
13/02/2022

1

Chapter 8

Implementation
support

1

Implementation support

• Programming tools
– levels of services for programmers

• Windowing systems
– core support for separate and simultaneous user-

system activity
• Programming the application and control of

dialogue
• Interaction toolkits

– bring programming closer to level of user perception
• User interface management systems

– controls relationship between presentation and
functionality

2

Introduction

How does HCI affect the programmer?

Advances in coding have elevated programming
hardware specific

® interaction-technique specific

Layers of development tools
– windowing systems
– interaction toolkits
– user interface management systems

3

Elements of windowing systems

Device independence
programming the abstract terminal device drivers, using

image models for output and (partially) input
• pixels (series of columns/rows of points)
• PostScript (MacOS X, NextStep)
• Graphical Kernel System (GKS)
• Programmers' Hierarchical Interface to Graphics (PHIGS)

Resource sharing
achieving simultaneity of user tasks by sharing the

resources of a single hardware configuration with
several copies of an abstract terminal

window system supports independent processes from
the specifics of hardware devices

isolation of individual applications from resource sharing

4

Independence
from the specifics of programming separate
hardware devices

Management
of multiple, independent but simultaneously
active applications

Roles of a windowing system

5

Roles of a windowing system
(ctd)

6

13/02/2022

2

Architectures of windowing
systems
Three possible software architectures

– all assume device driver is separate
– differ in how multiple application management is

implemented

1. each application manages all processes
– everyone worries about synchronization
– reduces portability of applications

2. management role within kernel of operating system
– applications tied to operating system

3. management role as separate application
– maximum portability

7

The client-server architecture

8

X Windows architecture

9

X Windows architecture (ctd)

• Pixel imaging model assuming the existence of
some pointing mechanism

• X network protocol clearly defines server-
client communication, can be implemented on
different computers and operating systems,
making X more device independent

• Client and server need not even be on the
same system, in order to communicate to the
server

• Each client is associated to an abstract
terminal or main window

10

X Windows architecture (ctd)

• The X server:
– allows or denies access to the display from multiple

client applications
– interprets requests from clients to perform screen

operations or provide other information
– demultiplexes the stream of physical input events

from the user, passing them on to the client
– minimizes traffic along the network

• Separate window manager client enforces
policies for input/output:
– how to change input focus between applications
– tiled vs. overlapping windows
– inter-client data transfer

11

Programming the application
read-evaluation loop

repeat

read-event(myevent)

case myevent.type
type_1:

do type_1 processing

type_2:
do type_2 processing

...

type_n:
do type_n processing

end case

end repeat

Application has complete control over
the processing of events it receives
But this control must be executed
for every possible event that the
client may receive

12

13/02/2022

3

Programming the application (ctd)
notification-based
void main(String[] args) {

Menu menu = new Menu();

menu.setOption(“Save”);
menu.setOption(“Quit”);

menu.setAction(“Save”,mySave)

menu.setAction(“Quit”,myQuit)
...

}

int mySave(Event e) {

// save the current file

}

int myQuit(Event e) {
// close down

}

13

Going with the grain

• System style affects the interfaces
– modal dialogue box (forcing user response)

• easy with event-loop (just have extra read-event loop)
• hard with notification (need lots of mode flags)

– non-modal dialogue box (not forcing user response)
• hard with event-loop (very complicated main loop)
• easy with notification (just add extra handler)

Beware!
If you don’t explicitly design, it will just happen

— implementation should not drive design

14

Using toolkits

Interaction objects
– input and output

intrinsically linked

Toolkits provide this level of abstraction
– programming with interaction objects (or techniques,

widgets, gadgets)
– promote consistency and generalizability through similar look

and feel
– amenable to object-oriented programming

move press release move

15

Object orientation

• Two features of interaction objects and toolkits make
them amenable to an object-oriented approach

• Instantiation
– define a class of interaction objects, which can be invoked

many times within one application with minor
modifications to each instance

• Inheritance
– building complex interaction objects using simple

interaction objects

• Use of classes as templates for interaction objects
– a class template provides default values for attributes

16

Single inheritance class
hierarchy for the Xview toolkit

17

Interfaces in Java

• Java toolkit – AWT (abstract windowing toolkit)

• Java classes for buttons, menus, etc.

