HUMAN-COMPUTER tuiro § sty
INTERACTION EDITION N

Chapter 8

Implementation
support

:

e
Introduction

How does HCI affect the programmer?

Advances in coding have elevated programming
hardware specific
— interaction-technique specific

Layers of development tools
- windowing systems
- interaction toolkits
- user interface management systems

R
INTERACTION

e

Roles of a windowing system

Independence

from the specifics of programming separate
hardware devices

Management

of multiple, independent but simultaneously
active applications

HU R
INTERACTION

13/02/2022

Esssaaae:

Implementation support

HUMAN-COMPUTER

INTERACTION

e Programming tools
- levels of services for programmers
e Windowing systems
- core support for separate and simultaneous user-
system activity
e Programming the application and control of
dialogue
e Interaction toolkits
- bring programming closer to level of user perception
e User interface management systems

- controls relationship between presentation and
functionality

Ees==auw

Elements of windowing systems

INTERACTION.

Device independence
programming the abstract terminal device drivers, using
image models for output and (partially) input
* pixels (series of columns/rows of points)
* PostScript (MacOS X, NextStep)
* Graphical Kernel System (GKS)
* Programmers' Hierarchical Interface to Graphics (PHIGS)
Resource sharing
achieving simultaneity of user tasks by sharing the

resources of a single hardware configuration with
several copies of an abstract terminal

window system supports independent processes from
the specifics of hardware devices
isolation of individual applications from resource sharing

e

Roles of a windowing system
(ctd)

HI ER
INTERACTION

Windowing
System

keyboard

s
Architectures of windowing
systems

Three possible software architectures
- all assume device driver is separate

- differ in how multiple application management is
implemented

1. each application manages all processes
- everyone worries about synchronization
- reduces portability of applications

2. management role within kernel of operating system
- applications tied to operating system

3. management role as separate application
- maximum portability

HUMAN- ER
INTERACTION

Eemawaew

X Windows architecture

application window!
client X11 server manager

device drivers

L mouse

keyboard

- ER
INTERACTION

e

X Windows architecture (ctd)

e The X server:
- allows or denies access to the display from multiple
client applications
- interprets requests from clients to perform screen
operations or provide other information

- demultiplexes the stream of physical input events
from the user, passing them on to the client

- minimizes traffic along the network

e Separate window manager client enforces
policies for input/output:
- how to change input focus between applications
- tiled vs. overlapping windows
- inter-client data transfer

HU R
INTERACTION

13/02/2022

Esssaaae:

The client-server architecture

HUMAN-COMPUTER
INTERACTION

Clients

Server

J

Devices iouss} " keyboard

Ees==auw

X Windows architecture (ctd)

HUMAN- TER
INTERACTION

e Pixel imaging model assuming the existence of
some pointing mechanism

e X network protocol clearly defines server-
client communication, can be implemented on
different computers and operating systems,
making X more device independent

e Client and server need not even be on the
same system, in order to communicate to the
server

e Each client is associated to an abstract
terminal or main window

HI ER
INTERACTION

Programming the application
read-evaluation loop

9

repeat

Application

read-event (myevent)
case myevent.type
type 1:

11

Application has complete control over
the processing of events it receives
But this control must be executed
for every possible event that the
client may receive

type n:
do type_n proces

end case
end repeat

12

Programming the application (ctd)
nOﬂfiCGﬁOﬂ-bGSCd Application

Notifier

void main(String([] args) {

Menu menu = new Menu();

menu.setOption (“Save”);
menu.setOption (“Quit”);

sithnaiifier

menu.setAction (“Save”,mySave)

menu.setAction (“Quit”,myQuit)
)

int mySave (Event e) (

// save the current file

}

int myQuit (Event) { |
// close down

C

HUMAN- ER
INTERACTION

13

e
Using toolkits

Interaction objects
- input and output
intrinsically linked \//

A
&=

P move press release move

Toolkits provide this level of abstraction
- programming with interaction objects (or techniques,
widgets, gadgets)
- promote consistency and generalizability through similar look
and feel

- amenable to object-oriented programming

- ER
INTERACTION

15

Ees———
Single inheritance class
hierarchy for the Xview toolkit

Window

l [I |

‘ Frame ‘ ‘ Tty ’ ‘ (Openwin) ‘ Scrollbar ‘ ‘ Icon ’

HU R
INTERACTION

13/02/2022

e
® Going with the grain

HUMAN-COMPUTER
INTERACTION

e System style affects the interfaces
- modal dialogue box (forcing user response)
* easy with event-loop (just have extra read-event loop)
* hard with notification (need lots of mode flags)
- non-modal dialogue box (not forcing user response)
* hard with event-loop (very complicated main loop)
* easy with notification (just add extra handler)

Beware!
If you don't explicitly design, it will just happen
— implementation should not drive design

14

Ees==auw

Object orientation

HUMAN- TER
INTERACTION

e Two features of interaction objects and toolkits make
them amenable to an object-oriented approach

e Instantiation
- define a class of interaction objects, which can be invoked
many times within one application with minor
modifications to each instance

e Inheritance

- building complex interaction objects using simple
interaction objects

e Use of classes as templates for interaction objects
- a class template provides default values for attributes

16

e

Interfaces in Java

HI ER
INTERACTION

Java toolkit - AWT (abstract windowing toolkit)
e Java classes for buttons, menus, etc.

