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Why data visualization?

• By inspecting the raw data stored in DB tables or files we cannot infer 

any direct associations between variables or properties or trends

• Data visualization translates information into a visual context

– make data easier for the human brain to understand and pull insights from

– allows to reveal/identify patterns, trends and outliers

• Data visualization is of utmost importance in Exploratory Data 

Analysis (EDA)

– EDA refers to the critical process of performing initial investigations on data 

so as to discover patterns, to spot anomalies, to test hypothesis and to 

check assumptions using summary statistics and graphical representations

• This initial analysis can help to easily rule out the models that won’t 

be suitable for such a data – then we will only use suitable models, 

without wasting our valuable time and computational resources



Data Visualization Libraries in Python

• Matplotlib

– Most prominent plotting lib

– import it to a notebook using: import matplotlib.pyplot as plt

• Seaborn

– Visually appealing plots

– Based on Matplotlib

– import it to a notebook using: import seaborn as sns

• Plotly

– Interactive charts and maps

– Not pre-installed in Anaconda. Run: conda install -c plotly plotly

on Anaconda prompt 



Matplotlib Figure

• Matplotlib plots the data on Figures each of which can contain one 

or more Axes

• An Axes is attached to a Figure and contains a region for plotting 

data and sets the coordinate system

1 Figure with 1 Axes 1 Figure with 4 (2x2) Axes



Figure anatomy

• The Figure keeps track of all the 

child Axes, and of the group of 

'special’ objects (titles, figure 

legends, xlabel, ylabel, etc) 

belonging to each Axes



Simple example

• The simplest way of creating a Figure is by using plt.subplots

which returns an Axes object. We can then use plot function on the 

Axes object to draw some data:

• Alternatively, we can create a figure 

with no axes object. We can then use 
plt.plot to draw data

# Create a figure containing a single axes

fig, ax = plt.subplots()

# Plot some data on the axes

ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) 

(1, 1)

(2, 4)

(3, 2)

(4, 3)

# Create a figure with no axes

plt.figure()

# Plot some data on the current figure

# an axes will be created automatically

plt.plot([1, 2, 3, 4], [1, 4, 2, 3])



Simple example

• The simplest way of creating a Figure is by using plt.subplots

which returns an Axes object. We can then use plot function on the 

Axes object to draw some data:

• Alternatively, we can create a figure 

with no axes object. We can then use 
plt.plot to draw data

# Create a figure containing a single axes

fig, ax = plt.subplots()

# Plot some data on the axes

ax.plot([1, 2, 3, 4], [1, 4, 2, 3]);  

(1, 1)

(2, 4)

(3, 2)

(4, 3)

# Create a figure with no axes

plt.figure()

# Plot some data on the current figure

# an axes will be created automatically

plt.plot([1, 2, 3, 4], [1, 4, 2, 3]);  



plt.subplots(nrows, ncols)

• Used when we want 2 or more axes plots in a single figure

• One of the most useful features when we need to compare two or 

more plots hand to hand instead of having them separately



Subplots – Option 1: Axes-level plotting
import matplotlib.pyplot as plt

import numpy as np

# Some example data to display

x = [1, 2, 4, 7] # x values

y = [1, 3, 6, 8] # y values

# Create a figure containing 2x2 axes

fig, axs = plt.subplots(2,2, figsize=(8,8))

# Plot some data on the axes

axs[0, 0].plot(x, y)

axs[0, 0].set_title('Axis [0, 0]')

axs[0, 1].plot(x, y, color='orange')

axs[0, 1].set_title('Axis [0, 1]')

axs[1, 0].plot(x, y, color='green')

axs[1, 0].set_title('Axis [1, 0]')

axs[1, 0].set_xlabel('xlabel')

axs[1, 0].set_ylabel('ylabel')

axs[1, 1].plot(x, y, color='red')

axs[1, 1].set_title('Axis [1, 1]')

Specifies the width and height of the figure in unit inches.

