on every iteration and therefore might put high weights

on these outliers as they tend to be often misclassified. This can

become an issue if that outlier is an error of some type, or if we

want our model to generalize well and not care for extreme

values.

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='axil_nodes', x='surv_status', palette='plasma')

ax.set_xlabel('Survival status')

ax.set_ylabel('Axillary lymph nodes')

Violin plots (U/Β/Μ) – Seaborn

• Shows the same summary statistics (median, IQR) as box plots

• Also show shape/distribution of a single numerical feature across

several levels of one (or more) categorical (target) variables

Values of a single

numerical feature

Violin plots (U/Β/Μ) – Seaborn

• Median values of both the classes

are around 63

• The majority of patients from class

2 has operation year value equal

to 65

• The majority of patients from class

1 has operation year value equal

to 60

Median values

fig, ax = plt.subplots()

sns.violinplot(data=df1, x='surv_status', y='op_year')

ax.set_xlabel('Survival status')

ax.set_ylabel('Operation Year')

Scatter plot (B) – Matplotlib

• Gives a representation of where each point (observation) in the

entire dataset is present with respect to any 2 or 3 features

(dimensions).

– Scatter plots are available in 2D as well as in 3D.

• 2D scatter plot is primarily used to find patterns/clusters and

separability of the data. The code snippet for using a scatter plot

from the Matplotlib library is shown below.

fig, ax = plt.subplots()

ax.scatter(df2['sepal_length_(cm)'],df2['sepal_width_(cm)'],c=df2['target'])

ax.set_xlabel('Sepal length')

ax.set_ylabel('Sepal width')

ax.set_title('Scatter plot on Iris dataset')

Scatter plot (B) – Matplotlib

fig, ax = plt.subplots()

ax.scatter(df2['sepal_length_(cm)'],df2['sepal_width

_(cm)'],c=df2['target'])

fig, ax = plt.subplots()

ax.scatter(df2['sepal_length_(cm)'],df2['sepal_width

_(cm)'],c=df2['target'],cmap='plasma')

Colormap examples: 'viridis', 'plasma', 'inferno', 'magma', 'cividis'

See more here: https://matplotlib.org/stable/tutorials/colors/colormaps.html

The parameter c (or color) decides the color of each datapoints (it is a

sequence of colors or sequence of numbers to be mapped to colors). Here

we use the target column (the species class) in c, so that we got this plot

colored in this manner.

cmap: colormap instance used to map data values from the interval [0,1] to RGBA colors that

the respective Colormap represents. It is only used if c is an array of numbers.

https://matplotlib.org/stable/tutorials/colors/colormaps.html

Scatter plot (B) – Seaborn

fig, ax = plt.subplots()

sns.scatterplot(data=df2, x = "sepal_width_(cm)", y = "sepal_length_(cm)", hue =

"target", palette="plasma")

Parameter hue decides the

color of each datapoints. Same
as c in matplotlib

Parameter palette decides

the colormap. Same as cmap

in matplotlib.

3D Scatter plot (M) – Plotly

• 3D scatter plot with Plotly Express

import plotly.express as px

fig = px.scatter_3d(df2, x='sepal_length_(cm)', y='sepal_width_(cm)',

z='petal_width_(cm)', color='target')

fig.show()
Parameter color decides the color of each datapoints.

Same as c in matplotlib and hue in seaborn

Not pre-installed in Anaconda:
conda install -c plotly plotly

Pair plots (M) – Seaborn

• Pair plot from seaborn: for scatter plots 4D and over

• For n features, pair plot will create a n x n figure where the diagonal

plots will be univariate distribution plot of the feature corresponding

to that row and rest of the plots are the combination of features from

each row in y axis and feature from each column in x axis.

sns.pairplot(data=df2, hue='target', palette='viridis')

Pair plots (M) – Seaborn

• We can observe which 2

features can well

explain/separate the data

➔ then we can use scatter

plot between those 2

features to explore further

• It seems petal length and

petal width are the 2

features which can

separate the data very well

Pair plots (M) – Seaborn

• Pair plot produces n x n plots for n features

• Pair plot may become complex when we have high number of

features (dimensions) say like 10 or so on.

• In such cases, a dimensionality reduction technique can be used to

map data into 2d plane (by eliminating not “important” features) and

visualizing it using a 2d or 3d scatter plot.

