
ARM® Compiler
Version 6.00

armasm Reference Guide
Copyright © 2014 ARM. All rights reserved.
ARM DUI 0802A (ID031214)

ARM Compiler
armasm Reference Guide

Copyright © 2014 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ™ or ® are registered trademarks or trademarks of ARM® in the EU and other countries,
except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

14 March 2014 A Non-Confidential ARM Compiler v6.00 Release
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. ii
ID031214 Non-Confidential

Contents
ARM Compiler armasm Reference Guide

Chapter 1 Conventions and Feedback

Chapter 2 armasm Command-line Options
2.1 armasm command-line syntax ... 2-2
2.2 armasm command-line options .. 2-3
2.3 --16 .. 2-5
2.4 --32 .. 2-6
2.5 --apcs ... 2-7
2.6 --arm .. 2-9
2.7 --arm_only .. 2-10
2.8 --bi .. 2-11
2.9 --bigend .. 2-12
2.10 --brief_diagnostics ... 2-13
2.11 --checkreglist ... 2-14
2.12 --cpu ... 2-15
2.13 --debug .. 2-17
2.14 --depend .. 2-18
2.15 --depend_format .. 2-19
2.16 --diag_error .. 2-20
2.17 --diag_remark .. 2-21
2.18 --diag_style .. 2-22
2.19 --diag_suppress ... 2-23
2.20 --diag_warning ... 2-24
2.21 --dllexport_all ... 2-25
2.22 --dwarf2 .. 2-26
2.23 --dwarf3 .. 2-27
2.24 --errors ... 2-28
2.25 --execstack .. 2-29
2.26 --exceptions ... 2-30
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. iii
ID031214 Non-Confidential

Contents
2.27 --exceptions_unwind .. 2-31
2.28 --fpmode .. 2-32
2.29 --fpu ... 2-33
2.30 -g .. 2-34
2.31 --help .. 2-35
2.32 -i ... 2-36
2.33 --keep ... 2-37
2.34 --length ... 2-38
2.35 --li ... 2-39
2.36 --library_type .. 2-40
2.37 --licretry .. 2-41
2.38 --list .. 2-42
2.39 --littleend .. 2-43
2.40 -m ... 2-44
2.41 --maxcache .. 2-45
2.42 --md ... 2-46
2.43 --no_code_gen ... 2-47
2.44 --no_esc ... 2-48
2.45 --no_execstack .. 2-49
2.46 --no_exceptions ... 2-50
2.47 --no_exceptions_unwind .. 2-51
2.48 --no_hide_all .. 2-52
2.49 --no_reduce_paths ... 2-53
2.50 --no_regs ... 2-54
2.51 --no_terse .. 2-55
2.52 --no_unaligned_access .. 2-56
2.53 --no_warn ... 2-57
2.54 -o .. 2-58
2.55 --pd .. 2-59
2.56 --predefine ... 2-60
2.57 --reduce_paths ... 2-61
2.58 --regnames .. 2-62
2.59 --report-if-not-wysiwyg ... 2-63
2.60 --show_cmdline .. 2-64
2.61 --thumb .. 2-65
2.62 --unaligned_access .. 2-66
2.63 --unsafe .. 2-67
2.64 --untyped_local_labels ... 2-68
2.65 --version_number ... 2-69
2.66 --via .. 2-70
2.67 --vsn ... 2-71
2.68 --width .. 2-72
2.69 --xref .. 2-73

Chapter 3 A32 and T32 Instructions
3.1 A32 and T32 instruction summary ... 3-2
3.2 Instruction width specifiers ... 3-8
3.3 Memory access instructions .. 3-9
3.4 General data processing instructions .. 3-11
3.5 Flexible second operand (Operand2) .. 3-12
3.6 Operand2 as a constant .. 3-13
3.7 Operand2 as a register with optional shift ... 3-14
3.8 Shift operations .. 3-15
3.9 Multiply instructions ... 3-18
3.10 Saturating instructions ... 3-19
3.11 Parallel instructions .. 3-20
3.12 Packing and unpacking instructions .. 3-21
3.13 Branch and control instructions ... 3-22
3.14 Coprocessor instructions ... 3-23
3.15 Miscellaneous instructions ... 3-24
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. iv
ID031214 Non-Confidential

Contents
3.16 Pseudo-instructions ... 3-25
3.17 Condition codes ... 3-26
3.18 ADD, SUB, RSB, ADC, SBC, and RSC ... 3-27
3.19 ADR (PC-relative) .. 3-32
3.20 ADR (register-relative) ... 3-34
3.21 ADRL pseudo-instruction ... 3-36
3.22 AND, ORR, EOR, BIC, and ORN .. 3-38
3.23 ASR, LSL, LSR, ROR, and RRX ... 3-41
3.24 B, BL, BX, BLX, and BXJ ... 3-44
3.25 BFC and BFI .. 3-47
3.26 BKPT ... 3-48
3.27 CBZ and CBNZ .. 3-49
3.28 CLREX ... 3-50
3.29 CLZ .. 3-51
3.30 CMP and CMN ... 3-52
3.31 CPS ... 3-54
3.32 CPY pseudo-instruction ... 3-55
3.33 DBG ... 3-56
3.34 DMB, DSB, and ISB ... 3-57
3.35 ERET ... 3-60
3.36 HLT .. 3-61
3.37 HVC ... 3-62
3.38 IT .. 3-63
3.39 LDC and STC .. 3-66
3.40 LDM and STM .. 3-68
3.41 LDR and STR (immediate offset) ... 3-71
3.42 LDR and STR (register offset) ... 3-74
3.43 LDR and STR, unprivileged ... 3-77
3.44 LDR (PC-relative) .. 3-79
3.45 LDR (register-relative) ... 3-81
3.46 LDR pseudo-instruction ... 3-83
3.47 LDA and STL ... 3-86
3.48 LDAEX and STLEX .. 3-88
3.49 LDREX and STREX ... 3-90
3.50 MCR and MCRR .. 3-92
3.51 MOV and MVN ... 3-93
3.52 MOVT .. 3-96
3.53 MOV32 pseudo-instruction .. 3-97
3.54 MRC and MRRC .. 3-98
3.55 MRS (system coprocessor register to ARM register) .. 3-99
3.56 MRS (PSR to general-purpose register) .. 3-100
3.57 MSR (ARM register to system coprocessor register) .. 3-102
3.58 MSR (general-purpose register to PSR) .. 3-103
3.59 MUL, MLA, and MLS ... 3-105
3.60 NEG pseudo-instruction ... 3-107
3.61 NOP ... 3-108
3.62 Parallel add and subtract ... 3-109
3.63 PKHBT and PKHTB ... 3-112
3.64 PLD, PLDW, and PLI ... 3-114
3.65 PUSH and POP ... 3-116
3.66 QADD, QSUB, QDADD, and QDSUB ... 3-118
3.67 REV, REV16, REVSH, and RBIT .. 3-120
3.68 RFE .. 3-122
3.69 SBFX and UBFX .. 3-124
3.70 SDIV and UDIV .. 3-125
3.71 SEL .. 3-126
3.72 SETEND .. 3-128
3.73 SEV, SEVL, WFE, WFI, and YIELD .. 3-129
3.74 SMC ... 3-131
3.75 SMLAD and SMLSD .. 3-132
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. v
ID031214 Non-Confidential

Contents
3.76 SMLALxy ... 3-134
3.77 SMLALD and SMLSLD .. 3-135
3.78 SMMUL, SMMLA, and SMMLS ... 3-137
3.79 SMUAD{X} and SMUSD{X} ... 3-139
3.80 SMULWy and SMLAWy ... 3-140
3.81 SMULxy and SMLAxy .. 3-141
3.82 SRS ... 3-143
3.83 SSAT and USAT .. 3-145
3.84 SSAT16 and USAT16 .. 3-147
3.85 SUBS pc, lr .. 3-149
3.86 SVC ... 3-151
3.87 SXT, SXTA, UXT, and UXTA ... 3-152
3.88 SYS .. 3-154
3.89 TBB and TBH ... 3-155
3.90 TST and TEQ ... 3-156
3.91 UMAAL .. 3-158
3.92 UMULL, UMLAL, SMULL, and SMLAL .. 3-159
3.93 UND pseudo-instruction ... 3-161
3.94 USAD8 and USADA8 .. 3-162

Chapter 4 Advanced SIMD and Floating-point Programming (32-bit)
4.1 Advanced SIMD and floating-point instruction summary ... 4-2
4.2 Shared Advanced SIMD and floating-point instructions .. 4-7
4.3 Advanced SIMD logical and compare operations .. 4-8
4.4 Advanced SIMD general data processing instructions .. 4-9
4.5 Advanced SIMD shift instructions .. 4-10
4.6 Advanced SIMD general arithmetic instructions .. 4-11
4.7 Advanced SIMD multiply instructions .. 4-12
4.8 Advanced SIMD load and store element and structure instructions 4-13
4.9 Interleaving provided by load and store, element and structure instructions 4-14
4.10 Alignment restrictions in load and store, element and structure instructions 4-15
4.11 Advanced SIMD and floating-point pseudo-instructions .. 4-16
4.12 Floating-point instructions .. 4-17
4.13 Cryptographic instructions ... 4-18
4.14 V{Q}{R}SHL (by signed variable) ... 4-19
4.15 V{Q}ABS and V{Q}NEG ... 4-20
4.16 V{Q}ADD, VADDL, VADDW, V{Q}SUB, VSUBL, and VSUBW 4-21
4.17 V{R}ADDHN and V{R}SUBHN ... 4-22
4.18 V{R}HADD and VHSUB ... 4-23
4.19 V{R}SHR (by immediate) ... 4-24
4.20 V{R}SHRN (by immediate) .. 4-25
4.21 V{R}SRA (by immediate) ... 4-26
4.22 VABA{L} and VABD{L} ... 4-27
4.23 VABS, VNEG, and VSQRT .. 4-28
4.24 VACGE and VACGT .. 4-29
4.25 VACLE and VACLT ... 4-30
4.26 VADD, VSUB, and VDIV .. 4-31
4.27 VAND, VBIC, VEOR, VORN, and VORR (register) ... 4-32
4.28 VAND and VORN (immediate) .. 4-33
4.29 VBIC and VORR (immediate) .. 4-34
4.30 VBIF, VBIT, and VBSL ... 4-35
4.31 VCEQ, VCGE, VCGT, VCLE, and VCLT ... 4-36
4.32 VCLE and VCLT ... 4-37
4.33 VCLS, VCLZ, and VCNT ... 4-38
4.34 VCMP, VCMPE .. 4-39
4.35 VCVT (between fixed-point or integer, and floating-point) 4-40
4.36 VCVT (from floating-point to integer with directed rounding modes) 4-41
4.37 VCVT (between half-precision and single-precision floating-point) 4-42
4.38 VCVT (between single-precision and double-precision) .. 4-43
4.39 VCVT (between floating-point and integer) .. 4-44
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. vi
ID031214 Non-Confidential

Contents
4.40 VCVT (from floating-point to integer with directed rounding modes) 4-45
4.41 VCVT (between floating-point and fixed-point) .. 4-46
4.42 VCVTB, VCVTT (half-precision extension) .. 4-47
4.43 VCVTB, VCVTT (between half-precision and double-precision) 4-48
4.44 VDUP ... 4-49
4.45 VEXT ... 4-50
4.46 VFMA, VFMS ... 4-51
4.47 VFNMA, VFNMS .. 4-52
4.48 VLDM, VSTM, VPOP, and VPUSH ... 4-53
4.49 VLDR and VSTR .. 4-54
4.50 VLDn and VSTn (single n-element structure to one lane) 4-55
4.51 VLDn (single n-element structure to all lanes) ... 4-57
4.52 VLDn and VSTn (multiple n-element structures) ... 4-59
4.53 VLDR pseudo-instruction ... 4-61
4.54 VLDR and VSTR (post-increment and pre-decrement) ... 4-62
4.55 VMAX, VMIN, VPMAX, and VPMIN ... 4-63
4.56 VMAXNM, VMINNM (Advanced SIMD) ... 4-64
4.57 VMAXNM, VMINNM (floating-point) .. 4-65
4.58 VMOV .. 4-66
4.59 VMOV, VMVN (immediate) .. 4-67
4.60 VMOV, VMVN (register) .. 4-68
4.61 VMOV (between two ARM registers and an extension register) 4-69
4.62 VMOV (between an ARM register and an Advanced SIMD scalar) 4-70
4.63 VMOV (between one ARM register and single precision floating-point register) ... 4-71
4.64 VMOV2 .. 4-72
4.65 VMOVL, V{Q}MOVN, VQMOVUN ... 4-73
4.66 VMRS and VMSR .. 4-74
4.67 VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS ... 4-75
4.68 VMUL{L}, VMLA{L}, and VMLS{L} ... 4-76
4.69 VMUL{L}, VMLA{L}, and VMLS{L} (by scalar) ... 4-77
4.70 VPADD{L}, VPADAL .. 4-78
4.71 VQ{R}DMULH (by vector or by scalar) .. 4-80
4.72 VQ{R}SHR{U}N (by immediate) ... 4-81
4.73 VQDMULL, VQDMLAL, and VQDMLSL (by vector or by scalar) 4-82
4.74 VRECPE and VRSQRTE ... 4-83
4.75 VRECPS and VRSQRTS ... 4-84
4.76 VREV ... 4-86
4.77 VRINT (Advanced SIMD) ... 4-87
4.78 VRINT (floating-point) .. 4-88
4.79 VSEL .. 4-89
4.80 VSHL, VQSHL, VQSHLU, and VSHLL (by immediate) ... 4-90
4.81 VSLI and VSRI ... 4-92
4.82 VSWP .. 4-94
4.83 VTBL, VTBX .. 4-95
4.84 VTRN ... 4-96
4.85 VTST .. 4-97
4.86 VUZP, VZIP ... 4-98

Chapter 5 A64 General Instructions
5.1 A64 general instructions in alphabetical order ... 5-2
5.2 Register restrictions for A64 instructions ... 5-8
5.3 ADC ... 5-9
5.4 ADCS ... 5-10
5.5 ADD (extended register) .. 5-11
5.6 ADD (immediate) ... 5-13
5.7 ADD (shifted register) .. 5-14
5.8 ADDS (extended register) .. 5-15
5.9 ADDS (immediate) ... 5-17
5.10 ADDS (shifted register) .. 5-18
5.11 ADR ... 5-19
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. vii
ID031214 Non-Confidential

Contents
5.12 ADRL pseudo-instruction ... 5-20
5.13 ADRP ... 5-21
5.14 AND (immediate) ... 5-22
5.15 AND (shifted register) .. 5-23
5.16 ANDS (immediate) ... 5-24
5.17 ANDS (shifted register) .. 5-25
5.18 ASR (register) .. 5-26
5.19 ASR (immediate) ... 5-27
5.20 ASRV ... 5-28
5.21 AT .. 5-29
5.22 B.cond .. 5-30
5.23 B .. 5-31
5.24 BFI ... 5-32
5.25 BFM ... 5-33
5.26 BFXIL ... 5-34
5.27 BIC (shifted register) .. 5-35
5.28 BICS (shifted register) ... 5-36
5.29 BL .. 5-37
5.30 BLR .. 5-38
5.31 BR .. 5-39
5.32 BRK ... 5-40
5.33 CBNZ ... 5-41
5.34 CBZ .. 5-42
5.35 CCMN (immediate) .. 5-43
5.36 CCMN (register) ... 5-44
5.37 CCMP (immediate) .. 5-45
5.38 CCMP (register) ... 5-46
5.39 CINC .. 5-47
5.40 CINV .. 5-48
5.41 CLREX ... 5-49
5.42 CLS .. 5-50
5.43 CLZ .. 5-51
5.44 CMN (extended register) ... 5-52
5.45 CMN (immediate) ... 5-54
5.46 CMN (shifted register) .. 5-55
5.47 CMP (extended register) .. 5-56
5.48 CMP (immediate) ... 5-58
5.49 CMP (shifted register) .. 5-59
5.50 CNEG .. 5-60
5.51 CRC32B, CRC32H, CRC32W, CRC32X ... 5-61
5.52 CRC32CB, CRC32CH, CRC32CW, CRC32CX .. 5-62
5.53 CSEL ... 5-63
5.54 CSET ... 5-64
5.55 CSETM .. 5-65
5.56 CSINC .. 5-66
5.57 CSINV .. 5-67
5.58 CSNEG .. 5-68
5.59 DC .. 5-69
5.60 DCPS1 ... 5-70
5.61 DCPS2 ... 5-71
5.62 DCPS3 ... 5-72
5.63 DMB ... 5-73
5.64 DRPS ... 5-74
5.65 DSB ... 5-75
5.66 EON (shifted register) .. 5-76
5.67 EOR (immediate) ... 5-77
5.68 EOR (shifted register) .. 5-78
5.69 ERET ... 5-79
5.70 EXTR ... 5-80
5.71 HINT .. 5-81
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. viii
ID031214 Non-Confidential

Contents
5.72 HLT .. 5-82
5.73 HVC ... 5-83
5.74 IC ... 5-84
5.75 ISB ... 5-85
5.76 LSL (register) ... 5-86
5.77 LSL (immediate) .. 5-87
5.78 LSLV .. 5-88
5.79 LSR (register) .. 5-89
5.80 LSR (immediate) .. 5-90
5.81 LSRV ... 5-91
5.82 MADD .. 5-92
5.83 MNEG .. 5-93
5.84 MOV (to or from SP) .. 5-94
5.85 MOV (inverted wide immediate) .. 5-95
5.86 MOV (wide immediate) .. 5-96
5.87 MOV (bitmask immediate) ... 5-97
5.88 MOV (register) ... 5-98
5.89 MOVK .. 5-99
5.90 MOVL pseudo-instruction .. 5-100
5.91 MOVN .. 5-102
5.92 MOVZ .. 5-103
5.93 MRS ... 5-104
5.94 MSR (immediate) ... 5-105
5.95 MSR (register) ... 5-106
5.96 MSUB .. 5-107
5.97 MUL ... 5-108
5.98 MVN ... 5-109
5.99 NEG ... 5-110
5.100 NEGS ... 5-111
5.101 NGC ... 5-112
5.102 NGCS .. 5-113
5.103 NOP ... 5-114
5.104 ORN (shifted register) .. 5-115
5.105 ORR (immediate) ... 5-116
5.106 ORR (shifted register) .. 5-117
5.107 RBIT ... 5-118
5.108 RET .. 5-119
5.109 REV ... 5-120
5.110 REV16 ... 5-121
5.111 REV32 ... 5-122
5.112 ROR (immediate) ... 5-123
5.113 ROR (register) ... 5-124
5.114 RORV .. 5-125
5.115 SBC ... 5-126
5.116 SBCS ... 5-127
5.117 SBFIZ ... 5-128
5.118 SBFM ... 5-129
5.119 SBFX ... 5-131
5.120 SDIV .. 5-132
5.121 SEV .. 5-133
5.122 SEVL .. 5-134
5.123 SMADDL .. 5-135
5.124 SMC ... 5-136
5.125 SMNEGL .. 5-137
5.126 SMSUBL .. 5-138
5.127 SMULH .. 5-139
5.128 SMULL ... 5-140
5.129 SUB (extended register) .. 5-141
5.130 SUB (immediate) ... 5-143
5.131 SUB (shifted register) .. 5-144
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. ix
ID031214 Non-Confidential

Contents
5.132 SUBS (extended register) .. 5-145
5.133 SUBS (immediate) ... 5-147
5.134 SUBS (shifted register) .. 5-148
5.135 SVC ... 5-149
5.136 SXTB ... 5-150
5.137 SXTH ... 5-151
5.138 SXTW .. 5-152
5.139 SYS .. 5-153
5.140 SYSL .. 5-154
5.141 TBNZ ... 5-155
5.142 TBZ .. 5-156
5.143 TLBI ... 5-157
5.144 TST (immediate) .. 5-158
5.145 TST (shifted register) ... 5-159
5.146 UBFIZ .. 5-160
5.147 UBFM ... 5-161
5.148 UBFX ... 5-163
5.149 UDIV .. 5-164
5.150 UMADDL .. 5-165
5.151 UMNEGL ... 5-166
5.152 UMSUBL .. 5-167
5.153 UMULH .. 5-168
5.154 UMULL ... 5-169
5.155 UXTB ... 5-170
5.156 UXTH ... 5-171
5.157 WFE ... 5-172
5.158 WFI .. 5-173
5.159 YIELD .. 5-174

Chapter 6 A64 Data Transfer Instructions
6.1 A64 data transfer instructions in alphabetical order ... 6-2
6.2 Register restrictions for A64 instructions ... 6-5
6.3 LDAR ... 6-6
6.4 LDARB ... 6-7
6.5 LDARH ... 6-8
6.6 LDAXP ... 6-9
6.7 LDAXR ... 6-10
6.8 LDAXRB .. 6-11
6.9 LDAXRH .. 6-12
6.10 LDNP (SIMD and FP) .. 6-13
6.11 LDNP ... 6-14
6.12 LDP (SIMD and FP) ... 6-15
6.13 LDP .. 6-17
6.14 LDPSW .. 6-18
6.15 LDR (immediate, SIMD and FP) .. 6-19
6.16 LDR (immediate) .. 6-21
6.17 LDR (literal, SIMD and FP) .. 6-22
6.18 LDR (literal) .. 6-23
6.19 LDR pseudo-instruction ... 6-24
6.20 LDR (register, SIMD and FP) ... 6-26
6.21 LDR (register) .. 6-28
6.22 LDRB (immediate) ... 6-29
6.23 LDRB (register) .. 6-30
6.24 LDRH (immediate) ... 6-31
6.25 LDRH (register) .. 6-32
6.26 LDRSB (immediate) ... 6-33
6.27 LDRSB (register) ... 6-34
6.28 LDRSH (immediate) ... 6-35
6.29 LDRSH (register) ... 6-36
6.30 LDRSW (immediate) .. 6-37
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. x
ID031214 Non-Confidential

Contents
6.31 LDRSW (literal) .. 6-38
6.32 LDRSW (register) .. 6-39
6.33 LDTR ... 6-40
6.34 LDTRB ... 6-41
6.35 LDTRH ... 6-42
6.36 LDTRSB ... 6-43
6.37 LDTRSH .. 6-44
6.38 LDTRSW .. 6-45
6.39 LDUR (SIMD and FP) .. 6-46
6.40 LDUR ... 6-47
6.41 LDURB ... 6-48
6.42 LDURH .. 6-49
6.43 LDURSB .. 6-50
6.44 LDURSH .. 6-51
6.45 LDURSW ... 6-52
6.46 LDXP ... 6-53
6.47 LDXR ... 6-54
6.48 LDXRB ... 6-55
6.49 LDXRH ... 6-56
6.50 PRFM (immediate) ... 6-57
6.51 PRFM (literal) ... 6-59
6.52 PRFM (register) ... 6-60
6.53 PRFUM .. 6-62
6.54 STLR .. 6-64
6.55 STLRB ... 6-65
6.56 STLRH ... 6-66
6.57 STLXP ... 6-67
6.58 STLXR ... 6-68
6.59 STLXRB ... 6-69
6.60 STLXRH ... 6-70
6.61 STNP (SIMD and FP) .. 6-71
6.62 STNP ... 6-72
6.63 STP (SIMD and FP) ... 6-73
6.64 STP .. 6-75
6.65 STR (immediate, SIMD and FP) .. 6-76
6.66 STR (immediate) .. 6-78
6.67 STR (register, SIMD and FP) ... 6-79
6.68 STR (register) .. 6-81
6.69 STRB (immediate) ... 6-82
6.70 STRB (register) .. 6-83
6.71 STRH (immediate) ... 6-84
6.72 STRH (register) .. 6-85
6.73 STTR ... 6-86
6.74 STTRB ... 6-87
6.75 STTRH ... 6-88
6.76 STUR (SIMD and FP) .. 6-89
6.77 STUR ... 6-90
6.78 STURB ... 6-91
6.79 STURH .. 6-92
6.80 STXP ... 6-93
6.81 STXR ... 6-94
6.82 STXRB ... 6-95
6.83 STXRH ... 6-96

Chapter 7 A64 Floating-point Instructions
7.1 A64 floating-point instructions in alphabetical order .. 7-2
7.2 FABS (scalar) .. 7-4
7.3 FADD (scalar) .. 7-5
7.4 FCCMP .. 7-6
7.5 FCCMPE .. 7-7
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xi
ID031214 Non-Confidential

Contents
7.6 FCMP ... 7-8
7.7 FCMPE .. 7-9
7.8 FCSEL ... 7-10
7.9 FCVT ... 7-11
7.10 FCVTAS (scalar) .. 7-12
7.11 FCVTAU (scalar) ... 7-13
7.12 FCVTMS (scalar) ... 7-14
7.13 FCVTMU (scalar) ... 7-15
7.14 FCVTNS (scalar) ... 7-16
7.15 FCVTNU (scalar) ... 7-17
7.16 FCVTPS (scalar) .. 7-18
7.17 FCVTPU (scalar) ... 7-19
7.18 FCVTZS (scalar, fixed-point) ... 7-20
7.19 FCVTZS (scalar, integer) ... 7-21
7.20 FCVTZU (scalar, fixed-point) ... 7-22
7.21 FCVTZU (scalar, integer) ... 7-23
7.22 FDIV (scalar) .. 7-24
7.23 FMADD .. 7-25
7.24 FMAX (scalar) .. 7-26
7.25 FMAXNM (scalar) .. 7-27
7.26 FMIN (scalar) ... 7-28
7.27 FMINNM (scalar) ... 7-29
7.28 FMOV (register) ... 7-30
7.29 FMOV (general) ... 7-31
7.30 FMOV (scalar, immediate) ... 7-32
7.31 FMSUB .. 7-33
7.32 FMUL (scalar) .. 7-34
7.33 FNEG (scalar) .. 7-35
7.34 FNMADD ... 7-36
7.35 FNMSUB .. 7-37
7.36 FNMUL .. 7-38
7.37 FRINTA (scalar) ... 7-39
7.38 FRINTI (scalar) .. 7-40
7.39 FRINTM (scalar) .. 7-41
7.40 FRINTN (scalar) ... 7-42
7.41 FRINTP (scalar) ... 7-43
7.42 FRINTX (scalar) ... 7-44
7.43 FRINTZ (scalar) ... 7-45
7.44 FSQRT (scalar) .. 7-46
7.45 FSUB (scalar) .. 7-47
7.46 SCVTF (scalar, fixed-point) ... 7-48
7.47 SCVTF (scalar, integer) ... 7-49
7.48 UCVTF (scalar, fixed-point) ... 7-50
7.49 UCVTF (scalar, integer) ... 7-51

Chapter 8 A64 Advanced SIMD Scalar Instructions
8.1 A64 Advanced SIMD scalar instructions in alphabetical order 8-2
8.2 ABS (scalar) ... 8-7
8.3 ADD (scalar) .. 8-8
8.4 ADDP (scalar) .. 8-9
8.5 CMEQ (scalar, register) ... 8-10
8.6 CMEQ (scalar, zero) .. 8-11
8.7 CMGE (scalar, register) ... 8-12
8.8 CMGE (scalar, zero) .. 8-13
8.9 CMGT (scalar, register) ... 8-14
8.10 CMGT (scalar, zero) .. 8-15
8.11 CMHI (scalar, register) ... 8-16
8.12 CMHS (scalar, register) ... 8-17
8.13 CMLE (scalar, zero) ... 8-18
8.14 CMLT (scalar, zero) ... 8-19
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xii
ID031214 Non-Confidential

Contents
8.15 CMTST (scalar) ... 8-20
8.16 DUP (scalar, element) ... 8-21
8.17 FABD (scalar) .. 8-22
8.18 FACGE (scalar) ... 8-23
8.19 FACGT (scalar) .. 8-24
8.20 FADDP (scalar) .. 8-25
8.21 FCMEQ (scalar, register) ... 8-26
8.22 FCMEQ (scalar, zero) .. 8-27
8.23 FCMGE (scalar, register) ... 8-28
8.24 FCMGE (scalar, zero) .. 8-29
8.25 FCMGT (scalar, register) ... 8-30
8.26 FCMGT (scalar, zero) .. 8-31
8.27 FCMLE (scalar, zero) ... 8-32
8.28 FCMLT (scalar, zero) ... 8-33
8.29 FCVTAS (scalar) .. 8-34
8.30 FCVTAU (scalar) ... 8-35
8.31 FCVTMS (scalar) ... 8-36
8.32 FCVTMU (scalar) ... 8-37
8.33 FCVTNS (scalar) ... 8-38
8.34 FCVTNU (scalar) ... 8-39
8.35 FCVTPS (scalar) .. 8-40
8.36 FCVTPU (scalar) ... 8-41
8.37 FCVTXN (scalar) ... 8-42
8.38 FCVTZS (scalar, fixed-point) ... 8-43
8.39 FCVTZS (scalar, integer) ... 8-44
8.40 FCVTZU (scalar, fixed-point) ... 8-45
8.41 FCVTZU (scalar, integer) ... 8-46
8.42 FMAXNMP (scalar) .. 8-47
8.43 FMAXP (scalar) ... 8-48
8.44 FMINNMP (scalar) ... 8-49
8.45 FMINP (scalar) ... 8-50
8.46 FMLA (scalar, by element) ... 8-51
8.47 FMLS (scalar, by element) ... 8-52
8.48 FMUL (scalar, by element) .. 8-53
8.49 FMULX (scalar, by element) .. 8-54
8.50 FMULX (scalar) .. 8-55
8.51 FRECPE (scalar) ... 8-56
8.52 FRECPS (scalar) ... 8-57
8.53 FRECPX (scalar) ... 8-58
8.54 FRSQRTE (scalar) ... 8-59
8.55 FRSQRTS (scalar) ... 8-60
8.56 MOV (scalar) .. 8-61
8.57 NEG (scalar) .. 8-62
8.58 SCVTF (scalar, fixed-point) ... 8-63
8.59 SCVTF (scalar, integer) ... 8-64
8.60 SHL (scalar) ... 8-65
8.61 SLI (scalar) .. 8-66
8.62 SQABS (scalar) ... 8-67
8.63 SQADD (scalar) ... 8-68
8.64 SQDMLAL (scalar, by element) ... 8-69
8.65 SQDMLAL (scalar) ... 8-70
8.66 SQDMLSL (scalar, by element) ... 8-71
8.67 SQDMLSL (scalar) ... 8-72
8.68 SQDMULH (scalar, by element) .. 8-73
8.69 SQDMULH (scalar) .. 8-74
8.70 SQDMULL (scalar, by element) ... 8-75
8.71 SQDMULL (scalar) .. 8-76
8.72 SQNEG (scalar) ... 8-77
8.73 SQRDMULH (scalar, by element) .. 8-78
8.74 SQRDMULH (scalar) ... 8-79
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xiii
ID031214 Non-Confidential

Contents
8.75 SQRSHL (scalar) ... 8-80
8.76 SQRSHRN (scalar) .. 8-81
8.77 SQRSHRUN (scalar) ... 8-82
8.78 SQSHL (scalar, immediate) ... 8-83
8.79 SQSHL (scalar, register) .. 8-84
8.80 SQSHLU (scalar) ... 8-85
8.81 SQSHRN (scalar) .. 8-86
8.82 SQSHRUN (scalar) .. 8-87
8.83 SQSUB (scalar) ... 8-88
8.84 SQXTN (scalar) ... 8-89
8.85 SQXTUN (scalar) ... 8-90
8.86 SRI (scalar) .. 8-91
8.87 SRSHL (scalar) .. 8-92
8.88 SRSHR (scalar) ... 8-93
8.89 SRSRA (scalar) ... 8-94
8.90 SSHL (scalar) .. 8-95
8.91 SSHR (scalar) .. 8-96
8.92 SSRA (scalar) .. 8-97
8.93 SUB (scalar) .. 8-98
8.94 SUQADD (scalar) .. 8-99
8.95 UCVTF (scalar, fixed-point) ... 8-100
8.96 UCVTF (scalar, integer) ... 8-101
8.97 UQADD (scalar) ... 8-102
8.98 UQRSHL (scalar) ... 8-103
8.99 UQRSHRN (scalar) .. 8-104
8.100 UQSHL (scalar, immediate) ... 8-105
8.101 UQSHL (scalar, register) ... 8-106
8.102 UQSHRN (scalar) .. 8-107
8.103 UQSUB (scalar) ... 8-108
8.104 UQXTN (scalar) ... 8-109
8.105 URSHL (scalar) .. 8-110
8.106 URSHR (scalar) ... 8-111
8.107 URSRA (scalar) ... 8-112
8.108 USHL (scalar) .. 8-113
8.109 USHR (scalar) .. 8-114
8.110 USQADD (scalar) .. 8-115
8.111 USRA (scalar) .. 8-116

Chapter 9 A64 Advanced SIMD Vector Instructions
9.1 A64 Advanced SIMD vector instructions in alphabetical order 9-2
9.2 ABS (vector) .. 9-12
9.3 ADD (vector) .. 9-13
9.4 ADDHN, ADDHN2 (vector) .. 9-14
9.5 ADDP (vector) .. 9-15
9.6 ADDV (vector) .. 9-16
9.7 AND (vector) .. 9-17
9.8 BIC (vector, immediate) ... 9-18
9.9 BIC (vector, register) .. 9-19
9.10 BIF (vector) .. 9-20
9.11 BIT (vector) .. 9-21
9.12 BSL (vector) ... 9-22
9.13 CLS (vector) ... 9-23
9.14 CLZ (vector) ... 9-24
9.15 CMEQ (vector, register) ... 9-25
9.16 CMEQ (vector, zero) .. 9-26
9.17 CMGE (vector, register) ... 9-27
9.18 CMGE (vector, zero) .. 9-28
9.19 CMGT (vector, register) ... 9-29
9.20 CMGT (vector, zero) .. 9-30
9.21 CMHI (vector, register) .. 9-31
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xiv
ID031214 Non-Confidential

Contents
9.22 CMHS (vector, register) ... 9-32
9.23 CMLE (vector, zero) ... 9-33
9.24 CMLT (vector, zero) ... 9-34
9.25 CMTST (vector) ... 9-35
9.26 CNT (vector) .. 9-36
9.27 DUP (vector, element) ... 9-37
9.28 DUP (vector) (general) ... 9-38
9.29 EOR (vector) .. 9-39
9.30 EXT (vector) ... 9-40
9.31 FABD (vector) .. 9-41
9.32 FABS (vector) .. 9-42
9.33 FACGE (vector) ... 9-43
9.34 FACGT (vector) ... 9-44
9.35 FADD (vector) .. 9-45
9.36 FADDP (vector) ... 9-46
9.37 FCMEQ (vector, register) ... 9-47
9.38 FCMEQ (vector, zero) .. 9-48
9.39 FCMGE (vector, register) ... 9-49
9.40 FCMGE (vector, zero) .. 9-50
9.41 FCMGT (vector, register) ... 9-51
9.42 FCMGT (vector, zero) .. 9-52
9.43 FCMLE (vector, zero) .. 9-53
9.44 FCMLT (vector, zero) ... 9-54
9.45 FCVTAS (vector) ... 9-55
9.46 FCVTAU (vector) ... 9-56
9.47 FCVTL, FCVTL2 (vector) ... 9-57
9.48 FCVTMS (vector) ... 9-58
9.49 FCVTMU (vector) ... 9-59
9.50 FCVTN, FCVTN2 (vector) .. 9-60
9.51 FCVTNS (vector) ... 9-61
9.52 FCVTNU (vector) ... 9-62
9.53 FCVTPS (vector) ... 9-63
9.54 FCVTPU (vector) ... 9-64
9.55 FCVTXN, FCVTXN2 (vector) ... 9-65
9.56 FCVTZS (vector, fixed-point) ... 9-66
9.57 FCVTZS (vector, integer) ... 9-67
9.58 FCVTZU (vector, fixed-point) ... 9-68
9.59 FCVTZU (vector, integer) .. 9-69
9.60 FDIV (vector) ... 9-70
9.61 FMAX (vector) .. 9-71
9.62 FMAXNM (vector) .. 9-72
9.63 FMAXNMP (vector) .. 9-73
9.64 FMAXNMV (vector) .. 9-74
9.65 FMAXP (vector) ... 9-75
9.66 FMAXV (vector) ... 9-76
9.67 FMIN (vector) ... 9-77
9.68 FMINNM (vector) ... 9-78
9.69 FMINNMP (vector) ... 9-79
9.70 FMINNMV (vector) ... 9-80
9.71 FMINP (vector) .. 9-81
9.72 FMINV (vector) .. 9-82
9.73 FMLA (vector, by element) .. 9-83
9.74 FMLA (vector) .. 9-84
9.75 FMLS (vector, by element) .. 9-85
9.76 FMLS (vector) .. 9-86
9.77 FMOV (vector, immediate) ... 9-87
9.78 FMUL (vector, by element) .. 9-88
9.79 FMUL (vector) .. 9-89
9.80 FMULX (vector, by element) .. 9-90
9.81 FMULX (vector) ... 9-91
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xv
ID031214 Non-Confidential

Contents
9.82 FNEG (vector) .. 9-92
9.83 FRECPE (vector) ... 9-93
9.84 FRECPS (vector) ... 9-94
9.85 FRINTA (vector) ... 9-95
9.86 FRINTI (vector) .. 9-96
9.87 FRINTM (vector) .. 9-97
9.88 FRINTN (vector) .. 9-98
9.89 FRINTP (vector) ... 9-99
9.90 FRINTX (vector) ... 9-100
9.91 FRINTZ (vector) ... 9-101
9.92 FRSQRTE (vector) .. 9-102
9.93 FRSQRTS (vector) .. 9-103
9.94 FSQRT (vector) ... 9-104
9.95 FSUB (vector) .. 9-105
9.96 INS (vector, element) ... 9-106
9.97 INS (vector) (general) .. 9-107
9.98 LD1 (vector, multiple structures) .. 9-108
9.99 LD1 (vector, single structure) ... 9-111
9.100 LD1R (vector) .. 9-112
9.101 LD2 (vector, multiple structures) .. 9-113
9.102 LD2 (vector, single structure) ... 9-114
9.103 LD2R (vector) .. 9-115
9.104 LD3 (vector, multiple structures) .. 9-117
9.105 LD3 (vector, single structure) ... 9-118
9.106 LD3R (vector) .. 9-120
9.107 LD4 (vector, multiple structures) .. 9-122
9.108 LD4 (vector, single structure) ... 9-123
9.109 LD4R (vector) .. 9-125
9.110 MLA (vector, by element) ... 9-127
9.111 MLA (vector) .. 9-128
9.112 MLS (vector, by element) ... 9-129
9.113 MLS (vector) .. 9-130
9.114 MOV (vector, element) ... 9-131
9.115 MOV (vector, from general) ... 9-132
9.116 MOV (vector) ... 9-133
9.117 MOV (vector, to general) ... 9-134
9.118 MOVI (vector) .. 9-135
9.119 MUL (vector, by element) .. 9-136
9.120 MUL (vector) .. 9-137
9.121 MVN (vector) .. 9-138
9.122 MVNI (vector) ... 9-139
9.123 NEG (vector) .. 9-140
9.124 NOT (vector) .. 9-141
9.125 ORN (vector) .. 9-142
9.126 ORR (vector, immediate) ... 9-143
9.127 ORR (vector, register) .. 9-144
9.128 PMUL (vector) .. 9-145
9.129 PMULL, PMULL2 (vector) .. 9-146
9.130 RADDHN, RADDHN2 (vector) ... 9-147
9.131 RBIT (vector) ... 9-148
9.132 REV16 (vector) .. 9-149
9.133 REV32 (vector) .. 9-150
9.134 REV64 (vector) .. 9-151
9.135 RSHRN, RSHRN2 (vector) .. 9-152
9.136 RSUBHN, RSUBHN2 (vector) ... 9-153
9.137 SABA (vector) .. 9-154
9.138 SABAL, SABAL2 (vector) .. 9-155
9.139 SABD (vector) .. 9-156
9.140 SABDL, SABDL2 (vector) .. 9-157
9.141 SADALP (vector) ... 9-158
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xvi
ID031214 Non-Confidential