By default, the figure has the dimensions as (6.4, 4.8)



Subplots – Option 2: Figure-level plotting
import matplotlib.pyplot as plt

import numpy as np

# Some example data to display

x = [1, 2, 4, 7]

y = [1, 3, 6, 8]

# Create a figure with no axes

plt.figure(figsize=(8, 8))

# Plot some data

plt.subplot(221)

plt.plot(x, y)

plt.title('Plot 221')

plt.subplot(222)

plt.plot(x, y, color='orange')

plt.title('Plot 222')

plt.subplot(223)

plt.plot(x, y, color='green')

plt.xlabel('xlabel')

plt.ylabel('ylabel')

plt.title('Plot 223')

plt.subplot(224)

plt.plot(x, y, color='red')

plt.title('Plot 224')

3-digit integer where: 

1st num = No of rows

2nd num = No of columns

3rd num = index of that plot



Different types of analysis

• There are different types of graphical analysis as mentioned below.

– Univariate: In univariate analysis we will be using a single feature

(variable) to analyze almost of its properties

– Bivariate: When we compare the data between exactly 2 features then it’s 

called bivariate analysis

– Multivariate: Comparing more than 2 features is called as Multivariate 

analysis

• Plot types discussed in the next slides will be marked as (U),(B) & 

(M) to represent them as Univariate, Bivariate and Multivariate plots 

correspondingly.



Distribution plots (U/B)

• An early step in any effort to analyze or model data should be to 

understand how the variables are distributed

• Techniques for distribution visualization can provide quick answers 

to many important questions:

– What range do the observations cover?

– What is their central tendency?

– Are they heavily skewed in one direction?

– Is there evidence for bimodality?

– Are there significant outliers?

– Do the answers to these questions vary 

across subsets defined by other variables?



Datasets for plotting

• In order to better explain the usage of each plot we introduce two 

popular datasets:

– Haberman dataset

– Iris dataset



Haberman dataset

• Dataset contains 306 cases (rows or observations) from a study that 

was conducted between 1958 and 1970 at the University of 

Chicago's Billings Hospital on the survival of patients who had 

undergone surgery for breast cancer

• Features of each patient:

– Age of patient at time of operation (numerical) 

– Patient's year of operation (year - 1900, numerical) 

– Number of positive axillary nodes detected (numerical)

• Target value

– Survival status (class attribute)

• 1 = the patient survived 5 years or longer

• 2 = the patient died within 5 year



Haberman dataset

• DataFrame structure

age  op_year  axil_nodes  surv_status

0     30       64           1            1

1     30       62           3            1

2     30       65           0            1

3     31       59           2            1

4     31       65           4            1

..   ...      ...         ...          ...

301   75       62           1            1

302   76       67           0            1

303   77       65           3            1

304   78       65           1            2

305   83       58           2            2

df1 = pd.read_csv('haberman.csv', names=['age', 'op_year', 'axil_nodes', 'surv_status'])

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB05/haberman.csv


Iris dataset

• Small dataset with 150 observations of iris flowers

– each observation (row) has 4 columns of measurements 

(or variables or features) of the flowers (in centimeters)

– target column (the 5th column) is the species (class) of the 

flower observed

• all observed flowers belong to one of three species 

(setosa, versicolor, virginica)

• More info: https://en.wikipedia.org/wiki/Iris_flower_data_set

https://en.wikipedia.org/wiki/Iris_flower_data_set


Dataset Overview

• Features:

– sepal length in cm

– sepal width in cm

– petal length in cm

– petal width in cm

• Target:

– target column (class attribute)

• Iris Setosa : 0

• Iris Versicolour: 1

• Iris Virginica: 2



Iris dataset

• DataFrame structure

df1 = pd.read_csv('iris.csv')

sepal_length_(cm)  sepal_width_(cm)  petal_length_(cm)  petal_width_(cm) target

0                  5.1               3.5                1.4               0.2       0

1                  4.9               3.0                1.4               0.2       0

2                  4.7               3.2                1.3               0.2       0

3                  4.6               3.1                1.5               0.2       0

4                  5.0               3.6                1.4               0.2       0

..                 ...               ...                ...               ...     ...