Joint plot (U/B) – Seaborn

• Seaborn provides jointplot()

• Central plot involves bivariate

analysis whereas on the top and

right side provides univariate plots

of both variables

– By default, jointplot() represents the

bivariate distribution using scatterplot()

and the marginal distributions using

histplot()

sns.jointplot(data=df2, x='sepal_width_(cm)', y='petal_length_(cm)')

Joint plot (U/B) – Seaborn

• Assigning a hue variable will add

conditional colors to the scatterplot

and draw separate density curves

on the marginal axes

sns.jointplot(data=df2, x='sepal_width_(cm)', y='petal_length_(cm)', hue='target')

Joint plot (U/B) – Seaborn

• Several different approaches to

plotting are available through the

kind parameter.

• By setting kind='kde' will draw both

bivariate and univariate KDEs

sns.jointplot(data=df2, x='sepal_width_(cm)', y='petal_length_(cm)', hue='target',

kind='kde')

Bar plot (B) – Seaborn

• Presents a categorical (or discrete numerical) variable with

rectangular bars with heights / lengths proportional to a statistical

measure (mean, sum, median) of a numerical variable

• The size of the bar represents a numeric value of that category

– numeric value is estimated by aggregating across multiple observations of the

y (numeric) variable at the same x (categorical) level – default is mean

– indication of uncertainty (variation) around that value provided using error bars

• Can be disabled using parameter ci=None

y='age', x='op_year'

Aggregate (group) by

op_year and estimate

the mean value of

aggregated ages

category

Bar plot (B) – Seaborn

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year')

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year', estimator=np.sum)

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year', errorbar=None)

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

Without variation

Aggregation method

parameter (default is

mean)

import numpy as np

Bar plot (M) – Seaborn

• Assigning a variable to hue will draw a separate bar for each of its

unique values and distinguish them by a different color

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year',

hue='surv_status')

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

Line plot (U) – Matplotlib & Seaborn

• Α graph that displays data as points on a number line

• For variables (features) that can be ordered across another variable

– Useful for timeseries data, where x-axis is a time-dependent variable (i.e. date)

• plt.plot() in Matplotlib

• sns.lineplot() in Seaborn

fig, ax = plt.subplots()

sns.lineplot(data=df2, x=df2.index,

y='sepal_length_(cm)')

ax.set_xlabel('Id')

ax.set_ylabel('Sepal length (cm)')

fig, ax = plt.subplots()

ax.plot(df2.index, df2['sepal_length_(cm)'])

ax.set_xlabel('Id')

ax.set_ylabel('Sepal length (cm)')

Line plot (U) – Matplotlib

• We can plot multiple lines inside a single figure as shown below

where you need to add multiple plt.plot() or sns.lineplot() commands

with each line representing a different color parameter

fig, ax = plt.subplots()

ax.plot(df2.index, df2['sepal_length_(cm)'])

ax.plot(df2.index, df2['sepal_width_(cm)'])

ax.plot(df2.index, df2['petal_length_(cm)'])

ax.plot(df2.index, df2['petal_width_(cm)'])

ax.set_xlabel('Id')

ax.set_ylabel('cm')

ax.legend(['Sepal length', 'Sepal width', 'Petal

length', 'Petal width'])

you could set the label parameter on each plot

in that case legend() should not take any

input parameters => ax.legend()

Line plot (B) – Seaborn

• Uses estimator and ci parameters

as in barplot

– Aggregation over all ages for each

operation year

• Line goes through the mean values (since the

default value for estimator is mean)

– Confidence interval is drawn

around the line (omitted if ci=None)

fig, ax = plt.subplots()

sns.lineplot(data=df1, x = 'op_year', y = 'age')

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.lineplot(data=df1, x = 'op_year', y = 'age',

errobar=None)

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

Heatmap (B) – Seaborn

• Heat Map can be used to visualize how two categorical variables

relate to each other

– Example: visualize the correlation between different features in the dataset

fig, ax = plt.subplots()

sns.heatmap(data=df2.corr())

Correlation

• Correlation methods measure the relationship between two variables

• The correlation coefficient can never be less than -1 or higher than +1

– +1 = there is a perfect linear relationship between the variables

– 0 = there is no linear relationship between the variables

– -1 = there is a perfect negative linear relationship between the variables

• Highly correlated features can be removed from dataset prior running into machine learning

algorithms so as to make the learning algorithm faster

– curse of dimensionality: less features usually mean high improvement in terms of speed

• If speed is not an issue, perhaps don't remove these features right away. If you have

correlated features but they are also correlated to the target (if target is numerical), you

want to keep them

– Some algorithms like Naive Bayes actually directly benefit from "positive" correlated features.