¢ Notification based;
- AWT 1.0 - need to subclass basic widgets
- AWT 1.1 and beyond -- callback objects

e Swing toolkit
- built on top of AWT - higher level features
- uses MVC architecture (see later)

17

18

Iesseaame:
User Interface Management
Systems (UIMS)

e UIMS add another level above toolkits
- toolkits too difficult for non-programmers

HUMAN-COMPUTER

INTERACTION

e Concerns of UIMS

- conceptual architecture for the structure of an interactive
system, concentrating on separating application semantics
and presentation

- implementation techniques for the application and its
p':esentation, preserving the intended connection between
them

- support techniques for managing, implementing and
evaluating a run-time interactive environment

e Non-UIMS terms:
— UI development system (UIDS)

- UI development environment (UIDE)
e e.g. Visual Basic

19

Eemawaew

How does application communicate
with presentation

R
INTERACTION

e This role of communication is referred to as
dialogue control

e Now, conceptually we have the three main
components of an interactive system:
- the application
- the presentation
- the dialogue control

21

e

Seeheim model

HU R
INTERACTION

lexical syntactic semantic

Functionality
[+ (application <— APPLICATION
interface)

Dialogue

USER <—| Presentation [+—|
Control

switch
]

23

13/02/2022

Esssaaae:

UIMS as conceptual architecture

HUMAN-COMPUTER

INTERACTION

e Separation between application semantics and
presentation

e Improves:

- portability - application runs on different systems, as
device-dependent interface is separate

- reusability - components reused cutting costs

- multiple interfaces - accessing same functionality
with different interfaces, enhancing interactive
flexibility

- customizability - by designer and user, thus
increasing its effectiveness without altering the
underlying application

20

UIMS tradition - interface Hea
layers / logical components

e Linguistic: lexical/syntactic/semantic

e Seeheim:

e Arch/Slinky

22

e

Conceptual vs. implementation

HI ER
INTERACTION

Seeheim
- arose out of implementation experience
- but principal contribution is conceptual
- concepts part of ‘normal’ UI language

... because of Seeheim ...
... we think differently!

e.g. the lower box, the switch
* needed for implementation
* but not conceptual \

e [P application

presentation |« dislogy

24

HUMAN-COMPUTER

INTERACTION

Semantic feedback

e Different kinds of feedback:
- lexical - movement of mouse
- syntactic - menu highlights
- semantic - sum of numbers changes

e Semantic feedback often slower
- use rapid lexical/syntactic feedback

e But may need rapid semantic feedback
- freehand drawing
- highlight trash can or folder when file dragged

25

e
The bypass/switch

R
INTERACTION

Lexical Syntactic Semantic
Dial Application

USER <@ Presentation [€9| 12108U€ g P Interface [@P APPLICATION
Control Model

u ‘%ommunication
I‘apid semantic between application
and presentation

feedback but regulated by
dialogue control

27

e

Monolithic vs. components

HU R
INTERACTION

e Seeheim has big components

e Often easier to use smaller ones
- esp. if using object-oriented toolkits

e Smalltalk used MVC - model-view-controller
- model - internal logical state of component
- view - how it is rendered on screen
- controller - processes user input

29

13/02/2022

e
What's this?

HUMAN-COMPUTER

INTERACTION

Lexical Syntactic Semantic
Dialogue Application
USER €| Presentation [€-9> BUS '@ Interface [@® APPLICATION
Control Model

A

>

26

e
Arch/Slinky

INTERACTION.

e More layers! - distinguishes lexical/physical
e Like a 'slinky’ spring different layers may be

thicker (more important) in different systems
e Or in different components

dialogue

func. core

lexical
adaptor, *

functional
core

physical

28

‘ . l‘NTERACTION g
MVC

model - view - controller

User

30

13/02/2022

T
MVC issues

e
PAC model

HUMAN-COMPUTER HUMAN-COMPUTER

INTERACTION INTERACTION

e MVC is largely pipeline model: e PAC model closer to Seeheim
input — control - model — view — output - abstraction - logical state of component
- presentation - manages input and output

But in graphical interf.
¢ Butin graphical interface - control - mediates between them

- input only has meaning in relation to output
e.g. mouse click e Manages hierarchy and multiple views
-~ need to know what was clicked - control part of PAC objects communicate
- controller has to decide what to do with click
- but view knows what is shown where! * PAC cleaner in many ways ...

o In practice controller ‘talks’ to view but MVC used more in practice

. (e.g. Java Swing)

- separation not complete

31 32

e
PAC

presentation - abstraction - control

e
Implementation of UIMS

R
INTERACTION INTERACTION.

e Techniques for dialogue controller

e menu networks o state transition diagrams
e grammar notations * event languages
 declarative languages ¢ constraints

» graphical specification

abstractiol

- for most of these see chapter 16

e N.B. constraints
- instead of what happens say what should be true
- used in groupware as well as single user interfaces
(ALV - abstraction-link-view)

see chapter 16 for more details on several of these

33 34

e

The drift of dialogue control

HU R Hi £R
INTERACTION INTERACTION

Graphical specification

e Whatitis ¢ Internal control
- draw components on screen

- set actions with script or links to program (e.g., read-evaluation loop)

e Inuse e External control
- with raw programming most popular technique (independent of application semantics or presentation)
- e.g. Visual Basic, Dreamweaver, Flash

« Local vs. global ¢ Presentation control
- hard to ‘see’ the paths through system (e.g., graphical specification)

- focus on what can be seen on one screen

35 36

Iesseaame: R

INTERACTION

Summary

Levels of programming support tools
e Windowing systems
- device independence
- multiple tasks
e Paradigms for programming the application
- read-evaluation loop
- notification-based
e Toolkits
- programming interaction objects
e UIMS
— conceptual architectures for separation
- techniques for expressing dialogue

37

13/02/2022