145                6.7               3.0                5.2               2.3       2

146                6.3               2.5                5.0               1.9       2

147                6.5               3.0                5.2               2.0       2

148                6.2               3.4                5.4               2.3       2

149                5.9               3.0                5.1               1.8       2

https://www.cs.ucy.ac.cy/courses/EPL448/labs/LAB05/iris.csv


Seaborn plotting functions

• Each seaborn module has a single figure-level function, which 

offers a unitary interface to its various axes-level functions

axes-level 

functions

figure-level 

functions

Relational plots 

(show relationship 

between two 

continuous numerical 

features/variables)
Distribution 

plots

Categorical plots (show the 

relationship between a 

numerical and one or more 

categorical features/variables)



Continuous (numerical) vs categorical data

• Continuous numerical variable/feature: contains data that can take 

on any value within a defined range and is often measured on a 

continuous scale, such as weight, height, or temperature

• Categorical variable/feature: contains data consisting of discrete 

values that fall into distinct categories or groups, such as gender, 

ethnicity, or product types. The values can be either strings or 

limited-range integer numbers

– Example: 

• product type: electronics, food, furniture 

• product type: 0, 1, 2



Distribution plots (U/B)

• Understand data distribution ➔ tailor-made Machine Learning 

models to best fit our case study

• Machine Learning models are designed to work best under some 

distribution assumption

– ML models such as LDA, Gaussian Naive Bayes, Logistic Regression and 

Linear Regression require all variables (features) to be bivariate or 

multivariate normal

• Knowing with which distributions we are working with, can help us to 

identify which models are best to use or if we are in need of 

transforming data before applying any machine learning model



Histogram plot (U) – displot() – Seaborn

• By default, displot() creates histogram (histplot() can be used instead)

– A histogram aims to approximate the underlying probability density function 

that generated the data by binning (grouping) and counting observations

plt.figure()

sns.displot(data=df1, x='age')

plt.xlabel('Age')

fig,ax = plt.subplots()

sns.histplot(data=df1, x='age')

ax.set_xlabel('Age')

OR



Histogram plot (Β) – displot() – Seaborn

• Once you understand the distribution of a variable, the next step is 

often to ask whether the behavior of that distribution differs across 

other variables in the dataset - use of hue, usually with categorical var
plt.figure()

colors = ['red', 'blue']

sns.displot(data=df1, x='age', hue='surv_status', palette=colors,  )

plt.xlabel('Age')

multiple='stack' multiple='dodge'



Distribution plot (U) – displot() – Seaborn

• displot() with kind='kde'

– same behavior as kdeplot()

– rather than using discrete bins, a 

Kernel density estimation (KDE) plot 

smooths the observations with a 

Gaussian kernel, producing a 

continuous density estimate:

plt.figure()

colors = ['red', 'blue']

sns.displot(data=df1, x='age', kind='kde')

plt.xlabel('Age')

fig,ax = plt.subplots()

sns.kdeplot(data=df1, x='age')

ax.set_xlabel('Age')

OR



Distribution plot (B) – displot() – Seaborn

• Assigning a variable to hue will draw a separate kde plot for each of 

its unique values and distinguish them by color
colors = ['red', 'blue']

sns.displot(data=df1, x='age', kind='kde', hue='surv_status', palette=colors )

plt.xlabel('Age')

multiple='stack'



Box plots (or box-and whisker plots) (U)

• Used to extract the statistical details of a dataset

• Box plots also give a clear overview of outlier points

• Interquartile range (IQR): where the bulk of values lie

– contains the middle half of the data set

• Straight lines at the maximum and minimum are called 

as whiskers

– Maximum: Q3 + 1.5 * IQR

– Minimum: Q1 – 1.5 * IQR

• Points outside of whiskers can be inferred as outliers

• The box plot gives us a representation of 25th percentile 

(or 1st quartile), 50th percentile (or 2nd quartile or 

median), 75th percentile (or 3rd quartile)

(I
Q

R
)



Percentiles

• Percentile is the percent of cases occurring at or below a score

• Example: You are the fourth tallest person in a group of 20

– 80% of people are shorter than you:

– That means you are at the 80th percentile.

• If your height is 1.85m then "1.85m" is the 80th percentile height in that group.