Contents
9.142 SADDL, SADDL2 (vector) .. 9-159
9.143 SADDLP (vector) ... 9-160
9.144 SADDLV (vector) ... 9-161
9.145 SADDW, SADDW2 (vector) ... 9-162
9.146 SCVTF (vector, fixed-point) ... 9-163
9.147 SCVTF (vector, integer) ... 9-164
9.148 SHADD (vector) ... 9-165
9.149 SHL (vector) ... 9-166
9.150 SHLL, SHLL2 (vector) .. 9-167
9.151 SHRN, SHRN2 (vector) ... 9-168
9.152 SHSUB (vector) ... 9-169
9.153 SLI (vector) .. 9-170
9.154 SMAX (vector) ... 9-171
9.155 SMAXP (vector) ... 9-172
9.156 SMAXV (vector) ... 9-173
9.157 SMIN (vector) ... 9-174
9.158 SMINP (vector) .. 9-175
9.159 SMINV (vector) .. 9-176
9.160 SMLAL, SMLAL2 (vector, by element) .. 9-177
9.161 SMLAL, SMLAL2 (vector) .. 9-178
9.162 SMLSL, SMLSL2 (vector, by element) .. 9-179
9.163 SMLSL, SMLSL2 (vector) .. 9-180
9.164 SMOV (vector) ... 9-181
9.165 SMULL, SMULL2 (vector, by element) .. 9-182
9.166 SMULL, SMULL2 (vector) .. 9-183
9.167 SQABS (vector) ... 9-184
9.168 SQADD (vector) ... 9-185
9.169 SQDMLAL, SQDMLAL2 (vector, by element) .. 9-186
9.170 SQDMLAL, SQDMLAL2 (vector) ... 9-187
9.171 SQDMLSL, SQDMLSL2 (vector, by element) .. 9-188
9.172 SQDMLSL, SQDMLSL2 (vector) ... 9-189
9.173 SQDMULH (vector, by element) .. 9-190
9.174 SQDMULH (vector) .. 9-191
9.175 SQDMULL, SQDMULL2 (vector, by element) ... 9-192
9.176 SQDMULL, SQDMULL2 (vector) ... 9-193
9.177 SQNEG (vector) ... 9-194
9.178 SQRDMULH (vector, by element) ... 9-195
9.179 SQRDMULH (vector) ... 9-196
9.180 SQRSHL (vector) ... 9-197
9.181 SQRSHRN, SQRSHRN2 (vector) .. 9-198
9.182 SQRSHRUN, SQRSHRUN2 (vector) .. 9-199
9.183 SQSHL (vector, immediate) ... 9-200
9.184 SQSHL (vector, register) ... 9-201
9.185 SQSHLU (vector) ... 9-202
9.186 SQSHRN, SQSHRN2 (vector) ... 9-203
9.187 SQSHRUN, SQSHRUN2 (vector) .. 9-204
9.188 SQSUB (vector) ... 9-205
9.189 SQXTN, SQXTN2 (vector) ... 9-206
9.190 SQXTUN, SQXTUN2 (vector) .. 9-207
9.191 SRHADD (vector) .. 9-208
9.192 SRI (vector) .. 9-209
9.193 SRSHL (vector) .. 9-210
9.194 SRSHR (vector) ... 9-211
9.195 SRSRA (vector) ... 9-212
9.196 SSHL (vector) .. 9-213
9.197 SSHLL, SSHLL2 (vector) ... 9-214
9.198 SSHR (vector) .. 9-215
9.199 SSRA (vector) .. 9-216
9.200 SSUBL, SSUBL2 (vector) .. 9-217
9.201 SSUBW, SSUBW2 (vector) ... 9-218
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xvii
ID031214 Non-Confidential

Contents
9.202 ST1 (vector, multiple structures) .. 9-219
9.203 ST1 (vector, single structure) ... 9-222
9.204 ST2 (vector, multiple structures) .. 9-223
9.205 ST2 (vector, single structure) ... 9-224
9.206 ST3 (vector, multiple structures) .. 9-225
9.207 ST3 (vector, single structure) ... 9-226
9.208 ST4 (vector, multiple structures) .. 9-227
9.209 ST4 (vector, single structure) ... 9-228
9.210 SUB (vector) .. 9-230
9.211 SUBHN, SUBHN2 (vector) .. 9-231
9.212 SUQADD (vector) .. 9-232
9.213 SXTL, SXTL2 (vector) .. 9-233
9.214 TBL (vector) ... 9-234
9.215 TBX (vector) ... 9-235
9.216 TRN1 (vector) .. 9-236
9.217 TRN2 (vector) .. 9-237
9.218 UABA (vector) .. 9-238
9.219 UABAL, UABAL2 (vector) .. 9-239
9.220 UABD (vector) .. 9-240
9.221 UABDL, UABDL2 (vector) .. 9-241
9.222 UADALP (vector) ... 9-242
9.223 UADDL, UADDL2 (vector) ... 9-243
9.224 UADDLP (vector) ... 9-244
9.225 UADDLV (vector) ... 9-245
9.226 UADDW, UADDW2 (vector) .. 9-246
9.227 UCVTF (vector, fixed-point) ... 9-247
9.228 UCVTF (vector, integer) ... 9-248
9.229 UHADD (vector) ... 9-249
9.230 UHSUB (vector) ... 9-250
9.231 UMAX (vector) ... 9-251
9.232 UMAXP (vector) ... 9-252
9.233 UMAXV (vector) ... 9-253
9.234 UMIN (vector) .. 9-254
9.235 UMINP (vector) .. 9-255
9.236 UMINV (vector) .. 9-256
9.237 UMLAL, UMLAL2 (vector, by element) .. 9-257
9.238 UMLAL, UMLAL2 (vector) .. 9-258
9.239 UMLSL, UMLSL2 (vector, by element) .. 9-259
9.240 UMLSL, UMLSL2 (vector) .. 9-260
9.241 UMOV (vector) ... 9-261
9.242 UMULL, UMULL2 (vector, by element) .. 9-262
9.243 UMULL, UMULL2 (vector) ... 9-263
9.244 UQADD (vector) ... 9-264
9.245 UQRSHL (vector) ... 9-265
9.246 UQRSHRN, UQRSHRN2 (vector) ... 9-266
9.247 UQSHL (vector, immediate) ... 9-267
9.248 UQSHL (vector, register) ... 9-268
9.249 UQSHRN, UQSHRN2 (vector) .. 9-269
9.250 UQSUB (vector) ... 9-270
9.251 UQXTN, UQXTN2 (vector) .. 9-271
9.252 URECPE (vector) ... 9-272
9.253 URHADD (vector) .. 9-273
9.254 URSHL (vector) ... 9-274
9.255 URSHR (vector) ... 9-275
9.256 URSQRTE (vector) .. 9-276
9.257 URSRA (vector) ... 9-277
9.258 USHL (vector) .. 9-278
9.259 USHLL, USHLL2 (vector) .. 9-279
9.260 USHR (vector) ... 9-280
9.261 USQADD (vector) .. 9-281
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xviii
ID031214 Non-Confidential

Contents
9.262 USRA (vector) .. 9-282
9.263 USUBL, USUBL2 (vector) .. 9-283
9.264 USUBW, USUBW2 (vector) ... 9-284
9.265 UXTL, UXTL2 (vector) ... 9-285
9.266 UZP1 (vector) .. 9-286
9.267 UZP2 (vector) .. 9-287
9.268 XTN, XTN2 (vector) ... 9-288
9.269 ZIP1 (vector) .. 9-289
9.270 ZIP2 (vector) .. 9-290

Chapter 10 Directives Reference
10.1 Alphabetical list of directives .. 10-2
10.2 Symbol definition directives ... 10-4
10.3 Data definition directives .. 10-5
10.4 About assembly control directives ... 10-6
10.5 About frame directives ... 10-7
10.6 Reporting directives ... 10-8
10.7 Instruction set and syntax selection directives ... 10-9
10.8 Miscellaneous directives .. 10-10
10.9 ALIAS ... 10-11
10.10 ALIGN .. 10-12
10.11 AREA ... 10-14
10.12 ARM, THUMB, CODE16 and CODE32 ... 10-17
10.13 ASSERT .. 10-18
10.14 ATTR ... 10-19
10.15 CN .. 10-20
10.16 COMMON .. 10-21
10.17 CP .. 10-22
10.18 DATA ... 10-23
10.19 DCB ... 10-24
10.20 DCD and DCDU ... 10-25
10.21 DCDO .. 10-26
10.22 DCFD and DCFDU .. 10-27
10.23 DCFS and DCFSU ... 10-28
10.24 DCI ... 10-29
10.25 DCO and DCOU .. 10-30
10.26 DCQ and DCQU .. 10-31
10.27 DCW and DCWU ... 10-32
10.28 END ... 10-33
10.29 ENDFUNC or ENDP .. 10-34
10.30 ENTRY ... 10-35
10.31 EQU ... 10-36
10.32 EXPORT or GLOBAL .. 10-37
10.33 EXPORTAS ... 10-39
10.34 FIELD ... 10-40
10.35 FRAME ADDRESS .. 10-42
10.36 FRAME POP .. 10-43
10.37 FRAME PUSH ... 10-44
10.38 FRAME REGISTER ... 10-45
10.39 FRAME RESTORE .. 10-46
10.40 FRAME RETURN ADDRESS .. 10-47
10.41 FRAME SAVE .. 10-48
10.42 FRAME STATE REMEMBER .. 10-49
10.43 FRAME STATE RESTORE ... 10-50
10.44 FRAME UNWIND ON .. 10-51
10.45 FRAME UNWIND OFF .. 10-52
10.46 FUNCTION or PROC ... 10-53
10.47 GBLA, GBLL, and GBLS ... 10-55
10.48 GET or INCLUDE .. 10-57
10.49 IMPORT and EXTERN .. 10-58
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xix
ID031214 Non-Confidential

Contents
10.50 INCBIN ... 10-60
10.51 IF, ELSE, ENDIF, and ELIF ... 10-61
10.52 INFO .. 10-63
10.53 KEEP ... 10-64
10.54 LCLA, LCLL, and LCLS ... 10-65
10.55 LTORG .. 10-66
10.56 MACRO and MEND ... 10-67
10.57 MAP ... 10-70
10.58 MEXIT .. 10-71
10.59 NOFP ... 10-72
10.60 OPT ... 10-73
10.61 QN, DN, and SN .. 10-75
10.62 RELOC .. 10-77
10.63 REQUIRE .. 10-78
10.64 REQUIRE8 and PRESERVE8 ... 10-79
10.65 RLIST ... 10-81
10.66 RN .. 10-82
10.67 ROUT ... 10-83
10.68 SETA, SETL, and SETS .. 10-84
10.69 SPACE or FILL .. 10-86
10.70 TTL and SUBT ... 10-87
10.71 WHILE and WEND .. 10-88
10.72 WN and XN .. 10-89

Appendix A Via File Syntax
A.1 Overview of via files ... A-2
A.2 Via file syntax ... A-3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. xx
ID031214 Non-Confidential

Chapter 1
Conventions and Feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• Your name and company.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 1-1
ID031214 Non-Confidential

Conventions and Feedback
• The serial number of the product.
• Details of the release you are using.
• Details of the platform you are using, such as the hardware platform,

operating system type and version.
• A small standalone sample of code that reproduces the problem.
• A clear explanation of what you expected to happen, and what actually

happened.
• The commands you used, including any command-line options.
• Sample output illustrating the problem.
• The version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DUI 0802A.
• If viewing online, the topic names to which your comments apply.
• If viewing a PDF version of a document, the page numbers to which your

comments apply.
• A concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Information Center http://infocenter.arm.com/help/index.jsp.
• ARM Technical Support Knowledge Articles

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html.
• ARM Support and Maintenance

http://www.arm.com/support/services/support-maintenance.php.
• ARM Glossary

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 1-2
ID031214 Non-Confidential

Chapter 2
armasm Command-line Options

The following topics describe the armasm command-line syntax and command-line options:
• armasm command-line syntax on page 2-2.
• armasm command-line options on page 2-3.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-1
ID031214 Non-Confidential

armasm Command-line Options
2.1 armasm command-line syntax
The command for invoking armasm is:

armasm {options} {inputfile}

where:

options are commands to the assembler. You can invoke the assembler with any
combination of options separated by spaces. You can specify values for some
options. To specify a value for an option, use either ‘=’ (option=value) or a space
character (option value).

inputfile can be one or more assembly source files separated by spaces. Input files must be
A64, UAL, or pre-UAL A32 or T32 assembly language source files.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-2
ID031214 Non-Confidential

armasm Command-line Options
2.2 armasm command-line options
armasm supports the following command-line options:
• --16 on page 2-5.
• --32 on page 2-6.
• --apcs on page 2-7.
• --arm on page 2-9.
• --arm_only on page 2-10.
• --bi on page 2-11.
• --bigend on page 2-12.
• --brief_diagnostics on page 2-13.
• --checkreglist on page 2-14.
• --cpu on page 2-15.
• --debug on page 2-17.
• --depend on page 2-18.
• --depend_format on page 2-19.
• --diag_error on page 2-20.
• --diag_remark on page 2-21.
• --diag_style on page 2-22.
• --diag_suppress on page 2-23.
• --diag_warning on page 2-24.
• --dllexport_all on page 2-25.
• --dwarf2 on page 2-26.
• --dwarf3 on page 2-27.
• --errors on page 2-28.
• --execstack on page 2-29.
• --exceptions on page 2-30.
• --exceptions_unwind on page 2-31.
• --fpmode on page 2-32.
• --fpu on page 2-33.
• -g on page 2-34.
• --help on page 2-35.
• -i on page 2-36.
• --keep on page 2-37.
• --length on page 2-38.
• --li on page 2-39.
• --library_type on page 2-40
• --licretry on page 2-41.
• --list on page 2-42.
• --littleend on page 2-43.
• -m on page 2-44.
• --maxcache on page 2-45.
• --md on page 2-46.
• --no_code_gen on page 2-47.
• --no_esc on page 2-48.
• --no_execstack on page 2-49.
• --no_exceptions on page 2-50.
• --no_exceptions_unwind on page 2-51.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-3
ID031214 Non-Confidential

armasm Command-line Options
• --no_hide_all on page 2-52.
• --no_reduce_paths on page 2-53.
• --no_regs on page 2-54.
• --no_terse on page 2-55.
• --no_unaligned_access on page 2-56.
• --no_warn on page 2-57.
• -o on page 2-58.
• --pd on page 2-59.
• --predefine on page 2-60.
• --reduce_paths on page 2-61.
• --regnames on page 2-62.
• --report-if-not-wysiwyg on page 2-63.
• --show_cmdline on page 2-64.
• --thumb on page 2-65.
• --unaligned_access on page 2-66.
• --unsafe on page 2-67.
• --untyped_local_labels on page 2-68.
• --version_number on page 2-69.
• --via on page 2-70.
• --vsn on page 2-71.
• --width on page 2-72.
• --xref on page 2-73.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-4
ID031214 Non-Confidential

armasm Command-line Options
2.3 --16
This option instructs armasm to interpret instructions as T32 instructions using the pre-UAL
syntax. This is equivalent to a CODE16 directive at the head of the source file. Use the --thumb
option to specify T32 instructions using the UAL syntax.

Note
 This option is not supported for AArch64 state.

2.3.1 See also
• --thumb on page 2-65.
• ARM, THUMB, CODE16 and CODE32 on page 10-17.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-5
ID031214 Non-Confidential

armasm Command-line Options
2.4 --32
This option is a synonym for --arm.

Note
 This option is not supported for AArch64 state.

2.4.1 See also
• --arm on page 2-9.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-6
ID031214 Non-Confidential

armasm Command-line Options
2.5 --apcs
This option specifies whether you are using the Procedure Call Standard for the ARM
Architecture (AAPCS). It can also specify some attributes of code sections.

The AAPCS forms part of the Base Standard Application Binary Interface for the ARM
Architecture (BSABI) specification. By writing code that adheres to the AAPCS, you can ensure
that separately compiled and assembled modules can work together.

Note
 AAPCS qualifiers do not affect the code produced by armasm. They are an assertion by the
programmer that the code in inputfile complies with a particular variant of AAPCS. They
cause attributes to be set in the object file produced by armasm. The linker uses these attributes
to check compatibility of files, and to select appropriate library variants.

2.5.1 Syntax

--apcs=qualifier…qualifier

Values for qualifier are:

none Specifies that inputfile does not use AAPCS. AAPCS registers are not set
up. Other qualifiers are not permitted if you use none.

/interwork, /nointerwork

/interwork specifies that the code in the inputfile can interwork between
ARM32 and Thumb32 safely. The default is /nointerwork.
/interwork is not supported for AArch64 state.

/inter, /nointer Are synonyms for /interwork and /nointerwork.
/inter is not supported for AArch64 state.

/hardfp, /softfp Requests hardware or software floating-point linkage. This enables the
procedure call standard to be specified separately from the version of the
floating-point hardware available through the --fpu option. It is still
possible to specify the procedure call standard by using the --fpu option,
but ARM recommends you use --apcs. If floating-point support is not
permitted (for example, because --fpu=none is specified, or because of
other means), then /hardfp and /softfp are ignored. If floating-point
support is permitted and the softfp calling convention is used
(--fpu=softvfp or --fpu=softvfp+vfp-armv8v4), then /hardfp gives an
error.
/softfp is not supported for AArch64 state.

Note
 You must specify at least one qualifier. If you specify more than one qualifier, ensure that there
are no spaces or commas between the individual qualifiers in the list.

2.5.2 Example

armasm --cpu=8-A.32 --apcs=/inter/hardfp inputfile.s
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-7
ID031214 Non-Confidential

armasm Command-line Options
2.5.3 See also

Procedure Call Standard for the ARM Architecture
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-8
ID031214 Non-Confidential

armasm Command-line Options
2.6 --arm
This option instructs armasm to interpret instructions as A32 instructions. It does not, however,
guarantee A32-only code in the object file. This is the default. Using this option is equivalent to
specifying the ARM or CODE32 directive at the start of the source file.

Note
 This option is not supported for AArch64 state.

2.6.1 See also
• --32 on page 2-6.
• --arm_only on page 2-10.
• ARM, THUMB, CODE16 and CODE32 on page 10-17.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-9
ID031214 Non-Confidential

armasm Command-line Options
2.7 --arm_only
This option instructs armasm to only generate A32 code. This is similar to --arm but also has the
property that armasm does not permit the generation of any T32 code.

Note
 This option is not supported for AArch64 state.

2.7.1 See also
• --arm on page 2-9.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-10
ID031214 Non-Confidential

armasm Command-line Options
2.8 --bi
This option is a synonym for --bigend.

2.8.1 See also
• --bigend on page 2-12.
• --littleend on page 2-43.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-11
ID031214 Non-Confidential

armasm Command-line Options
2.9 --bigend
This option instructs armasm to assemble code suitable for a big-endian ARM processor. The
default is --littleend.

2.9.1 See also
• --littleend on page 2-43.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-12
ID031214 Non-Confidential

armasm Command-line Options
2.10 --brief_diagnostics
This option instructs armasm to use a shorter form of the diagnostic output. In this form, the
original source line is not displayed and the error message text is not wrapped when it is too long
to fit on a single line. The default is --no_brief_diagnostics.

2.10.1 See also
• --diag_error on page 2-20.
• --diag_warning on page 2-24.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-13
ID031214 Non-Confidential

armasm Command-line Options
2.11 --checkreglist
This option instructs armasm to check RLIST, LDM, and STM register lists to ensure that all registers
are provided in increasing register number order. A warning is given if registers are not listed in
order.

Note
 In AArch32 state, this option is deprecated. Use --diag_warning 1206 instead. In AArch64 state,
this option is not supported.

2.11.1 See also
• --diag_warning on page 2-24.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-14
ID031214 Non-Confidential

armasm Command-line Options
2.12 --cpu
--cpu=list lists the architecture names that are supported by the --cpu=name option.

--cpu=name enables code generation for the selected ARM architecture. Some instructions
produce either errors or warnings if assembled for the wrong target architecture.

2.12.1 Syntax

--cpu=list

or

--cpu=name

Where

name is the name of an architecture. It must belong to the list of architectures shown in
Table 2-1.
Architecture names are not case-sensitive.
Wildcard characters are not accepted.

The following values are supported:

8-A.32 ARMv8, AArch32 state.

8-A.32.crypto ARMv8, AArch32 state with cryptographic instructions.

8-A.32.no_neon ARMv8, AArch32 state without Advanced SIMD instructions.

8-A.64 ARMv8, AArch64 state.

8-A.64.crypto ARMv8, AArch64 state with cryptographic instructions.

8-A.64.no_neon ARMv8, AArch64 state without Advanced SIMD instructions.

Note
 There is no default option for --cpu.

2.12.2 Examples

armasm --cpu=list
armasm --cpu=8-A.64 inputfile.s

Table 2-1 Supported ARM architectures

Architecture Description

8-A.32 ARMv8, AArch32 state

8-A.32.crypto ARMv8, AArch32 state with cryptographic instructions

8-A.32.no_neon ARMv8, AArch32 state without Advanced SIMD instructions

8-A.64 ARMv8, AArch64 state

8-A.64.crypto ARMv8, AArch64 state with cryptographic instructions

8-A.64.no_neon ARMv8, AArch64 state without Advanced SIMD instructions
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-15
ID031214 Non-Confidential

armasm Command-line Options
2.12.3 See also

Reference
• --unsafe on page 2-67.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-16
ID031214 Non-Confidential

armasm Command-line Options
2.13 --debug
This option instructs armasm to generate DWARF debug tables. --debug is a synonym for -g. The
default is DWARF 3.

Note
 Local symbols are not preserved with --debug. You must specify --keep if you want to preserve
the local symbols to aid debugging.

2.13.1 See also
• --dwarf2 on page 2-26.
• --dwarf3 on page 2-27.
• --keep on page 2-37.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-17
ID031214 Non-Confidential

armasm Command-line Options
2.14 --depend
This option instructs armasm to save source file dependency lists to dependfile. These are
suitable for use with make utilities.

2.14.1 Syntax

--depend=dependfile

2.14.2 See also
• --md on page 2-46.
• --depend_format on page 2-19.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-18
ID031214 Non-Confidential

armasm Command-line Options
2.15 --depend_format
This option changes the format of output dependency files to UNIX-style format, for
compatibility with some UNIX make programs.

2.15.1 Syntax

--depend_format=string

Where string is one of:

unix Generates dependency files with UNIX-style path separators.

unix_escaped
Is the same as unix, but escapes spaces with backslash.

unix_quoted
Is the same as unix, but surrounds path names with double quotes.

2.15.2 See also
• --depend on page 2-18.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-19
ID031214 Non-Confidential

armasm Command-line Options
2.16 --diag_error
Sets diagnostic messages that have a specific tag to Error severity.

2.16.1 Syntax

--diag_error=tag{,tag}

Where tag can be:

• A diagnostic message number to set to error severity.

• warning to treat all warnings as errors.

2.16.2 Usage

Diagnostic messages output by armasm can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with this option by separating each tag using a comma. You
can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

Table 2-2 shows the meaning of the term severity used in the option descriptions.

2.16.3 See also
• --brief_diagnostics on page 2-13.
• --diag_warning on page 2-24.
• --diag_suppress on page 2-23.

Table 2-2 Severity of diagnostic messages

Severity Description

Error Errors indicate violations in the syntactic or semantic rules of assembly
language. Assembly continues, but object code is not generated.

Warning Warnings indicate unusual conditions in your code that might indicate a
problem. Assembly continues, and object code is generated unless any
problems with an Error severity are detected.

Remark Remarks indicate common, but not recommended, use of assembly
language. These diagnostics are not issued by default. Assembly
continues, and object code is generated unless any problems with an
Error severity are detected.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-20
ID031214 Non-Confidential

armasm Command-line Options
2.17 --diag_remark
Sets diagnostic messages that have a specific tag to Remark severity.

2.17.1 Syntax

--diag_remark=tag{,tag}

Where tag is a comma-separated list of diagnostic message numbers.

2.17.2 Usage

Diagnostic messages output by armasm can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with these options by separating each tag using a comma.
You can specify the optional assembler prefix A before the tag number. If any prefix other than
A is included, the message number is ignored.

2.17.3 See also
• --brief_diagnostics on page 2-13.
• --diag_error on page 2-20.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-21
ID031214 Non-Confidential

armasm Command-line Options
2.18 --diag_style
Specifies the display style for diagnostic messages.

2.18.1 Syntax

--diag_style=style

Where style is one of:

arm Display messages using the ARM assembler style. This is the default if
--diag_style is not specified.

ide Include the line number and character count for the line that is in error. These
values are displayed in parentheses.

gnu Display messages using the GNU style.

2.18.2 Usage

Choosing the option --diag_style=ide implicitly selects the option --brief_diagnostics.
Explicitly selecting --no_brief_diagnostics on the command line overrides the selection of
--brief_diagnostics implied by --diag_style=ide.

Selecting either the option --diag_style=arm or the option --diag_style=gnu does not imply any
selection of --brief_diagnostics.

2.18.3 See also
• --brief_diagnostics on page 2-13.
• --diag_style.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-22
ID031214 Non-Confidential

armasm Command-line Options
2.19 --diag_suppress
Suppresses diagnostic messages that have a specific tag.

2.19.1 Syntax

--diag_suppress=tag{,tag}

Where tag can be:
• A diagnostic message number to be suppressed.
• error, to suppress all downgradeable errors.
• warning, to suppress all warnings.

Diagnostic messages output by armasm can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with this option by separating each tag using a comma.

2.19.2 Examples

For example, to suppress the warning messages that have numbers 1293 and 187, use the
following command:

armasm --cpu=8-A.64 --diag_suppress=1293,187

You can specify the optional assembler prefix A before the tag number. For example:

armasm --cpu=8-A.64 --diag_suppress=A1293,A187

If any prefix other than A is included, the message number is ignored. Diagnostic message tags
can be cut and pasted directly into a command line.

2.19.3 See also
• --diag_error on page 2-20.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-23
ID031214 Non-Confidential

armasm Command-line Options
2.20 --diag_warning
Sets diagnostic messages that have a specific tag to Warning severity.

2.20.1 Syntax

--diag_warning=tag{,tag}

Where tag can be:
• A diagnostic message number to set to warning severity.
• error, to set all errors that can be downgraded to warnings.

Diagnostic messages output by armasm can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with these options by separating each tag using a comma.
You can specify the optional assembler prefix A before the tag number. If any prefix other than
A is included, the message number is ignored.

2.20.2 See also
• --diag_error on page 2-20.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-24
ID031214 Non-Confidential

armasm Command-line Options
2.21 --dllexport_all
This option gives all exported global symbols STV_PROTECTED visibility in ELF rather than
STV_HIDDEN, unless overridden by source directives.

2.21.1 See also
• EXPORT or GLOBAL on page 10-37.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-25
ID031214 Non-Confidential

armasm Command-line Options
2.22 --dwarf2
This option can be used with --debug, to instruct armasm to generate DWARF 2 debug tables.

Note
 This option is not supported for AArch64 state.

2.22.1 See also
• --debug on page 2-17.
• --dwarf3 on page 2-27.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-26
ID031214 Non-Confidential

armasm Command-line Options
2.23 --dwarf3
This option can be used with --debug, to instruct armasm to generate DWARF 3 debug tables.
This is the default if --debug is specified.

2.23.1 See also
• --debug on page 2-17.
• --dwarf2 on page 2-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-27
ID031214 Non-Confidential

armasm Command-line Options
2.24 --errors
This option instructs armasm to output error messages to errorfile.

2.24.1 Syntax

--errors=errorfile
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-28
ID031214 Non-Confidential

armasm Command-line Options
2.25 --execstack
This option generates a .note.GNU-stack section marking the stack as executable.

You can also use the AREA directive to generate an executable .note.GNU-stack section:

AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC,CODE

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

2.25.1 See also
• --no_execstack on page 2-49.
• AREA on page 10-14.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-29
ID031214 Non-Confidential

armasm Command-line Options
2.26 --exceptions
This option instructs armasm to switch on exception table generation for all functions defined by
FUNCTION (or PROC) and ENDFUNC (or ENDP).

Note
 This option is not supported for AArch64 state.

2.26.1 See also
• --no_exceptions on page 2-50.
• --exceptions_unwind on page 2-31.
• --no_exceptions_unwind on page 2-51.
• FRAME UNWIND ON on page 10-51.
• FUNCTION or PROC on page 10-53.
• ENDFUNC or ENDP on page 10-34.
• FRAME UNWIND OFF on page 10-52.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-30
ID031214 Non-Confidential

armasm Command-line Options
2.27 --exceptions_unwind
This option instructs armasm to produce unwind tables for functions where possible. This is the
default.

For finer control, use FRAME UNWIND ON and FRAME UNWIND OFF directives.

Note
 This option is not supported for AArch64 state.

2.27.1 See also
• --no_exceptions_unwind on page 2-51.
• --exceptions on page 2-30.
• --no_exceptions on page 2-50.
• FRAME UNWIND ON on page 10-51.
• FRAME UNWIND OFF on page 10-52.
• FUNCTION or PROC on page 10-53.
• ENDFUNC or ENDP on page 10-34.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-31
ID031214 Non-Confidential

armasm Command-line Options
2.28 --fpmode
This option specifies the floating-point model, and sets library attributes and floating-point
optimizations to select the most suitable library when linking.

2.28.1 Syntax

--fpmode=model

Where model is one of:

none Source code is not permitted to use any floating-point type or floating point
instruction. This option overrides any explicit --fpu=name option.

ieee_full All facilities, operations, and representations guaranteed by the IEEE standard are
available in single and double-precision. Modes of operation can be selected
dynamically at runtime.

ieee_fixed IEEE standard with round-to-nearest and no inexact exception.

ieee_no_fenv IEEE standard with round-to-nearest and no exceptions. This mode is compatible
with the Java floating-point arithmetic model.

std IEEE finite values with denormals flushed to zero, round-to-nearest and no
exceptions. It is C and C++ compatible. This is the default option.
Finite values are as predicted by the IEEE standard. It is not guaranteed that NaNs
and infinities are produced in all circumstances defined by the IEEE model, or
that when they are produced, they have the same sign. Also, it is not guaranteed
that the sign of zero is that predicted by the IEEE model.

fast Some value altering optimizations, where accuracy is sacrificed to fast execution.
This is not IEEE compatible, and is not standard C.

Note
 This does not cause any changes to the code that you write.

2.28.2 Example

armasm --cpu=8-A.32 --fpmode ieee_full inputfile.s

2.28.3 See also

Reference
• --fpu on page 2-33.

Other information
• IEEE Standards Association http://standards.ieee.org/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-32
ID031214 Non-Confidential

armasm Command-line Options
2.29 --fpu
--fpu=list lists the supported FPU names that can be used with the --fpu=name option.

--fpu=name specifies the target FPU architecture.

2.29.1 Syntax

--fpu=list

or

--fpu=name

Where name is one of:

none Selects no floating-point architecture. No floating-point code is to be used.
This produces an error if your code contains floating-point instructions.

softvfp Selects software floating-point linkage.

fp-armv8 Selects the integral ARMv8 floating-point hardware. This is the default in
AArch32 and AArch64 states.

softvfp+fp-armv8 Selects the integral ARMv8 floating-point hardware with software
floating-point linkage.

Note
 Software floating-point linkage is not supported for AArch64 state.

2.29.2 Usage

If you specify the --fpu=name option it overrides any implicit FPU set by the --cpu option. armasm
produces an error if the FPU you specify explicitly is incompatible with the CPU. Floating-point
instructions also produce either errors or warnings if assembled for the wrong target FPU.

armasm sets a build attribute corresponding to name in the object file. The linker determines
compatibility between object files, and selection of libraries, accordingly.

2.29.3 See also
• --fpmode on page 2-32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-33
ID031214 Non-Confidential

armasm Command-line Options
2.30 -g
This option is a synonym for --debug.

2.30.1 See also
• --debug on page 2-17.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-34
ID031214 Non-Confidential

armasm Command-line Options
2.31 --help
This option instructs armasm to show a summary of the available command-line options.

2.31.1 See also
• --version_number on page 2-69.
• --vsn on page 2-71.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-35
ID031214 Non-Confidential

armasm Command-line Options
2.32 -i
This option adds directories to the source file include path. Any directories added using this
option have to be fully qualified.

2.32.1 Syntax

-idir{,dir, ...}

2.32.2 See also
• GET or INCLUDE on page 10-57.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-36
ID031214 Non-Confidential

armasm Command-line Options
2.33 --keep
This option instructs armasm to keep named local labels in the symbol table of the object file, for
use by the debugger.

2.33.1 See also
• KEEP on page 10-64.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-37
ID031214 Non-Confidential

armasm Command-line Options
2.34 --length
This option sets the listing page length to n. Length zero means an unpaged listing. The default
is 66 lines.

2.34.1 Syntax

--length=n

2.34.2 See also
• --list on page 2-42.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-38
ID031214 Non-Confidential

armasm Command-line Options
2.35 --li
This option is a synonym for --littleend.

2.35.1 See also
• --littleend on page 2-43.
• --bigend on page 2-12.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-39
ID031214 Non-Confidential

armasm Command-line Options
2.36 --library_type
This option enables the selected library to be used at link time.

2.36.1 Syntax

--library_type=lib

Where lib is one of:

standardlib Specifies that the full ARM runtime libraries are selected at link time. This
is the default.

microlib Specifies that the C micro-library (microlib) is selected at link time.

Note
 • This option can be used with the assembler or linker when use of the libraries require more

specialized optimizations.

• This option can be overridden at link time by providing it to the linker.

• microlib is not supported for AArch64 state.

2.36.2 See also

• Building an application with microlib on page 3-7 in the ARM C and C++ Libraries and
Floating Point Support User Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-40
ID031214 Non-Confidential

armasm Command-line Options
2.37 --licretry
If you are using floating licenses, this option makes up to 10 attempts to obtain a license when
you invoke armasm.

Use this option if your builds are failing to obtain a license from your license server, and only
after you have ruled out any other problems with the network or the license server setup.

ARM recommends that you place this option in the ARMCOMPILER6_ASMOPT environment variable.
In this way, you do not have to modify your build files.

2.37.1 See also

• --licretry on page 2-80 in the armlink Reference Guide.

• --licretry on page 4-51 in fromelf User Guide.

• ARM® DS-5 License Management Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0577-/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-41
ID031214 Non-Confidential

armasm Command-line Options
2.38 --list
This option instructs armasm to output a detailed listing of the assembly language it produces to
a file.

2.38.1 Syntax

--list={file}

If - is given as file, the listing is sent to stdout.

If you omit file, the listing is sent to inputfile.lst.

Note
 If you omit both file and the equals sign, output is sent to inputfile.lst. However, this syntax
is deprecated and armasm issues a warning. This syntax is to be removed in a later release. Use
--list= instead.

2.38.2 Usage

Use the following command-line options to control the behavior of --list:
• --no_terse.
• --width.
• --length.

• --xref.

2.38.3 See also
• --no_terse on page 2-55.
• --width on page 2-72.
• --length on page 2-38.
• --xref on page 2-73.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-42
ID031214 Non-Confidential

armasm Command-line Options
2.39 --littleend
This option instructs armasm to assemble code suitable for a little-endian ARM processor.

2.39.1 See also
• --bigend on page 2-12.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-43
ID031214 Non-Confidential

armasm Command-line Options
2.40 -m
This option instructs armasm to write source file dependency lists to stdout.

2.40.1 See also
• --md on page 2-46.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-44
ID031214 Non-Confidential

armasm Command-line Options
2.41 --maxcache
This option sets the maximum source cache size to n bytes. The default is 8MB. armasm gives a
warning if the size is less than 8MB.

2.41.1 Syntax

--maxcache=n
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-45
ID031214 Non-Confidential

armasm Command-line Options
2.42 --md
This option instructs armasm to write source file dependency lists to inputfile.d.

2.42.1 See also
• -m on page 2-44.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-46
ID031214 Non-Confidential

armasm Command-line Options
2.43 --no_code_gen
This option instructs armasm to exit after pass 1. No object file is generated. This option is useful
if you only want to check the syntax of the source code or directives.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-47
ID031214 Non-Confidential

armasm Command-line Options
2.44 --no_esc
This option instructs armasm to ignore C-style escaped special characters, such as \n and \t.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-48
ID031214 Non-Confidential

armasm Command-line Options
2.45 --no_execstack
This option generates a .note.GNU-stack section marking the stack as non-executable.

You can also use the AREA directive to generate a non executable .note.GNU-stack section:

AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

If both the command-line option and source directive are used and are different, then the stack
is marked as executable.

2.45.1 See also
• --execstack on page 2-29.
• AREA on page 10-14.

Table 2-3 Specifying a command-line option and an AREA directive for GNU-stack sections

--execstack
command-line
option

--no_execstack
command-line
option

execstack AREA directive execstack execstack

no_execstack AREA directive execstack no_execstack
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-49
ID031214 Non-Confidential

armasm Command-line Options
2.46 --no_exceptions
This option instructs armasm to switch off exception table generation. No tables are generated.
This is the default.