And others like random forest may indirectly benefit from them.

• Moral of the story, removing these features might be necessary due to speed, but

remember that you might make your algorithm worse in the process

Andrew curves (M)

• representing multivariate data by curves

• useful tool for separating multivariate observation into groups that can not

easily be distinguished in a tabular presentation

– Check if observations are distinguishable on the basis of a given feature

• each multivariate observation (each line of file) 𝑋𝑖 = 𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑝 , here

p=4, is transformed (Fourier series transformation) into a curve as follows:

import pandas.plotting as pdplt

andrews curves

pdplt.andrews_curves(df, 'class')

plt.show()

Data are grouped by this column

Parallel coordinates (M)

• allows to see clusters in data and to estimate other statistics visually

• each multivariate observation is represented (in parallel) by

connected line segments

• each vertical line represents one feature

• points that tend to cluster will appear

closer together
parallel coordinates

pdplt.parallel_coordinates(df,'class')

plt.show()

	Slide 1: EPL448: Data Mining on the Web – Lab 5
	Slide 2: Why data visualization?
	Slide 3: Data Visualization Libraries in Python
	Slide 4: Matplotlib Figure
	Slide 5: Figure anatomy
	Slide 6: Simple example
	Slide 7: Simple example
	Slide 8: plt.subplots(nrows, ncols)
	Slide 9: Subplots – Option 1: Axes-level plotting
	Slide 10: Subplots – Option 2: Figure-level plotting
	Slide 11: Different types of analysis
	Slide 12: Distribution plots (U/B)
	Slide 13: Datasets for plotting
	Slide 14: Haberman dataset
	Slide 15: Haberman dataset
	Slide 16: Iris dataset
	Slide 17: Dataset Overview
	Slide 18: Iris dataset
	Slide 19: Seaborn plotting functions
	Slide 20: Continuous (numerical) vs categorical data
	Slide 21: Distribution plots (U/B)
	Slide 22: Histogram plot (U) – displot() – Seaborn
	Slide 23: Histogram plot (Β) – displot() – Seaborn
	Slide 24: Distribution plot (U) – displot() – Seaborn
	Slide 25: Distribution plot (B) – displot() – Seaborn
	Slide 26: Box plots (or box-and whisker plots) (U)
	Slide 27: Percentiles
	Slide 28: Box plots (U) – Seaborn
	Slide 29: Box plots (B) – Seaborn
	Slide 30: Box plots (B) – Seaborn
	Slide 31: Box plots (M) – Seaborn
	Slide 32: Box plots (B) for outlier detection
	Slide 33: Violin plots (U/Β/Μ) – Seaborn
	Slide 34: Violin plots (U/Β/Μ) – Seaborn
	Slide 35: Scatter plot (B) – Matplotlib
	Slide 36: Scatter plot (B) – Matplotlib
	Slide 37: Scatter plot (B) – Seaborn
	Slide 38: 3D Scatter plot (M) – Plotly
	Slide 39: Pair plots (M) – Seaborn
	Slide 40: Pair plots (M) – Seaborn
	Slide 41: Pair plots (M) – Seaborn
	Slide 42: Joint plot (U/B) – Seaborn
	Slide 43: Joint plot (U/B) – Seaborn
	Slide 44: Joint plot (U/B) – Seaborn
	Slide 45: Bar plot (B) – Seaborn
	Slide 46: Bar plot (B) – Seaborn
	Slide 47: Bar plot (M) – Seaborn
	Slide 48: Line plot (U) – Matplotlib & Seaborn
	Slide 49: Line plot (U) – Matplotlib
	Slide 50: Line plot (B) – Seaborn
	Slide 51: Heatmap (B) – Seaborn
	Slide 52: Correlation
	Slide 53: Andrew curves (M)
	Slide 54: Parallel coordinates (M)