• Q1 = 25th percentile = 1st quartile

• Q2 = 50th percentile (Median) = 2nd quartile 

• Q3 = 75th percentile = 3rd quartile

• Q4 = 100th percentile = 4th quartile



Box plots (U) – Seaborn

• boxplot() function is available in the seaborn library

– data parameter: dataset for plotting

– x, y, hue parameters: names of features (variables) in data

• Box plots offer univariate analysis when we are exploring one 

variable, however, multivariate analysis can be performed (see next 

slides)

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age')

ax.set_ylabel('Age')

print(df1['age'].describe())

count    306.000000

mean      52.457516

std       10.803452

min       30.000000

25%       44.000000

50%       52.000000

75%       60.750000

max       83.000000

max

min

Q3 (75%)

Q1 (25%)

Q2 (50%) - median



Box plots (B) – Seaborn

• Assign a variable to x-axis to examine the statistical details for a 

combination of two variables

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age', x='surv_status')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age', x='op_year')

ax.set_ylabel('Age')



Box plots (B) – Seaborn

• Print both plots on the same figure

fig, axs = plt.subplots(1,2,figsize=(8, 4))

sns.boxplot(data=df1, y='age', x='surv_status', ax=axs[0])

sns.boxplot(data=df1, y='age', x='op_year', ax=axs[1])

axs[0].set_ylabel('Age')

axs[1].set_ylabel('')



Box plots (M) – Seaborn

• Assigning a variable to hue will draw a separate box plot for each of 

its unique values and distinguish them by color

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='age', x='op_year', hue='surv_status')

ax.set_xlabel('Operation year')

ax.set_ylabel('Age')



Box plots (B) for outlier detection

• Observations:

– For the class 1 we can see that there 

are very few/no data is present 

between the 1st quartile and the 

median (2nd quartile)

– High number of outlier points for class 

1 in feature axillary nodes

• Why is outlier observation important?
– Many machine learning models, like linear & logistic regression, 

are easily impacted by the outliers in the training data. 

– Models like AdaBoost increase the weights of misclassified 

points on every iteration and therefore might put high weights 

on these outliers as they tend to be often misclassified. This can 

become an issue if that outlier is an error of some type, or if we 

want our model to generalize well and not care for extreme 

values.

fig, ax = plt.subplots()

sns.boxplot(data=df1, y='axil_nodes', x='surv_status', palette='plasma')

ax.set_xlabel('Survival status')

ax.set_ylabel('Axillary lymph nodes')



Violin plots (U/Β/Μ) – Seaborn

• Shows the same summary statistics (median, IQR) as box plots

• Also show shape/distribution of a single numerical feature across 

several levels of one (or more) categorical (target) variables

Values of a single 

numerical feature



Violin plots (U/Β/Μ) – Seaborn

• Median values of both the classes 

are around 63 

• The majority of patients from class 

2 has operation year value equal 

to 65 

• The majority of patients from class 

1 has operation year value equal 

to 60

Median values

fig, ax = plt.subplots()

sns.violinplot(data=df1, x='surv_status', y='op_year')

ax.set_xlabel('Survival status')

ax.set_ylabel('Operation Year')



Scatter plot (B) – Matplotlib

• Gives a representation of where each point (observation) in the 

entire dataset is present with respect to any 2 or 3 features 

(dimensions). 

– Scatter plots are available in 2D as well as in 3D. 

• 2D scatter plot is primarily used to find patterns/clusters and 

separability of the data. The code snippet for using a scatter plot 

from the Matplotlib library is shown below.

fig, ax = plt.subplots()

ax.scatter(df2['sepal_length_(cm)'],df2['sepal_width_(cm)'],c=df2['target'])

ax.set_xlabel('Sepal length')

ax.set_ylabel('Sepal width')

ax.set_title('Scatter plot on Iris dataset')



Scatter plot (B) – Matplotlib

fig, ax = plt.subplots()

ax.scatter(df2['sepal_length_(cm)'],df2['sepal_width

_(cm)'],c=df2['target'])

fig, ax = plt.subplots()

ax.scatter(df2['sepal_length_(cm)'],df2['sepal_width

_(cm)'],c=df2['target'],cmap='plasma')

Colormap examples: 'viridis', 'plasma', 'inferno', 'magma', 'cividis'