2.46.1 See also
• --exceptions on page 2-30.
• --exceptions_unwind on page 2-31.
• --no_exceptions_unwind on page 2-51.
• FRAME UNWIND ON on page 10-51.
• FRAME UNWIND OFF on page 10-52.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-50
ID031214 Non-Confidential

armasm Command-line Options
2.47 --no_exceptions_unwind
This option instructs armasm to produce no unwind tables.

2.47.1 See also
• --exceptions on page 2-30.
• --no_exceptions on page 2-50.
• --exceptions_unwind on page 2-31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-51
ID031214 Non-Confidential

armasm Command-line Options
2.48 --no_hide_all
This option gives all exported and imported global symbols STV_DEFAULT visibility in ELF rather
than STV_HIDDEN, unless overridden by source directives.

You can use the following directives to specify an attribute that overrides the implicit symbol
visibility:
• EXPORT.
• EXTERN.
• GLOBAL.
• IMPORT.

2.48.1 See also
• EXPORT or GLOBAL on page 10-37.
• IMPORT and EXTERN on page 10-58.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-52
ID031214 Non-Confidential

armasm Command-line Options
2.49 --no_reduce_paths
This option disables the elimination of redundant pathname information in file paths. This is the
default setting.

Note
 This option is valid for Windows systems only.

2.49.1 See also
• --reduce_paths on page 2-61.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-53
ID031214 Non-Confidential

armasm Command-line Options
2.50 --no_regs
This option instructs armasm not to predefine register names.

Note
 This option is deprecated. In AArch32 state, use --regnames=none instead.

2.50.1 See also
• --regnames on page 2-62.
• Predeclared core register names in AArch32 state on page 4-8 in armasm User Guide.
• Predeclared extension register names in AArch32 state on page 4-9 in armasm User

Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-54
ID031214 Non-Confidential

armasm Command-line Options
2.51 --no_terse
This option instructs armasm to show the lines of assembly code that have been skipped because
of conditional assembly in the list file. When this option is not specified on the command line,
armasm does not output the skipped assembly code to the list file.

This option turns off the terse flag. By default the terse flag is on.

2.51.1 See also
• --list on page 2-42.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-55
ID031214 Non-Confidential

armasm Command-line Options
2.52 --no_unaligned_access
This option instructs armasm to set an attribute in the object file to disable the use of unaligned
accesses.

2.52.1 See also
• --unaligned_access on page 2-66.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-56
ID031214 Non-Confidential

armasm Command-line Options
2.53 --no_warn
This option turns off warning messages.

2.53.1 See also
• --diag_warning on page 2-24.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-57
ID031214 Non-Confidential

armasm Command-line Options
2.54 -o
This option names the output object file. If this option is not specified, armasm creates an object
filename of the form inputfilename.o. This option is case-sensitive.

2.54.1 Syntax

-o filename
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-58
ID031214 Non-Confidential

armasm Command-line Options
2.55 --pd
This option is a synonym for --predefine.

2.55.1 See also
• --predefine on page 2-60.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-59
ID031214 Non-Confidential

armasm Command-line Options
2.56 --predefine
This option instructs armasm to pre-execute one of the SETA, SETL, or SETS directives.

2.56.1 Syntax

--predefine "directive"

You must enclose directive in quotes, for example:

armasm --cpu=8-A.64 --predefine "VariableName SETA 20" inputfile.s

2.56.2 Usage

armasm also executes a corresponding GBLL, GBLS, or GBLA directive to define the variable before
setting its value.

The variable name is case-sensitive. Variables defined using the command line are global to
armasm source files specified on the command line.

Be aware of the following:

• The command-line interface of your system might require you to enter special character
combinations, such as \”, to include strings in directive. Alternatively, you can use --via
file to include a --predefine argument. The command-line interface does not alter
arguments from --via files.

• --predefine is not equivalent to the compiler option -Dname. --predefine defines a global
variable whereas -Dname defines a macro that the C preprocessor expands.

2.56.3 See also
• --pd on page 2-59.
• GBLA, GBLL, and GBLS on page 10-55.
• SETA, SETL, and SETS on page 10-84.
• IF, ELSE, ENDIF, and ELIF on page 10-61.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-60
ID031214 Non-Confidential

armasm Command-line Options
2.57 --reduce_paths
This option enables the elimination of redundant pathname information in file paths.

Windows systems impose a 260 character limit on file paths. Where relative pathnames exist
whose absolute names expand to longer than 260 characters, you can use the --reduce_paths
option to reduce absolute pathname length by matching up directories with corresponding
instances of .. and eliminating the directory/.. sequences in pairs.

Note
 ARM recommends that you avoid using long and deeply nested file paths, in preference to
minimizing path lengths using the --reduce_paths option.

Note
 This option is valid for 32-bit Windows systems only.

2.57.1 See also
• --no_reduce_paths on page 2-53.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-61
ID031214 Non-Confidential

armasm Command-line Options
2.58 --regnames
This option controls the predefinition of register names.

2.58.1 Syntax

--regnames=option

Where option is one of the following:

none Instructs armasm not to predefine register names.

callstd Defines additional register names based on the AAPCS variant that you are using
as specified by the --apcs option.

all Defines all AAPCS registers regardless of the value of --apcs.

Note
 These options are not supported for AArch64 state.

2.58.2 See also
• --apcs on page 2-7.
• --no_regs on page 2-54.
• Predeclared core register names in AArch32 state on page 4-8 in armasm User Guide.
• Predeclared extension register names in AArch32 state on page 4-9 in armasm User

Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-62
ID031214 Non-Confidential

armasm Command-line Options
2.59 --report-if-not-wysiwyg
This option instructs armasm to report when it outputs an encoding that was not directly requested
in the source code. This can happen when armasm:

• Uses a pseudo-instruction that is not available in other assemblers, for example MOV32.

• Outputs an encoding that does not directly match the instruction mnemonic, for example
if armasm outputs the MVN encoding when assembling the MOV instruction.

• Inserts additional instructions where necessary for instruction syntax semantics, for
example armasm can insert a missing IT instruction before a conditional T32 instruction.

Note
 This option is not supported for AArch64 state.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-63
ID031214 Non-Confidential

armasm Command-line Options
2.60 --show_cmdline
This option outputs the command line used by armasm. It shows the command line after
processing by armasm, and can be useful to check:

• The command line a build system is using.

• How armasm is interpreting the supplied command line, for example, the ordering of
command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard output stream, stdout.

2.60.1 See also
• --via on page 2-70.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-64
ID031214 Non-Confidential

armasm Command-line Options
2.61 --thumb
This option instructs armasm to interpret instructions as T32 instructions, using UAL syntax. This
is equivalent to a THUMB directive at the start of the source file.

Note
 This option is not supported for AArch64 state.

2.61.1 See also
• --arm on page 2-9.
• ARM, THUMB, CODE16 and CODE32 on page 10-17.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-65
ID031214 Non-Confidential

armasm Command-line Options
2.62 --unaligned_access
This option instructs armasm to set an attribute in the object file to enable the use of unaligned
accesses.

2.62.1 See also
• --no_unaligned_access on page 2-56.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-66
ID031214 Non-Confidential

armasm Command-line Options
2.63 --unsafe
This option enables instructions from differing architectures to be assembled without error. It
changes error messages to corresponding warning messages. It also suppresses warnings about
operator precedence.

Note
 This option is not supported for AArch64 state.

2.63.1 See also
• --diag_error on page 2-20.
• --diag_warning on page 2-24.
• Binary operators on page 10-22 in armasm User Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-67
ID031214 Non-Confidential

armasm Command-line Options
2.64 --untyped_local_labels
This option causes armasm not to set the T32 bit for the address of a numeric local label
referenced in an LDR pseudo-instruction.

When this option is not used, if you reference a numeric local label in an LDR pseudo-instruction,
and the label is in T32 code, then armasm sets the T32 bit (bit 0) of the address. You can then use
the address as the target for a BX or BLX instruction.

If you require the actual address of the numeric local label, without the T32 bit set, then use this
option.

Note
 When using this option, if you use the address in a branch (register) instruction, armasm treats it
as an A32 code address, causing the branch to arrive in A32 state, meaning it would interpret
this code as A32 instructions.

Note
 This option is not supported for AArch64 state.

2.64.1 Example

THUMB
...

1
...
LDR r0,=%B1 ; r0 contains the address of numeric local label "1",

; T32 bit is not set if --untyped_local_labels was used
...

2.64.2 See also
• LDR pseudo-instruction on page 3-83.
• B, BL, BX, BLX, and BXJ on page 3-44.
• Numeric local labels on page 10-12 in armasm User Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-68
ID031214 Non-Confidential

armasm Command-line Options
2.65 --version_number
This option displays the version of armasm you are using. armasm displays the version number in
the format nnbbbb, where:
nn is the version number
bbbb is the build number.

For example, version 6.0 build 256 is displayed as 600256.

2.65.1 See also
• --vsn on page 2-71.
• --help on page 2-35.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-69
ID031214 Non-Confidential

armasm Command-line Options
2.66 --via
This option instructs armasm to open file and read in command-line arguments to armasm.

2.66.1 Syntax

--via=file

2.66.2 See also

Reference
• Appendix A Via File Syntax.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-70
ID031214 Non-Confidential

armasm Command-line Options
2.67 --vsn
This option displays the version information and license details. For example:

>armasm --vsn
ARM Assembler, 6.0 [Build 256]
Software supplied by: ARM Limited

2.67.1 See also
• --version_number on page 2-69.
• --help on page 2-35.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-71
ID031214 Non-Confidential

armasm Command-line Options
2.68 --width
This option sets the listing page width to n. The default is 79 characters.

2.68.1 Syntax

--width=n

2.68.2 See also
• --list on page 2-42.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-72
ID031214 Non-Confidential

armasm Command-line Options
2.69 --xref
This option instructs armasm to list cross-referencing information on symbols, including where
they were defined and where they were used, both inside and outside macros. The default is off.

2.69.1 See also
• --list on page 2-42.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 2-73
ID031214 Non-Confidential

Chapter 3
A32 and T32 Instructions

The following topics describe the A32 and T32 instructions supported in AArch32 state by the
ARM assembler:
• A32 and T32 instruction summary on page 3-2.
• Instruction width specifiers on page 3-8.
• Memory access instructions on page 3-9.
• General data processing instructions on page 3-11.
• Multiply instructions on page 3-18.
• Saturating instructions on page 3-19.
• Parallel instructions on page 3-20.
• Packing and unpacking instructions on page 3-21.
• Branch and control instructions on page 3-22.
• Coprocessor instructions on page 3-23.
• Miscellaneous instructions on page 3-24.
• Pseudo-instructions on page 3-25.
• Condition codes on page 3-26.

Note
 Detailed information about the ARMv8 architecture is available under license. Contact your
ARM Account Representative for details.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-1
ID031214 Non-Confidential

A32 and T32 Instructions
3.1 A32 and T32 instruction summary
Table 3-1 gives an overview of the instructions available in the A32 and T32 instruction sets.
Use it to locate individual instructions and pseudo-instructions.

Table 3-1 Location of instructions

Mnemonic Brief description See

ADC, ADD Add with Carry, Add page 3-27

ADR Load program or register-relative address (short range) page 3-32

ADRL pseudo-instruction Load program or register-relative address (medium range) page 3-36

AND Logical AND page 3-38

ASR Arithmetic Shift Right page 3-41

B Branch page 3-44

BFC, BFI Bit Field Clear and Insert page 3-47

BIC Bit Clear page 3-38

BKPT Software breakpoint page 3-48

BL Branch with Link page 3-44

BLX Branch with Link, change instruction set page 3-44

BX Branch, change instruction set page 3-44

BXJ Branch, change to Jazelle® page 3-44

CBZ, CBNZ Compare and Branch if {Non}Zero page 3-49

CLREX Clear Exclusive page 3-50

CLZ Count leading zeros page 3-51

CMN, CMP Compare Negative, Compare page 3-52

CPS Change Processor State page 3-54

CPY pseudo-instruction Copy page 3-55

DBG Debug page 3-56

DMB, DSB Data Memory Barrier, Data Synchronization Barrier page 3-57

EOR Exclusive OR page 3-38

ERET Exception Return page 3-60

HLT Halting breakpoint page 3-61

HVC Hypervisor Call page 3-62

ISB Instruction Synchronization Barrier page 3-57

IT If-Then page 3-63

LDC Load Coprocessor page 3-66

LDM Load Multiple registers page 3-68

LDR Load Register with word page 3-9
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-2
ID031214 Non-Confidential

A32 and T32 Instructions
LDR pseudo-instruction Load Register pseudo-instruction page 3-83

LDA, LDAB, LDAH Load-Acquire Register Word, Byte, Halfword page 3-86

LDAEX, LDAEXB, LDAEXH, LDAEXD Load-Acquire Register Exclusive Word, Byte, Halfword,
Doubleword

page 3-88

LDRB Load Register with Byte page 3-9

LDRBT Load Register with Byte, user mode page 3-9

LDRD Load Registers with two words page 3-9

LDREX Load Register Exclusive page 3-90

LDREXB, LDREXH Load Register Exclusive Byte, Halfword page 3-90

LDREXD Load Register Exclusive Doubleword page 3-90

LDRH Load Register with Halfword page 3-9

LDRHT Load Register with Halfword, user mode page 3-9

LDRSB Load Register with Signed Byte page 3-9

LDRSBT Load Register with Signed Byte, user mode page 3-9

LDRSH Load Register with Signed Halfword page 3-9

LDRSHT Load Register with Signed Halfword, user mode page 3-9

LDRT Load Register with word, user mode page 3-9

LSL, LSR Logical Shift Left, Logical Shift Right page 3-41

MCR Move from Register to Coprocessor page 3-92

MCRR Move from Registers to Coprocessor page 3-92

MLA Multiply Accumulate page 3-105

MLS Multiply and Subtract page 3-105

MOV Move page 3-93

MOVT Move Top page 3-96

MOV32 pseudo-instruction Move 32-bit immediate to register page 3-97

MRC Move from Coprocessor to Register page 3-98

MRRC Move from Coprocessor to Registers page 3-98

MRS Move from PSR to Register page 3-100

MRS pseudo-instruction Move from system Coprocessor to Register page 3-99

MSR Move from Register to PSR page 3-103

MSR pseudo-instruction Move from Register to system Coprocessor page 3-102

MUL Multiply page 3-105

MVN Move Not page 3-93

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-3
ID031214 Non-Confidential

A32 and T32 Instructions
NEG pseudo-instruction Negate page 3-107

NOP No Operation page 3-108

ORN Logical OR NOT page 3-38

ORR Logical OR page 3-38

PKHBT, PKHTB Pack Halfwords page 3-112

PLD Preload Data page 3-114

PLDW Preload Data with intent to Write page 3-114

PLI Preload Instruction page 3-114

PUSH, POP PUSH registers to stack, POP registers from stack page 3-116

QADD, QDADD, QDSUB, QSUB Saturating arithmetic page 3-118

QADD8, QADD16, QASX, QSUB8,
QSUB16, QSAX

Parallel signed saturating arithmetic page 3-109

RBIT Reverse Bits page 3-120

REV, REV16, REVSH Reverse byte order page 3-120

RFE Return From Exception page 3-122

ROR Rotate Right Register page 3-41

RRX Rotate Right with Extend page 3-41

RSB Reverse Subtract page 3-27

RSC Reverse Subtract with Carry page 3-27

SADD8, SADD16, SASX Parallel Signed arithmetic page 3-109

SBC Subtract with Carry page 3-27

SBFX, UBFX Signed, Unsigned Bit Field eXtract page 3-124

SDIV Signed Divide page 3-125

SEL Select bytes according to APSR GE flags page 3-126

SETEND Set Endianness for memory accesses page 3-128

SEV Set Event page 3-129

SEVL Set Event Locally page 3-129

SHADD8, SHADD16, SHASX, SHSUB8,
SHSUB16, SHSAX

Parallel Signed Halving arithmetic page 3-109

SMC Secure Monitor Call page 3-131

SMLAxy Signed Multiply with Accumulate (32 <= 16 x 16 + 32) page 3-141

SMLAD Dual Signed Multiply Accumulate page 3-132

(32 <= 32 + 16 x 16 + 16 x 16)

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-4
ID031214 Non-Confidential

A32 and T32 Instructions
SMLAL Signed Multiply Accumulate (64 <= 64 + 32 x 32) page 3-159

SMLALxy Signed Multiply Accumulate (64 <= 64 + 16 x 16) page 3-134

SMLALD Dual Signed Multiply Accumulate Long page 3-135

(64 <= 64 + 16 x 16 + 16 x 16)

SMLAWy Signed Multiply with Accumulate (32 <= 32 x 16 + 32) page 3-140

SMLSD Dual Signed Multiply Subtract Accumulate page 3-132

(32 <= 32 + 16 x 16 – 16 x 16)

SMLSLD Dual Signed Multiply Subtract Accumulate Long page 3-135

(64 <= 64 + 16 x 16 – 16 x 16)

SMMLA Signed top word Multiply with Accumulate (32 <=
TopWord(32 x 32 + 32))

page 3-137

SMMLS Signed top word Multiply with Subtract (32 <=
TopWord(32 - 32 x 32))

page 3-137

SMMUL Signed top word Multiply (32 <= TopWord(32 x 32)) page 3-137

SMUAD, SMUSD Dual Signed Multiply, and Add or Subtract products page 3-139

SMULxy Signed Multiply (32 <= 16 x 16) page 3-141

SMULL Signed Multiply (64 <= 32 x 32) page 3-159

SMULWy Signed Multiply (32 <= 32 x 16) page 3-140

SRS Store Return State page 3-143

SSAT Signed Saturate page 3-145

SSAT16 Signed Saturate, parallel halfwords page 3-147

SSUB8, SSUB16, SSAX Parallel Signed arithmetic page 3-109

STC Store Coprocessor page 3-66

STM Store Multiple registers page 3-68

STR Store Register with word page 3-9

STRB Store Register with Byte page 3-9

STRBT Store Register with Byte, user mode page 3-9

STRD Store Registers with two words page 3-9

STREX Store Register Exclusive page 3-90

STREXB, STREXH Store Register Exclusive Byte, Halfword page 3-90

STREXD Store Register Exclusive Doubleword page 3-90

STRH Store Register with Halfword page 3-9

STRHT Store Register with Halfword, user mode page 3-9

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-5
ID031214 Non-Confidential

A32 and T32 Instructions
STL, STLB, STLH Store-Release Word, Byte, Halfword page 3-86

STLEX, STLEXB, STLEXH, STLEXD Store-Release Exclusive Word, Byte, Halfword,
Doubleword

page 3-88

STRT Store Register with word, user mode page 3-9

SUB Subtract page 3-27

SUBS pc, lr Exception return, no stack page 3-149

SVC (formerly SWI) Supervisor Call page 3-151

SXTAB, SXTAB16, SXTAH Signed extend, with Addition page 3-152

SXTB, SXTH Signed extend page 3-152

SXTB16 Signed extend page 3-152

SYS Execute System coprocessor instruction page 3-154

TBB, TBH Table Branch Byte, Halfword page 3-155

TEQ Test Equivalence page 3-156

TST Test page 3-156

UADD8, UADD16, UASX Parallel Unsigned arithmetic page 3-109

UDIV Unsigned Divide page 3-125

UHADD8, UHADD16, UHASX, UHSUB8,
UHSUB16, UHSAX

Parallel Unsigned Halving arithmetic page 3-109

UMAAL Unsigned Multiply Accumulate Accumulate Long page 3-158

(64 <= 32 + 32 + 32 x 32)

UMLAL, UMULL Unsigned Multiply Accumulate, Unsigned Multiply page 3-159

(64 <= 32 x 32 + 64), (64 <= 32 x 32)

UQADD8, UQADD16, UQASX, UQSUB8,
UQSUB16, UQSAX

Parallel Unsigned Saturating arithmetic page 3-109

USAD8 Unsigned Sum of Absolute Differences page 3-162

USADA8 Accumulate Unsigned Sum of Absolute Differences page 3-162

USAT Unsigned Saturate page 3-145

USAT16 Unsigned Saturate, parallel halfwords page 3-147

USUB8, USUB16, USAX Parallel Unsigned arithmetic page 3-109

UXTAB, UXTAB16, UXTAH Unsigned extend with Addition page 3-152

UXTB, UXTH Unsigned extend page 3-152

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-6
ID031214 Non-Confidential

A32 and T32 Instructions
UXTB16 Unsigned extend page 3-152

V* See Chapter 4 Advanced SIMD and Floating-point
Programming (32-bit)

WFE, WFI, YIELD Wait For Event, Wait For Interrupt, Yield page 3-129

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-7
ID031214 Non-Confidential

A32 and T32 Instructions
3.2 Instruction width specifiers
The instruction width specifiers .W and .N control the size of T32 instruction encodings.

In T32 code the .W width specifier forces the assembler to generate a 32-bit encoding, even if a
16-bit encoding is available. The .W specifier has no effect when assembling to A32 code.

In T32 code the .N width specifier forces the assembler to generate a 16-bit encoding. In this
case, if the instruction cannot be encoded in 16 bits or if .N is used in A32 code, the assembler
generates an error.

If you use an instruction width specifier, you must place it immediately after the instruction
mnemonic and any condition code, for example:

 BCS.W label ; forces 32-bit instruction even for a short branch
B.N label ; faults if label out of range for 16-bit instruction
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-8
ID031214 Non-Confidential

A32 and T32 Instructions
3.3 Memory access instructions
The following topics describe the memory access instructions:

• LDR and STR (immediate offset) on page 3-71
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

• LDR and STR (register offset) on page 3-74
Load and Store with register offset, pre-indexed register offset, or post-indexed register
offset.

• LDR and STR, unprivileged on page 3-77
Load and Store, with User mode privilege.

• LDR (PC-relative) on page 3-79
Load register. The address is an offset from the PC.

• LDR (register-relative) on page 3-81
Load register. The address is an offset from a base register.

• ADR (PC-relative) on page 3-32
Load a PC-relative address.

• ADR (register-relative) on page 3-34
Load a register-relative address.

• PLD, PLDW, and PLI on page 3-114
Preload an address for the future.

• LDM and STM on page 3-68
Load and Store Multiple Registers.

• PUSH and POP on page 3-116
Push low registers, and optionally the LR, onto the stack.
Pop low registers, and optionally the PC, off the stack.

• RFE on page 3-122
Return From Exception.

• ERET on page 3-60
Exception Return.

• SRS on page 3-143
Store Return State.

• LDA and STL on page 3-86
Load-Acquire and Store-Release.

• LDREX and STREX on page 3-90
Load and Store Register Exclusive.

• LDAEX and STLEX on page 3-88
Load-Acquire and Store-Release Exclusive.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-9
ID031214 Non-Confidential

A32 and T32 Instructions
• CLREX on page 3-50
Clear Exclusive.

Note
 There is also an LDR pseudo-instruction. This either assembles to an LDR instruction, or to a MOV
or MVN instruction.

3.3.1 See also

Concepts
armasm User Guide:
• Memory accesses on page 7-28.

Reference
• LDR pseudo-instruction on page 3-83.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-10
ID031214 Non-Confidential

A32 and T32 Instructions
3.4 General data processing instructions
The following topics describe the general data processing instructions:

• Flexible second operand (Operand2) on page 3-12.

• Operand2 as a constant on page 3-13.

• Operand2 as a register with optional shift on page 3-14.

• Shift operations on page 3-15.

• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-27
Add, Subtract, and Reverse Subtract, each with or without Carry.

• SUBS pc, lr on page 3-149
Return from exception without popping the stack.

• AND, ORR, EOR, BIC, and ORN on page 3-38
Logical AND, OR, Exclusive OR, OR NOT, and Bit Clear.

• CLZ on page 3-51
Count Leading Zeros.

• CMP and CMN on page 3-52
Compare and Compare Negative.

• MOV and MVN on page 3-93
Move and Move Not.

• MOVT on page 3-96
Move Top, Wide.

• TST and TEQ on page 3-156
Test and Test Equivalence.

• SEL on page 3-126
Select bytes from each operand according to the state of the APSR GE flags.

• REV, REV16, REVSH, and RBIT on page 3-120
Reverse bytes or Bits.

• ASR, LSL, LSR, ROR, and RRX on page 3-41
Arithmetic Shift Right.

• SDIV and UDIV on page 3-125
Signed Divide and Unsigned Divide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-11
ID031214 Non-Confidential

A32 and T32 Instructions
3.5 Flexible second operand (Operand2)
Many A32 and T32 general data processing instructions have a flexible second operand. This is
shown as Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:
• Constant.
• Register with optional shift.

3.5.1 See also

Reference
• Operand2 as a constant on page 3-13.
• Operand2 as a register with optional shift on page 3-14.
• Shift operations on page 3-15.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-12
ID031214 Non-Confidential

A32 and T32 Instructions
3.6 Operand2 as a constant
You specify an Operand2 constant in the form:

#constant

where constant is an expression evaluating to a numeric value.

In A32 instructions, constant can have any value that can be produced by rotating an 8-bit value
right by any even number of bits within a 32-bit word.

In T32 instructions, constant can be:

• Any constant that can be produced by shifting an 8-bit value left by any number of bits
within a 32-bit word.

• Any constant of the form 0x00XY00XY.

• Any constant of the form 0xXY00XY00.

• Any constant of the form 0xXYXYXYXY.

Note
 In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These
are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255
and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag if
Operand2 is any other constant.

3.6.1 Instruction substitution

If a value of constant is not available, but its logical inverse or negation is available, then the
assembler produces an equivalent instruction and inverts or negates constant.

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Be aware of this when comparing disassembly listings with source code.

You can use the --diag_warning 1645 assembler command line option to check when an
instruction substitution occurs.

3.6.2 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.

Reference
• Operand2 as a register with optional shift on page 3-14.
• Shift operations on page 3-15.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-13
ID031214 Non-Confidential

A32 and T32 Instructions
3.7 Operand2 as a register with optional shift
You specify an Operand2 register in the form:

Rm {, shift}

where:

Rm is the register holding the data for the second operand.

shift is an optional constant or register-controlled shift to be applied to Rm. It can be one
of:
ASR #n arithmetic shift right n bits, 1 ≤ n ≤ 32.
LSL #n logical shift left n bits, 1 ≤ n ≤ 31.
LSR #n logical shift right n bits, 1 ≤ n ≤ 32.
ROR #n rotate right n bits, 1 ≤ n ≤ 31.
RRX rotate right one bit, with extend.
type Rs register-controlled shift is available in A32 code only, where:

type is one of ASR, LSL, LSR, ROR.
Rs is a register supplying the shift amount, and only the least

significant byte is used.
- if omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions.

3.7.1 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.

Reference
• Operand2 as a constant on page 3-13.
• Shift operations on page 3-15.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-14
ID031214 Non-Confidential

A32 and T32 Instructions
3.8 Shift operations
Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed:

• Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register.

• During the calculation of Operand2 by the instructions that specify the second operand as
a register with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or the flexible second operand description. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is
0. The following descriptions give information about the various shift operations and how they
affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted,
and n is the shift length.

3.8.1 ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 3-1.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

Note
 • If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 3-1 ASR #3

3.8.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to
0. See Figure 3-2 on page 3-16.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

31 1 0

Carry
Flag

...
2345
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-15
ID031214 Non-Confidential

A32 and T32 Instructions
Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-2 LSR #3

3.8.3 LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places,
into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0. See
Figure 3-3.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the
last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the carry flag
when used with LSL #0.

Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-3 LSL #3

3.8.4 ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into the
left-hand n bits of the result. See Figure 3-4 on page 3-17.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1],
of the register Rm.

31 1 0

Carry
Flag

...

000

2345

31 1 0
Carry
Flag ...

000

2345
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-16
ID031214 Non-Confidential

A32 and T32 Instructions
Note
 • If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is

updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 3-4 ROR #3

3.8.5 RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 3-5.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 3-5 RRX

3.8.6 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.

Reference
• Operand2 as a constant on page 3-13.
• Operand2 as a register with optional shift on page 3-14.

31 1 0

Carry
Flag

...
2345

31 1 0

Carry
Flag

... ...
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-17
ID031214 Non-Confidential

A32 and T32 Instructions
3.9 Multiply instructions
The following topics describe the multiply instructions:

• MUL, MLA, and MLS on page 3-105
Multiply, Multiply Accumulate, and Multiply Subtract (32-bit by 32-bit, bottom 32-bit
result).

• UMULL, UMLAL, SMULL, and SMLAL on page 3-159
Unsigned and signed Long Multiply and Multiply Accumulate (32-bit by 32-bit, 64-bit
result or 64-bit accumulator).

• SMULxy and SMLAxy on page 3-141
Signed Multiply and Signed Multiply Accumulate (16-bit by 16-bit, 32-bit result).

• SMULWy and SMLAWy on page 3-140
Signed Multiply and Signed Multiply Accumulate (32-bit by 16-bit, top 32-bit result).

• SMLALxy on page 3-134
Signed Multiply Accumulate (16-bit by 16-bit, 64-bit accumulate).

• SMUAD{X} and SMUSD{X} on page 3-139
Dual 16-bit Signed Multiply with Addition or Subtraction of products.

• SMMUL, SMMLA, and SMMLS on page 3-137
Multiply, Multiply Accumulate, and Multiply Subtract (32-bit by 32-bit, top 32-bit result).

• SMLAD and SMLSD on page 3-132
Dual 16-bit Signed Multiply, 32-bit Accumulation of Sum or Difference of 32-bit
products.

• SMLALD and SMLSLD on page 3-135
Dual 16-bit Signed Multiply, 64-bit Accumulation of Sum or Difference of 32-bit
products.

• UMAAL on page 3-158
Unsigned Multiply Accumulate Accumulate Long.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-18
ID031214 Non-Confidential

A32 and T32 Instructions
3.10 Saturating instructions
The saturating instructions are:
• QADD.
• QDADD.
• QDSUB.
• QSUB.
• SSAT.
• USAT.

Some of the parallel instructions are also saturating.

3.10.1 Saturating arithmetic

These operations are saturating (SAT). This means that, for some value of 2n that depends on the
instruction:

• For a signed saturating operation, if the full result would be less than –2n, the result
returned is –2n.

• For an unsigned saturating operation, if the full result would be negative, the result
returned is zero.

• If the full result would be greater than 2n – 1, the result returned is 2n – 1.

When any of these things occurs, it is called saturation. Some instructions set the Q flag when
saturation occurs.

Note
 Saturating instructions do not clear the Q flag when saturation does not occur. To clear the Q
flag, use an MSR instruction.

The Q flag can also be set by two other instructions, but these instructions do not saturate.

3.10.2 See also

Reference
• MSR (general-purpose register to PSR) on page 3-103.
• QADD, QSUB, QDADD, and QDSUB on page 3-118.
• SMULxy and SMLAxy on page 3-141.
• SMULWy and SMLAWy on page 3-140.
• SSAT and USAT on page 3-145.
• Parallel instructions on page 3-20.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-19
ID031214 Non-Confidential

A32 and T32 Instructions
3.11 Parallel instructions
The following topics describe the parallel instructions:

• Parallel add and subtract on page 3-109
Various byte-wise and halfword-wise additions and subtractions.

• USAD8 and USADA8 on page 3-162
Unsigned sum of absolute differences, and accumulate unsigned sum of absolute
differences.

• SSAT16 and USAT16 on page 3-147
Parallel halfword saturating instructions.

There are also parallel unpacking instructions such as SXT, SXTA, UXT, and UXTA.

3.11.1 See also

Reference
• SXT, SXTA, UXT, and UXTA on page 3-152.
• Packing and unpacking instructions on page 3-21.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-20
ID031214 Non-Confidential

A32 and T32 Instructions
3.12 Packing and unpacking instructions
The following topics describe the packing and unpacking instructions:

• BFC and BFI on page 3-47
Bit Field Clear and Bit Field Insert.

• SBFX and UBFX on page 3-124
Signed or Unsigned Bit Field extract.

• SXT, SXTA, UXT, and UXTA on page 3-152
Sign Extend or Zero Extend instructions, with optional Add.

• PKHBT and PKHTB on page 3-112
Halfword Packing instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-21
ID031214 Non-Confidential

A32 and T32 Instructions
3.13 Branch and control instructions
The following topics describe the branch and control instructions:

• B, BL, BX, BLX, and BXJ on page 3-44
Branch, Branch with Link, Branch and exchange instruction set, Branch with Link and
exchange instruction set, Branch and change instruction set to Jazelle.

• IT on page 3-63
If-Then. IT makes a single subsequent 16-bit instruction from a restricted set conditional.
IT can also make between two and four subsequent instructions conditional, with either
the same condition, or some with one condition and others with the inverse condition, but
this is deprecated.

• CBZ and CBNZ on page 3-49
Compare against zero and branch.

• TBB and TBH on page 3-155
Table Branch Byte or Halfword.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-22
ID031214 Non-Confidential

A32 and T32 Instructions
3.14 Coprocessor instructions
The following topics describe the coprocessor instructions:

• MCR and MCRR on page 3-92
Move to Coprocessor from ARM Register or Registers, possibly with coprocessor
operations.

• MRC and MRRC on page 3-98
Move to ARM Register or Registers from Coprocessor, possibly with coprocessor
operations.

• MSR (ARM register to system coprocessor register) on page 3-102
Move to system coprocessor from ARM register.

• MRS (system coprocessor register to ARM register) on page 3-99
Move to ARM register from system coprocessor.

• SYS on page 3-154
Execute system coprocessor instruction.

• LDC and STC on page 3-66
Transfer Data between memory and Coprocessor.

Note
 A coprocessor instruction causes an Undefined Instruction exception if the specified
coprocessor is not present, or if it is not enabled.

3.14.1 See also

Reference
• Chapter 4 Advanced SIMD and Floating-point Programming (32-bit).
• Miscellaneous instructions on page 3-24.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-23
ID031214 Non-Confidential

A32 and T32 Instructions
3.15 Miscellaneous instructions
The following topics describe miscellaneous instructions:

• BKPT on page 3-48
Software breakpoint.

• HLT on page 3-61
Halting debug-mode breakpoint.

• SVC on page 3-151
Supervisor Call (formerly SWI).

• HVC on page 3-62
Hypervisor Call.

• MRS (PSR to general-purpose register) on page 3-100
Move the contents of the CPSR or SPSR to a general-purpose register.

• MSR (general-purpose register to PSR) on page 3-103
Load specified fields of the CPSR or SPSR with an immediate value, or from the contents
of a general-purpose register.

• CPS on page 3-54
Change Processor State.

• SMC on page 3-131
Secure Monitor Call (formerly SMI).

• SETEND on page 3-128
Set the Endianness bit in the CPSR.

• NOP on page 3-108
No Operation.

• SEV, SEVL, WFE, WFI, and YIELD on page 3-129
Set Event, Wait For Event, Wait for Interrupt, and Yield hint instructions.

• DBG on page 3-56
Debug.

• DMB, DSB, and ISB on page 3-57
Data Memory Barrier, Data Synchronization Barrier, and Instruction Synchronization
Barrier hint instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-24
ID031214 Non-Confidential

A32 and T32 Instructions
3.16 Pseudo-instructions
The ARM assembler supports a number of pseudo-instructions that are translated into the
appropriate combination of A32 or T32 instructions at assembly time.

The following topics describe the pseudo-instructions:

• ADRL pseudo-instruction on page 3-36
Load a PC-relative or register-relative address into a register (medium range, position
independent).

• CPY pseudo-instruction on page 3-55
Copy a value from one register to another.

• LDR pseudo-instruction on page 3-83
Load a register with a 32-bit immediate value or an address (unlimited range, but not
position independent).

• MOV32 pseudo-instruction on page 3-97
Load a register with a 32-bit immediate value or an address (unlimited range, but not
position independent).

• NEG pseudo-instruction on page 3-107
Negate a value in a register.

• UND pseudo-instruction on page 3-161
Generate an architecturally undefined instruction.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-25
ID031214 Non-Confidential

A32 and T32 Instructions
3.17 Condition codes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Table 3-2 shows the condition codes that you can use.

Note
 The precise meanings of the condition codes depend on whether the condition flags were set by
a floating-point instruction or by an A32/T32 data processing instruction.

3.17.1 See also

Concepts
armasm User Guide:
• Comparison of condition code meanings in integer and floating-point code on page 8-14.
• Conditional execution of T32 Advanced SIMD and floating-point instructions on

page 11-15.

Reference
• IT on page 3-63.
• VMRS and VMSR on page 4-74.

Table 3-2 Condition code suffixes

Suffix Meaning

EQ Equal

NE Not equal

CS Carry set (identical to HS)

HS Unsigned higher or same (identical to CS)

CC Carry clear (identical to LO)

LO Unsigned lower (identical to CC)

MI Minus or negative result

PL Positive or zero result

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Signed greater than or equal

LT Signed less than

GT Signed greater than

LE Signed less than or equal

AL Always (this is the default)
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-26
ID031214 Non-Confidential

A32 and T32 Instructions
3.18 ADD, SUB, RSB, ADC, SBC, and RSC
Add, Subtract, and Reverse Subtract, each with or without Carry.

3.18.1 Syntax

op{S}{cond} {Rd}, Rn, Operand2

op{cond} {Rd}, Rn, #imm12 ; T32, 32-bit encodings of ADD and SUB only

where:

op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
RSB Reverse Subtract.
SBC Subtract with Carry.
RSC Reverse Subtract with Carry (A32 only).

S is an optional suffix. If S is specified, the condition flags are updated on the result
of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

imm12 is any value in the range 0-4095.

3.18.2 Usage

The ADD instruction adds the values in Rn and Operand2 or imm12.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The RSB (Reverse Subtract) instruction subtracts the value in Rn from the value of Operand2. This
is useful because of the wide range of options for Operand2.

You can use ADC, SBC, and RSC to synthesize multiword arithmetic.

The ADC (Add with Carry) instruction adds the values in Rn and Operand2, together with the carry
flag.

The SBC (Subtract with Carry) instruction subtracts the value of Operand2 from the value in Rn. If
the carry flag is clear, the result is reduced by one.

The RSC (Reverse Subtract with Carry) instruction subtracts the value in Rn from the value of
Operand2. If the carry flag is clear, the result is reduced by one.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

3.18.3 Use of PC and SP in T32 instructions

In most of these instructions, you cannot use PC (R15) for Rd, or any operand.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-27
ID031214 Non-Confidential

A32 and T32 Instructions
The exceptions are:

• You can use PC for Rn in 32-bit encodings of T32 ADD and SUB instructions, with a constant
Operand2 value in the range 0-4095, and no S suffix. These instructions are useful for
generating PC-relative addresses. Bit[1] of the PC value reads as 0 in this case, so that the
base address for the calculation is always word-aligned.