• Notification based;
– AWT 1.0 – need to subclass basic widgets
– AWT 1.1 and beyond -– callback objects

• Swing toolkit
– built on top of AWT – higher level features
– uses MVC architecture (see later)

18

13/02/2022

4

User Interface Management
Systems (UIMS)
• UIMS add another level above toolkits

– toolkits too difficult for non-programmers

• Concerns of UIMS
– conceptual architecture for the structure of an interactive

system, concentrating on separating application semantics
and presentation

– implementation techniques for the application and its
presentation, preserving the intended connection between
them

– support techniques for managing, implementing and
evaluating a run-time interactive environment

• Non-UIMS terms:
– UI development system (UIDS)
– UI development environment (UIDE)

• e.g. Visual Basic

19

UIMS as conceptual architecture

• Separation between application semantics and
presentation

• Improves:
– portability – application runs on different systems, as

device-dependent interface is separate
– reusability – components reused cutting costs
– multiple interfaces – accessing same functionality

with different interfaces, enhancing interactive
flexibility

– customizability – by designer and user, thus
increasing its effectiveness without altering the
underlying application

20

How does application communicate
with presentation

• This role of communication is referred to as
dialogue control

• Now, conceptually we have the three main
components of an interactive system:
– the application
– the presentation
– the dialogue control

21

UIMS tradition – interface
layers / logical components

• Linguistic: lexical/syntactic/semantic

• Seeheim:

• Arch/Slinky

22

Seeheim model

Presentation Dialogue
Control

Functionality
(application
interface)

USERUSER APPLICATION

switch

lexical syntactic semantic

23

Conceptual vs. implementation

Seeheim
– arose out of implementation experience
– but principal contribution is conceptual
– concepts part of ‘normal’ UI language

… because of Seeheim …
… we think differently!

e.g. the lower box, the switch
• needed for implementation
• but not conceptual

24

13/02/2022

5

Semantic feedback

• Different kinds of feedback:
– lexical – movement of mouse
– syntactic – menu highlights
– semantic – sum of numbers changes

• Semantic feedback often slower
– use rapid lexical/syntactic feedback

• But may need rapid semantic feedback
– freehand drawing
– highlight trash can or folder when file dragged

25

What’s this?

26

The bypass/switch

rapid semantic
feedback

direct communication
between application

and presentation
but regulated by
dialogue control

27

Arch/Slinky

• More layers! – distinguishes lexical/physical
• Like a ‘slinky’ spring different layers may be

thicker (more important) in different systems
• Or in different components

28

Monolithic vs. components

• Seeheim has big components

• Often easier to use smaller ones
– esp. if using object-oriented toolkits

• Smalltalk used MVC – model–view–controller
– model – internal logical state of component
– view – how it is rendered on screen
– controller – processes user input

29

MVC
model - view - controller

30

13/02/2022

6

MVC issues

• MVC is largely pipeline model:
input ® control ® model ® view ® output

• But in graphical interface
– input only has meaning in relation to output

e.g. mouse click
– need to know what was clicked
– controller has to decide what to do with click
– but view knows what is shown where!

• In practice controller ‘talks’ to view
– separation not complete

31

PAC model

• PAC model closer to Seeheim
– abstraction – logical state of component
– presentation – manages input and output
– control – mediates between them

• Manages hierarchy and multiple views
– control part of PAC objects communicate

• PAC cleaner in many ways …
but MVC used more in practice

(e.g. Java Swing)

32

PAC
presentation - abstraction - control

abstraction presentation

control

A P
C

A P
C

A P
C A P

C

33

Implementation of UIMS

• Techniques for dialogue controller
• menu networks • state transition diagrams
• grammar notations • event languages
• declarative languages • constraints
• graphical specification

– for most of these see chapter 16

• N.B. constraints
– instead of what happens say what should be true
– used in groupware as well as single user interfaces

(ALV - abstraction–link–view)

see chapter 16 for more details on several of these

34

Graphical specification

• What it is
– draw components on screen
– set actions with script or links to program

• In use
– with raw programming most popular technique
– e.g. Visual Basic, Dreamweaver, Flash

• Local vs. global
– hard to ‘see’ the paths through system
– focus on what can be seen on one screen

35

The drift of dialogue control

• Internal control
(e.g., read-evaluation loop)

• External control
(independent of application semantics or presentation)

• Presentation control
(e.g., graphical specification)

36

13/02/2022

7

Summary

Levels of programming support tools
• Windowing systems

– device independence
– multiple tasks

• Paradigms for programming the application
– read-evaluation loop
– notification-based

• Toolkits
– programming interaction objects

• UIMS
– conceptual architectures for separation
– techniques for expressing dialogue

37