See more here: https://matplotlib.org/stable/tutorials/colors/colormaps.html

The parameter c (or color) decides the color of each datapoints (it is a 

sequence of colors or sequence of numbers to be mapped to colors). Here 

we use the target column (the species class) in c, so that we got this plot 

colored in this manner.

cmap: colormap instance used to map data values from the interval [0,1] to RGBA colors that 

the respective Colormap represents. It is only used if c is an array of numbers.

https://matplotlib.org/stable/tutorials/colors/colormaps.html


Scatter plot (B) – Seaborn

fig, ax = plt.subplots()

sns.scatterplot(data=df2, x = "sepal_width_(cm)", y = "sepal_length_(cm)", hue = 

"target", palette="plasma")

Parameter hue decides the 

color of each datapoints. Same 
as c in matplotlib

Parameter palette decides 

the colormap. Same as cmap 

in matplotlib.



3D Scatter plot (M) – Plotly

• 3D scatter plot with Plotly Express

import plotly.express as px

fig = px.scatter_3d(df2, x='sepal_length_(cm)', y='sepal_width_(cm)', 

z='petal_width_(cm)', color='target')

fig.show()
Parameter color decides the color of each datapoints. 

Same as c in matplotlib and hue in seaborn

Not pre-installed in Anaconda: 
conda install -c plotly plotly



Pair plots (M) – Seaborn

• Pair plot from seaborn: for scatter plots 4D and over

• For n features, pair plot will create a n x n figure where the diagonal 

plots will be univariate distribution plot of the feature corresponding 

to that row and rest of the plots are the combination of features from 

each row in y axis and feature from each column in x axis.

sns.pairplot(data=df2, hue='target', palette='viridis')



Pair plots (M) – Seaborn

• We can observe which 2 

features can well 

explain/separate the data 

➔ then we can use scatter 

plot between those 2 

features to explore further 

• It seems petal length and 

petal width are the 2 

features which can 

separate the data very well



Pair plots (M) – Seaborn

• Pair plot produces n x n plots for n features

• Pair plot may become complex when we have high number of 

features (dimensions) say like 10 or so on. 

• In such cases, a dimensionality reduction technique can be used to 

map data into 2d plane (by eliminating not “important” features) and 

visualizing it using a 2d or 3d scatter plot.



Joint plot (U/B) – Seaborn

• Seaborn provides jointplot()

• Central plot involves bivariate 

analysis whereas on the top and 

right side provides univariate plots 

of both variables

– By default, jointplot() represents the 

bivariate distribution using scatterplot() 

and the marginal distributions using 

histplot()

sns.jointplot(data=df2, x='sepal_width_(cm)', y='petal_length_(cm)')



Joint plot (U/B) – Seaborn

• Assigning a hue variable will add 

conditional colors to the scatterplot 

and draw separate density curves 

on the marginal axes

sns.jointplot(data=df2, x='sepal_width_(cm)', y='petal_length_(cm)', hue='target')



Joint plot (U/B) – Seaborn

• Several different approaches to 

plotting are available through the 

kind parameter. 

• By setting kind='kde' will draw both 

bivariate and univariate KDEs

sns.jointplot(data=df2, x='sepal_width_(cm)', y='petal_length_(cm)', hue='target', 

kind='kde')



Bar plot (B) – Seaborn

• Presents a categorical (or discrete numerical) variable with 

rectangular bars with heights / lengths proportional to a statistical 

measure (mean, sum, median) of a numerical variable

• The size of the bar represents a numeric value of that category

– numeric value is estimated by aggregating across multiple observations of the 

y (numeric) variable at the same x (categorical) level – default is mean

– indication of uncertainty (variation) around that value provided using error bars

• Can be disabled using parameter ci=None

y='age', x='op_year'

Aggregate (group) by 

op_year and estimate 

the mean value of 

aggregated ages

category



Bar plot (B) – Seaborn

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year')

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year', estimator=np.sum)

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year', errorbar=None)