• You can use PC in 16-bit encodings of T32 ADD{cond} Rd, Rd, Rm instructions, where both
registers cannot be PC. However, the following 16-bit T32 instructions are deprecated:
— ADD{cond} PC, SP, PC.
— ADD{cond} SP, SP, PC.

In most of these instructions, you cannot use SP (R13) for Rd, or any operand. Except that:

• You can use SP for Rn in ADD and SUB instructions.

• ADD{cond} SP, SP, SP is permitted but is deprecated.

• ADD{S}{cond} SP, SP, Rm{,shift} and SUB{S}{cond} SP, SP, Rm{,shift} are permitted if
shift is omitted or LSL #1, LSL #2, or LSL #3.

3.18.4 Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

With the exception of ADD and SUB, use of PC for any operand, in instructions without
register-controlled shift, is deprecated.

In SUB instructions without register-controlled shift, use of PC is deprecated except for the
following cases:
• Use of PC for Rd .
• Use of PC for Rn in the instruction SUB{cond} Rd, Rn, #Constant.

In ADD instructions without register-controlled shift, use of PC is deprecated except for the
following cases:
• Use of PC for Rd in instructions that do not add SP to a register.
• Use of PC for Rn and use of PC for Rm in instructions that add two registers other than SP.
• Use of PC for Rn in the instruction ADD{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in ADD and SUB instructions, however, ADDS PC, SP, #Constant and SUBS
PC, SP, #Constant are deprecated.

You can use SP in ADD (register) and SUB (register) if Rn is SP and shift is omitted or LSL #1, LSL
#2, or LSL #3.

Other uses of SP in these A32 instructions are deprecated.

3.18.5 Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-28
ID031214 Non-Confidential

A32 and T32 Instructions
3.18.6 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ADDS Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

ADD{cond} Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

ADDS Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

ADD{cond} Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

ADD Rd, Rd, Rm
Rd and Rm can be Hi or Lo registers.

ADDS Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

ADD{cond} Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

ADCS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ADC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

ADD SP, SP, #imm
imm range 0-508, word aligned.

ADD Rd, SP, #imm
imm range 0-1020, word aligned. Rd must be a Lo register.

ADD Rd, pc, #imm
imm range 0-1020, word aligned. Rd must be a Lo register. Bits[1:0] of the PC are read as 0 in this
instruction.

SUBS Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

SUB{cond} Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

SUBS Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be both Lo registers. This form can only be used outside an
IT block.

SUB{cond} Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT block.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-29
ID031214 Non-Confidential

A32 and T32 Instructions
SUBS Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

SUB{cond} Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

SUB{cond} SP, SP, #imm
imm range 0-508, word aligned.

SBCS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

SBC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

RSBS Rd, Rn, #0
Rd and Rn must both be both Lo registers. This form can only be used outside an IT block.

RSB{cond} Rd, Rn, #0
Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

3.18.7 Examples

 ADD r2, r1, r3
 SUBS r8, r6, #240 ; sets the flags on the result
 RSB r4, r4, #1280 ; subtracts contents of R4 from 1280
 ADCHI r11, r0, r3 ; only executed if C flag set and Z
 ; flag clear
 RSCSLE r0,r5,r0,LSL r4 ; conditional, flags set

3.18.8 Incorrect example

 RSCSLE r0,pc,r0,LSL r4 ; PC not permitted with register
 ; controlled shift

3.18.9 Multiword arithmetic examples

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

These instructions subtract one 96-bit integer from another:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, these examples use consecutive registers for multiword values. There is no
requirement to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-30
ID031214 Non-Confidential

A32 and T32 Instructions
3.18.10 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.
• Instruction substitution on page 3-13.

Reference
• Parallel add and subtract on page 3-109.
• ADR (PC-relative) on page 3-32.
• ADR (register-relative) on page 3-34.
• ADRL pseudo-instruction on page 3-36.
• SUBS pc, lr on page 3-149.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-31
ID031214 Non-Confidential

A32 and T32 Instructions
3.19 ADR (PC-relative)
ADR generates a PC-relative address in the destination register, for a label in the current area.

3.19.1 Syntax

ADR{cond}{.W} Rd,label

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rd is the destination register to load.

label is a PC-relative expression.
label must be within a limited distance of the current instruction.

3.19.2 Usage

ADR produces position-independent code, because the assembler generates an instruction that
adds or subtracts a value to the PC.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

label must evaluate to an address in the same assembler area as the ADR instruction.

If you use ADR to generate a target for a BX or BLX instruction, it is your responsibility to set the
T32 bit (bit 0) of the address if the target contains T32 instructions.

3.19.3 Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Table 3-3 shows the possible offsets between the label and the current instruction.

3.19.4 ADR in T32

You can use the .W width specifier to force ADR to generate a 32-bit instruction in T32 code. ADR
with .W always generates a 32-bit instruction, even if the address can be generated in a 16-bit
instruction.

Table 3-3 PC-relative offsets

Instruction Offset range

A32 ADR See Operand2 as a constant on page 3-13

32-bit T32 encoding
ADR

+/– 4095

16-bit T32 encoding
ADR a

a. Rd must be in the range R0-R7.

0-1020 b

b. Must be a multiple of 4.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-32
ID031214 Non-Confidential

A32 and T32 Instructions
For forward references, ADR without .W always generates a 16-bit instruction in T32 code, even
if that results in failure for an address that could be generated in a 32-bit T32 ADD instruction.

3.19.5 Restrictions

In T32 code, Rd cannot be PC or SP.

In A32 code, Rd can be PC or SP but use of SP is deprecated.

3.19.6 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Memory access instructions on page 3-9.
• ADRL pseudo-instruction on page 3-36.
• AREA on page 10-14.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-33
ID031214 Non-Confidential

A32 and T32 Instructions
3.20 ADR (register-relative)
ADR generates a register-relative address in the destination register, for a label defined in a
storage map.

3.20.1 Syntax

ADR{cond}{.W} Rd,label

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rd is the destination register to load.

label is a symbol defined by the FIELD directive. label specifies an offset from the base
register which is defined using the MAP directive.
label must be within a limited distance from the base register.

3.20.2 Usage

ADR generates code to easily access named fields inside a storage map.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

3.20.3 Restrictions

In T32 code:
• Rd cannot be PC.
• Rd can be SP only if the base register is SP.

3.20.4 Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an
error if label is out of range.

Table 3-4 shows the possible offsets between label and the current instruction.

Table 3-4 register-relative offsets

Instruction Offset range

A32 ADR See Operand2 as a constant on page 3-13

32-bit T32 encoding
ADR

+/– 4095

16-bit T32 encoding
ADR, base register is
SP a

a. Rd must be in the range R0-R7 or SP. If Rd is SP, the offset range is
–508 to 508 and must be a multiple of 4

0-1020 b

b. Must be a multiple of 4.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-34
ID031214 Non-Confidential

A32 and T32 Instructions
3.20.5 ADR in T32

You can use the .W width specifier to force ADR to generate a 32-bit instruction in T32 code. ADR
with .W always generates a 32-bit instruction, even if the address can be generated in a 16-bit
instruction.

For forward references, ADR without .W, with base register SP, always generates a 16-bit
instruction in T32 code, even if that results in failure for an address that could be generated in a
32-bit T32 ADD instruction.

3.20.6 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Memory access instructions on page 3-9.
• MAP on page 10-70.
• FIELD on page 10-40.
• ADRL pseudo-instruction on page 3-36.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-35
ID031214 Non-Confidential

A32 and T32 Instructions
3.21 ADRL pseudo-instruction
Load a PC-relative or register-relative address into a register. It is similar to the ADR instruction.
ADRL can load a wider range of addresses than ADR because it generates two data processing
instructions.

3.21.1 Syntax

ADRL{cond} Rd,label

where:

cond is an optional condition code.

Rd is the register to load.

label is a PC-relative or register-relative expression.

3.21.2 Usage

ADRL always assembles to two 32-bit instructions. Even if the address can be reached in a single
instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error message
and the assembly fails. You can use the LDR pseudo-instruction for loading a wider range of
addresses.

ADRL produces position-independent code, because the address is PC-relative or register-relative.

If label is PC-relative, it must evaluate to an address in the same assembler area as the ADRL
pseudo-instruction.

If you use ADRL to generate a target for a BX or BLX instruction, it is your responsibility to set the
T32 bit (bit 0) of the address if the target contains T32 instructions.

3.21.3 Availability and range

The available range depends on the instruction set in use:
A32 The range of the instruction is any value that can be generated by two ADD or two

SUB instructions. That is, any value that can be produced by the addition of two
values, each of which is 8 bits rotated right by any even number of bits within a
32-bit word. See Operand2 as a constant on page 3-13 for more information.

32-bit T32 encoding
±1MB bytes to a byte, halfword, or word-aligned address.

16-bit T32 encoding
ADRL is not available.

The given range is relative to a point four bytes (in T32 code) or two words (in A32 code) after
the address of the current instruction.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-36
ID031214 Non-Confidential

A32 and T32 Instructions
3.21.4 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.
• Load immediates into registers on page 7-6.

Reference
• LDR pseudo-instruction on page 3-83.
• AREA on page 10-14.
• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-27.
• Condition codes on page 3-26.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-37
ID031214 Non-Confidential

A32 and T32 Instructions
3.22 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

3.22.1 Syntax

op{S}{cond} Rd, Rn, Operand2

where:

op is one of:
AND logical AND.
ORR logical OR.
EOR logical Exclusive OR.
BIC logical AND NOT.
ORN logical OR NOT (T32 only).

S is an optional suffix. If S is specified, the condition flags are updated on the result
of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

3.22.2 Usage

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on
the values in Rn and Operand2.

The BIC (Bit Clear) instruction performs an AND operation on the bits in Rn with the
complements of the corresponding bits in the value of Operand2.

The ORN T32 instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute BIC for AND, AND for BIC, ORN for ORR, or ORR
for ORN. Be aware of this when reading disassembly listings.

3.22.3 Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand in any of these instructions.

3.22.4 Use of PC and SP in A32 instructions

Using PC and SP in these A32 instructions is deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-38
ID031214 Non-Confidential

A32 and T32 Instructions
3.22.5 Condition flags

If S is specified, these instructions:
• Update the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Do not affect the V flag.

3.22.6 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ANDS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

AND{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

EORS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

EOR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

ORRS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ORR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

BICS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

BIC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Apart from BIC{S}, it does not matter if you specify OP{S} Rd, Rm, Rd. The instruction is the
same.

3.22.7 Examples

 AND r9,r2,#0xFF00
 ORREQ r2,r0,r5
 EORS r0,r0,r3,ROR r6

ANDS r9, r8, #0x19
 EORS r7, r11, #0x18181818
 BIC r0, r1, #0xab

ORN r7, r11, lr, ROR #4
ORNS r7, r11, lr, ASR #32

3.22.8 Incorrect example

 EORS r0,pc,r3,ROR r6 ; PC not permitted with register
 ; controlled shift
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-39
ID031214 Non-Confidential

A32 and T32 Instructions
3.22.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.
• Instruction substitution on page 3-13.

Reference
• SUBS pc, lr on page 3-149.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-40
ID031214 Non-Confidential

A32 and T32 Instructions
3.23 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right
with Extend.

These instructions are the preferred synonyms for MOV instructions with shifted register
operands.

3.23.1 Syntax

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #sh

RRX{S}{cond} Rd, Rm

where:

op is one of ASR, LSL, LSR, or ROR.

S is an optional suffix. If S is specified, the condition flags are updated on the result
of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

Rs is a register holding a shift value to apply to the value in Rm. Only the least
significant byte is used.

sh is a constant shift. The range of values permitted depends on the instruction:
ASR permitted shifts 1-32
LSL permitted shifts 0-31
LSR permitted shifts 1-32
ROR permitted shifts 1-31.

3.23.2 Usage

ASR provides the signed value of the contents of a register divided by a power of two. It copies
the sign bit into vacated bit positions on the left.

LSL provides the value of a register multiplied by a power of two. LSR provides the unsigned
value of a register divided by a variable power of two. Both instructions insert zeros into the
vacated bit positions.

ROR provides the value of the contents of a register rotated by a value. The bits that are rotated
off the right end are inserted into the vacated bit positions on the left.

RRX provides the value of the contents of a register shifted right one bit. The old carry flag is
shifted into bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.

3.23.3 Restrictions in T32 code

T32 instructions must not use PC or SP.

You cannot specify zero for the sh value in an LSL instruction in an IT block.

3.23.4 Use of SP and PC in A32 ASR, LSL, LSR, ROR, and RRX instructions

Using SP in these A32 instructions is deprecated.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-41
ID031214 Non-Confidential

A32 and T32 Instructions
You cannot use PC in instructions with the op{S}{cond} Rd, Rm, Rs syntax. Using PC for Rd and
Rm in the other syntaxes is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The A32 instructions opS{cond} pc,Rm,#sh and RRXS{cond} pc,Rm always disassemble to

the preferred form MOVS{cond} pc,Rm{,shift}.

Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler
cannot warn you about this because it has no information about what the processor mode is
likely to be at execution time.

You cannot use PC for Rd or any operand in any of these instructions if they have a
register-controlled shift.

3.23.5 Condition flags

If S is specified, these instructions update the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.

3.23.6 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ASRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

ASRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

LSLS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSLS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-42
ID031214 Non-Confidential

A32 and T32 Instructions
LSL{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

LSRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

RORS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ROR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

3.23.7 Availability

These instructions are available in A32 and T32.

In T32, these instructions are available in 16-bit and 32-bit encodings.

There is no 16-bit RRX instruction in T32.

3.23.8 Examples

 ASR r7, r8, r9
LSLS r1, r2, r3

 LSR r4, r5, r6
 ROR r4, r5, r6

3.23.9 See also

Reference
• MOV and MVN on page 3-93.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-43
ID031214 Non-Confidential

A32 and T32 Instructions
3.24 B, BL, BX, BLX, and BXJ
Branch, Branch with Link, Branch and exchange instruction set, Branch with Link and
exchange instruction set, Branch and change to Jazelle state.

Note
 Jazelle and BXJ are obsolete in ARMv8.

3.24.1 Syntax

op1{cond}{.W} label

op2{cond} Rm

where:

op1 is one of:
B Branch.
BL Branch with link.
BLX Branch with link, and exchange instruction set.

op2 is one of:
BX Branch and exchange instruction set.
BLX Branch with link, and exchange instruction set.
BXJ Branch, and change to Jazelle execution.

cond is an optional condition code. cond is not available on all forms of this instruction.

.W is an optional instruction width specifier to force the use of a 32-bit B instruction
in T32.

label is a PC-relative expression.

Rm is a register containing an address to branch to.

3.24.2 Operation

All these instructions cause a branch to label, or to the address contained in Rm. In addition:

• The BL and BLX instructions copy the address of the next instruction into LR (R14, the link
register).

• The BX and BLX instructions can change the instruction set.
BLX label always changes the instruction set. It changes a processor in A32 state to T32
state, or a processor in T32 state to A32 state.
BX Rm and BLX Rm derive the target instruction set from bit[0] of Rm:
— If bit[0] of Rm is 0, the processor changes to, or remains in, A32 state.
— If bit[0] of Rm is 1, the processor changes to, or remains in, T32 state.

Note
 There are no equivalent instructions to BX and BLX to change between AArch32 and AArch64
state. The only way to change execution state is by a change of exception level.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-44
ID031214 Non-Confidential

A32 and T32 Instructions
3.24.3 Instruction availability and branch ranges

Table 3-5 shows the instructions that are available in A32 and T32 state. Instructions that are not
shown in this table are not available.

3.24.4 Extending branch ranges

Machine-level B and BL instructions have restricted ranges from the address of the current
instruction. However, you can use these instructions even if label is out of range. Often you do
not know where the linker places label. When necessary, the linker adds code to enable longer
branches. The added code is called a veneer.

3.24.5 B in T32

You can use the .W width specifier to force B to generate a 32-bit instruction in T32 code.

B.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
instruction.

For forward references, B without .W always generates a 16-bit instruction in T32 code, even if
that results in failure for a target that could be reached using a 32-bit T32 instruction.

3.24.6 Register restrictions

Using PC for Rm in the A32 BX instruction is deprecated. You cannot use PC in other A32
instructions.

You can use PC for Rm in the T32 BX instruction. You cannot use PC in other T32 instructions.

Using SP for Rm in these A32 instructions is deprecated.

Using SP for Rm in the T32 BX and BLX instructions is deprecated. You cannot use SP in the other
T32 instructions.

Table 3-5 Branch instruction availability and range

Instruction A32 16-bit T32
encoding

32-bit T32
encoding

B label ±32MB ±2KB ±16MBa

a. Use .W to instruct the assembler to use this 32-bit instruction.

B{cond} label ±32MB –252 to +258 ±1MBa

BL label ±32MB ±4MB b

b. This is an instruction pair.

±16MB

BL{cond} label ±32MB - -

BX Rm Available Available Use 16-bit

BX{cond} Rm Available - -

BLX label ±32MB ±4MB b ±16MB

BLX Rm Available Available Use 16-bit

BLX{cond} Rm Available - -
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-45
ID031214 Non-Confidential

A32 and T32 Instructions
3.24.7 Condition flags

These instructions do not change the flags.

3.24.8 Availability

See Table 3-5 on page 3-45 for details of availability of these instructions in both instruction
sets.

3.24.9 Examples

 B loopA
 BLE ng+8
 BL subC
 BLLT rtX
 BEQ {PC}+4 ; #0x8004

3.24.10 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.
• Changing between AArch64 and AArch32 states on page 3-4.
• Exception levels on page 5-3.
armlink User Guide:
• Chapter 4 Image structure and generation.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-46
ID031214 Non-Confidential

A32 and T32 Instructions
3.25 BFC and BFI
Bit Field Clear and Bit Field Insert. Clear adjacent bits in a register, or Insert adjacent bits from
one register into another.

3.25.1 Syntax

BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the least significant bit that is to be cleared or copied.

width is the number of bits to be cleared or copied. width must not be 0, and (width+lsb)
must be less than or equal to 32.

3.25.2 BFC

width bits in Rd are cleared, starting at lsb. Other bits in Rd are unchanged.

3.25.3 BFI

width bits in Rd, starting at lsb, are replaced by width bits from Rn, starting at bit[0]. Other bits
in Rd are unchanged.

3.25.4 Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

3.25.5 Condition flags

These instructions do not change the flags.

3.25.6 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.25.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-47
ID031214 Non-Confidential

A32 and T32 Instructions
3.26 BKPT
Software breakpoint.

3.26.1 Syntax

BKPT #imm

where:

imm is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an A32 instruction.
• 0-255 (an 8-bit value) in a 16-bit T32 instruction.

3.26.2 Usage

The BKPT instruction causes a BKPT instruction debug event, which generates a debug exception.
The exception is routed to a debug monitor executing in EL1 or EL2.

In both A32 state and T32 state, imm is ignored by the ARM hardware. However, a debugger can
use it to store additional information about the breakpoint.

BKPT is an unconditional instruction. It must not have a condition code in A32 code. In T32 code,
the BKPT instruction does not require a condition code suffix because it always executes
irrespective of its condition code suffix.

3.26.3 Availability

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-48
ID031214 Non-Confidential

A32 and T32 Instructions
3.27 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

3.27.1 Syntax

CBZ Rn, label

CBNZ Rn, label

where:
Rn is the register holding the operand.
label is the branch destination.

3.27.2 Usage

You can use the CBZ or CBNZ instructions to avoid changing the condition flags and to reduce the
number of instructions.

Except that it does not change the condition flags, CBZ Rn, label is equivalent to:

 CMP Rn, #0
 BEQ label

Except that it does not change the condition flags, CBNZ Rn, label is equivalent to:

 CMP Rn, #0
 BNE label

3.27.3 Restrictions

The branch destination must be within 4 to 130 bytes after the instruction and in the same
execution state.

These instructions must not be used inside an IT block.

3.27.4 Condition flags

These instructions do not change the flags.

3.27.5 Availability

These 16-bit instructions are available in T32 only.

There are no A32 or 32-bit T32 versions of these instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-49
ID031214 Non-Confidential

A32 and T32 Instructions
3.28 CLREX
Clear Exclusive. Clears the local record of the executing processor that an address has had a
request for an exclusive access.

3.28.1 Syntax

CLREX{cond}

where:

cond is an optional condition code.

Note
 cond is permitted only in T32 code, using a preceding IT instruction, but this is

deprecated. This is an unconditional instruction in A32.

3.28.2 Usage

Use the CLREX instruction to return a closely-coupled exclusive access monitor to its open-access
state. This removes the requirement for a dummy store to memory.

It is implementation defined whether CLREX also clears the global record of the executing
processor that an address has had a request for an exclusive access.

3.28.3 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit CLREX instruction in T32.

3.28.4 See also

Reference
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-50
ID031214 Non-Confidential

A32 and T32 Instructions
3.29 CLZ
Count Leading Zeros.

3.29.1 Syntax

CLZ{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the operand register.

3.29.2 Usage

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit 31 is set.

3.29.3 Register restrictions

You cannot use PC for any operand.

Using SP in these A32 instructions is deprecated.

You cannot use SP in T32 instructions.

3.29.4 Condition flags

This instruction does not change the flags.

3.29.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.29.6 Examples

 CLZ r4,r9
 CLZNE r2,r3

Use the CLZ T32 instruction followed by a left shift of Rm by the resulting Rd value to normalize
the value of register Rm. Use MOVS, rather than MOV, to flag the case where Rm is zero:

CLZ r5, r9
MOVS r9, r9, LSL r5

3.29.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-51
ID031214 Non-Confidential

A32 and T32 Instructions
3.30 CMP and CMN
Compare and Compare Negative.

3.30.1 Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

3.30.2 Usage

These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not place the result in any register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a
SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute CMN for CMP, or CMP for CMN. Be aware of
this when reading disassembly listings.

3.30.3 Use of PC in A32 and T32 instructions

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

Using PC (R15) in these A32 instructions without register controlled shift is deprecated.

If you use PC as Rn in A32 instructions, the value used is the address of the instruction plus 8.

You cannot use PC for any operand in these T32 instructions.

3.30.4 Use of SP in A32 and T32 instructions

You can use SP for Rn in A32 and T32 instructions.

Using SP for Rm in A32 instructions is deprecated.

Using SP for Rm in a 16-bit T32 CMP Rn, Rm instruction but this is deprecated. Other use of SP for
Rm is not permitted in T32.

3.30.5 Condition flags

These instructions update the N, Z, C and V flags according to the result.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-52
ID031214 Non-Confidential

A32 and T32 Instructions
3.30.6 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

CMP Rn, Rm Lo register restriction does not apply.

CMN Rn, Rm Rn and Rm must both be Lo registers.

CMP Rn, #imm Rn must be a Lo register. imm range 0-255.

3.30.7 Examples

 CMP r2, r9
 CMN r0, #6400
 CMPGT sp, r7, LSL #2

3.30.8 Incorrect example

 CMP r2, pc, ASR r0 ; PC not permitted with register-controlled shift

3.30.9 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.
• Instruction substitution on page 3-13.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-53
ID031214 Non-Confidential

A32 and T32 Instructions
3.31 CPS
CPS (Change Processor State) changes one or more of the mode, A, I, and F bits in the CPSR,
without changing the other CPSR bits.

CPS is only permitted in privileged software execution, and has no effect in User mode.

CPS cannot be conditional, and is not permitted in an IT block.

3.31.1 Syntax

CPSeffect iflags{, #mode}

CPS #mode

where:

effect is one of:
IE Interrupt or abort enable.
ID Interrupt or abort disable.

iflags is a sequence of one or more of:
a Enables or disables imprecise aborts.
i Enables or disables IRQ interrupts.
f Enables or disables FIQ interrupts.

mode specifies the number of the mode to change to.

3.31.2 Condition flags

This instruction does not change the condition flags.

3.31.3 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:
• CPSIE iflags
• CPSID iflags

You cannot specify a mode change in a 16-bit T32 instruction.

3.31.4 Availability

This instruction is available in A32 and T32.

In T32, 16-bit and 32-bit versions of this instruction are available.

3.31.5 Examples

 CPSIE if ; enable interrupts and fast interrupts
 CPSID A ; disable imprecise aborts
 CPSID ai, #17 ; disable imprecise aborts and interrupts, and enter FIQ mode
 CPS #16 ; enter User mode
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-54
ID031214 Non-Confidential

A32 and T32 Instructions
3.32 CPY pseudo-instruction
Copy a value from one register to another.

3.32.1 Syntax

CPY{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the register holding the value to be copied.

3.32.2 Usage

The CPY pseudo-instruction copies a value from one register to another, without changing the
condition flags.

CPY Rd, Rm assembles to MOV Rd, Rm.

3.32.3 Availability

This pseudo-instruction is available in A32 code and in T32 code.

3.32.4 Register restrictions

Using SP or PC for both Rd and Rm is deprecated.

3.32.5 Condition flags

This instruction does not change the condition flags.

3.32.6 See also

Reference
• MOV and MVN on page 3-93.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-55
ID031214 Non-Confidential

A32 and T32 Instructions
3.33 DBG
Debug.

3.33.1 Syntax

DBG{cond} {option}

where:

cond is an optional condition code.

option is an optional limitation on the operation of the hint. The range is 0-15.

3.33.2 Usage

DBG is a hint instruction. It is optional whether it is implemented or not. If it is not implemented,
it behaves as a NOP. The assembler produces a diagnostic message if the instruction executes as
NOP on the target.

Debug hint provides a hint to a debugger and related tools. See your debugger and related tools
documentation to determine the use, if any, of this instruction.

3.33.3 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.33.4 See also

Reference
• NOP on page 3-108.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-56
ID031214 Non-Confidential

A32 and T32 Instructions
3.34 DMB, DSB, and ISB
Data Memory Barrier, Data Synchronization Barrier, and Instruction Synchronization Barrier.

3.34.1 Syntax

DMB{cond} {option}

DSB{cond} {option}

ISB{cond} {option}

where:

cond is an optional condition code.

Note
 cond is permitted only in T32 code. These are unconditional instructions in A32.

option is an optional limitation on the operation of the hint.

3.34.2 DMB

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that
appear in program order before the DMB instruction are observed before any explicit memory
accesses that appear in program order after the DMB instruction. It does not affect the ordering of
any other instructions executing on the processor.

Permitted values of option are:

SY Full system DMB operation. This is the default and can be omitted.

LD DMB operation that waits only for loads to complete.

ST DMB operation that waits only for stores to complete.

ISH DMB operation only applies to the inner shareable domain.

ISHLD DMB operation that waits only for loads to complete, and only applies to the inner
shareable domain.

ISHST DMB operation that waits only for stores to complete, and only applies to the
inner shareable domain.

NSH DMB operation only applies out to the point of unification.

NSHLD DMB operation that waits only for loads to complete and only applies out to the
point of unification.

NSHST DMB operation that waits only for stores to complete and only out to the point of
unification.

OSH DMB operation only applies to the outer shareable domain.

OSHLD DMB operation that waits only for loads to complete, and only applies to the outer
shareable domain.

OSHST DMB operation that waits only for stores to complete, and only applies to the
outer shareable domain.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-57
ID031214 Non-Confidential

A32 and T32 Instructions
3.34.3 DSB

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in
program order after this instruction executes until this instruction completes. This instruction
completes when:
• All explicit memory accesses before this instruction complete.
• All Cache, Branch predictor and TLB maintenance operations before this instruction

complete.

Permitted values of option are:

SY Full system DSB operation. This is the default and can be omitted.

LD DSB operation that waits only for loads to complete.

ST DSB operation that waits only for stores to complete.

ISH DSB operation only applies to the inner shareable domain.

ISHLD DSB operation that waits only for loads to complete, and only applies to the inner
shareable domain.

ISHST DSB operation that waits only for stores to complete, and only applies to the inner
shareable domain.

NSH DSB operation only applies out to the point of unification.

NSHLD DSB operation that waits only for loads to complete and only applies out to the
point of unification.

NSHST DSB operation that waits only for stores to complete and only applies out to the
point of unification.

OSH DSB operation only applies to the outer shareable domain.

OSHLD DSB operation that waits only for loads to complete, and only applies to the outer
shareable domain.

OSHST DSB operation that waits only for stores to complete, and only applies to the outer
shareable domain.

3.34.4 ISB

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions
following the ISB are fetched from cache or memory, after the instruction has been completed.
It ensures that the effects of context altering operations, such as changing the ASID, or
completed TLB maintenance operations, or branch predictor maintenance operations, in
addition to all changes to the CP15 registers, executed before the ISB instruction are visible to
the instructions fetched after the ISB.

In addition, the ISB instruction ensures that any branches that appear in program order after it
are always written into the branch prediction logic with the context that is visible after the ISB
instruction. This is required to ensure correct execution of the instruction stream.

Permitted values of option are:

SY Full system ISB operation. This is the default, and can be omitted.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-58
ID031214 Non-Confidential

A32 and T32 Instructions
3.34.5 Aliases

The following alternative values of option are supported for DMB and DSB, but ARM recommends
that you do not use them:
• SH is an alias for ISH.
• SHST is an alias for ISHST.
• UN is an alias for NSH.
• UNST is an alias for NSHST.

3.34.6 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.34.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-59
ID031214 Non-Confidential

A32 and T32 Instructions
3.35 ERET
Exception Return.

3.35.1 Syntax

ERET{cond}

where:

cond is an optional condition code.

3.35.2 Usage

In a processor that implements the Virtualization Extensions, you can use ERET to perform a
return from an exception taken to Hyp mode.

3.35.3 Operation

When executed in Hyp mode, ERET loads the PC from ELR_hyp and loads the CPSR from
SPSR_hyp. When executed in any other mode, apart from User or System, it behaves as:

• MOVS PC, LR in the A32 instruction set.

• SUBS PC, LR, #0 in the T32 instruction set.

3.35.4 Notes

You must not use ERET in User or System mode. The assembler cannot warn you about this,
because it has no information about the processor mode at execution time.

ERET is the preferred synonym for SUBS PC, LR, #0 in the T32 instruction set.

3.35.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.35.6 See also

Concepts
armasm User Guide:
• Processor modes, and privileged and unprivileged software execution on page 4-3.

Reference
• MOV and MVN on page 3-93.
• SUBS pc, lr on page 3-149.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-60
ID031214 Non-Confidential

A32 and T32 Instructions
3.36 HLT
Halting breakpoint.

3.36.1 Syntax

HLT{Q} #imm

where:

Q is an optional suffix. It only has an effect when Halting debug-mode is disabled.
In this case, if Q is specified, the instruction behaves as a NOP. If Q is not specified,
the instruction is UNDEFINED.

imm is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an A32 instruction.
• 0-63 (a 6-bit value) in a 16-bit T32 instruction.

3.36.2 Usage

The HLT instruction causes the processor to enter Debug state if Halting debug-mode is enabled.

In both A32 state and T32 state, imm is ignored by the ARM hardware. However, a debugger can
use it to store additional information about the breakpoint.

HLT is an unconditional instruction. It must not have a condition code in A32 code. In T32 code,
the HLT instruction does not require a condition code suffix because it always executes
irrespective of its condition code suffix.

3.36.3 Availability

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-61
ID031214 Non-Confidential

A32 and T32 Instructions
3.37 HVC
Hypervisor Call.

3.37.1 Syntax

HVC #imm

where:

imm is any value in the range 0-65535.

3.37.2 Usage

In a processor that implements the Virtualization Extensions, the HVC instruction causes a
Hypervisor Call exception. This means that the processor mode changes to Hyp, the CPSR is
saved to the SPSR_hyp, and execution branches to the HVC vector.

HVC is UNDEFINED if the processor is in Secure state, or in User mode in Non-secure state.

imm is ignored by the processor. However, it can be retrieved by the exception handler to
determine what service is being requested.

3.37.3 Notes

When in Hyp mode, the ERET instruction performs the exception return.

In an implementation that includes the Virtualization Extensions, an SVC instruction executed in
Hyp mode is treated as an HVC instruction.

3.37.4 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.37.5 See also

Reference
• ERET on page 3-60.
• SVC on page 3-151.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-62
ID031214 Non-Confidential

A32 and T32 Instructions
3.38 IT
The IT (If-Then) instruction makes a single following instruction (the IT block) conditional. The
conditional instruction must be from a restricted set of 16-bit instructions.

The IT block can contain between two and four conditional instructions, where the conditions
can be all the same, or some of them can be the logical inverse of the others, but this is
deprecated.

3.38.1 Syntax

IT cond

where:
cond specifies the condition for the following instruction.

3.38.2 Deprecated syntax

IT{x{y{z}}} {cond}

where:
x specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

3.38.3 Usage

The conditional instruction (including branches, but excluding the BKPT instruction) must
specify the condition in the {cond} part of its syntax.

You are not required to write IT instructions in your code, because the assembler generates them
for you automatically according to the conditions specified on the following instructions.
However, if you do write IT instructions, the assembler validates the conditions specified in the
IT instructions against the conditions specified in the following instructions.

Writing the IT instructions ensures that you consider the placing of conditional instructions, and
the choice of conditions, in the design of your code.

When assembling to A32 code, the assembler performs the same checks, but does not generate
any IT instructions.

With the exception of CMP, CMN, and TST, the 16-bit instructions that normally affect the condition
flags, do not affect them when used inside an IT block.

A BKPT instruction in an IT block is always executed, so it does not require a condition in the
{cond} part of its syntax. The IT block continues from the next instruction. Using a BKPT or HLT
instruction inside an IT block is deprecated.

Note
 You can use an IT block for unconditional instructions by using the AL condition.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-63
ID031214 Non-Confidential

A32 and T32 Instructions
Conditional branches inside an IT block have a longer branch range than those outside the IT
block.

3.38.4 Restrictions

The following instructions are not permitted in an IT block:
• IT.
• CBZ and CBNZ.
• TBB and TBH.
• CPS, CPSID and CPSIE.
• SETEND.

Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC is only permitted in an IT block if it is
the last instruction in the block.

• You cannot branch to any instruction in an IT block, unless when returning from an
exception handler.

• You cannot use any assembler directives in an IT block.

Note
 The assembler shows a diagnostic message when any of these instructions are used in an IT
block.

Using any instruction not listed in Table 3-6 in an IT block is deprecated. Also, any explicit
reference to R15 (the PC) in the IT block is deprecated.

3.38.5 Condition flags

This instruction does not change the flags.

Table 3-6 Permitted instructions inside an IT block

16-bit instruction When deprecated

MOV, MVN When Rm or Rd is the PC

LDR, LDRB, LDRH, LDRSB, LDRSH For PC-relative forms

STR, STRB, STRH -

ADD, ADC, RSB, SBC, SUB ADD SP, SP, #imm or SUB SP, SP, #imm or when Rm, Rdn or
Rdm is the PC

CMP, CMN When Rm or Rn is the PC

MUL -

ASR, LSL, LSR, ROR -

AND, BIC, EOR, ORR, TST -

BX, BLX When Rm is the PC
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-64
ID031214 Non-Confidential

A32 and T32 Instructions
3.38.6 Exceptions

Exceptions can occur between an IT instruction and the corresponding IT block, or within an IT
block. This exception results in entry to the appropriate exception handler, with suitable return
information in LR and SPSR.

Instructions designed for use as exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a
PC-modifying instruction can branch to an instruction in an IT block.

3.38.7 Availability

This 16-bit instruction is available in T32 only.

In A32 code, IT is a pseudo-instruction that does not generate any code.

There is no 32-bit version of this instruction.

3.38.8 Examples

IT GT
LDRGT r0, [r1,#4]

IT EQ
ADDEQ r0, r1, r2

3.38.9 Incorrect examples

 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used in IT block

ITT EQ
MOVEQ r0,r1
ADDEQ r0,r0,#1 ; IT block covering more than one instruction is deprecated

IT GT
LDRGT r0,label ; LDR (PC-relative) is deprecated in an IT block

IT EQ
ADDEQ PC,r0 ; ADD is deprecated when Rdn is the PC
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-65
ID031214 Non-Confidential

A32 and T32 Instructions
3.39 LDC and STC
Transfer data between memory and coprocessor.

3.39.1 Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, label

where:

op is either LDC or STC.

cond is an optional condition code.

L is an optional suffix specifying a long transfer.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is either 14 or 15.

CRd is the coprocessor register to load or store.

Rn is the register on which the memory address is based. If PC is specified, the value
used is the address of the current instruction plus eight.

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

offset is an expression evaluating to a multiple of 4, in the range 0 to 1020.

! is an optional suffix. If ! is present, the address including the offset is written back
into Rn.

label is a word-aligned PC-relative expression.
label must be within 1020 bytes of the current instruction.

3.39.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.39.3 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.39.4 Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that
write back to Rn.

You cannot use PC for Rn in the T32 STC instruction.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-66
ID031214 Non-Confidential

A32 and T32 Instructions
The A32 STC instruction that uses the label syntax, or where Rn is PC, is deprecated.

3.39.5 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-67
ID031214 Non-Confidential

A32 and T32 Instructions
3.40 LDM and STM
Load and Store Multiple registers. Any combination of registers R0 to R15 (PC) can be
transferred in A32 state, but there are some restrictions in T32 state.

3.40.1 Syntax

op{addr_mode}{cond} Rn{!}, reglist{^}

where:

op can be either:
LDM Load Multiple registers
STM Store Multiple registers.

addr_mode is any one of the following:
IA Increment address After each transfer. This is the default, and can be

omitted.
IB Increment address Before each transfer (A32 only).
DA Decrement address After each transfer (A32 only).
DB Decrement address Before each transfer.
You can also use the stack oriented addressing mode suffixes, for example, when
implementing stacks.

cond is an optional condition code.

Rn is the base register, the ARM register holding the initial address for the transfer.
Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma-separated if it contains more than one
register or register range.

^ is an optional suffix, available in A32 state only. You must not use it in User mode
or System mode. It has the following purposes:
• If the instruction is LDM (with any addressing mode) and reglist contains the

PC (R15), in addition to the normal multiple register transfer, the SPSR is
copied into the CPSR. This is for returning from exception handlers. Use this
only from exception modes.

• Otherwise, data is transferred into or out of the User mode registers instead
of the current mode registers.

3.40.2 Restrictions on reglist in 32-bit T32 instructions

In 32-bit T32 instructions:
• The SP cannot be in the list.
• The PC cannot be in the list in an STM instruction.
• The PC and LR cannot both be in the list in an LDM instruction.
• There must be two or more registers in the list.

If you write an STM or LDM instruction with only one register in reglist, the assembler
automatically substitutes the equivalent STR or LDR instruction. Be aware of this when comparing
disassembly listings with source code.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-68
ID031214 Non-Confidential

A32 and T32 Instructions
You can use the --diag_warning 1645 assembler command line option to check when an
instruction substitution occurs.

3.40.3 Restrictions on reglist in A32 instructions

A32 store instructions can have SP and PC in the reglist but these instructions that include SP
or PC in the reglist are deprecated.

A32 load instructions can have SP and PC in the reglist but these instructions that include SP in
the reglist or both PC and LR in the reglist are deprecated.

3.40.4 16-bit instructions

16-bit versions of a subset of these instructions are available in T32 code.

The following restrictions apply to the 16-bit instructions:
• All registers in reglist must be Lo registers.
• Rn must be a Lo register.
• addr_mode must be omitted (or IA), meaning increment address after each transfer.
• Writeback must be specified for STM instructions.
• Writeback must be specified for LDM instructions where Rn is not in the reglist.

Note
 16-bit T32 STM instructions with writeback that specify Rn as the lowest register in the reglist
are deprecated.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can
therefore be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also
16-bit instructions.

3.40.5 Loading to the PC

A load to the PC causes a branch to the instruction at the address loaded.

Bits[1:0] of the address loaded must not be 0b10.

If bit[0] is 1, execution continues in T32 state. If bit[0] is 0, execution continues in A32 state.

3.40.6 Loading or storing the base register, with writeback

In A32 or 16-bit T32 instructions, if Rn is in reglist, and writeback is specified with the ! suffix:

• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in
reglist, the initial value of Rn is stored. These instructions are deprecated.

• Otherwise, the loaded or stored value of Rn cannot be relied on, so these instructions are
not permitted.

32-bit T32 instructions are not permitted if Rn is in reglist, and writeback is specified with the
! suffix.

3.40.7 Examples

 LDM r8,{r0,r2,r9} ; LDMIA is a synonym for LDM
 STMDB r1!,{r3-r6,r11,r12}
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-69
ID031214 Non-Confidential

A32 and T32 Instructions
3.40.8 Incorrect examples

 STM r5!,{r5,r4,r9} ; value stored for R5 UNKNOWN
LDMDA r2, {} ; must be at least one register in list

3.40.9 See also

Concepts
armasm User Guide:
• Stack implementation using LDM and STM on page 7-23.

Reference
• Memory access instructions on page 3-9.
• PUSH and POP on page 3-116.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-70
ID031214 Non-Confidential

A32 and T32 Instructions
3.41 LDR and STR (immediate offset)
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

3.41.1 Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

op can be either:
LDR Load Register
STR Store Register.

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load or store for doubleword operations.

Not all options are available in every instruction set.

3.41.2 Offset ranges and availability

Table 3-7 shows the ranges of offsets and availability of these instructions.

Table 3-7 Offsets and availability, LDR/STR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed

A32, word or byte a –4095 to 4095 –4095 to 4095 –4095 to 4095

A32, signed byte, halfword, or signed
halfword

–255 to 255 –255 to 255 –255 to 255

A32, doubleword –255 to 255 –255 to 255 –255 to 255
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-71
ID031214 Non-Confidential

A32 and T32 Instructions
3.41.3 Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

3.41.4 Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• ARM strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

3.41.5 Use of PC

In A32 instructions:

• You can use PC for Rt in LDR word instructions and PC for Rn in LDR instructions.

• You can use PC for Rt in STR word instructions and PC for Rn in STR instructions with
immediate offset syntax (that is the forms that do not writeback to the Rn). However, this
is deprecated.

Other uses of PC are not permitted in these A32 instructions.

In T32 instructions you can use PC for Rt in LDR word instructions and PC for Rn in LDR
instructions. Other uses of PC in these T32 instructions are not permitted.

3.41.6 Use of SP

You can use SP for Rn.

32-bit, T32, word, halfword, signed
halfword, byte, or signed byte a

–255 to 4095 –255 to 255 –255 to 255

32-bit, T32, doubleword –1020 to 1020 c –1020 to 1020 c –1020 to 1020 c

16-bit, T32, word b 0 to 124 c Not available Not available

16-bit, T32, unsigned halfword b 0 to 62 d Not available Not available

16-bit, T32, unsigned byte b 0 to 31 Not available Not available

16-bit, T32, word, Rn is SP e 0 to 1020 c Not available Not available

a. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. Bits[1:0] must not
be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

b. Rt and Rn must be in the range R0-R7.
c. Must be divisible by 4.
d. Must be divisible by 2.
e. Rt must be in the range R0-R7.

Table 3-7 Offsets and availability, LDR/STR, word, halfword, and byte (continued)

Instruction Immediate offset Pre-indexed Post-indexed
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-72
ID031214 Non-Confidential

A32 and T32 Instructions
In A32 code, you can use SP for Rt in word instructions. Using SP for Rt in non-word
instructions in A32 code is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

3.41.7 Examples

 LDR r8,[r10] ; loads R8 from the address in R10.
 LDRNE r2,[r5,#960]! ; (conditionally) loads R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.
 STR r2,[r9,#consta-struc] ; consta-struc is an expression evaluating
 ; to a constant in the range 0-4095.

3.41.8 See also

Reference
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-73
ID031214 Non-Confidential

A32 and T32 Instructions
3.42 LDR and STR (register offset)
Load and Store with register offset, pre-indexed register offset, or post-indexed register offset.

3.42.1 Syntax

op{type}{cond} Rt, [Rn, +/-Rm {, shift}] ; register offset

op{type}{cond} Rt, [Rn, +/-Rm {, shift}]! ; pre-indexed ; A32 only

op{type}{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed ; A32 only

opD{cond} Rt, Rt2, [Rn, +/-Rm] ; register offset, doubleword ; A32 only

opD{cond} Rt, Rt2, [Rn, +/-Rm]! ; pre-indexed, doubleword ; A32 only

opD{cond} Rt, Rt2, [Rn], +/-Rm ; post-indexed, doubleword ; A32 only

where:

op can be either:
LDR Load Register
STR Store Register.

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset. –Rm is not permitted in T32
code.

shift is an optional shift.

Rt2 is the additional register to load or store for doubleword operations.

Not all options are available in every instruction set.

3.42.2 Offset register and shift options

Table 3-8 shows the ranges of offsets and availability of these instructions.

Table 3-8 Options and availability, LDR/STR (register offsets)

Instruction +/–Rm a Shift

A32, word or byte b +/–Rm LSL #0-31 LSR #1-32

ASR #1-32 ROR #1-31 RRX

A32, signed byte, halfword, or signed halfword +/–Rm Not available
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-74
ID031214 Non-Confidential

A32 and T32 Instructions
3.42.3 Register restrictions

In the pre-index and post-index forms, Rn must be different from Rt.

3.42.4 Doubleword register restrictions

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• ARM strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).
• Rm must be different from Rt and Rt2 in LDRD instructions.
• Rn must be different from Rt2 in the pre-index and post-index forms.

3.42.5 Use of PC

In A32 instructions:

• You can use PC for Rt in LDR word instructions, and you can use PC for Rn in LDR
instructions with register offset syntax (that is the forms that do not writeback to the Rn).

• You can use PC for Rt in STR word instructions, and you can use PC for Rn in STR
instructions with register offset syntax (that is the forms that do not writeback to the Rn)
but this is deprecated.

Other uses of PC are not permitted in A32 instructions.

In T32 instructions you can use PC for Rt in LDR word instructions. Other uses of PC in these
T32 instructions are not permitted.

3.42.6 Use of SP

You can use SP for Rn.

In A32, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

You can use SP for Rm in A32 instructions but this is deprecated.

In T32, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

A32, doubleword +/–Rm Not available

32-bit, T32, word, halfword, signed halfword, byte,
or signed byte b

+Rm LSL #0-3

16-bit, T32, all except doublewordc +Rm Not available

a. Where +/–Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
b. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. Bits[1:0] must not

be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.
c. Rt, Rn, and Rm must all be in the range R0-R7.

Table 3-8 Options and availability, LDR/STR (register offsets) (continued)

Instruction +/–Rm a Shift
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-75
ID031214 Non-Confidential

A32 and T32 Instructions
Use of SP for Rm is not permitted in T32 state.

3.42.7 See also

Reference
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-76
ID031214 Non-Confidential

A32 and T32 Instructions
3.43 LDR and STR, unprivileged
Unprivileged Load and Store, byte, halfword, or word.

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software these instructions behave in exactly the same way as
the corresponding load or store instruction, for example LDRSBT behaves in the same way as
LDRSB.

3.43.1 Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (32-bit T32 encoding

only)

op{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (A32 only)

op{type}T{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed (register) (A32 only)

where:

op can be either:
LDR Load Register
STR Store Register.

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset. Rm must not be PC.

shift is an optional shift.

3.43.2 Offset ranges and availability

Table 3-9 shows the ranges of offsets and availability of these instructions.

Table 3-9 Offsets and availability, LDR/STR (User mode)

Instruction Immediate offset Post-indexed +/–Rm a Shift

A32, word or byte Not available –4095 to 4095 +/–Rm LSL #0-31

LSR #1-32

ASR #1-32

ROR #1-31
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-77
ID031214 Non-Confidential

A32 and T32 Instructions
3.43.3 See also

Reference
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.

RRX

A32, signed byte, halfword, or
signed halfword

Not available –255 to 255 +/–Rm Not
available

32-bit, T32, word, halfword, signed
halfword, byte, or signed byte

0 to 255 Not available Not available

a. You can use –Rm, +Rm, or Rm.

Table 3-9 Offsets and availability, LDR/STR (User mode) (continued)

Instruction Immediate offset Post-indexed +/–Rm a Shift
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-78
ID031214 Non-Confidential

A32 and T32 Instructions
3.44 LDR (PC-relative)
Load register. The address is an offset from the PC.

3.44.1 Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression.
label must be within a limited distance of the current instruction.

Note
 Equivalent syntaxes are available for the STR instruction in A32 code but they are deprecated.

3.44.2 Offset ranges

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Table 3-10 shows the possible offsets between the label and the current instruction.

Table 3-10 PC-relative offsets

Instruction Offset range

A32 LDR, LDRB, LDRSB, LDRH, LDRSH a

a. For word loads, Rt can be the PC. A load to the PC causes a branch
to the address loaded. Bits[1:0] must not be 0b10, and if bit[0] is 1,
execution continues in T32 state, otherwise execution continues in
A32 state.

+/– 4095

A32 LDRD +/– 255

32-bit T32 LDR, LDRB, LDRSB, LDRH, LDRSH a +/– 4095

32-bit T32 LDRD +/– 1020 b

b. Must be a multiple of 4.

16-bit T32 LDR c 0-1020 b
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-79
ID031214 Non-Confidential

A32 and T32 Instructions
3.44.3 LDR (PC-relative) in T32

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the target could be reached using a 16-bit LDR.

For forward references, LDR without .W always generates a 16-bit instruction in T32 code, even
if that results in failure for a target that could be reached using a 32-bit T32 LDR instruction.

3.44.4 Doubleword register restrictions

For 32-bit T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• ARM strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

3.44.5 Use of SP

In A32, you can use SP for Rt in LDR word instructions. You can use SP for Rt in LDR non-word
A32 instructions but this is deprecated.

In T32, you can use SP for Rt in LDR word instructions only. All other uses of SP in these
instructions are not permitted in T32 code.

3.44.6 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Pseudo-instructions on page 3-25.
• LDR (PC-relative) in T32.
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.

c. Rt must be in the range R0-R7. There are no byte, halfword, or
doubleword 16-bit instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-80
ID031214 Non-Confidential

A32 and T32 Instructions
3.45 LDR (register-relative)
Load register. The address is an offset from a base register.

3.45.1 Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a symbol defined by the FIELD directive. label specifies an offset from the base
register which is defined using the MAP directive.
label must be within a limited distance of the value in the base register.

3.45.2 Offset ranges

The assembler calculates the offset from the base register for you. The assembler generates an
error if label is out of range.

Table 3-11 shows the possible offsets between label and the current instruction.

Table 3-11 Register-relative offsets

Instruction Offset range

A32 LDR, LDRBa +/– 4095

A32 LDRSB, LDRH, LDRSH +/– 255

A32 LDRD +/– 255

32-bit T32 LDR, LDRB, LDRSB, LDRH, LDRSH a –255 to 4095

32-bit T32 LDRD +/– 1020 b

16-bit T32 LDR c 0 to 124 b

16-bit T32 LDRH c 0 to 62 d

16-bit T32 LDRB c 0 to 31

16-bit T32 LDR, base register is SPe 0 to 1020 b
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-81
ID031214 Non-Confidential

A32 and T32 Instructions
3.45.3 LDR (register-relative) in T32

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the target could be reached using a 16-bit LDR.

For forward references, LDR without .W always generates a 16-bit instruction in T32 code, even
if that results in failure for a target that could be reached using a 32-bit T32 LDR instruction.

3.45.4 Doubleword register restrictions

For 32-bit T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• ARM strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

3.45.5 Use of PC

You can use PC for Rt in word instructions. Other uses of PC are not permitted in these
instructions.

3.45.6 Use of SP

In A32, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

In T32, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

3.45.7 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Memory access instructions on page 3-9.
• Pseudo-instructions on page 3-25.
• LDR (register-relative) in T32.
• FIELD on page 10-40.
• MAP on page 10-70.
• Condition codes on page 3-26.

a. For word loads, Rt can be the PC. A load to the PC causes a branch
to the address loaded. Bits[1:0] must not be 0b10, and if bit[0] is 1,
execution continues in T32 state, otherwise execution continues in
A32 state.

b. Must be a multiple of 4.
c. Rt and base register must be in the range R0-R7.
d. Must be a multiple of 2.
e. Rt must be in the range R0-R7.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-82
ID031214 Non-Confidential

A32 and T32 Instructions
3.46 LDR pseudo-instruction
Load a register with either:
• A 32-bit immediate value.
• An address.

Note
 This description is for the LDR pseudo-instruction only, and not the LDR instruction.

3.46.1 Syntax

LDR{cond}{.W} Rt, =expr

LDR{cond}{.W} Rt, =label_expr

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to be loaded.

expr evaluates to a numeric value.

label_expr is a PC-relative or external expression of an address in the form of a label plus or
minus a numeric value.

3.46.2 Usage

When using the LDR pseudo-instruction:

• If the value of expr can be loaded with a valid MOV or MVN instruction, the assembler uses
that instruction.

• If a valid MOV or MVN instruction cannot be used, or if the label_expr syntax is used, the
assembler places the constant in a literal pool and generates a PC-relative LDR instruction
that reads the constant from the literal pool.

Note
 — An address loaded in this way is fixed at link time, so the code is not

position-independent.
— The address holding the constant remains valid regardless of where the linker places

the ELF section containing the LDR instruction.

The assembler places the value of label_expr in a literal pool and generates a PC-relative LDR
instruction that loads the value from the literal pool.

If label_expr is an external expression, or is not contained in the current section, the assembler
places a linker relocation directive in the object file. The linker generates the address at link
time.

If label_expr is either a named or numeric local label, the assembler places a linker relocation
directive in the object file and generates a symbol for that local label. The address is generated
at link time. If the local label references T32 code, the T32 bit (bit 0) of the address is set.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-83
ID031214 Non-Confidential

A32 and T32 Instructions
The offset from the PC to the value in the literal pool must be less than ±4KB (in A32 and in the
32-bit T32 encoding) or in the range 0 to +1KB (in the 16-bit T32 encoding). You are
responsible for ensuring that there is a literal pool within range.

If the label referenced is in T32 code, the LDR pseudo-instruction sets the T32 bit (bit 0) of
label_expr.

Note
 In RealView® Compilation Tools (RVCT) v2.2, the T32 bit of the address was not set. If you have
code that relies on this behavior, use the command line option --untyped_local_labels to force
the assembler not to set the T32 bit when referencing labels in T32 code.

3.46.3 LDR in T32 code

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the immediate value could be loaded in a 16-bit
MOV, or there is a literal pool within reach of a 16-bit PC-relative load.

If the value to be loaded is not known in the first pass of the assembler, LDR without .W generates
a 16-bit instruction in T32 code, even if that results in a 16-bit PC-relative load for a value that
could be generated in a 32-bit MOV or MVN instruction. However, if the value is known in the first
pass, and it can be generated using a 32-bit MOV or MVN instruction, the MOV or MVN instruction is
used.

The LDR pseudo-instruction never generates a 16-bit flag-setting MOV instruction. Use the
--diag_warning 1727 assembler command line option to check when a 16-bit instruction could
have been used.

You can use the MOV32 pseudo-instruction for generating immediate values or addresses without
loading from a literal pool.

3.46.4 Examples

 LDR r3,=0xff0 ; loads 0xff0 into R3
 ; => MOV.W r3,#0xff0
 LDR r1,=0xfff ; loads 0xfff into R1
 ; => LDR r1,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD 0xfff
 LDR r2,=place ; loads the address of
 ; place into R2
 ; => LDR r2,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD place

3.46.5 See also

Concepts
armasm User Guide:
• Numeric constants on page 10-5.
• Register-relative and PC-relative expressions on page 10-7.
• Numeric local labels on page 10-12.
• Load immediates into registers on page 7-6.
• Load immediate 32-bit values to a register using LDR Rd, =const on page 7-11.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-84
ID031214 Non-Confidential

A32 and T32 Instructions
Reference
• Memory access instructions on page 3-9.
• LTORG on page 10-66.
• MOV32 pseudo-instruction on page 3-97.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-85
ID031214 Non-Confidential

A32 and T32 Instructions
3.47 LDA and STL
Load-Acquire and Store-Release Register.

3.47.1 Syntax

LDA{cond} Rt, [Rn]

STL{cond} Rt, [Rn]

LDAB{cond} Rt, [Rn]

STLB{cond} Rt, [Rn]

LDAH{cond} Rt, [Rn]

STLH{cond} Rt, [Rn]

where:

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

3.47.2 Operation

LDA loads data from memory. If any loads or stores appear after a load-acquire in program order,
then all observers are guaranteed to observe the load-acquire before observing the loads and
stores. Loads and stores appearing before a load-acquire are unaffected.

STL stores data to memory. If any loads or stores appear before a store-release in program order,
then all observers are guaranteed to observe the loads and stores before observing the
store-release. Loads and stores appearing after a store-release are unaffected.

In addition, if a store-release is followed by a load-acquire, each observer is guaranteed to
observe them in program order.

There is no requirement that a load-acquire and store-release be paired.

All store-release operations are multi-copy atomic, meaning that in a multiprocessing system, if
one observer observes a write to memory because of a store-release operation, then all observers
observe it. Also, all observers observe all such writes to the same location in the same order.

3.47.3 Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not be used for Rt or Rn.

3.47.4 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

3.47.5 See also

Reference
• LDAEX and STLEX on page 3-88.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-86
ID031214 Non-Confidential

A32 and T32 Instructions
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-87
ID031214 Non-Confidential

A32 and T32 Instructions
3.48 LDAEX and STLEX
Load-Acquire and Store-Release Register Exclusive.

3.48.1 Syntax

LDAEX{cond} Rt, [Rn]

STLEX{cond} Rd, Rt, [Rn]

LDAEXB{cond} Rt, [Rn]

STLEXB{cond} Rd, Rt, [Rn]

LDAEXH{cond} Rt, [Rn]

STLEXH{cond} Rd, Rt, [Rn]

LDAEXD{cond} Rt, Rt2, [Rn]

STLEXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond is an optional condition code.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rt2 is the second register for doubleword loads or stores.

Rn is the register on which the memory address is based.

3.48.2 LDAEX

LDAEX loads data from memory.

• If the physical address has the Shared TLB attribute, LDAEX tags the physical address as
exclusive access for the current processor, and clears any exclusive access tag for this
processor for any other physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical
address.

• If any loads or stores appear after LDAEX in program order, then all observers are
guaranteed to observe the LDAEX before observing the loads and stores. Loads and stores
appearing before LDAEX are unaffected.

3.48.3 STLEX

STLEX performs a conditional store to memory. The conditions are as follows:

• If the physical address does not have the Shared TLB attribute, and the executing
processor has an outstanding tagged physical address, the store takes place, the tag is
cleared, and the value 0 is returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing
processor does not have an outstanding tagged physical address, the store does not take
place, and the value 1 is returned in Rd.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-88
ID031214 Non-Confidential

A32 and T32 Instructions
• If the physical address has the Shared TLB attribute, and the physical address is tagged as
exclusive access for the executing processor, the store takes place, the tag is cleared, and
the value 0 is returned in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is not tagged
as exclusive access for the executing processor, the store does not take place, and the value
1 is returned in Rd.

If any loads or stores appear before STLEX in program order, then all observers are guaranteed to
observe the loads and stores before observing the store-release. Loads and stores appearing after
STLEX are unaffected.

All store-release operations are multi-copy atomic.

3.48.4 Restrictions

The PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STLEX, Rd must not be the same register as Rt, Rt2, or Rn.

For A32 instructions:
• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated.
• For LDAEXD and STLEXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).

For T32 instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2.
• For LDAEXD, Rt and Rt2 must not be the same register.

3.48.5 Usage

Use LDAEX and STLEX to implement interprocess communication in multiple-processor and
shared-memory systems.

For reasons of performance, keep the number of instructions between corresponding LDAEX and
STLEX instructions to a minimum.

Note
 The address used in a STLEX instruction must be the same as the address in the most recently
executed LDAEX instruction.

3.48.6 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

3.48.7 See also

Reference
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.
• LDA and STL on page 3-86.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-89
ID031214 Non-Confidential

A32 and T32 Instructions
3.49 LDREX and STREX
Load and Store Register Exclusive.

3.49.1 Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

LDREXD{cond} Rt, Rt2, [Rn]

STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond is an optional condition code.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rt2 is the second register for doubleword loads or stores.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. offset is permitted only in T32
instructions. If offset is omitted, an offset of 0 is assumed.

3.49.2 LDREX

LDREX loads data from memory.

• If the physical address has the Shared TLB attribute, LDREX tags the physical address as
exclusive access for the current processor, and clears any exclusive access tag for this
processor for any other physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical
address.

3.49.3 STREX

STREX performs a conditional store to memory. The conditions are as follows:

• If the physical address does not have the Shared TLB attribute, and the executing
processor has an outstanding tagged physical address, the store takes place, the tag is
cleared, and the value 0 is returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing
processor does not have an outstanding tagged physical address, the store does not take
place, and the value 1 is returned in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as
exclusive access for the executing processor, the store takes place, the tag is cleared, and
the value 0 is returned in Rd.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-90
ID031214 Non-Confidential

A32 and T32 Instructions
• If the physical address has the Shared TLB attribute, and the physical address is not tagged
as exclusive access for the executing processor, the store does not take place, and the value
1 is returned in Rd.

3.49.4 Restrictions

The PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STREX, Rd must not be the same register as Rt, Rt2, or Rn.

For A32 instructions:
• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated.
• For LDREXD and STREXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).
• offset is not permitted.

For T32 instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2.
• For LDREXD, Rt and Rt2 must not be the same register.
• The value of offset can be any multiple of four in the range 0-1020.

3.49.5 Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and
shared-memory systems.

For reasons of performance, keep the number of instructions between corresponding LDREX and
STREX instructions to a minimum.

Note
 The address used in a STREX instruction must be the same as the address in the most recently
executed LDREX instruction.

3.49.6 Availability

All these 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

3.49.7 Examples

 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

3.49.8 See also

Reference
• Memory access instructions on page 3-9.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-91
ID031214 Non-Confidential

A32 and T32 Instructions
3.50 MCR and MCRR
Move to Coprocessor from ARM Register or Registers. Depending on the coprocessor, you
might be able to specify various operations in addition.

3.50.1 Syntax

MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MCRR{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n must be either 14 or 15.

opcode1 is a 3-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

opcode3 is a 4-bit coprocessor-specific opcode.

Rt, Rt2 are ARM source registers. Rt and Rt2 must not be PC.

CRn, CRm are coprocessor registers.

3.50.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.50.3 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.50.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-92
ID031214 Non-Confidential

A32 and T32 Instructions
3.51 MOV and MVN
Move and Move Not.

3.51.1 Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition flags are updated on the result
of the operation.

cond is an optional condition code.

Rd is the destination register.

Operand2 is a flexible second operand.

imm16 is any value in the range 0-65535.

3.51.2 Usage

The MOV instruction copies the value of Operand2 into Rd.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of
this when reading disassembly listings.

3.51.3 Use of PC and SP in 32-bit T32 instructions

You cannot use PC (R15) for Rd, or in Operand2, in 32-bit T32 MOV or MVN instructions. With the
following exceptions, you cannot use SP (R13) for Rd, or in Operand2:
• MOV{cond}.W Rd, SP, where Rd is not SP.
• MOV{cond}.W SP, Rm, where Rm is not SP.

3.51.4 Use of PC and SP in 16-bit T32 instructions

You can use PC or SP in 16-bit T32 MOV{cond} Rd, Rm instructions but these instructions in which
both Rd and Rm are SP or PC are deprecated.

You cannot use PC or SP in any other MOV{S} or MVN{S} 16-bit T32 instructions.

3.51.5 Use of PC and SP in A32 MOV and MVN

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

In instructions without register-controlled shift, the use of PC is deprecated except for the
following cases:
• MOVS PC, LR.
• MOV PC, Rm when Rm is not PC or SP.
• MOV Rd, PC when Rd is not PC or SP.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-93
ID031214 Non-Confidential

A32 and T32 Instructions
You can use SP for Rd or Rm. But this is deprecated except for the following cases:
• MOV SP, Rm when Rm is not PC or SP.
• MOV Rd, SP when Rd is not PC or SP.

Note
 • You cannot use PC for Rd in MOV Rd, #imm16 if the #imm16 value is not a permitted Operand2

value. You can use PC in forms with Operand2 without register-controlled shift.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, see the SUBS pc,lr instruction.

3.51.6 Condition flags

If S is specified, these instructions:
• Update the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Do not affect the V flag.

3.51.7 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

MOVS Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used outside an IT block.

MOV{cond} Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used inside an IT block.

MOVS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MOV{cond} Rd, Rm
Rd and Rm can be Lo or Hi registers.

MVNS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MVN{cond} Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

3.51.8 Availability

These instructions are available in A32 and T32.

In T32, 16-bit and 32-bit versions of these instructions are available.

3.51.9 Example

 MVNNE r11, #0xF000000B ; A32 only. This immediate value is not
; available in T32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-94
ID031214 Non-Confidential

A32 and T32 Instructions
3.51.10 Incorrect example

 MVN pc,r3,ASR r0 ; PC not permitted with register-controlled shift

3.51.11 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.
• Instruction substitution on page 3-13.

Reference
• Condition codes on page 3-26.
• SUBS pc, lr on page 3-149.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-95
ID031214 Non-Confidential

A32 and T32 Instructions
3.52 MOVT
Move Top. Writes a 16-bit immediate value to the top halfword of a register, without affecting
the bottom halfword.

3.52.1 Syntax

MOVT{cond} Rd, #imm16

where:
cond is an optional condition code.
Rd is the destination register.
imm16 is a 16-bit immediate value.

3.52.2 Usage

MOVT writes imm16 to Rd[31:16]. The write does not affect Rd[15:0].

You can generate any 32-bit immediate with a MOV, MOVT instruction pair. The assembler
implements the MOV32 pseudo-instruction for convenient generation of this instruction pair.

3.52.3 Register restrictions

You cannot use PC in A32 or T32 instructions.

You can use SP for Rd in A32 instructions but this is deprecated.

You cannot use SP in T32 instructions.

3.52.4 Condition flags

This instruction does not change the flags.

3.52.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.52.6 See also

Reference
• MOV32 pseudo-instruction on page 3-97.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-96
ID031214 Non-Confidential

A32 and T32 Instructions
3.53 MOV32 pseudo-instruction
Load a register with either:
• A 32-bit immediate value.
• Any address.

MOV32 always generates two 32-bit instructions, a MOV, MOVT pair. This enables you to load any
32-bit immediate, or to access the whole 32-bit address space.

3.53.1 Syntax

MOV32{cond} Rd, expr

where:

cond is an optional condition code.

Rd is the register to be loaded. Rd must not be SP or PC.

expr can be any one of the following:
symbol A label in this or another program area.
#constant Any 32-bit immediate value.
symbol + constant A label plus a 32-bit immediate value.

3.53.2 Usage

The main purposes of the MOV32 pseudo-instruction are:

• To generate literal constants when an immediate value cannot be generated in a single
instruction.

• To load a PC-relative or external address into a register. The address remains valid
regardless of where the linker places the ELF section containing the MOV32.

Note
 An address loaded in this way is fixed at link time, so the code is not position-independent.

MOV32 sets the T32 bit (bit 0) of the address if the label referenced is in T32 code.

3.53.3 Availability

This pseudo-instruction is available in both A32 and T32.

3.53.4 Examples

 MOV32 r3, #0xABCDEF12 ; loads 0xABCDEF12 into R3
 MOV32 r1, Trigger+12 ; loads the address that is 12 bytes higher than

; the address Trigger into R1

3.53.5 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-97
ID031214 Non-Confidential

A32 and T32 Instructions
3.54 MRC and MRRC
Move to ARM Register or Registers from Coprocessor.

Depending on the coprocessor, you might be able to specify various operations in addition.

3.54.1 Syntax

MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MRRC{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n must be either 14 or 15.

opcode1 is a 3-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

opcode3 is a 4-bit coprocessor-specific opcode.

Rt, Rt2 are ARM destination registers. Rt and Rt2 must not be PC.
In MRC, Rt can be APSR_nzcv. This means that the coprocessor executes an
instruction that changes the value of the condition flags in the APSR.

CRn, CRm are coprocessor registers.

3.54.2 Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

3.54.3 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.54.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-98
ID031214 Non-Confidential

A32 and T32 Instructions
3.55 MRS (system coprocessor register to ARM register)
Move to ARM register from system coprocessor register.

3.55.1 Syntax

MRS{cond} Rn, coproc_register

MRS{cond} APSR_nzcv, special_register

where:

cond is an optional condition code.

coproc_register

is the name of the coprocessor register.

special_register

is the name of the coprocessor register that can be written to APSR_nzcv. This is
only possible for the coprocessor register DBGDSCRint.

Rn is the ARM destination register. Rn must not be PC.

3.55.2 Usage

You can use this pseudo-instruction to read CP14 or CP15 coprocessor registers, with the
exception of write-only registers. A complete list of the applicable coprocessor register names
is in the ARM Architecture Reference Manual. For example:

MRS R1, SCTLR ; writes the contents of the CP15 coprocessor register SCTLR
; into R1

3.55.3 Availability

This 32-bit pseudo-instruction is available in A32 and T32.

There is no 16-bit version of this pseudo-instruction in T32.

3.55.4 See also

Reference
• Condition codes on page 3-26.
• MSR (ARM register to system coprocessor register) on page 3-102.
• MSR (general-purpose register to PSR) on page 3-103.
• MRS (PSR to general-purpose register) on page 3-100.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-99
ID031214 Non-Confidential

A32 and T32 Instructions
3.56 MRS (PSR to general-purpose register)
Move the contents of a PSR to a general-purpose register.

3.56.1 Syntax

MRS{cond} Rd, psr

where:

cond is an optional condition code.

Rd is the destination register.

psr is one of:
APSR in any processor mode.
CPSR deprecated synonym for APSR and for use in Debug state.
SPSR in privileged software execution only.

3.56.2 Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to change processor mode, or to clear the Q flag.

In process swap code, the programmers’ model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations make use of MRS/store and load/MSR instruction
sequences.

3.56.3 SPSR

You must not attempt to access the SPSR when the processor is in User or System mode. This
is your responsibility. The assembler cannot warn you about this, because it has no information
about the processor mode at execution time.

3.56.4 CPSR

ARM deprecates reading the CPSR endianness bit (E) with an MRS instruction.

The CPSR execution state bits, other than the E bit, can only be read when the processor is in
Debug state, halting debug-mode. Otherwise, the execution state bits in the CPSR read as zero.

The condition flags can be read in any mode on any processor. Use APSR if you are only
interested in accessing the condition flags in User mode.

3.56.5 Register restrictions

You cannot use PC for Rd in A32 instructions. You can use SP for Rd in A32 instructions but this
is deprecated.

You cannot use PC or SP for Rd in T32 instructions.

3.56.6 Condition flags

This instruction does not change the flags.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-100
ID031214 Non-Confidential

A32 and T32 Instructions
3.56.7 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.56.8 See also

Concepts
armasm User Guide:
• Current Program Status Register in AArch32 on page 4-13.

Reference
• MSR (general-purpose register to PSR) on page 3-103.
• MSR (ARM register to system coprocessor register) on page 3-102.
• MRS (system coprocessor register to ARM register) on page 3-99.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-101
ID031214 Non-Confidential

A32 and T32 Instructions
3.57 MSR (ARM register to system coprocessor register)
Move to system coprocessor register from ARM register.

3.57.1 Syntax

MSR{cond} coproc_register, Rn

where:

cond is an optional condition code.

coproc_register

is the name of the coprocessor register.

Rn is the ARM source register. Rn must not be PC.

3.57.2 Usage

You can use this pseudo-instruction to write to any CP14 or CP15 coprocessor writable register.
A complete list of the applicable coprocessor register names is in the ARM Architecture
Reference Manual. For example:

MSR SCTLR, R1 ; writes the contents of R1 into the CP15 coprocessor register

; SCTLR

3.57.3 Availability

This 32-bit pseudo-instruction is available in A32 and T32.

There is no 16-bit T32 version of this pseudo-instruction.

3.57.4 See also

Reference
• SYS on page 3-154.
• MRS (system coprocessor register to ARM register) on page 3-99.
• MRS (PSR to general-purpose register) on page 3-100.
• MSR (general-purpose register to PSR) on page 3-103.
• Condition codes on page 3-26.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-102
ID031214 Non-Confidential

A32 and T32 Instructions
3.58 MSR (general-purpose register to PSR)
Load an immediate value, or the contents of a general-purpose register, into specified fields of
a Program Status Register (PSR).

3.58.1 Syntax

MSR{cond} APSR_flags, Rm

MSR{cond} APSR_flags, #constant

MSR{cond} psr_fields, #constant

MSR{cond} psr_fields, Rm

where:

cond is an optional condition code.

flags specifies the APSR flags to be moved. flags can be one or more of:
nzcvq ALU flags field mask, PSR[31:27] (User mode)
g SIMD GE flags field mask, PSR[19:16] (User mode).

Rm is the source register. Rm must not be PC.

constant is an expression evaluating to a numeric value. The value must correspond to an
8-bit pattern rotated by an even number of bits within a 32-bit word. Not available
in T32.

psr is one of:
CPSR for use in Debug state, also deprecated synonym for APSR
SPSR on any processor, in privileged software execution only.

fields specifies the SPSR or CPSR fields to be moved. fields can be one or more of:
c control field mask byte, PSR[7:0] (privileged software execution)
x extension field mask byte, PSR[15:8] (privileged software execution)
s status field mask byte, PSR[23:16] (privileged software execution)
f flags field mask byte, PSR[31:24] (privileged software execution).

3.58.2 Usage

In User mode:

• Use APSR to access condition flags, Q, or GE bits.

• Writes to unallocated, privileged or execution state bits in the CPSR are ignored. This
ensures that User mode programs cannot change to privileged software execution.

ARM deprecates using MSR to change the endianness bit (E) of the CPSR, in any mode.

You must not attempt to access the SPSR when the processor is in User or System mode.

3.58.3 Register restrictions

You cannot use PC for Rm in A32 instructions. You can use SP for Rm in A32 instructions but this
is deprecated.

You cannot use PC or SP for Rm in T32 instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-103
ID031214 Non-Confidential

A32 and T32 Instructions
3.58.4 Condition flags

This instruction updates the flags explicitly if the APSR_nzcvq or CPSR_f field is specified.

3.58.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.58.6 See also

Reference
• MRS (PSR to general-purpose register) on page 3-100.
• MRS (system coprocessor register to ARM register) on page 3-99.
• MSR (ARM register to system coprocessor register) on page 3-102.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-104
ID031214 Non-Confidential

A32 and T32 Instructions
3.59 MUL, MLA, and MLS
Multiply, Multiply-Accumulate, and Multiply-Subtract, with signed or unsigned 32-bit
operands, giving the least significant 32 bits of the result.

3.59.1 Syntax

MUL{S}{cond} {Rd}, Rn, Rm

MLA{S}{cond} Rd, Rn, Rm, Ra

MLS{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

S is an optional suffix. If S is specified, the condition flags are updated on the result
of the operation.

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

3.59.2 Usage

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits
of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the result from the value from
Ra, and places the least significant 32 bits of the final result in Rd.

3.59.3 Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

3.59.4 Condition flags

If S is specified, the MUL and MLA instructions:
• Update the N and Z flags according to the result.
• Do not affect the C or V flag.

3.59.5 16-bit instructions

The following forms of the MUL instruction are available in T32 code, and are 16-bit instructions:

MULS Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

MUL{cond} Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used inside an IT block.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-105
ID031214 Non-Confidential

A32 and T32 Instructions
There are no other T32 multiply instructions that can update the condition flags.

3.59.6 Availability

These 32-bit instructions are available in A32 and T32.

The MUL{S} instruction is available in T32 in a 16-bit encoding.

3.59.7 Examples

 MUL r10, r2, r5
 MLA r10, r2, r1, r5
 MULS r0, r2, r2
 MULLT r2, r3, r2
 MLS r4, r5, r6, r7

3.59.8 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-106
ID031214 Non-Confidential

A32 and T32 Instructions
3.60 NEG pseudo-instruction
Negate the value in a register.

3.60.1 Syntax

NEG{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the register containing the value that is subtracted from zero.

3.60.2 Usage

The NEG pseudo-instruction negates the value in one register and stores the result in a second
register.

NEG{cond} Rd, Rm assembles to RSBS{cond} Rd, Rm, #0.

3.60.3 Availability

This pseudo-instruction is available in A32 and T32.

3.60.4 Register restrictions

In A32 instructions, using SP or PC for Rd or Rm is deprecated. In T32 instructions, you cannot
use SP or PC for Rd or Rm.

3.60.5 Condition flags

This pseudo-instruction updates the condition flags, based on the result.

3.60.6 See also

Reference
• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-27.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-107
ID031214 Non-Confidential

A32 and T32 Instructions
3.61 NOP
No Operation.

3.61.1 Syntax

NOP{cond}

where:

cond is an optional condition code.

3.61.2 Usage

NOP does nothing. If NOP is not implemented as a specific instruction on your target architecture,
the assembler treats it as a pseudo-instruction and generates an alternative instruction that does
nothing, such as MOV r0, r0 (A32) or MOV r8, r8 (T32).

NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

You can use NOP for padding, for example to place the following instruction on a 64-bit boundary
in A32, or a 32-bit boundary in T32.

3.61.3 Availability

This instruction is available in A32 and T32.