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

Without variation

Aggregation method 

parameter (default is 

mean)

import numpy as np



Bar plot (M) – Seaborn

• Assigning a variable to hue will draw a separate bar for each of its 

unique values and distinguish them by a different color

fig, ax = plt.subplots()

sns.barplot(data=df1, y='age', x='op_year', 

hue='surv_status')

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')



Line plot (U) – Matplotlib & Seaborn

• Α graph that displays data as points on a number line

• For variables (features) that can be ordered across another variable

– Useful for timeseries data, where x-axis is a time-dependent variable (i.e. date)

• plt.plot() in Matplotlib

• sns.lineplot() in Seaborn

fig, ax = plt.subplots()

sns.lineplot(data=df2, x=df2.index, 

y='sepal_length_(cm)')

ax.set_xlabel('Id')

ax.set_ylabel('Sepal length (cm)')

fig, ax = plt.subplots()

ax.plot(df2.index, df2['sepal_length_(cm)'])

ax.set_xlabel('Id')

ax.set_ylabel('Sepal length (cm)')



Line plot (U) – Matplotlib

• We can plot multiple lines inside a single figure as shown below 

where you need to add multiple plt.plot() or sns.lineplot() commands 

with each line representing a different color parameter

fig, ax = plt.subplots()

ax.plot(df2.index, df2['sepal_length_(cm)'])

ax.plot(df2.index, df2['sepal_width_(cm)'])

ax.plot(df2.index, df2['petal_length_(cm)'])

ax.plot(df2.index, df2['petal_width_(cm)'])

ax.set_xlabel('Id')

ax.set_ylabel('cm')

ax.legend(['Sepal length', 'Sepal width', 'Petal 

length', 'Petal width'])

# you could set the label parameter on each plot

# in that case legend() should not take any 

input parameters => ax.legend()



Line plot (B) – Seaborn

• Uses estimator and ci parameters

as in barplot

– Aggregation over all ages for each 

operation year

• Line goes through the mean values (since the

default value for estimator is mean)

– Confidence interval is drawn 

around the line (omitted if ci=None)

fig, ax = plt.subplots()

sns.lineplot(data=df1, x = 'op_year', y = 'age')

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')

fig, ax = plt.subplots()

sns.lineplot(data=df1, x = 'op_year', y = 'age', 

errobar=None)

ax.set_xlabel('Operation Year')

ax.set_ylabel('Age')



Heatmap (B) – Seaborn

• Heat Map can be used to visualize how two categorical variables 

relate to each other

– Example: visualize the correlation between different features in the dataset

fig, ax = plt.subplots()

sns.heatmap(data=df2.corr())



Correlation

• Correlation methods measure the relationship between two variables

• The correlation coefficient can never be less than -1 or higher than +1

– +1 = there is a perfect linear relationship between the variables

– 0 = there is no linear relationship between the variables

– -1 = there is a perfect negative linear relationship between the variables

• Highly correlated features can be removed from dataset prior running into machine learning 

algorithms so as to make the learning algorithm faster

– curse of dimensionality: less features usually mean high improvement in terms of speed

• If speed is not an issue, perhaps don't remove these features right away. If you have 

correlated features but they are also correlated to the target (if target is numerical), you 

want to keep them

– Some algorithms like Naive Bayes actually directly benefit from "positive" correlated features. 

And others like random forest may indirectly benefit from them.

• Moral of the story, removing these features might be necessary due to speed, but 

remember that you might make your algorithm worse in the process



Andrew curves (M)

• representing multivariate data by curves

• useful tool for separating multivariate observation into groups that can not 

easily be distinguished in a tabular presentation

– Check if observations are distinguishable on the basis of a given feature

• each multivariate observation (each line of file) 𝑋𝑖 = 𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑝 , here 

p=4, is transformed (Fourier series transformation) into a curve as follows:

import pandas.plotting as pdplt

# andrews curves

pdplt.andrews_curves(df, 'class')

plt.show()

Data are grouped by this column



Parallel coordinates (M)

• allows to see clusters in data and to estimate other statistics visually

• each multivariate observation is represented (in parallel) by 

connected line segments

• each vertical line represents one feature

• points that tend to cluster will appear 

closer together
# parallel coordinates

pdplt.parallel_coordinates(df,'class')

plt.show()
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