In T32, this instruction is available in 16-bit and 32-bit encodings.

3.61.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-108
ID031214 Non-Confidential

A32 and T32 Instructions
3.62 Parallel add and subtract
Various byte-wise and halfword-wise additions and subtractions.

3.62.1 Syntax

<prefix>op{cond} {Rd}, Rn, Rm

where:

<prefix> is one of:
S Signed arithmetic modulo 28 or 216. Sets the APSR GE flags.
Q Signed saturating arithmetic.
SH Signed arithmetic, halving the results.
U Unsigned arithmetic modulo 28 or 216. Sets the APSR GE flags.
UQ Unsigned saturating arithmetic.
UH Unsigned arithmetic, halving the results.

op is one of:
ADD8 Byte-wise Addition
ADD16 Halfword-wise Addition.
SUB8 Byte-wise Subtraction.
SUB16 Halfword-wise Subtraction.
ASX Exchange halfwords of Rm, then Add top halfwords and Subtract

bottom halfwords.
SAX Exchange halfwords of Rm, then Subtract top halfwords and Add

bottom halfwords.

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

3.62.2 Operation

These instructions perform arithmetic operations separately on the bytes or halfwords of the
operands. They perform two or four additions or subtractions, or one addition and one
subtraction.

You can choose various kinds of arithmetic:

• Signed or unsigned arithmetic modulo 28 or 216. This sets the APSR GE flags.

• Signed saturating arithmetic to one of the signed ranges –215 ≤ x ≤ 215 –1 or –27 ≤ x ≤ 27
–1. The Q flag is not affected even if these operations saturate.

• Unsigned saturating arithmetic to one of the unsigned ranges 0 ≤ x ≤ 216 –1 or 0 ≤ x ≤ 28
–1. The Q flag is not affected even if these operations saturate.

• Signed or unsigned arithmetic, halving the results. This cannot cause overflow.

3.62.3 Register restrictions

You cannot use PC for any register.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-109
ID031214 Non-Confidential

A32 and T32 Instructions
Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.62.4 GE flags

These instructions do not affect the N, Z, C, V, or Q flags.

The Q, SH, UQ and UH prefix variants of these instructions do not change the flags.

The S and U prefix variants of these instructions set the GE flags in the APSR as follows:

• The S prefix variants set the flags to indicate whether the result is greater than or equal to
zero. This is equivalent to an ADDS or SUBS instruction setting the N and V condition flags
to the same value, so that the GE condition passes.

• The U prefix variants set the flags to indicate the following:
— For an addition, whether the result overflowed, generating a carry. This is

equivalent to an ADDS instruction setting the C condition flag to 1.
— For a subtraction, whether the result is greater than or equal to zero, meaning a

borrow did not occur. This is equivalent to a SUBS instruction setting the C condition
flag to 1.

For byte-wise operations, the GE flags are set as follows:
GE[0] for bits[7:0] of the result
GE[1] for bits[15:8] of the result
GE[2] for bits[23:16] of the result
GE[3] for bits[31:24] of the result.

For halfword-wise operations, the GE flags are set as follows:
GE[1:0] for bits[15:0] of the result
GE[3:2] for bits[31:16] of the result.

You can use these flags to control a following SEL instruction.

Note
 For halfword-wise operations, GE[1:0] are set or cleared together, and GE[3:2] are set or cleared
together.

3.62.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.62.6 Examples

 SHADD8 r4, r3, r9
 USAXNE r0, r0, r2

3.62.7 Incorrect examples

 QHADD8 r2, r9, r3 ; No such instruction
 SAX r10, r8, r5 ; Must have a prefix.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-110
ID031214 Non-Confidential

A32 and T32 Instructions
3.62.8 See also

Reference
• SEL on page 3-126.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-111
ID031214 Non-Confidential

A32 and T32 Instructions
3.63 PKHBT and PKHTB
Halfword Packing instructions.

Combine a halfword from one register with a halfword from another register. One of the
operands can be shifted before extraction of the halfword.

3.63.1 Syntax

PKHBT{cond} {Rd}, Rn, Rm{, LSL #leftshift}

PKHTB{cond} {Rd}, Rn, Rm{, ASR #rightshift}

where:

PKHBT combines bits[15:0] of Rn with bits[31:16] of the shifted value from Rm.

PKHTB combines bits[31:16] of Rn with bits[15:0] of the shifted value from Rm.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the first operand.

leftshift is in the range 0 to 31.

rightshift is in the range 1 to 32.

3.63.2 Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

3.63.3 Condition flags

These instructions do not change the flags.

3.63.4 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.63.5 Examples

 PKHBT r0, r3, r5 ; combine the bottom halfword of R3 with
; the top halfword of R5

 PKHBT r0, r3, r5, LSL #16 ; combine the bottom halfword of R3 with
; the bottom halfword of R5

 PKHTB r0, r3, r5, ASR #16 ; combine the top halfword of R3 with
; the top halfword of R5

You can also scale the second operand by using different values of shift.

3.63.6 Incorrect examples

 PKHBTEQ r4, r5, r1, ASR #8 ; ASR not permitted with PKHBT
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-112
ID031214 Non-Confidential

A32 and T32 Instructions
3.63.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-113
ID031214 Non-Confidential

A32 and T32 Instructions
3.64 PLD, PLDW, and PLI
Preload Data and Preload Instruction. The processor can signal the memory system that a data
or instruction load from an address is likely in the near future.

3.64.1 Syntax

PLtype{cond} [Rn {, #offset}]

PLtype{cond} [Rn, +/-Rm {, shift}]

PLtype{cond} label

where:

type can be one of:
D Data address
DW Data address with intention to write
I Instruction address.
type cannot be DW if the syntax specifies label.

cond is an optional condition code.

Note
 cond is permitted only in T32 code, using a preceding IT instruction, but this is

deprecated. This is an unconditional instruction in A32 code and you must not use
cond.

Rn is the register on which the memory address is based.

offset is an immediate offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset.

shift is an optional shift.

label is a PC-relative expression.

3.64.2 Range of offset

The offset is applied to the value in Rn before the preload takes place. The result is used as the
memory address for the preload. The range of offsets permitted is:
• –4095 to +4095 for A32 instructions.
• –255 to +4095 for T32 instructions, when Rn is not PC.
• –4095 to +4095 for T32 instructions, when Rn is PC.

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

3.64.3 Register or shifted register offset

In A32 code, the value in Rm is added to or subtracted from the value in Rn. In T32 code, the value
in Rm can only be added to the value in Rn. The result is used as the memory address for the
preload.

The range of shifts permitted is:

• LSL #0 to #3 for T32 instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-114
ID031214 Non-Confidential

A32 and T32 Instructions
• Any one of the following for A32 instructions:
— LSL #0 to #31.
— LSR #1 to #32.
— ASR #1 to #32.
— ROR #1 to #31.
— RRX.

3.64.4 Address alignment for preloads

No alignment checking is performed for preload instructions.

3.64.5 Register restrictions

Rm must not be PC. For T32 instructions Rm must also not be SP.

Rn must not be PC for T32 instructions of the syntax PLtype{cond} [Rn, +/-Rm{, #shift}].

3.64.6 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit PLD, PLDW, or PLI instructions in T32.

These are hint instructions, and their implementation is optional. If they are not implemented,
they execute as NOPs.

3.64.7 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-115
ID031214 Non-Confidential

A32 and T32 Instructions
3.65 PUSH and POP
Push registers onto, and pop registers off a full descending stack.

3.65.1 Syntax

PUSH{cond} reglist

POP{cond} reglist

where:

cond is an optional condition code.

reglist is a non-empty list of registers, enclosed in braces.It can contain register ranges.
It must be comma separated if it contains more than one register or register range.

3.65.2 Usage

PUSH is a synonym for STMDB sp!, reglist and POP is a synonym for LDMIA sp! reglist. PUSH and
POP are the preferred mnemonics in these cases.

Note
 LDM and LDMFD are synonyms of LDMIA. STMFD is a synonym of STMDB.

Registers are stored on the stack in numerical order, with the lowest numbered register at the
lowest address.

3.65.3 POP, with reglist including the PC

This instruction causes a branch to the address popped off the stack into the PC. This is usually
a return from a subroutine, where the LR was pushed onto the stack at the start of the subroutine.

Bits[1:0] of the address loaded must not be 0b10. If bit[0] is 1, execution continues in T32 state.
If bit[0] is 0, execution continues in A32 state.

3.65.4 T32 instructions

A subset of these instructions are available in the T32 instruction set.

The following restrictions apply to the 16-bit instructions:
• For PUSH, reglist can only include the Lo registers and the LR.
• For POP, reglist can only include the Lo registers and the PC.

The following restrictions apply to the 32-bit instructions:
• reglist must not include the SP.
• For PUSH, reglist must not include the PC.
• For POP, reglist can include either the LR or the PC, but not both.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-116
ID031214 Non-Confidential

A32 and T32 Instructions
3.65.5 Restrictions on reglist in A32 instructions

A32 PUSH instructions can have SP and PC in the reglist but these instructions that include SP or
PC in the reglist are deprecated.

A32 POP instructions cannot have SP but can have PC in the reglist. These instructions that
include both PC and LR in the reglist are deprecated.

3.65.6 Examples

 PUSH {r0,r4-r7}
 PUSH {r2,lr}
 POP {r0,r10,pc} ; no 16-bit version available

3.65.7 See also

Reference
• Memory access instructions on page 3-9.
• LDM and STM on page 3-68.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-117
ID031214 Non-Confidential

A32 and T32 Instructions
3.66 QADD, QSUB, QDADD, and QDSUB
Signed Add, Subtract, Double and Add, Double and Subtract, saturating the result to the signed
range –231 ≤ x ≤ 231–1.

3.66.1 Syntax

op{cond} {Rd}, Rm, Rn

where:

op is one of QADD, QSUB, QDADD, or QDSUB.

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

3.66.2 Usage

The QADD instruction adds the values in Rm and Rn.

The QSUB instruction subtracts the value in Rn from the value in Rm.

The QDADD instruction calculates SAT(Rm + SAT(Rn * 2)). Saturation can occur on the doubling
operation, on the addition, or on both. If saturation occurs on the doubling but not on the
addition, the Q flag is set but the final result is unsaturated.

The QDSUB instruction calculates SAT(Rm - SAT(Rn * 2)). Saturation can occur on the doubling
operation, on the subtraction, or on both. If saturation occurs on the doubling but not on the
subtraction, the Q flag is set but the final result is unsaturated.

Note
 All values are treated as two’s complement signed integers by these instructions.

3.66.3 Register restrictions

You cannot use PC for any operand.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.66.4 Q flag

If saturation occurs, these instructions set the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.66.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit T32 versions of these instructions.

3.66.6 Examples

 QADD r0, r1, r9
 QDSUBLT r9, r0, r1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-118
ID031214 Non-Confidential

A32 and T32 Instructions
3.66.7 See also

Reference
• Parallel add and subtract on page 3-109.
• MRS (PSR to general-purpose register) on page 3-100.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-119
ID031214 Non-Confidential

A32 and T32 Instructions
3.67 REV, REV16, REVSH, and RBIT
Reverse bytes or bits within words or halfwords.

3.67.1 Syntax

op{cond} Rd, Rn

where:

op is any one of the following:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the operand.

3.67.2 Usage

You can use these instructions to change endianness:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:
• 16-bit signed big-endian data into 32-bit signed little-endian data
• 16-bit signed little-endian data into 32-bit signed big-endian data.

3.67.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.67.4 Condition flags

These instructions do not change the flags.

3.67.5 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

REV Rd, Rm Rd and Rm must both be Lo registers.

REV16 Rd, Rm Rd and Rm must both be Lo registers.

REVSH Rd, Rm Rd and Rm must both be Lo registers.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-120
ID031214 Non-Confidential

A32 and T32 Instructions
3.67.6 Availability

These instructions are available in A32 and T32.

In T32, these instructions are available in 16-bit and 32-bit encodings.

3.67.7 Examples

 REV r3, r7
 REV16 r0, r0
 REVSH r0, r5 ; Reverse Signed Halfword
 REVHS r3, r7 ; Reverse with Higher or Same condition
 RBIT r7, r8

3.67.8 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-121
ID031214 Non-Confidential

A32 and T32 Instructions
3.68 RFE
Return From Exception.

3.68.1 Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode is any one of the following:
IA Increment address After each transfer (Full Descending stack)
IB Increment address Before each transfer (A32 only)
DA Decrement address After each transfer (A32 only)
DB Decrement address Before each transfer.
If addr_mode is omitted, it defaults to Increment After.

cond is an optional condition code.

Note
 cond is permitted only in T32 code, using a preceding IT instruction, but this is

deprecated. This is an unconditional instruction in A32.

Rn specifies the base register. Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

3.68.2 Usage

You can use RFE to return from an exception if you previously saved the return state using the
SRS instruction. Rn is usually the SP where the return state information was saved.

3.68.3 Operation

Loads the PC and the CPSR from the address contained in Rn, and the following address.
Optionally updates Rn.

3.68.4 Notes

RFE writes an address to the PC. The alignment of this address must be correct for the instruction
set in use after the exception return:

• For a return to A32, the address written to the PC must be word-aligned.

• For a return to T32, the address written to the PC must be halfword-aligned.

No special precautions are required in software to follow these rules, if you use the instruction
to return after a valid exception entry mechanism.

Where addresses are not word-aligned, RFE ignores the least significant two bits of Rn.

The time order of the accesses to individual words of memory generated by RFE is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.

Do not use RFE in unprivileged software execution.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-122
ID031214 Non-Confidential

A32 and T32 Instructions
3.68.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction.

3.68.6 Example

 RFE sp!

3.68.7 See also

Concepts
armasm User Guide:
• Processor modes, and privileged and unprivileged software execution on page 4-3.

Reference
• SRS on page 3-143.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-123
ID031214 Non-Confidential

A32 and T32 Instructions
3.69 SBFX and UBFX
Signed and Unsigned Bit Field Extract. Copies adjacent bits from one register into the least
significant bits of a second register, and sign extends or zero extends to 32 bits.

3.69.1 Syntax

op{cond} Rd, Rn, #lsb, #width

where:

op is either SBFX or UBFX.

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the bit number of least significant bit in the bitfield, in the range 0 to 31.

width is the width of the bitfield, in the range 1 to (32–lsb).

3.69.2 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.69.3 Condition flags

These instructions do not alter any flags.

3.69.4 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.69.5 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-124
ID031214 Non-Confidential

A32 and T32 Instructions
3.70 SDIV and UDIV
Signed and Unsigned Divide.

3.70.1 Syntax

SDIV{cond} {Rd}, Rn, Rm

UDIV{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

3.70.2 Register restrictions

PC or SP cannot be used for Rd, Rn or Rm.

3.70.3 Availability

These 32-bit instructions are available in T32 only.

There are no A32 or 16-bit T32 SDIV and UDIV instructions.

3.70.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-125
ID031214 Non-Confidential

A32 and T32 Instructions
3.71 SEL
Select bytes from each operand according to the state of the APSR GE flags.

3.71.1 Syntax

SEL{cond} {Rd}, Rn, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.

3.71.2 Operation

The SEL instruction selects bytes from Rn or Rm according to the APSR GE flags:
• If GE[0] is set, Rd[7:0] come from Rn[7:0], otherwise from Rm[7:0].
• If GE[1] is set, Rd[15:8] come from Rn[15:8], otherwise from Rm[15:8].
• If GE[2] is set, Rd[23:16] come from Rn[23:16], otherwise from Rm[23:16].
• If GE[3] is set, Rd[31:24] come from Rn[31:24], otherwise from Rm[31:24].

3.71.3 Usage

Use the SEL instruction after one of the signed parallel instructions. You can use this to select
maximum or minimum values in multiple byte or halfword data.

3.71.4 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.71.5 Condition flags

This instruction does not change the flags.

3.71.6 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.71.7 Examples

 SEL r0, r4, r5
 SELLT r4, r0, r4

The following instruction sequence sets each byte in R4 equal to the unsigned minimum of the
corresponding bytes of R1 and R2:

 USUB8 r4, r1, r2
 SEL r4, r2, r1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-126
ID031214 Non-Confidential

A32 and T32 Instructions
3.71.8 See also

Reference
• Parallel add and subtract on page 3-109.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-127
ID031214 Non-Confidential

A32 and T32 Instructions
3.72 SETEND
Set the endianness bit in the CPSR, without affecting any other bits in the CPSR.

SETEND cannot be conditional, and is not permitted in an IT block.

Note
 SETEND is deprecated.

3.72.1 Syntax

SETEND specifier

where:

specifier is one of:
BE Big-endian.
LE Little-endian.

3.72.2 Usage

Use SETEND to access data of different endianness, for example, to access several big-endian
DMA-formatted data fields from an otherwise little-endian application.

3.72.3 Availability

This instruction is available in A32 and T32.

In T32, this instruction is available in a 16-bit encoding only.

3.72.4 Example

 SETEND BE ; Set the CPSR E bit for big-endian accesses
 LDR r0, [r2, #header]
 LDR r1, [r2, #CRC32]
 SETEND le ; Set the CPSR E bit for little-endian accesses for the
 ; rest of the application
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-128
ID031214 Non-Confidential

A32 and T32 Instructions
3.73 SEV, SEVL, WFE, WFI, and YIELD
Set Event, Set Event Locally, Wait For Event, Wait for Interrupt, and Yield.

3.73.1 Syntax

SEV{cond}

SEVL{cond}

WFE{cond}

WFI{cond}

YIELD{cond}

where:

cond is an optional condition code.

3.73.2 Usage

These are hint instructions. It is optional whether they are implemented or not. If any one of
them is not implemented, it executes as a NOP. The assembler produces a diagnostic message if
the instruction executes as a NOP on the target.

SEV SEV causes an event to be signaled to all cores within a multiprocessor system.

SEVL SEVL causes an event to be signaled to the current processor. SEVL is not required
to affect other processors although it is permitted to do so.

WFE If the Event Register is not set, WFE suspends execution until one of the following
events occurs:
• An IRQ interrupt, unless masked by the CPSR I-bit.
• An FIQ interrupt, unless masked by the CPSR F-bit.
• An Imprecise Data abort, unless masked by the CPSR A-bit.
• A Debug Entry request, if Debug is enabled.
• An Event signaled by another processor using the SEV instruction, or by the

current processor using the SEVL instruction.
If the Event Register is set, WFE clears it and returns immediately.

WFI WFI suspends execution until one of the following events occurs:
• An IRQ interrupt, regardless of the CPSR I-bit.
• An FIQ interrupt, regardless of the CPSR F-bit.
• An Imprecise Data abort, unless masked by the CPSR A-bit.
• A Debug Entry request, regardless of whether Debug is enabled.

YIELD YIELD indicates to the hardware that the current thread is performing a task, for
example a spinlock, that can be swapped out. Hardware can use this hint to
suspend and resume threads in a multithreading system.

3.73.3 Availability

These instructions are available in A32 and T32.

In T32, they are available in 16-bit and 32-bit encodings.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-129
ID031214 Non-Confidential

A32 and T32 Instructions
3.73.4 See also

Reference
• NOP on page 3-108.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-130
ID031214 Non-Confidential

A32 and T32 Instructions
3.74 SMC
Secure Monitor Call.

3.74.1 Syntax

SMC{cond} #imm4

where:

cond is an optional condition code.

imm4 is a 4-bit immediate value. This is ignored by the ARM processor, but can be used
by the SMC exception handler to determine what service is being requested.

3.74.2 Note

SMC was called SMI in earlier versions of the ARM assembly language. SMI instructions
disassemble to SMC, with a comment to say that this was formerly SMI.

3.74.3 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.74.4 See also

Reference
• Condition codes on page 3-26.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-131
ID031214 Non-Confidential

A32 and T32 Instructions
3.75 SMLAD and SMLSD
Dual 16-bit Signed Multiply with Addition or Subtraction of products and 32-bit accumulation.

3.75.1 Syntax

op{X}{cond} Rd, Rn, Rm, Ra

where:

op is one of:
SMLAD Dual multiply, accumulate sum of products.
SMLSD Dual multiply, accumulate difference of products.

cond is an optional condition code.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is the register holding the accumulate operand.

3.75.2 Operation

SMLAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then adds both products to the value in Ra and stores the sum
to Rd.

SMLSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then subtracts the second product from the first, adds the
difference to the value in Ra, and stores the result to Rd.

3.75.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.75.4 Condition flags

These instructions do not change the flags.

3.75.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.75.6 Examples

 SMLSD r1, r2, r0, r7
 SMLSDX r11, r10, r2, r3
 SMLADLT r1, r2, r4, r1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-132
ID031214 Non-Confidential

A32 and T32 Instructions
3.75.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-133
ID031214 Non-Confidential

A32 and T32 Instructions
3.76 SMLALxy
Signed Multiply-Accumulate with 16-bit operands and a 64-bit accumulator.

3.76.1 Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

RdLo, RdHi are the destination registers. They also hold the accumulate value. RdHi and RdLo
must be different registers.

Rn, Rm are the registers holding the values to be multiplied.

3.76.2 Usage

SMLALxy multiplies the signed integer from the selected half of Rm by the signed integer from the
selected half of Rn, and adds the 32-bit result to the 64-bit value in RdHi and RdLo.

3.76.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.76.4 Condition flags

This instruction does not change the flags.

Note
 SMLALxy cannot raise an exception. If overflow occurs on this instruction, the result wraps round
without any warning.

3.76.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.76.6 Examples

 SMLALTB r2, r3, r7, r1
 SMLALBTVS r0, r1, r9, r2

3.76.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-134
ID031214 Non-Confidential

A32 and T32 Instructions
3.77 SMLALD and SMLSLD
Dual 16-bit Signed Multiply with Addition or Subtraction of products and 64-bit Accumulation.

3.77.1 Syntax

op{X}{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:
SMLALD Dual multiply, accumulate sum of products.
SMLSLD Dual multiply, accumulate difference of products.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the 64-bit
accumulate operand. RdHi and RdLo must be different registers.

Rn, Rm are the registers holding the operands.

3.77.2 Operation

SMLALD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top
halfword of Rn with the top halfword of Rm. It then adds both products to the value in RdLo, RdHi
and stores the sum to RdLo, RdHi.

SMLSLD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top
halfword of Rn with the top halfword of Rm. It then subtracts the second product from the first,
adds the difference to the value in RdLo, RdHi, and stores the result to RdLo, RdHi.

3.77.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.77.4 Condition flags

These instructions do not change the flags.

3.77.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.77.6 Examples

 SMLALD r10, r11, r5, r1
 SMLSLD r3, r0, r5, r1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-135
ID031214 Non-Confidential

A32 and T32 Instructions
3.77.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-136
ID031214 Non-Confidential

A32 and T32 Instructions
3.78 SMMUL, SMMLA, and SMMLS
Signed Most significant word Multiply, Signed Most significant word Multiply with
Accumulation, and Signed Most significant word Multiply with Subtraction. These instructions
have 32-bit operands and produce only the most significant 32-bits of the result.

3.78.1 Syntax

SMMUL{R}{cond} {Rd}, Rn, Rm

SMMLA{R}{cond} Rd, Rn, Rm, Ra

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R is an optional parameter. If R is present, the result is rounded, otherwise it is
truncated.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is a register holding the value to be added or subtracted from.

3.78.2 Operation

SMMUL multiplies the values from Rn and Rm, and stores the most significant 32 bits of the 64-bit
result to Rd.

SMMLA multiplies the values from Rn and Rm, adds the value in Ra to the most significant 32 bits of
the product, and stores the result in Rd.

SMMLS multiplies the values from Rn and Rm, subtracts the product from the value in Ra shifted left
by 32 bits, and stores the most significant 32 bits of the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most
significant 32 bits. This has the effect of rounding the result.

3.78.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.78.4 Condition flags

These instructions do not change the flags.

3.78.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-137
ID031214 Non-Confidential

A32 and T32 Instructions
3.78.6 Examples

 SMMULGE r6, r4, r3
 SMMULR r2, r2, r2

3.78.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-138
ID031214 Non-Confidential

A32 and T32 Instructions
3.79 SMUAD{X} and SMUSD{X}
Dual 16-bit Signed Multiply with Addition or Subtraction of products, and optional exchange
of operand halves.

3.79.1 Syntax

op{X}{cond} {Rd}, Rn, Rm

where:

op is one of:
SMUAD Dual multiply, add products.
SMUSD Dual multiply, subtract products.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

3.79.2 Usage

SMUAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then adds the products and stores the sum to Rd.

SMUSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then subtracts the second product from the first, and stores
the difference to Rd.

3.79.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.79.4 Q flag

The SMUAD instruction sets the Q flag if the addition overflows.

3.79.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.79.6 Examples

 SMUAD r2, r3, r2
 SMUSDXNE r0, r1, r2

3.79.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-139
ID031214 Non-Confidential

A32 and T32 Instructions
3.80 SMULWy and SMLAWy
Signed Multiply Wide and Signed Multiply-Accumulate Wide, with one 32-bit and one 16-bit
operand, providing the top 32-bits of the result.

3.80.1 Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

3.80.2 Usage

SMULWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn,
and places the upper 32-bits of the 48-bit result in Rd.

SMLAWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn,
adds the 32-bit result to the 32-bit value in Ra, and places the result in Rd.

3.80.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.80.4 Condition flags

These instructions do not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAWy sets the Q flag.

3.80.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.80.6 See also

Reference
• MRS (PSR to general-purpose register) on page 3-100.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-140
ID031214 Non-Confidential

A32 and T32 Instructions
3.81 SMULxy and SMLAxy
Signed Multiply and Multiply Accumulate, with 16-bit operands and a 32-bit result and
accumulator.

3.81.1 Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

3.81.2 Usage

SMULxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, and places the
32-bit result in Rd.

SMLAxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, adds the 32-bit
result to the 32-bit value in Ra, and places the result in Rd.

3.81.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.81.4 Condition flags

These instructions do not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAxy sets the Q flag. To read the state of the Q flag,
use an MRS instruction.

Note
 SMLAxy never clears the Q flag. To clear the Q flag, use an MSR instruction.

3.81.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-141
ID031214 Non-Confidential

A32 and T32 Instructions
3.81.6 Examples

 SMULTBEQ r8, r7, r9
 SMLABBNE r0, r2, r1, r10
 SMLABT r0, r0, r3, r5

3.81.7 See also

Reference
• MRS (PSR to general-purpose register) on page 3-100.
• MSR (general-purpose register to PSR) on page 3-103.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-142
ID031214 Non-Confidential

A32 and T32 Instructions
3.82 SRS
Store Return State onto a stack.

3.82.1 Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

SRS{addr_mode}{cond} #modenum{!} ; This is pre-UAL syntax

where:

addr_mode is any one of the following:
IA Increment address After each transfer
IB Increment address Before each transfer (A32 only)
DA Decrement address After each transfer (A32 only)
DB Decrement address Before each transfer (Full Descending stack).
If addr_mode is omitted, it defaults to Increment After. You can also use stack
oriented addressing mode suffixes, for example, when implementing stacks.

cond is an optional condition code.

Note
 cond is permitted only in T32 code, using a preceding IT instruction, but this is

deprecated. This is an unconditional instruction in A32.

! is an optional suffix. If ! is present, the final address is written back into the SP
of the mode specified by modenum.

modenum specifies the number of the mode whose banked SP is used as the base register.
You must use only the defined mode numbers.

3.82.2 Operation

SRS stores the LR and the SPSR of the current mode, at the address contained in SP of the mode
specified by modenum, and the following word respectively. Optionally updates SP of the mode
specified by modenum. This is compatible with the normal use of the STM instruction for stack
accesses.

Note
 For full descending stack, you must use SRSFD or SRSDB.

3.82.3 Usage

You can use SRS to store return state for an exception handler on a different stack from the one
automatically selected.

3.82.4 Notes

Where addresses are not word-aligned, SRS ignores the least significant two bits of the specified
address.

The time order of the accesses to individual words of memory generated by SRS is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-143
ID031214 Non-Confidential

A32 and T32 Instructions
Do not use SRS in User and System modes because these modes do not have a SPSR.

SRS is not permitted in a non-secure state if modenum specifies monitor mode.

3.82.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction.

3.82.6 Example

R13_usr EQU 16
 SRSFD sp,#R13_usr

3.82.7 See also

Concepts
armasm User Guide:
• Stack implementation using LDM and STM on page 7-23.
• Processor modes, and privileged and unprivileged software execution on page 4-3.

Reference
• LDM and STM on page 3-68.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-144
ID031214 Non-Confidential

A32 and T32 Instructions
3.83 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

SSAT saturates a signed value to a signed range.

USAT saturates a signed value to an unsigned range.

3.83.1 Syntax

op{cond} Rd, #sat, Rm{, shift}

where:

op is either SSAT or USAT.

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32 for SSAT, and 0 to 31
for USAT.

Rm is the register containing the operand.

shift is an optional shift. It must be one of the following:
ASR #n where n is in the range 1-32 (A32) or 1-31 (T32)
LSL #n where n is in the range 0-31.

3.83.2 Operation

The SSAT instruction applies the specified shift, then saturates to the signed range –2sat–1 ≤ x ≤
2sat–1 –1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2sat
– 1.

3.83.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.83.4 Q flag

If saturation occurs, these instructions set the Q flag. To read the state of the Q flag, use an MRS
instruction.

3.83.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.83.6 Examples

 SSAT r7, #16, r7, LSL #4
 USATNE r0, #7, r5
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-145
ID031214 Non-Confidential

A32 and T32 Instructions
3.83.7 See also

Reference
• SSAT16 and USAT16 on page 3-147.
• MRS (PSR to general-purpose register) on page 3-100.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-146
ID031214 Non-Confidential

A32 and T32 Instructions
3.84 SSAT16 and USAT16
Parallel halfword Saturating instructions.

SSAT16 saturates a signed value to a signed range.

USAT16 saturates a signed value to an unsigned range.

3.84.1 Syntax

op{cond} Rd, #sat, Rn

where:

op is one of:
SSAT16 Signed saturation.
USAT16 Unsigned saturation.

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, and is in the range 1 to 16 for SSAT16, or 0
to 15 for USAT16.

Rn is the register holding the operand.

3.84.2 Operation

Halfword-wise signed and unsigned saturation to any bit position.

The SSAT16 instruction saturates each signed halfword to the signed range –2sat–1 ≤ x ≤ 2sat–1 –1.

The USAT16 instruction saturates each signed halfword to the unsigned range 0 ≤ x ≤ 2sat –1.

3.84.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.84.4 Q flag

If saturation occurs on either halfword, these instructions set the Q flag. To read the state of the
Q flag, use an MRS instruction.

3.84.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.84.6 Examples

 SSAT16 r7, #12, r7
 USAT16 r0, #7, r5
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-147
ID031214 Non-Confidential

A32 and T32 Instructions
3.84.7 Incorrect examples

 SSAT16 r1, #16, r2, LSL #4 ; shifts not permitted with halfword saturations

3.84.8 See also

Reference
• MRS (PSR to general-purpose register) on page 3-100.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-148
ID031214 Non-Confidential

A32 and T32 Instructions
3.85 SUBS pc, lr
Exception return, without popping anything from the stack.

3.85.1 Syntax

SUBS{cond} pc, lr, #imm ; A32 and T32 code

MOVS{cond} pc, lr ; A32 and T32 code

op1S{cond} pc, Rn, #imm ; A32 code only and is deprecated

op1S{cond} pc, Rn, Rm {, shift} ; A32 code only and is deprecated

op2S{cond} pc, #imm ; A32 code only and is deprecated

op2S{cond} pc, Rm {, shift} ; A32 code only and is deprecated

where:

op1 is one of ADC, ADD, AND, BIC, EOR, ORN, ORR, RSB, RSC, SBC, and SUB.

op2 is one of MOV and MVN.

cond is an optional condition code.

imm is an immediate value. In T32 code, it is limited to the range 0-255. In A32 code,
it is a flexible second operand.

Rn is the first operand register. ARM deprecates the use of any register except LR.

Rm is the optionally shifted second or only operand register.

shift is an optional condition code.

3.85.2 Usage

SUBS pc, lr, #imm subtracts a value from the link register and loads the PC with the result, then
copies the SPSR to the CPSR.

You can use SUBS pc, lr, #imm to return from an exception if there is no return state on the stack.
The value of #imm depends on the exception to return from.

3.85.3 Notes

SUBS pc, lr, #imm writes an address to the PC. The alignment of this address must be correct
for the instruction set in use after the exception return:

• For a return to A32, the address written to the PC must be word-aligned.

• For a return to T32, the address written to the PC must be halfword-aligned.

No special precautions are required in software to follow these rules, if you use the instruction
to return after a valid exception entry mechanism.

In T32, only SUBS{cond} pc, lr, #imm is a valid instruction. MOVS pc, lr is a synonym of SUBS
pc, lr, #0. Other instructions are undefined.

In A32, only SUBS{cond} pc, lr, #imm and MOVS{cond} pc, lr are valid instructions. Other
instructions are deprecated.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-149
ID031214 Non-Confidential

A32 and T32 Instructions
Caution
 Do not use these instructions in User mode or System mode. The assembler cannot warn you
about this.

3.85.4 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.85.5 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.

Reference
• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-27.
• AND, ORR, EOR, BIC, and ORN on page 3-38.
• MOV and MVN on page 3-93.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-150
ID031214 Non-Confidential

A32 and T32 Instructions
3.86 SVC
Supervisor Call.

3.86.1 Syntax

SVC{cond} #imm

where:

cond is an optional condition code.

imm is an expression evaluating to an integer in the range:

• 0 to 224–1 (a 24-bit value) in an A32 instruction
• 0-255 (an 8-bit value) in a T32 instruction.

3.86.2 Usage

The SVC instruction causes an exception. This means that the processor mode changes to
Supervisor, the CPSR is saved to the Supervisor mode SPSR, and execution branches to the
SVC vector.

imm is ignored by the processor. However, it can be retrieved by the exception handler to
determine what service is being requested.

Note
 SVC was called SWI in earlier versions of the ARM assembly language. SWI instructions
disassemble to SVC, with a comment to say that this was formerly SWI.

3.86.3 Condition flags

This instruction does not change the flags.

3.86.4 Availability

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.

3.86.5 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-151
ID031214 Non-Confidential

A32 and T32 Instructions
3.87 SXT, SXTA, UXT, and UXTA
Sign extend, Sign extend with Add, Zero extend, and Zero extend with Add.

3.87.1 Syntax

SXT<extend>{cond} {Rd}, Rm {,rotation}

SXTA<extend>{cond} {Rd}, Rn, Rm {,rotation}

UXT<extend>{cond} {Rd}, Rm {,rotation}

UXTA<extend>{cond} {Rd}, Rn, Rm {,rotation}

where:

<extend> is one of:
B16 Extends two 8-bit values to two 16-bit values.
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add (SXTA and UXTA only).

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

3.87.2 Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Do one of the following to the value obtained:
• Extract bits[7:0], sign or zero extend to 32 bits. If the instruction is extend and add,

add the value from Rn.
• Extract bits[15:0], sign or zero extend to 32 bits. If the instruction is extend and add,

add the value from Rn.
• Extract bits[23:16] and bits[7:0] and sign or zero extend them to 16 bits. If the

instruction is extend and add, add them to bits[31:16] and bits[15:0] respectively of
Rn to form bits[31:16] and bits[15:0] of the result.

3.87.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-152
ID031214 Non-Confidential

A32 and T32 Instructions
3.87.4 Condition flags

These instructions do not change the flags.

3.87.5 16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

SXTB Rd, Rm Rd and Rm must both be Lo registers.

SXTH Rd, Rm Rd and Rm must both be Lo registers.

UXTB Rd, Rm Rd and Rm must both be Lo registers.

UXTH Rd, Rm Rd and Rm must both be Lo registers.

3.87.6 Availability

These instructions are available in A32 and T32.

In T32, they are available in 16-bit and 32-bit encodings.

3.87.7 Examples

 SXTH r3, r9, r4
 UXTAB16EQ r0, r0, r4, ROR #16

3.87.8 Incorrect examples

 SXTH r9, r3, r2, ROR #12 ; rotation must be by 0, 8, 16, or 24.

3.87.9 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-153
ID031214 Non-Confidential

A32 and T32 Instructions
3.88 SYS
Execute system coprocessor instruction.

3.88.1 Syntax

SYS{cond} instruction{, Rn}

where:

cond is an optional condition code.

instruction

is the coprocessor instruction to execute.

Rn is an operand to the instruction. For instructions that take an argument, Rn is
compulsory. For instructions that do not take an argument, Rn is optional and if it
is not specified, R0 is used. Rn must not be PC.

3.88.2 Usage

You can use this instruction to execute special coprocessor instructions such as cache, branch
predictor, and TLB operations. The instructions operate by writing to special write-only
coprocessor registers. The instruction names are the same as the write-only coprocessor register
names and are listed in the ARM Architecture Reference Manual. For example:

SYS ICIALLUIS ; invalidates all instruction caches Inner Shareable to Point
; of Unification and also flushes branch target cache.

3.88.3 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.88.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-154
ID031214 Non-Confidential

A32 and T32 Instructions
3.89 TBB and TBH
Table Branch Byte and Table Branch Halfword.

3.89.1 Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the base register. This contains the address of the table of branch lengths. Rn
must not be SP.
If PC is specified for Rn, the value used is the address of the instruction plus 4.

Rm is the index register. This contains an index into the table.
Rm must not be PC or SP.

3.89.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets (TBB)
or halfword offsets (TBH). Rn provides a pointer to the table, and Rm supplies an index into the
table. The branch length is twice the value of the byte (TBB) or the halfword (TBH) returned from
the table. The target of the branch table must be in the same execution state.

3.89.3 Availability

These 32-bit instructions are available in T32 only.

There are no 16-bit versions of these instructions in T32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-155
ID031214 Non-Confidential

A32 and T32 Instructions
3.90 TST and TEQ
Test bits and Test Equivalence.

3.90.1 Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

3.90.2 Usage

These instructions test the value in a register against Operand2. They update the condition flags
on the result, but do not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as an ANDS instruction, except that the result is discarded.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as a EORS instruction, except that the result is discarded.

Use the TEQ instruction to test if two values are equal, without affecting the V or C flags (as CMP
does).

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

3.90.3 Register restrictions

In these T32 instructions, you cannot use SP or PC for Rn or Operand2.

In these A32 instructions, use of SP or PC is deprecated.

For A32 instructions:

• If you use PC (R15) as Rn, the value used is the address of the instruction plus 8.

• You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

3.90.4 Condition flags

These instructions:
• Update the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Do not affect the V flag.

3.90.5 Availability

These 32-bit instructions are available in A32 and T32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-156
ID031214 Non-Confidential

A32 and T32 Instructions
In T32, only the following form of the TST instruction is available as a 16-bit instruction:

TST Rn, Rm Rn and Rm must both be Lo registers.

3.90.6 Examples

 TST r0, #0x3F8
 TEQEQ r10, r9
 TSTNE r1, r5, ASR r1

3.90.7 Incorrect example

 TEQ pc, r1, ROR r0 ; PC not permitted with register
 ; controlled shift

3.90.8 See also

Concepts
• Flexible second operand (Operand2) on page 3-12.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-157
ID031214 Non-Confidential

A32 and T32 Instructions
3.91 UMAAL
Unsigned Multiply Accumulate Accumulate Long.

3.91.1 Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the two 32-bit
accumulate operands. RdLo and RdHi must be different registers.

Rn, Rm are the registers holding the multiply operands.

3.91.2 Operation

The UMAAL instruction multiplies the 32-bit values in Rn and Rm, adds the two 32-bit values in RdHi
and RdLo, and stores the 64-bit result to RdLo, RdHi.

3.91.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.91.4 Condition flags

This instruction does not change the flags.

3.91.5 Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

3.91.6 Examples

 UMAAL r8, r9, r2, r3
 UMAALGE r2, r0, r5, r3

3.91.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-158
ID031214 Non-Confidential

A32 and T32 Instructions
3.92 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, with 32-bit operands, and
64-bit result and accumulator.

3.92.1 Syntax

Op{S}{cond} RdLo, RdHi, Rn, Rm

where:

Op is one of UMULL, UMLAL, SMULL, or SMLAL.

S is an optional suffix available in A32 state only. If S is specified, the condition
flags are updated on the result of the operation.

cond is an optional condition code.

RdLo, RdHi are the destination registers. For UMLAL and SMLAL they also hold the accumulating
value. RdLo and RdHi must be different registers

Rn, Rm are ARM registers holding the operands.

3.92.2 Usage

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and
RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the
most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers, and adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo.

3.92.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.92.4 Condition flags

If S is specified, these instructions:
• Update the N and Z flags according to the result.
• Do not affect the C or V flags.

3.92.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-159
ID031214 Non-Confidential

A32 and T32 Instructions
3.92.6 Examples

 UMULL r0, r4, r5, r6
 UMLALS r4, r5, r3, r8

3.92.7 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-160
ID031214 Non-Confidential

A32 and T32 Instructions
3.93 UND pseudo-instruction
Generate an architecturally undefined instruction. An attempt to execute an undefined
instruction causes the Undefined Instruction exception. Architecturally undefined instructions
are expected to remain undefined.

3.93.1 Syntax

UND{cond}{.W} {#expr}

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

expr evaluates to a numeric value. Table 3-12 shows the range and encoding of expr in
the instruction, where Y shows the locations of the bits that encode for expr and
V is the 4 bits that encode for the condition code.
If expr is omitted, the value 0 is used.

3.93.2 UND in T32 code

You can use the .W width specifier to force UND to generate a 32-bit instruction in T32 code. UND.W
always generates a 32-bit instruction, even if expr is in the range 0-255.

3.93.3 Disassembly

The encodings that this pseudo-instruction produces disassemble to DCI.

3.93.4 See also

Reference
• Condition codes on page 3-26.

Table 3-12 Range and encoding of expr

Instruction Encoding Number of bits
for expr Range

A32 0xV7FYYYFY 16 0-65535

T32, 32-bit encoding 0xF7FYAYFY 12 0-4095

T32, 16-bit encoding 0xDEYY 8 0-255
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-161
ID031214 Non-Confidential

A32 and T32 Instructions
3.94 USAD8 and USADA8
Unsigned Sum of Absolute Differences, and Accumulate unsigned sum of absolute differences.

3.94.1 Syntax

USAD8{cond} {Rd}, Rn, Rm

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

Ra is the register holding the accumulate operand.

3.94.2 Operation

The USAD8 instruction finds the four differences between the unsigned values in corresponding
bytes of Rn and Rm. It adds the absolute values of the four differences, and saves the result to Rd.

The USADA8 instruction adds the absolute values of the four differences to the value in Ra, and
saves the result to Rd.

3.94.3 Register restrictions

You cannot use PC for any register.

Using SP in A32 instructions is deprecated. You cannot use SP in T32 instructions.

3.94.4 Condition flags

These instructions do not alter any flags.

3.94.5 Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

3.94.6 Examples

 USAD8 r2, r4, r6
 USADA8 r0, r3, r5, r2
 USADA8VS r0, r4, r0, r1

3.94.7 Incorrect examples

 USADA8 r2, r4, r6 ; USADA8 requires four registers
 USADA16 r0, r4, r0, r1 ; no such instruction
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-162
ID031214 Non-Confidential

A32 and T32 Instructions
3.94.8 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 3-163
ID031214 Non-Confidential

Chapter 4
Advanced SIMD and Floating-point Programming
(32-bit)

The following topics describe Advanced SIMD and floating-point assembly language
programming:
• Advanced SIMD and floating-point instruction summary on page 4-2.
• Shared Advanced SIMD and floating-point instructions on page 4-7.
• Advanced SIMD logical and compare operations on page 4-8.
• Advanced SIMD general data processing instructions on page 4-9.
• Advanced SIMD shift instructions on page 4-10.
• Advanced SIMD general arithmetic instructions on page 4-11.
• Advanced SIMD multiply instructions on page 4-12.
• Advanced SIMD load and store element and structure instructions on page 4-13.
• Interleaving provided by load and store, element and structure instructions on page 4-14.
• Alignment restrictions in load and store, element and structure instructions on page 4-15.
• Advanced SIMD and floating-point pseudo-instructions on page 4-16.
• Floating-point instructions on page 4-17.
• Cryptographic instructions on page 4-18.

Note
 Detailed information about the ARMv8 architecture is available under license. Contact

your ARM Account Representative for details.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-1
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.1 Advanced SIMD and floating-point instruction summary
The following tables provide a summary of the Advanced SIMD and floating-point instructions:

4.1.1 Advanced SIMD instructions

Table 4-1 shows a summary of Advanced SIMD instructions. These are not available as
floating-point instructions.

Table 4-1 Location of Advanced SIMD instructions

Mnemonic Brief description See

VABA, VABD Absolute difference and Accumulate, Absolute Difference page 4-27

VABS Absolute value page 4-20

VACGE, VACGT Absolute Compare Greater than or Equal, Greater Than page 4-29

VACLE, VACLT Absolute Compare Less than or Equal, Less Than (pseudo-instructions) page 4-30

VADD Add page 4-21

VADDHN Add, select High half page 4-22

VAND Bitwise AND page 4-32

VAND Bitwise AND (pseudo-instruction) page 4-33

VBIC Bitwise Bit Clear (register) page 4-32

VBIC Bitwise Bit Clear (immediate) page 4-34

VBIF, VBIT, VBSL Bitwise Insert if False, Insert if True, Select page 4-35

VCEQ, VCLE, VCLT Compare Equal, Less than or Equal, Compare Less Than page 4-36

VCGE, VCGT Compare Greater than or Equal, Greater Than page 4-36

VCLE, VCLT Compare Less than or Equal, Compare Less Than (pseudo-instruction) page 4-37

VCLS, VCLZ, VCNT Count Leading Sign bits, Count Leading Zeros, and Count set bits page 4-38

VCVT Convert fixed-point or integer to floating-point, floating-point to integer or fixed-point page 4-40

VCVT Convert floating-point to integer with directed rounding modes page 4-41

VCVT Convert between half-precision and single-precision floating-point numbers page 4-42

VDUP Duplicate scalar to all lanes of vector page 4-49

VEOR Bitwise Exclusive OR page 4-32

VEXT Extract page 4-50

VFMA, VFMS Fused Multiply Accumulate, Fused Multiply Subtract (vector) page 4-51

VHADD, VHSUB Halving Add, Halving Subtract page 4-23

VLD Vector Load page 4-13

VMAX, VMIN Maximum, Minimum page 4-63

VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008 page 4-64

VMLA, VMLS Multiply Accumulate, Multiply Subtract (vector) page 4-76
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-2
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
VMLA, VMLS Multiply Accumulate, Multiply Subtract (by scalar) page 4-77

VMOV Move (immediate) page 4-67

VMOV Move (register) page 4-68

VMOVL, VMOV{U}N Move Long, Move Narrow (register) page 4-73

VMUL Multiply (vector) page 4-76

VMUL Multiply (by scalar) page 4-77

VMVN Move Negative (immediate) page 4-67

VNEG Negate page 4-20

VORN Bitwise OR NOT page 4-32

VORN Bitwise OR NOT (pseudo-instruction) page 4-33

VORR Bitwise OR (register) page 4-32

VORR Bitwise OR (immediate) page 4-34

VPADD, VPADAL Pairwise Add, Pairwise Add and Accumulate page 4-78

VPMAX, VPMIN Pairwise Maximum, Pairwise Minimum page 4-63

VQABS Absolute value, saturate page 4-20

VQADD Add, saturate page 4-21

VQDMLAL, VQDMLSL Saturating Doubling Multiply Accumulate, and Multiply Subtract page 4-82

VQDMULL Saturating Doubling Multiply page 4-82

VQDMULH Saturating Doubling Multiply returning High half page 4-80

VQMOV{U}N Saturating Move (register) page 4-73

VQNEG Negate, saturate page 4-20

VQRDMULH Saturating Doubling Multiply returning High half page 4-80

VQRSHL Shift Left, Round, saturate (by signed variable) page 4-19

VQRSHR{U}N Shift Right, Round, saturate (by immediate) page 4-81

VQSHL Shift Left, saturate (by immediate) page 4-90

VQSHL Shift Left, saturate (by signed variable) page 4-19

VQSHR{U}N Shift Right, saturate (by immediate) page 4-81

VQSUB Subtract, saturate page 4-21

VRADDHN Add, select High half, Round page 4-22

VRECPE Reciprocal Estimate page 4-83

VRECPS Reciprocal Step page 4-84

VREV Reverse elements page 4-86

VRHADD Halving Add, Round page 4-23

Table 4-1 Location of Advanced SIMD instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-3
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.1.2 Shared Advanced SIMD and floating-point instructions

Table 4-2 shows a summary of instructions that are common to the Advanced SIMD and
floating-point instruction sets.

VRINT Round to integer page 4-87

VRSHR Shift Right and Round (by immediate) page 4-24

VRSHRN Shift Right, Round, Narrow (by immediate) page 4-25

VRSQRTE Reciprocal Square Root Estimate page 4-83

VRSQRTS Reciprocal Square Root Step page 4-84

VRSRA Shift Right, Round, and Accumulate (by immediate) page 4-26

VRSUBHN Subtract, select High half, Round page 4-22

VSHL Shift Left (by immediate) page 4-90

VSHR Shift Right (by immediate) page 4-24

VSHRN Shift Right, Narrow (by immediate) page 4-25

VSLI Shift Left and Insert page 4-92

VSRA Shift Right, Accumulate (by immediate) page 4-26

VSRI Shift Right and Insert page 4-92

VST Vector Store page 4-13

VSUB Subtract page 4-21

VSUBHN Subtract, select High half page 4-22

VSWP Swap vectors page 4-94

VTBL, VTBX Vector table look-up page 4-95

VTRN Vector transpose page 4-96

VTST Test bits page 4-97

VUZP, VZIP Vector interleave and de-interleave page 4-98

Table 4-1 Location of Advanced SIMD instructions (continued)

Mnemonic Brief description See

Table 4-2 Location of shared Advanced SIMD and floating-point instructions

Mnemonic Brief description See

VLDM Load multiple page 4-53

VLDR Load (see also VLDR pseudo-instruction on page 4-61) page 4-54

Load (post-increment and pre-decrement) page 4-62

VMOV Transfer from one ARM register to half of a doubleword register page 4-70

Transfer from two ARM registers to a doubleword register page 4-69

Transfer from half of a doubleword register to ARM register page 4-70
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-4
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.1.3 Floating-point instructions

Table 4-3 shows a summary of floating-point instructions that are not available in Advanced
SIMD.

Note
 Floating-point vector mode is not supported in ARMv8. Use Advanced SIMD instructions for
vector floating-point.

Transfer from a doubleword register to two ARM registers page 4-69

Transfer from single-precision to ARM register page 4-71

Transfer from ARM register to single-precision page 4-71

VMRS Transfer from SIMD and floating-point system register to ARM
register

page 4-74

VMSR Transfer from ARM register to SIMD and floating-point system
register

page 4-74

VPOP Pop floating-point or SIMD registers from full-descending stack page 4-53

VPUSH Push floating-point or SIMD registers to full-descending stack page 4-53

VSTM Store multiple page 4-53

VSTR Store page 4-54

Store (post-increment and pre-decrement) page 4-62

Table 4-2 Location of shared Advanced SIMD and floating-point instructions (continued)

Mnemonic Brief description See

Table 4-3 Location of floating-point instructions

Mnemonic Brief description See

VABS Absolute value page 4-28

VADD Add page 4-31

VCMP, VCMPE Compare page 4-39

VCVT Convert between single-precision and double-precision page 4-43

Convert between floating-point and integer page 4-44

Convert between floating-point and fixed-point page 4-46

Convert floating-point to integer with directed rounding modes page 4-45

VCVTB, VCVTT Convert between half-precision and single-precision
floating-point

page 4-47

Convert between half-precision and double-precision page 4-48

VDIV Divide page 4-31

VFMA, VFMS Fused multiply accumulate, Fused multiply subtract page 4-51
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-5
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
VFNMA, VFNMS Fused multiply accumulate with negation, Fused multiply
subtract with negation

page 4-52

VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008 page 4-65

VMLA Multiply accumulate page 4-75

VMLS Multiply subtract page 4-75

VMOV Insert floating-point immediate in single-precision or
double-precision register (see also Table 4-2 on page 4-4)

page 4-66

VMUL Multiply page 4-75

VNEG Negate page 4-28

VNMLA Negated multiply accumulate page 4-75

VNMLS Negated multiply subtract page 4-75

VNMUL Negated multiply page 4-75

VRINT Round to integer page 4-88

VSEL Select page 4-89

VSQRT Square Root page 4-28

VSUB Subtract page 4-31

Table 4-3 Location of floating-point instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-6
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.2 Shared Advanced SIMD and floating-point instructions
The following topics describe the instructions that are shared by the Advanced SIMD and
floating-point instruction sets:

• VLDR and VSTR on page 4-54
Extension register load and store.

• VLDM, VSTM, VPOP, and VPUSH on page 4-53
Extension register load and store multiple.

• VMOV (between two ARM registers and an extension register) on page 4-69
Transfer contents between two ARM registers and a 64-bit extension register.

• VMOV (between an ARM register and an Advanced SIMD scalar) on page 4-70
Transfer contents between an ARM register and a half of a 64-bit extension register.

• VMOV (between one ARM register and single precision floating-point register) on
page 4-71
Transfer contents between a 32-bit extension register and an ARM register.

• VMRS and VMSR on page 4-74
Transfer contents between an ARM register and a SIMD and floating-point system
register.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-7
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.3 Advanced SIMD logical and compare operations
The following topics describe the Advanced SIMD logical and compare operations:

• VAND, VBIC, VEOR, VORN, and VORR (register) on page 4-32
Bitwise AND, Bit Clear, Exclusive OR, OR Not, and OR (register).

• VBIC and VORR (immediate) on page 4-34
Bitwise Bit Clear and OR (immediate).

• VBIF, VBIT, and VBSL on page 4-35
Bitwise Insert if False, Insert if True, and Select.

• VMOV, VMVN (register) on page 4-68
Move, and Move NOT.

• VACGE and VACGT on page 4-29
Compare Absolute.

• VCEQ, VCGE, VCGT, VCLE, and VCLT on page 4-36
Compare.

• VTST on page 4-97
Test bits.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-8
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.4 Advanced SIMD general data processing instructions
The following topics describe the Advanced SIMD general data processing instructions:

• VCVT (between fixed-point or integer, and floating-point) on page 4-40
Vector convert between fixed-point or integer and floating-point.

• VCVT (from floating-point to integer with directed rounding modes) on page 4-41
Vector convert from floating-point to integer with directed rounding modes.

• VCVT (between half-precision and single-precision floating-point) on page 4-42
Vector convert between half-precision and single-precision floating-point.

• VRINT (Advanced SIMD) on page 4-87
Vector round to integer.

• VDUP on page 4-49
Duplicate scalar to all lanes of vector.

• VEXT on page 4-50
Extract.

• VMOV, VMVN (immediate) on page 4-67
Move and Move Negative (immediate).

• VMOVL, V{Q}MOVN, VQMOVUN on page 4-73
Move (register).

• VREV on page 4-86
Reverse elements within a vector.

• VSWP on page 4-94
Swap vectors.

• VTBL, VTBX on page 4-95
Vector table look-up.

• VTRN on page 4-96
Vector transpose.

• VUZP, VZIP on page 4-98
Vector interleave and de-interleave.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-9
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.5 Advanced SIMD shift instructions
The following topics describe the Advanced SIMD shift instructions:

• VSHL, VQSHL, VQSHLU, and VSHLL (by immediate) on page 4-90
Shift Left by immediate value.

• V{Q}{R}SHL (by signed variable) on page 4-19
Shift left by signed variable.

• V{R}SHR (by immediate) on page 4-24
Shift Right by immediate value.

• V{R}SHRN (by immediate) on page 4-25
Shift Right, Narrow, by immediate value.

• V{R}SRA (by immediate) on page 4-26
Shift Right by immediate value and Accumulate.

• VQ{R}SHR{U}N (by immediate) on page 4-81
Shift Right by immediate value, and saturate.

• VSLI and VSRI on page 4-92
Shift Left and Insert, and Shift Right and Insert.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-10
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.6 Advanced SIMD general arithmetic instructions
The following topics describe the Advanced SIMD general arithmetic instructions:

• VABA{L} and VABD{L} on page 4-27
Vector Absolute Difference and Accumulate, and Absolute Difference.

• V{Q}ABS and V{Q}NEG on page 4-20
Vector Absolute value, and Negate.

• V{Q}ADD, VADDL, VADDW, V{Q}SUB, VSUBL, and VSUBW on page 4-21
Vector Add and Subtract.

• V{R}ADDHN and V{R}SUBHN on page 4-22
Vector Add selecting High half, and Subtract selecting High Half.

• V{R}HADD and VHSUB on page 4-23
Vector Halving Add and Subtract.

• VPADD{L}, VPADAL on page 4-78
Vector Pairwise Add, Add and Accumulate.

• VMAX, VMIN, VPMAX, and VPMIN on page 4-63
Vector Maximum, Minimum, Pairwise Maximum, and Pairwise Minimum.

• VMAXNM, VMINNM (Advanced SIMD) on page 4-64
Vector Maximum, Minimum, consistent with IEEE 754-2008.

• VCLS, VCLZ, and VCNT on page 4-38
Vector Count Leading Sign bits, Count Leading Zeros, and Count set bits.

• VRECPE and VRSQRTE on page 4-83
Vector Reciprocal Estimate and Reciprocal Square Root Estimate.

• VRECPS and VRSQRTS on page 4-84
Vector Reciprocal Step and Reciprocal Square Root Step.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-11
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.7 Advanced SIMD multiply instructions
The following topics describe the Advanced SIMD multiply instructions:

• VMUL{L}, VMLA{L}, and VMLS{L} on page 4-76.
Vector Multiply, Multiply Accumulate, and Multiply Subtract.

• VMUL{L}, VMLA{L}, and VMLS{L} (by scalar) on page 4-77.
Vector Multiply, Multiply Accumulate, and Multiply Subtract (by scalar).

• VFMA, VFMS on page 4-51.
Vector Fused Multiply Accumulate and Vector Fused Multiply Subtract.

• VQDMULL, VQDMLAL, and VQDMLSL (by vector or by scalar) on page 4-82
Vector Saturating Doubling Multiply, Multiply Accumulate, and Multiply Subtract (by
vector or scalar).

• VQ{R}DMULH (by vector or by scalar) on page 4-80
Vector Saturating Doubling Multiply returning High half (by vector or scalar).
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-12
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.8 Advanced SIMD load and store element and structure instructions
The following topics describe the Advanced SIMD load and store element and structure
instructions:

• Interleaving provided by load and store, element and structure instructions on page 4-14.

• Alignment restrictions in load and store, element and structure instructions on page 4-15.

• VLDn and VSTn (single n-element structure to one lane) on page 4-55.
This is used for almost all data accesses. A normal vector can be loaded (n = 1).

• VLDn (single n-element structure to all lanes) on page 4-57.

• VLDn and VSTn (multiple n-element structures) on page 4-59.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-13
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.9 Interleaving provided by load and store, element and structure instructions
Many instructions in this group provide interleaving when structures are stored to memory, and
de-interleaving when structures are loaded from memory. Figure 4-1 shows an example of
de-interleaving. Interleaving is the inverse process.

Figure 4-1 De-interleaving an array of 3-element structures

4.9.1 See also

Reference
• Alignment restrictions in load and store, element and structure instructions on page 4-15.
• VLDn and VSTn (single n-element structure to one lane) on page 4-55.
• VLDn (single n-element structure to all lanes) on page 4-57.
• VLDn and VSTn (multiple n-element structures) on page 4-59.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.

Z3 D2

A[3].x
A[3].y
A[3].z

Z2 Z1 Z0

A[2].x
A[2].y
A[2].z

A[1].x
A[1].y
A[1].z

A[0].x
A[0].y
A[0].z

Y3 D1Y2 Y1 Y0

X3 D0X2 X1 X0
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-14
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.10 Alignment restrictions in load and store, element and structure instructions
Many of these instructions permit memory alignment restrictions to be specified. When the
alignment is not specified in the instruction, the alignment restriction is controlled by the A bit
(SCTLR bit[1]):

• If the A bit is 0, there are no alignment restrictions (except for strongly-ordered or device
memory, where accesses must be element-aligned).

• If the A bit is 1, accesses must be element-aligned.

If an address is not correctly aligned, an alignment fault occurs.

4.10.1 See also

Reference
• Interleaving provided by load and store, element and structure instructions on page 4-14.
• VLDn and VSTn (single n-element structure to one lane) on page 4-55.
• VLDn (single n-element structure to all lanes) on page 4-57.
• VLDn and VSTn (multiple n-element structures) on page 4-59.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-15
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.11 Advanced SIMD and floating-point pseudo-instructions
The following topics describe the Advanced SIMD and floating-point pseudo-instructions:

• VLDR pseudo-instruction on page 4-61 (Advanced SIMD and floating-point).

• VLDR and VSTR (post-increment and pre-decrement) on page 4-62 (Advanced SIMD and
floating-point).

• VMOV2 on page 4-72 (Advanced SIMD only).

• VAND and VORN (immediate) on page 4-33 (Advanced SIMD only).

• VACLE and VACLT on page 4-30 (Advanced SIMD only).

• VCLE and VCLT on page 4-37 (Advanced SIMD only).
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-16
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.12 Floating-point instructions
The following topics describe the floating-point instructions:

• VABS, VNEG, and VSQRT on page 4-28
Floating-point absolute value, negate, and square root.

• VADD, VSUB, and VDIV on page 4-31
Floating-point add, subtract, and divide.

• VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS on page 4-75
Floating-point multiply and multiply accumulate, with optional negation.

• VFNMA, VFNMS on page 4-52
Fused floating-point multiply accumulate and fused floating-point multiply subtract, with
optional negation.

• VCMP, VCMPE on page 4-39
Floating-point compare.

• VSEL on page 4-89
Floating-point select.

• VCVT (between single-precision and double-precision) on page 4-43
Convert between single-precision and double-precision.

• VCVT (between floating-point and integer) on page 4-44
Convert between floating-point and integer.

• VCVT (from floating-point to integer with directed rounding modes) on page 4-45
Convert from floating-point to integer with directed rounding modes.

• VCVT (between floating-point and fixed-point) on page 4-46
Convert between floating-point and fixed-point.

• VCVTB, VCVTT (half-precision extension) on page 4-47
Convert between half-precision and single-precision floating-point.

• VCVTB, VCVTT (between half-precision and double-precision) on page 4-48
Convert between half-precision and double-precision.

• VRINT (floating-point) on page 4-88
Floating-point round to integer.

• VMAXNM, VMINNM (floating-point) on page 4-65
Floating-point maximum, minimum, consistent with IEEE 754-2008.

• VMOV on page 4-66
Insert a floating-point immediate value in a single-precision or double-precision register.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-17
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.13 Cryptographic instructions
A set of cryptographic instructions is available in some implementations of the ARMv8
architecture. These instructions use the 128-bit Advanced SIMD registers and support the
acceleration of the following cryptographic and hash algorithms:
• SHA1.
• SHA256.
• AES.

4.13.1 See also

Other information
• ARMv8-A Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487a.b/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-18
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.14 V{Q}{R}SHL (by signed variable)
VSHL (Vector Shift Left by signed variable) takes each element in a vector, shifts them by a value
from the least significant byte of the corresponding element of a second vector, and places the
results in the destination vector. If the shift value is positive, the operation is a left shift.
Otherwise, it is a right shift.

The results can be optionally saturated, rounded, or both. The sticky QC flag (FPSCR bit[27])
is set if saturation occurs.

4.14.1 Syntax

V{Q}{R}SHL{cond}.datatype {Qd}, Qm, Qn

V{Q}{R}SHL{cond}.datatype {Dd}, Dm, Dn

where:

Q if present, indicates that if any of the results overflow, they are saturated.

R if present, indicates that each result is rounded. Otherwise, each result is
truncated.

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dm, Dn are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

4.14.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-19
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.15 V{Q}ABS and V{Q}NEG
VABS (Vector Absolute) takes the absolute value of each element in a vector, and places the
results in a second vector. (The floating-point version only clears the sign bit.)

VNEG (Vector Negate) negates each element in a vector, and places the results in a second vector.
(The floating-point version only inverts the sign bit.)

Saturating versions of both instructions are available. The sticky QC flag (FPSCR bit[27]) is set
if saturation occurs.

4.15.1 Syntax

V{Q}op{cond}.datatype Qd, Qm

V{Q}op{cond}.datatype Dd, Dm

where:

Q if present, indicates that if any of the results overflow, they are saturated.

op must be either ABS or NEG.

cond is an optional condition code.

datatype must be one of:
S8, S16, S32 for VABS, VNEG, VQABS, or VQNEG
F32 for VABS and VNEG only.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

4.15.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-20
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.16 V{Q}ADD, VADDL, VADDW, V{Q}SUB, VSUBL, and VSUBW
VADD (Vector Add) adds corresponding elements in two vectors, and places the results in the
destination vector.

VSUB (Vector Subtract) subtracts the elements of one vector from the corresponding elements of
another vector, and places the results in the destination vector.

VADD and VSUB have these forms:
• Saturating. The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.
• Long.
• Wide.

4.16.1 Syntax

V{Q}op{cond}.datatype {Qd}, Qn, Qm ; Saturating instruction

V{Q}op{cond}.datatype {Dd}, Dn, Dm ; Saturating instruction

VopL{cond}.datatype Qd, Dn, Dm ; Long instruction

VopW{cond}.datatype {Qd}, Qn, Dm ; Wide instruction

where:

Q if present, indicates that if any of the results overflow, they are saturated.

op must be either ADD or SUB.

cond is an optional condition code.

datatype must be one of:
I8, I16, I32, I64, F32 for VADD or VSUB
S8, S16, S32 for VQADD, VQSUB, VADDL, VADDW, VSUBL, or VSUBW
U8, U16, U32 for VQADD, VQSUB, VADDL, VADDW, VSUBL, or VSUBW
S64, U64 for VQADD or VQSUB.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

Qd, Qn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a wide operation.

4.16.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-21
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.17 V{R}ADDHN and V{R}SUBHN
V{R}ADDHN (Vector Add and Narrow, selecting High half) adds corresponding elements in two
vectors, selects the most significant halves of the results, and places the final results in the
destination vector. Results can be either rounded or truncated.

V{R}SUBHN (Vector Subtract and Narrow, selecting High half) subtracts the elements of one vector
from the corresponding elements of another vector, selects the most significant halves of the
results, and places the final results in the destination vector. Results can be either rounded or
truncated.

4.17.1 Syntax

V{R}opHN{cond}.datatype Dd, Qn, Qm

where:

R if present, indicates that each result is rounded. Otherwise, each result is
truncated.

op must be either ADD or SUB.

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector.

4.17.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-22
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.18 V{R}HADD and VHSUB
VHADD (Vector Halving Add) adds corresponding elements in two vectors, shifts each result right
one bit, and places the results in the destination vector. Results can be either rounded or
truncated.

VHSUB (Vector Halving Subtract) subtracts the elements of one vector from the corresponding
elements of another vector, shifts each result right one bit, and places the results in the
destination vector. Results are always truncated.

4.18.1 Syntax

V{R}HADD{cond}.datatype {Qd}, Qn, Qm

V{R}HADD{cond}.datatype {Dd}, Dn, Dm

VHSUB{cond}.datatype {Qd}, Qn, Qm

VHSUB{cond}.datatype {Dd}, Dn, Dm

where:

R if present, indicates that each result is rounded. Otherwise, each result is
truncated.

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

4.18.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-23
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.19 V{R}SHR (by immediate)
V{R}SHR (Vector Shift Right by immediate value) takes each element in a vector, right shifts them
by an immediate value, and places the results in the destination vector. The results can
optionally be rounded.

4.19.1 Syntax

V{R}SHR{cond}.datatype {Qd}, Qm, #imm

V{R}SHR{cond}.datatype {Dd}, Dm, #imm

where:

R if present, indicates that the results are rounded. Otherwise, the results are
truncated.

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range 0 to (size in
bits of datatype).
V{R}SHR with an immediate value of zero is a pseudo-instruction for VMOV.

4.19.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VMOV, VMVN (register) on page 4-68.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-24
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.20 V{R}SHRN (by immediate)
V{R}SHRN (Vector Shift Right, Narrow, by immediate value) takes each element in a quadword
vector, right shifts them by an immediate value, and places the results in a doubleword vector.
The results can optionally be rounded.

4.20.1 Syntax

V{R}SHRN{cond}.datatype Dd, Qm, #imm

where:

R if present, indicates that the results are rounded. Otherwise, the results are
truncated.

cond is an optional condition code.

datatype must be one of I16, I32, or I64.

Dd, Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift, in the range 0 to (size in
bits of datatype)/2.
V{R}SHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

4.20.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VMOVL, V{Q}MOVN, VQMOVUN on page 4-73.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-25
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.21 V{R}SRA (by immediate)
V{R}SRA (Vector Shift Right by immediate value and Accumulate) takes each element in a vector,
right shifts them by an immediate value, and accumulates the results into the destination vector.
The results can optionally be rounded.

4.21.1 Syntax

V{R}SRA{cond}.datatype {Qd}, Qm, #imm

V{R}SRA{cond}.datatype {Dd}, Dm, #imm

where:

R if present, indicates that the results are rounded. Otherwise, the results are
truncated.

cond is an optional condition code.

datatype must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

imm is the immediate value specifying the size of the shift, in the range 1 to (size in
bits of datatype).

4.21.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-26
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.22 VABA{L} and VABD{L}
VABA (Vector Absolute Difference and Accumulate) subtracts the elements of one vector from
the corresponding elements of another vector, and accumulates the absolute values of the results
into the elements of the destination vector.

VABD (Vector Absolute Difference) subtracts the elements of one vector from the corresponding
elements of another vector, and places the absolute values of the results into the elements of the
destination vector.

Long versions of both instructions are available.

4.22.1 Syntax

Vop{cond}.datatype {Qd}, Qn, Qm

Vop{cond}.datatype {Dd}, Dn, Dm

VopL{cond}.datatype Qd, Dn, Dm

where:

op must be either ABA or ABD.

cond is an optional condition code.

datatype must be one of:
• S8, S16, S32, U8, U16, or U32 for VABA, VABAL, or VABDL.
• S8, S16, S32, U8, U16, U32 or F32 for VABD.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

4.22.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-27
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.23 VABS, VNEG, and VSQRT
Floating-point absolute value, negate, and square root.

4.23.1 Syntax

Vop{cond}.F32 Sd, Sm

Vop{cond}.F64 Dd, Dm

where:

op is one of ABS, NEG, or SQRT.

cond is an optional condition code.

Sd, Sm are the single-precision registers for the result and operand.

Dd, Dm are the double-precision registers for the result and operand.

4.23.2 Usage

The VABS instruction takes the contents of Sm or Dm, clears the sign bit, and places the result in Sd
or Dd. This gives the absolute value.

The VNEG instruction takes the contents of Sm or Dm, changes the sign bit, and places the result in
Sd or Dd. This gives the negation of the value.

The VSQRT instruction takes the square root of the contents of Sm or Dm, and places the result in Sd
or Dd.

In the case of a VABS and VNEG instruction, if the operand is a NaN, the sign bit is determined in
each case as described, but no exception is produced.

4.23.3 Floating-point exceptions

VABS and VNEG instructions cannot produce any exceptions.

VSQRT instructions can produce Invalid Operation or Inexact exceptions.

4.23.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-28
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.24 VACGE and VACGT
Vector Absolute Compare takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the condition is true,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all
zeros.

4.24.1 Syntax

VACop{cond}.F32 {Qd}, Qn, Qm

VACop{cond}.F32 {Dd}, Dn, Dm

where:

op must be one of:
GE Absolute Greater than or Equal
GT Absolute Greater Than.

cond is an optional condition code.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

The result datatype is I32.

4.24.2 See also

Reference
• VACLE and VACLT on page 4-30.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-29
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.25 VACLE and VACLT
Vector Absolute Compare takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the condition is true,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all
zeros.

Note
 On disassembly, these pseudo-instructions are disassembled to the corresponding VACGE and
VACGT instructions, with the operands reversed.

4.25.1 Syntax

VACop{cond}.datatype {Qd}, Qn, Qm

VACop{cond}.datatype {Dd}, Dn, Dm

where:

op must be one of:
LE Absolute Less than or Equal
LT Absolute Less Than.

cond is an optional condition code.

datatype must be F32.

Qd or Dd is the Advanced SIMD register for the result.
The result datatype is I32.

Qn or Dn is the Advanced SIMD register holding the first operand.

Qm or Dm is the Advanced SIMD register holding the second operand.

4.25.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
• VACGE and VACGT on page 4-29.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-30
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.26 VADD, VSUB, and VDIV
Floating-point add, subtract, and divide.

4.26.1 Syntax

Vop{cond}.F32 {Sd}, Sn, Sm

Vop{cond}.F64 {Dd}, Dn, Dm

where:

op is one of ADD, SUB, or DIV.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

4.26.2 Usage

The VADD instruction adds the values in the operand registers and places the result in the
destination register.

The VSUB instruction subtracts the value in the second operand register from the value in the first
operand register, and places the result in the destination register.

The VDIV instruction divides the value in the first operand register by the value in the second
operand register, and places the result in the destination register.

4.26.3 Floating-point exceptions

VADD and VSUB instructions can produce Invalid Operation, Overflow, or Inexact exceptions.

VDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

4.26.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-31
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.27 VAND, VBIC, VEOR, VORN, and VORR (register)
VAND (Bitwise AND), VBIC (Bit Clear), VEOR (Bitwise Exclusive OR), VORN (Bitwise OR NOT),
and VORR (Bitwise OR) instructions perform bitwise logical operations between two registers,
and place the results in the destination register.

4.27.1 Syntax

Vop{cond}{.datatype} {Qd}, Qn, Qm

Vop{cond}{.datatype} {Dd}, Dn, Dm

where:

op must be one of:
AND Logical AND
ORR Logical OR
EOR Logical exclusive OR
BIC Logical AND complement
ORN Logical OR complement.

cond is an optional condition code.

datatype is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

Note
 VORR with the same register for both operands is a VMOV instruction. You can use VORR in this way,
but disassembly of the resulting code produces the VMOV syntax.

4.27.2 See also

Reference
• VMOV, VMVN (register) on page 4-68.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-32
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.28 VAND and VORN (immediate)
VAND (Bitwise AND immediate) takes each element of the destination vector, performs a bitwise
AND with an immediate value, and returns the result into the destination vector.

VORN (Bitwise OR NOT immediate) takes each element of the destination vector, performs a
bitwise OR Complement with an immediate value, and returns the result into the destination
vector.

Note
 On disassembly, these pseudo-instructions are disassembled to the corresponding VBIC and VORR
instructions, with the complementary immediate values.

4.28.1 Syntax

Vop{cond}.datatype Qd, #imm

Vop{cond}.datatype Dd, #imm

where:

op must be either VAND or VORN.

cond is an optional condition code.

datatype must be either I8, I16, I32, or I64.

Qd or Dd is the Advanced SIMD register for the result.

imm is the immediate value.

4.28.2 Immediate values

If datatype is I16, the immediate value must have one of the following forms:
• 0xFFXY.
• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY.
• 0xFFFFXYFF.
• 0xFFXYFFFF.
• 0xXYFFFFFF.

4.28.3 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VBIC and VORR (immediate) on page 4-34.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-33
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.29 VBIC and VORR (immediate)
VBIC (Bit Clear immediate) takes each element of the destination vector, performs a bitwise
AND Complement with an immediate value, and returns the result into the destination vector.

VORR (Bitwise OR immediate) takes each element of the destination vector, performs a bitwise
OR with an immediate value, and returns the result into the destination vector.

4.29.1 Syntax

Vop{cond}.datatype Qd, #imm

Vop{cond}.datatype Dd, #imm

where:

op must be either BIC or ORR.

cond is an optional condition code.

datatype must be either I8, I16, I32, or I64.

Qd or Dd is the Advanced SIMD register for the source and result.

imm is the immediate value.

4.29.2 Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination
register, or you can directly specify the immediate value (that conforms to the pattern) in full.
The pattern for imm depends on datatype as shown in Table 4-4:

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction
to match the pattern of imm. If the immediate value does not match any of the patterns in
Table 4-4, the assembler generates an error.

4.29.3 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VAND and VORN (immediate) on page 4-33.
• Condition codes on page 3-26.

Table 4-4 Patterns for immediate value

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

0x00XY0000

0xXY000000
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-34
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.30 VBIF, VBIT, and VBSL
VBIT (Bitwise Insert if True) inserts each bit from the first operand into the destination if the
corresponding bit of the second operand is 1, otherwise leaves the destination bit unchanged.

VBIF (Bitwise Insert if False) inserts each bit from the first operand into the destination if the
corresponding bit of the second operand is 0, otherwise leaves the destination bit unchanged.

VBSL (Bitwise Select) selects each bit for the destination from the first operand if the
corresponding bit of the destination is 1, or from the second operand if the corresponding bit of
the destination is 0.

4.30.1 Syntax

Vop{cond}{.datatype} {Qd}, Qn, Qm

Vop{cond}{.datatype} {Dd}, Dn, Dm

where:

op must be one of BIT, BIF, or BSL.

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

4.30.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-35
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.31 VCEQ, VCGE, VCGT, VCLE, and VCLT
Vector Compare takes the value of each element in a vector, and compares it with the value of
the corresponding element of a second vector, or zero. If the condition is true, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

4.31.1 Syntax

VCop{cond}.datatype {Qd}, Qn, Qm

VCop{cond}.datatype {Dd}, Dn, Dm

VCop{cond}.datatype {Qd}, Qn, #0

VCop{cond}.datatype {Dd}, Dn, #0

where:

op must be one of:
EQ Equal
GE Greater than or Equal
GT Greater Than
LE Less than or Equal (only if the second operand is #0)
LT Less Than (only if the second operand is #0).

cond is an optional condition code.

datatype must be one of:
• I8, I16, I32, or F32 for EQ.
• S8, S16, S32, U8, U16, U32, or F32 for GE, GT, LE, or LT (except #0 form).
• S8, S16, S32, or F32 for GE, GT, LE, or LT (#0 form).
The result datatype is:
• I32 for operand datatypes I32, S32, U32, or F32.
• I16 for operand datatypes I16, S16, or U16.
• I8 for operand datatypes I8, S8, or U8.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

#0 replaces Qm or Dm for comparisons with zero.

4.31.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VCLE and VCLT on page 4-37.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-36
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.32 VCLE and VCLT
Vector Compare takes the value of each element in a vector, and compares it with the value of
the corresponding element of a second vector, or zero. If the condition is true, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Note
 On disassembly, these pseudo-instructions are disassembled to the corresponding VCGE and VCGT
instructions, with the operands reversed.

4.32.1 Syntax

VCop{cond}.datatype {Qd}, Qn, Qm

VCop{cond}.datatype {Dd}, Dn, Dm

where:

op must be one of:
LE Less than or Equal
LT Less Than.

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.

Qd or Dd is the Advanced SIMD register for the result.
The result datatype is:
• I32 for operand datatypes I32, S32, U32, or F32.
• I16 for operand datatypes I16, S16, or U16.
• I8 for operand datatypes I8, S8, or U8.

Qn or Dn is the Advanced SIMD register holding the first operand.

Qm or Dm is the Advanced SIMD register holding the second operand.

4.32.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
• VCLE and VCLT.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-37
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.33 VCLS, VCLZ, and VCNT
VCLS (Vector Count Leading Sign bits) counts the number of consecutive bits following the
topmost bit, that are the same as the topmost bit, in each element in a vector, and places the
results in a second vector.

VCLZ (Vector Count Leading Zeros) counts the number of consecutive zeros, starting from the
top bit, in each element in a vector, and places the results in a second vector.

VCNT (Vector Count set bits) counts the number of bits that are one in each element in a vector,
and places the results in a second vector.

4.33.1 Syntax

Vop{cond}.datatype Qd, Qm

Vop{cond}.datatype Dd, Dm

where:

op must be one of CLS, CLZ, or CNT.

cond is an optional condition code.

datatype must be one of:
• S8, S16, or S32 for CLS.
• I8, I16, or I32 for CLZ.
• I8 for CNT.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

4.33.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-38
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.34 VCMP, VCMPE
Floating-point compare.

4.34.1 Syntax

VCMP{E}{cond}.F32 Sd, Sm

VCMP{E}{cond}.F32 Sd, #0

VCMP{E}{cond}.F64 Dd, Dm

VCMP{E}{cond}.F64 Dd, #0

where:

E if present, indicates that the instruction raises an Invalid Operation exception if
either operand is a quiet or signaling NaN. Otherwise, it raises the exception only
if either operand is a signaling NaN.

cond is an optional condition code.

Sd, Sm are the single-precision registers holding the operands.

Dd, Dm are the double-precision registers holding the operands.

4.34.2 Usage

The VCMP{E} instruction subtracts the value in the second operand register (or 0 if the second
operand is #0) from the value in the first operand register, and sets the floating-point condition
flags on the result.

4.34.3 Floating-point exceptions

VCMP{E} instructions can produce Invalid Operation exceptions.

4.34.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-39
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.35 VCVT (between fixed-point or integer, and floating-point)
VCVT (Vector Convert) converts each element in a vector in one of the following ways, and places
the results in the destination vector:
• From floating-point to integer.
• From integer to floating-point.
• From floating-point to fixed-point.
• From fixed-point to floating-point.

4.35.1 Syntax

VCVT{cond}.type Qd, Qm {, #fbits}

VCVT{cond}.type Dd, Dm {, #fbits}

where:

cond is an optional condition code.

type specifies the data types for the elements of the vectors. It must be one of:
S32.F32 floating-point to signed integer or fixed-point
U32.F32 floating-point to unsigned integer or fixed-point
F32.S32 signed integer or fixed-point to floating-point
F32.U32 unsigned integer or fixed-point to floating-point.

Qd, Qm specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm specifies the destination vector and the operand vector, for a doubleword
operation.

fbits if present, specifies the number of fraction bits in the fixed point number.
Otherwise, the conversion is between floating-point and integer. fbits must lie in
the range 0-32. If fbits is omitted, the number of fraction bits is 0.

4.35.2 Rounding

Integer or fixed-point to floating-point conversions use round to nearest.

Floating-point to integer or fixed-point conversions use round towards zero.

4.35.3 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-40
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.36 VCVT (from floating-point to integer with directed rounding modes)
VCVT (Vector Convert) converts each element in a vector from floating-point to signed or
unsigned integer, and places the results in the destination vector.

4.36.1 Syntax

VCVTmode.type Qd, Qm

VCVTmode.type Dd, Dm

where:

mode must be one of:
A meaning round to nearest, ties away from zero
N meaning round to nearest, ties to even
P meaning round towards plus infinity
M meaning round towards minus infinity.

type specifies the data types for the elements of the vectors. It must be one of:
S32.F32 floating-point to signed integer
U32.F32 floating-point to unsigned integer.

Qd, Qm specifies the destination and operand vectors, for a quadword operation.

Dd, Dm specifies the destination and operand vectors, for a doubleword operation.

4.36.2 Notes

You cannot use VCVT with a directed rounding mode inside an IT block.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-41
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.37 VCVT (between half-precision and single-precision floating-point)
VCVT (Vector Convert), with half-precision extension, converts each element in a vector in one
of the following ways, and places the results in the destination vector:
• From half-precision floating-point to single-precision floating-point (F32.F16).
• From single-precision floating-point to half-precision floating-point (F16.F32).

4.37.1 Syntax

VCVT{cond}.F32.F16 Qd, Dm

VCVT{cond}.F16.F32 Dd, Qm

where:

cond is an optional condition code.

Qd, Dm specifies the destination vector for the single-precision results and the
half-precision operand vector.

Dd, Qm specifies the destination vector for half-precision results and the single-precision
operand vector.

4.37.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-42
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.38 VCVT (between single-precision and double-precision)
Convert between single-precision and double-precision numbers.

4.38.1 Syntax

VCVT{cond}.F64.F32 Dd, Sm

VCVT{cond}.F32.F64 Sd, Dm

where:

cond is an optional condition code.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Sd is a single-precision register for the result.

Dm is a double-precision register holding the operand.

4.38.2 Usage

These instructions convert the single-precision value in Sm to double-precision and places the
result in Dd, or the double-precision value in Dm to single-precision and place the result in Sd.

4.38.3 Floating-point exceptions

These instructions can produce Invalid Operation, Input Denormal, Overflow, Underflow, or
Inexact exceptions.

4.38.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-43
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.39 VCVT (between floating-point and integer)
Convert between floating-point numbers and integers.

4.39.1 Syntax

VCVT{R}{cond}.type.F64 Sd, Dm

VCVT{R}{cond}.type.F32 Sd, Sm

VCVT{cond}.F64.type Dd, Sm

VCVT{cond}.F32.type Sd, Sm

where:

R makes the operation use the rounding mode specified by the FPSCR. Otherwise,
the operation rounds towards zero.

cond is an optional condition code.

type can be either U32 (unsigned 32-bit integer) or S32 (signed 32-bit integer).

Sd is a single-precision register for the result.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Dm is a double-precision register holding the operand.

4.39.2 Usage

The first two forms of this instruction convert from floating-point to integer.

The third and fourth forms convert from integer to floating-point.

4.39.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

4.39.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-44
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.40 VCVT (from floating-point to integer with directed rounding modes)
Convert from floating-point to signed or unsigned integer with directed rounding modes.

4.40.1 Syntax

VCVTmode.S32.F64 Sd, Dm

VCVTmode.S32.F32 Sd, Sm

VCVTmode.U32.F64 Sd, Dm

VCVTmode.U32.F32 Sd, Sm

where:

mode must be one of:
A meaning round to nearest, ties away from zero
N meaning round to nearest, ties to even
P meaning round towards plus infinity
M meaning round towards minus infinity.

Sd, Sm specifies the single-precision registers for the operand and result.

Sd, Dm specifies a single-precision register for the result and double-precision register
holding the operand.

4.40.2 Notes

You cannot use VCVT with a directed rounding mode inside an IT block.

4.40.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-45
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.41 VCVT (between floating-point and fixed-point)
Convert between floating-point and fixed-point numbers.

4.41.1 Syntax

VCVT{cond}.type.F64 Dd, Dd, #fbits

VCVT{cond}.type.F32 Sd, Sd, #fbits

VCVT{cond}.F64.type Dd, Dd, #fbits

VCVT{cond}.F32.type Sd, Sd, #fbits

where:

cond is an optional condition code.

type can be any one of:
S16 16-bit signed fixed-point number
U16 16-bit unsigned fixed-point number
S32 32-bit signed fixed-point number
U32 32-bit unsigned fixed-point number.

Sd is a single-precision register for the operand and result.

Dd is a double-precision register for the operand and result.

fbits is the number of fraction bits in the fixed-point number, in the range 0-16 if type
is S16 or U16, or in the range 1-32 if type is S32 or U32.

4.41.2 Usage

The first two forms of this instruction convert from floating-point to fixed-point.

The third and fourth forms convert from fixed-point to floating-point.

In all cases the fixed-point number is contained in the least significant 16 or 32 bits of the
register.

4.41.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

4.41.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-46
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.42 VCVTB, VCVTT (half-precision extension)
Converts between half-precision and single-precision floating-point numbers in the following
ways:

• VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the
half-precision value.

• VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the
half-precision value.

4.42.1 Syntax

VCVTB{cond}.type Sd, Sm

VCVTT{cond}.type Sd, Sm

where:

cond is an optional condition code.

type can be any one of:
F32.F16 convert from half-precision to single-precision
F16.F32 convert from single-precision to half-precision.

Sd is a single word register for the result.

Sm is a single word register for the operand.

4.42.2 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

4.42.3 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-47
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.43 VCVTB, VCVTT (between half-precision and double-precision)
Converts between half-precision and double-precision floating-point numbers in either of the
following ways:
• From half-precision floating-point to double-precision floating-point (F64.F16).
• From double-precision floating-point to half-precision floating-point (F16.F64).

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the
half-precision value.

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the
half-precision value.

4.43.1 Syntax

VCVTB{cond}.F64.F16 Dd, Sm

VCVTB{cond}.F16.F64 Sd, Dm

VCVTT{cond}.F64.F16 Dd, Sm

VCVTT{cond}.F16.F64 Sd, Dm

where:

cond is an optional condition code.

Dd is a double-precision register for the result.

Sm is a single word register holding the operand.

Sd is a single word register for the result.

Dm is a double-precision register holding the operand.

4.43.2 Usage

These instructions convert the half-precision value in Sm to double-precision and place the result
in Dd, or the double-precision value in Dm to half-precision and place the result in Sd.

4.43.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

4.43.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-48
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.44 VDUP
VDUP (Vector Duplicate) duplicates a scalar into every element of the destination vector. The
source can be an Advanced SIMD scalar or an ARM register.

4.44.1 Syntax

VDUP{cond}.size Qd, Dm[x]

VDUP{cond}.size Dd, Dm[x]

VDUP{cond}.size Qd, Rm

VDUP{cond}.size Dd, Rm

where:

cond is an optional condition code.

size must be 8, 16, or 32.

Qd specifies the destination register for a quadword operation.

Dd specifies the destination register for a doubleword operation.

Dm[x] specifies the Advanced SIMD scalar.

Rm specifies the ARM register. Rm must not be PC.

4.44.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-49
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.45 VEXT
VEXT (Vector Extract) extracts 8-bit elements from the bottom end of the second operand vector
and the top end of the first, concatenates them, and places the result in the destination vector.
See Figure 4-2 for an example.

Figure 4-2 Operation of doubleword VEXT for imm = 3

4.45.1 Syntax

VEXT{cond}.8 {Qd}, Qn, Qm, #imm

VEXT{cond}.8 {Dd}, Dn, Dm, #imm

where:

cond is an optional condition code.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

imm is the number of 8-bit elements to extract from the bottom of the second operand
vector, in the range 0-7 for doubleword operations, or 0-15 for quadword
operations.

4.45.2 VEXT pseudo-instruction

You can specify a datatype of 16, 32, or 64 instead of 8. In this case, #imm refers to halfwords,
words, or doublewords instead of referring to bytes, and the permitted ranges are
correspondingly reduced.

4.45.3 See also

Reference
• Condition codes on page 3-26.

Vd

VnVm
0123456701234567
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-50
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.46 VFMA, VFMS
VFMA (Vector Fused Multiply Accumulate) multiplies corresponding elements in the two operand
vectors, and accumulates the results into the elements of the destination vector. The result of the
multiply is not rounded before the accumulation.

VFMS (Vector Fused Multiply Subtract) multiplies corresponding elements in the two operand
vectors, then subtracts the products from the corresponding elements of the destination vector,
and places the final results in the destination vector. The result of the multiply is not rounded
before the subtraction.

4.46.1 Syntax

Vop{cond}.F32 {Qd}, Qn, Qm

Vop{cond}.F32 {Dd}, Dn, Dm

Vop{cond}.F64 {Dd}, Dn, Dm

Vop{cond}.F32 {Sd}, Sn, Sm

where:

op is one of FMA or FMS.

cond is an optional condition code.

Sd, Sn, Sm are the destination and operand vectors for word operation.

Dd, Dn, Dm are the destination and operand vectors for doubleword operation.

Qd, Qn, Qm are the destination and operand vectors for quadword operation.

4.46.2 See also

Reference
• Condition codes on page 3-26.
• VMUL{L}, VMLA{L}, and VMLS{L} on page 4-76.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-51
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.47 VFNMA, VFNMS
Fused floating-point multiply accumulate and fused floating-point multiply subtract with
optional negation.

4.47.1 Syntax

VFNop{cond}.F64 {Dd}, Dn, Dm

VFNop{cond}.F32 {Sd}, Sn, Sm

where:

op is one of MA or MS.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

Qd, Qn, Qm are the double-precision registers for the result and operands.

4.47.2 Usage

VFNMA multiplies the values in the operand registers, adds the value in the destination register,
and places the final result in the destination register. The result of the multiply is not rounded
before the accumulation. The final result is negated.

VFNMS multiplies the values in the operand registers, subtracts the product from the value in the
destination register, and places the final result in the destination register. The result of the
multiply is not rounded before the subtraction. The final result is negated.

4.47.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

4.47.4 See also

Reference
• Condition codes on page 3-26.
• VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS on page 4-75.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-52
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.48 VLDM, VSTM, VPOP, and VPUSH
Extension register load multiple, store multiple, pop from stack, push onto stack.

4.48.1 Syntax

VLDMmode{cond} Rn{!}, Registers

VSTMmode{cond} Rn{!}, Registers

VPOP{cond} Registers

VPUSH{cond} Registers

where:

mode must be one of:
IA meaning Increment address After each transfer. IA is the default, and

can be omitted.
DB meaning Decrement address Before each transfer.
EA meaning Empty Ascending stack operation. This is the same as DB for

loads, and the same as IA for saves.
FD meaning Full Descending stack operation. This is the same as IA for

loads, and the same as DB for saves.

cond is an optional condition code.

Rn is the ARM register holding the base address for the transfer.

! is optional. ! specifies that the updated base address must be written back to Rn.
If ! is not specified, mode must be IA.

Registers is a list of consecutive extension registers enclosed in braces, { and }. The list can
be comma-separated, or in range format. There must be at least one register in the
list.
You can specify S, D, or Q registers, but they must not be mixed. The number of
registers must not exceed 16 D registers, or 8 Q registers. If Q registers are
specified, on disassembly they are shown as D registers.

Note
 • VPOP Registers is equivalent to VLDM sp!, Registers.
• VPUSH Registers is equivalent to VSTMDB sp!, Registers.
• You can use either form of these instructions. They disassemble to VPOP and VPUSH.

4.48.2 See also

Concepts
armasm User Guide:
• Stack implementation using LDM and STM on page 7-23.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-53
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.49 VLDR and VSTR
Extension register load and store.

4.49.1 Syntax

VLDR{cond}{.size} Fd, [Rn{, #offset}]

VSTR{cond}{.size} Fd, [Rn{, #offset}]

VLDR{cond}{.size} Fd, label

VSTR{cond}{.size} Fd, label

where:

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd is the extension register to be loaded or saved. For an Advanced SIMD
instruction, it must be a D register. For a floating-point instruction, it can be either
a D or S register.

Rn is the ARM register holding the base address for the transfer.

offset is an optional numeric expression. It must evaluate to a numeric value at assembly
time. The value must be a multiple of 4, and lie in the range –1020 to +1020. The
value is added to the base address to form the address used for the transfer.

label is a PC-relative expression.
label must be aligned on a word boundary within ±1KB of the current instruction.

4.49.2 Usage

The VLDR instruction loads an extension register from memory. The VSTR instruction saves the
contents of an extension register to memory.

One word is transferred if Fd is an S register (floating-point only). Two words are transferred
otherwise.

There is also a VLDR pseudo-instruction.

4.49.3 See also

Concepts
armasm User Guide:
• Register-relative and PC-relative expressions on page 10-7.

Reference
• Condition codes on page 3-26.
• VLDR pseudo-instruction on page 4-61.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-54
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.50 VLDn and VSTn (single n-element structure to one lane)
Vector Load single n-element structure to one lane. It loads one n-element structure from
memory into one or more Advanced SIMD registers. Elements of the register that are not loaded
are unaltered.

Vector Store single n-element structure to one lane. It stores one n-element structure into
memory from one or more Advanced SIMD registers.

4.50.1 Syntax

Vopn{cond}.datatype list, [Rn{@align}]{!}

Vopn{cond}.datatype list, [Rn{@align}], Rm

where:

op must be either LD or ST.

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 4-5.

list specifies the Advanced SIMD register list. See Table 4-5 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 4-5 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the loads or stores have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 4-5 Permitted combinations of parameters

n datatype list a align b Alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

16 {Dd[x], D(d+1)[x]} @32 4-byte

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-55
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.50.2 See also

Reference
• Condition codes on page 3-26.
• Interleaving provided by load and store, element and structure instructions on page 4-14.
• Alignment restrictions in load and store, element and structure instructions on page 4-15.
• VLDn (single n-element structure to all lanes) on page 4-57.
• VLDn and VSTn (multiple n-element structures) on page 4-59.

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

a. Every register in the list must be in the range D0-D31.
b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and

store, element and structure instructions on page 4-15.

Table 4-5 Permitted combinations of parameters (continued)

n datatype list a align b Alignment
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-56
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.51 VLDn (single n-element structure to all lanes)
Vector Load single n-element structure to all lanes. It loads multiple copies of one n-element
structure from memory into one or more Advanced SIMD registers.

4.51.1 Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 4-6.

list specifies the Advanced SIMD register list. See Table 4-6 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 4-6 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the loads or stores have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 4-6 Permitted combinations of parameters

n datatype list a align b Alignment

1 8 {Dd[]} - Standard only

{Dd[],D(d+1)[]} - Standard only

16 {Dd[]} @16 2-byte

{Dd[],D(d+1)[]} @16 2-byte

32 {Dd[]} @32 4-byte

{Dd[],D(d+1)[]} @32 4-byte

2 8 {Dd[], D(d+1)[]} @8 byte

{Dd[], D(d+2)[]} @8 byte

16 {Dd[], D(d+1)[]} @16 2-byte

{Dd[], D(d+2)[]} @16 2-byte

32 {Dd[], D(d+1)[]} @32 4-byte

{Dd[], D(d+2)[]} @32 4-byte

3 8, 16, or 32 {Dd[], D(d+1)[], D(d+2)[]} - Standard only

{Dd[], D(d+2)[], D(d+4)[]} - Standard only

4 8 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @32 4-byte
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-57
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.51.2 See also

Reference
• Condition codes on page 3-26.
• Interleaving provided by load and store, element and structure instructions on page 4-14.
• Alignment restrictions in load and store, element and structure instructions on page 4-15.
• VLDn and VSTn (single n-element structure to one lane) on page 4-55.
• VLDn and VSTn (multiple n-element structures) on page 4-59.

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @32 4-byte

16 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 8-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 8-byte

32 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 or @128 8-byte or 16-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 or @128 8-byte or 16-byte

a. Every register in the list must be in the range D0-D31.
b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and

store, element and structure instructions on page 4-15.

Table 4-6 Permitted combinations of parameters (continued)

n datatype list a align b Alignment
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-58
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.52 VLDn and VSTn (multiple n-element structures)
Vector Load multiple n-element structures. It loads multiple n-element structures from memory
into one or more Advanced SIMD registers, with de-interleaving (unless n == 1). Every element
of each register is loaded.

Vector Store multiple n-element structures. It stores multiple n-element structures to memory
from one or more Advanced SIMD registers, with interleaving (unless n == 1). Every element
of each register is stored.

4.52.1 Syntax

Vopn{cond}.datatype list, [Rn{@align}]{!}

Vopn{cond}.datatype list, [Rn{@align}], Rm

where:

op must be either LD or ST.

n must be one of 1, 2, 3, or 4.

cond is an optional condition code.

datatype see Table 4-7 for options.

list specifies the Advanced SIMD register list. See Table 4-7 for options.

Rn is the ARM register containing the base address. Rn cannot be PC.

align specifies an optional alignment. See Table 4-7 for options.

! if ! is present, Rn is updated to (Rn + the number of bytes transferred by the
instruction). The update occurs after all the loads or stores have taken place.

Rm is an ARM register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm
cannot be SP or PC.

Table 4-7 Permitted combinations of parameters

n datatype list a align b Alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-59
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.52.2 See also

Reference
• Condition codes on page 3-26.
• Interleaving provided by load and store, element and structure instructions on page 4-14.
• Alignment restrictions in load and store, element and structure instructions on page 4-15.
• VLDn and VSTn (single n-element structure to one lane) on page 4-55.
• VLDn (single n-element structure to all lanes) on page 4-57.

a. Every register in the list must be in the range D0-D31.
b. align can be omitted. In this case, standard alignment rules apply, see Alignment restrictions in load and

store, element and structure instructions on page 4-15.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-60
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.53 VLDR pseudo-instruction
The VLDR pseudo-instruction loads a constant value into every element of a 64-bit Advanced
SIMD vector, or into a floating-point single-precision or double-precision register.

Note
 This description is for the VLDR pseudo-instruction only.

4.53.1 Syntax

VLDR{cond}.datatype Dd,=constant

VLDR{cond}.datatype Sd,=constant

where:

datatype must be one of:
In Advanced SIMD only
Sn Advanced SIMD only
Un Advanced SIMD only
F32 Advanced SIMD or floating-point
F64 Floating-point only.

n must be one of 8, 16, 32, or 64.

cond is an optional condition code.

Dd or Sd is the extension register to be loaded.

constant is an immediate value of the appropriate type for datatype.

4.53.2 Usage

If an instruction (for example, VMOV) is available that can generate the constant directly into the
register, the assembler uses it. Otherwise, it generates a doubleword literal pool entry containing
the constant and loads the constant using a VLDR instruction.

4.53.3 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VLDR and VSTR on page 4-54.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-61
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.54 VLDR and VSTR (post-increment and pre-decrement)
Pseudo-instructions that load or store extension registers with post-increment and
pre-decrement.

Note
 There are also VLDR and VSTR instructions without post-increment and pre-decrement.

4.54.1 Syntax

op{cond}{.size} Fd, [Rn], #offset ; post-increment

op{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

op can be:
• VLDR - load extension register from memory.
• VSTR - store contents of extension register to memory.

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a
D register.

Fd is the extension register to be loaded or saved. For an Advanced SIMD
instruction, it must be a doubleword (Dd) register. For a floating-point instruction,
it can be either a double precision (Dd) or a single precision (Sd) register.

Rn is the ARM register holding the base address for the transfer.

offset is a numeric expression that must evaluate to a numeric value at assembly time.
The value must be 4 if Fd is an S register, or 8 if Fd is a D register.

4.54.2 Usage

The post-increment instruction increments the base address in the register by the offset value,
after the transfer. The pre-decrement instruction decrements the base address in the register by
the offset value, and then performs the transfer using the new address in the register. These
pseudo-instructions assemble to VLDM or VSTM instructions.

4.54.3 See also

Reference
• VLDR and VSTR on page 4-54.
• VLDM, VSTM, VPOP, and VPUSH on page 4-53.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-62
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.55 VMAX, VMIN, VPMAX, and VPMIN
VMAX (Vector Maximum) compares corresponding elements in two vectors, and copies the larger
of each pair into the corresponding element in the destination vector.

VMIN (Vector Minimum) compares corresponding elements in two vectors, and copies the
smaller of each pair into the corresponding element in the destination vector.

VPMAX (Vector Pairwise Maximum) compares adjacent pairs of elements in two vectors, and
copies the larger of each pair into the corresponding element in the destination vector. Operands
and results must be doubleword vectors.

VPMIN (Vector Pairwise Minimum) compares adjacent pairs of elements in two vectors, and
copies the smaller of each pair into the corresponding element in the destination vector.
Operands and results must be doubleword vectors.

4.55.1 Syntax

Vop{cond}.datatype Qd, Qn, Qm

Vop{cond}.datatype Dd, Dn, Dm

VPop{cond}.datatype Dd, Dn, Dm

where:

op must be either MAX or MIN.

cond is an optional condition code.

datatype must be one of S8, S16, S32, U8, U16, U32, or F32.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

4.55.2 Floating-point maximum and minimum

max(+0.0, –0.0) = +0.0

min(+0.0, –0.0) = –0.0

If any input is a NaN, the corresponding result element is the default NaN.

4.55.3 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
• VPADD{L}, VPADAL on page 4-78.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-63
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.56 VMAXNM, VMINNM (Advanced SIMD)
VMAXNM (Vector Maximum) compares corresponding elements in two vectors, and copies the
larger of each pair into the corresponding element in the destination vector.

VMINNM (Vector Minimum) compares corresponding elements in two vectors, and copies the
smaller of each pair into the corresponding element in the destination vector.

If one of the elements in a pair is a number and the other element is NaN, the corresponding
result element is the number. This is consistent with the IEEE 754-2008 standard.

4.56.1 Syntax

Vop.F32 Qd, Qn, Qm

Vop.F32 Dd, Dn, Dm

where:

op must be either MAXNM or MINNM.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

4.56.2 Notes

You cannot use VMAXNM or VMINNM inside an IT block.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-64
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.57 VMAXNM, VMINNM (floating-point)
VMAXNM compares the values in the operand registers, and copies the larger value into the
destination operand register.

VMINNM compares the values in the operand registers, and copies the smaller value into the
destination operand register.

If one of the values being compared is a number and the other value is NaN, the number is
copied into the destination operand register. This is consistent with the IEEE 754-2008 standard.

4.57.1 Syntax

Vop.F32 Sd, Sn, Sm

Vop.F64 Dd, Dn, Dm

where:

op must be either MAXNM or MINNM.

Sd, Sn, Sm are the single-precision destination register, first operand register, and second
operand register.

Dd, Dn, Dm are the double-precision destination register, first operand register, and second
operand register.

4.57.2 Notes

You cannot use VMAXNM or VMINNM inside an IT block.

4.57.3 Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-65
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.58 VMOV
Insert a floating-point immediate value in a single-precision or double-precision register, or
copy one register into another register.

4.58.1 Syntax

VMOV{cond}.F32 Sd, #imm

VMOV{cond}.F64 Dd, #imm

VMOV{cond}.F32 Sd, Sm

VMOV{cond}.F64 Dd, Dm

where:

cond is an optional condition code.

Sd is the single-precision destination register.

Dd is the double-precision destination register.

imm is the floating-point immediate value.

Sm is the single-precision source register.

Dm is the double-precision source register.

4.58.2 Immediate values

Any number that can be expressed as +/–n * 2–r,where n and r are integers, 16 <= n <= 31, 0 <=
r <= 7.

4.58.3 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-66
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.59 VMOV, VMVN (immediate)
VMOV (Vector Move) and VMVN (Vector Move Negative) immediate generate an immediate value
into the destination register.

4.59.1 Syntax

Vop{cond}.datatype Qd, #imm

Vop{cond}.datatype Dd, #imm

where:

op must be either MOV or MVN.

cond is an optional condition code.

datatype must be one of I8, I16, I32, I64, or F32.

Qd or Dd is the Advanced SIMD register for the result.

imm is an immediate value of the type specified by datatype. This is replicated to fill
the destination register.

4.59.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.

Table 4-8 Available immediate values

datatype VMOV VMVN

I8 0xXY -

I16 0x00XY, 0xXY00 0xFFXY, 0xXYFF

I32 0x000000XY, 0x0000XY00, 0x00XY0000, 0xXY000000 0xFFFFFFXY, 0xFFFFXYFF, 0xFFXYFFFF, 0xXYFFFFFF

0x0000XYFF, 0x00XYFFFF 0xFFFFXY00, 0xFFXY0000

I64 byte masks, 0xGGHHJJKKLLMMNNPP a -

F32 floating-point numbers b -

a. Each of 0xGG, 0xHH, 0xJJ, 0xKK, 0xLL, 0xMM, 0xNN, and 0xPP must be either 0x00 or 0xFF.
b. Any number that can be expressed as +/–n * 2–r, where n and r are integers, 16 <= n <= 31, 0 <= r <= 7.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-67
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.60 VMOV, VMVN (register)
Vector Move (register) copies a value from the source register into the destination register.

Vector Move Not (register) inverts the value of each bit from the source register and places the
results into the destination register.

4.60.1 Syntax

VMOV{cond}{.datatype} Qd, Qm

VMOV{cond}{.datatype} Dd, Dm

VMVN{cond}{.datatype} Qd, Qm

VMVN{cond}{.datatype} Dd, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qm specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm specifies the destination vector and the source vector, for a doubleword operation.

4.60.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-68
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.61 VMOV (between two ARM registers and an extension register)
Transfer contents between two ARM registers and a 64-bit extension register, or two
consecutive 32-bit floating-point registers.

4.61.1 Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

VMOV{cond} Sm, Sm1, Rd, Rn

VMOV{cond} Rd, Rn, Sm, Sm1

where:

cond is an optional condition code.

Dm is a 64-bit extension register.

Sm is a floating-point 32-bit register.

Sm1 is the next consecutive floating-point 32-bit register after Sm.

Rd, Rn are the ARM registers. Rd and Rn must not be PC.

4.61.2 Usage

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into
the high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high
half of Dm into Rn.

VMOV Rd, Rn, Sm, Sm1 transfers the contents of Sm into Rd, and the contents of Sm1 into Rn.

VMOV Sm, Sm1, Rd, Rn transfers the contents of Rd into Sm, and the contents of Rn into Sm1.

4.61.3 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-69
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.62 VMOV (between an ARM register and an Advanced SIMD scalar)
Transfer contents between an ARM register and an Advanced SIMD scalar.

4.62.1 Syntax

VMOV{cond}{.size} Dn[x], Rd

VMOV{cond}{.datatype} Rd, Dn[x]

where:

cond is an optional condition code.

size the data size. Can be 8, 16, or 32. If omitted, size is 32. For floating-point
instructions, size must be 32 or omitted.

datatype the data type. Can be U8, S8, U16, S16, or 32. If omitted, datatype is 32. For
floating-point instructions, datatype must be 32 or omitted.

Dn[x] is the Advanced SIMD scalar.

Rd is the ARM register. Rd must not be PC.

4.62.2 Usage

VMOV Rd, Dn[x] transfers the contents of Dn[x] into the least significant byte, halfword, or word
of Rd. The remaining bits of Rd are either zero or sign extended.

VMOV Dn[x], Rd transfers the contents of the least significant byte, halfword, or word of Rd into
Dn[x].

4.62.3 See also

Concepts
armasm User Guide:
• Advanced SIMD scalars on page 11-24.
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-70
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.63 VMOV (between one ARM register and single precision floating-point register)
Transfer contents between a single-precision floating-point register and an ARM register.

4.63.1 Syntax

VMOV{cond} Rd, Sn

VMOV{cond} Sn, Rd

where:

cond is an optional condition code.

Sn is the floating-point single-precision register.

Rd is the ARM register. Rd must not be PC.

4.63.2 Usage

VMOV Rd, Sn transfers the contents of Sn into Rd.

VMOV Sn, Rd transfers the contents of Rd into Sn.

4.63.3 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-71
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.64 VMOV2
The VMOV2 pseudo-instruction generates an immediate value and places it in every element of an
Advanced SIMD vector, without loading a value from a literal pool. It always assembles to
exactly two instructions.

VMOV2 can generate any 16-bit immediate value, and a restricted range of 32-bit and 64-bit
immediate values.

4.64.1 Syntax

VMOV2{cond}.datatype Qd, #constant

VMOV2{cond}.datatype Dd, #constant

where:

datatype must be one of:
• I8, I16, I32, or I64.
• S8, S16, S32, or S64.
• U8, U16, U32, or U64.
• F32.

cond is an optional condition code.

Qd or Dd is the extension register to be loaded.

constant is an immediate value of the appropriate type for datatype.

4.64.2 Usage

VMOV2 typically assembles to a VMOV or VMVN instruction, followed by a VBIC or VORR instruction.

4.64.3 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• VMOV, VMVN (immediate) on page 4-67.
• VBIC and VORR (immediate) on page 4-34.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-72
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.65 VMOVL, V{Q}MOVN, VQMOVUN
VMOVL (Vector Move Long) takes each element in a doubleword vector, sign or zero extends them
to twice their original length, and places the results in a quadword vector.

VMOVN (Vector Move and Narrow) copies the least significant half of each element of a quadword
vector into the corresponding elements of a doubleword vector.

VQMOVN (Vector Saturating Move and Narrow) copies each element of the operand vector to the
corresponding element of the destination vector. The result element is half the width of the
operand element, and values are saturated to the result width.

VQMOVUN (Vector Saturating Move and Narrow, signed operand with Unsigned result) copies each
element of the operand vector to the corresponding element of the destination vector. The result
element is half the width of the operand element, and values are saturated to the result width.

4.65.1 Syntax

VMOVL{cond}.datatype Qd, Dm

V{Q}MOVN{cond}.datatype Dd, Qm

VQMOVUN{cond}.datatype Dd, Qm

where:

Q if present, specifies that the results are saturated.

cond is an optional condition code.

datatype must be one of:
S8, S16, S32 for VMOVL
U8, U16, U62 for VMOVL
I16, I32, I64 for VMOVN
S16, S32, S64 for VQMOVN or VQMOVUN
U16, U32, U64 for VQMOVN.

Qd, Dm specifies the destination vector and the operand vector for VMOVL.

Dd, Qm specifies the destination vector and the operand vector for V{Q}MOV{U}N.

4.65.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-73
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.66 VMRS and VMSR
Transfer contents between an ARM register and an Advanced SIMD and floating-point system
register.

4.66.1 Syntax

VMRS{cond} Rd, extsysreg

VMSR{cond} extsysreg, Rd

where:

cond is an optional condition code.

extsysreg is the Advanced SIMD and floating-point system register, usually FPSCR, FPSID, or
FPEXC.

Rd is the ARM register. Rd must not be PC.
It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status
flags are transferred into the corresponding flags in the ARM APSR.

4.66.2 Usage

The VMRS instruction transfers the contents of extsysreg into Rd.

The VMSR instruction transfers the contents of Rd into extsysreg.

Note
 These instructions stall the processor until all current Advanced SIMD or floating-point
operations complete.

4.66.3 Examples

 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to ARM APSR
 VMSR FPSCR, r4

4.66.4 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point system registers in AArch32 state on page 11-27.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-74
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.67 VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS
Floating-point multiply and multiply accumulate, with optional negation.

4.67.1 Syntax

V{N}MUL{cond}.F32 {Sd,} Sn, Sm

V{N}MUL{cond}.F64 {Dd,} Dn, Dm

V{N}MLA{cond}.F32 Sd, Sn, Sm

V{N}MLA{cond}.F64 Dd, Dn, Dm

V{N}MLS{cond}.F32 Sd, Sn, Sm

V{N}MLS{cond}.F64 Dd, Dn, Dm

where:

N negates the final result.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

4.67.2 Usage

The VMUL operation multiplies the values in the operand registers and places the result in the
destination register.

The VMLA operation multiplies the values in the operand registers, adds the value in the
destination register, and places the final result in the destination register.

The VMLS operation multiplies the values in the operand registers, subtracts the result from the
value in the destination register, and places the final result in the destination register.

In each case, the final result is negated if the N option is used.

4.67.3 Floating-point exceptions

These instructions can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

4.67.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-75
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.68 VMUL{L}, VMLA{L}, and VMLS{L}
VMUL (Vector Multiply) multiplies corresponding elements in two vectors, and places the results
in the destination vector.

VMLA (Vector Multiply Accumulate) multiplies corresponding elements in two vectors, and
accumulates the results into the elements of the destination vector.

VMLS (Vector Multiply Subtract) multiplies corresponding elements in two vectors, subtracts the
results from corresponding elements of the destination vector, and places the final results in the
destination vector.

4.68.1 Syntax

Vop{cond}.datatype {Qd}, Qn, Qm

Vop{cond}.datatype {Dd}, Dn, Dm

VopL{cond}.datatype Qd, Dn, Dm

where:

op must be one of:
MUL Multiply
MLA Multiply Accumulate
MLS Multiply Subtract.

cond is an optional condition code.

datatype must be one of:
I8, I16, I32, F32 for VMUL, VMLA, or VMLS
S8, S16, S32 for VMULL, VMLAL, or VMLSL
U8, U16, U32 for VMULL, VMLAL, or VMLSL
P8 for VMUL or VMULL.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

Qd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a long operation.

4.68.2 See also

Concepts
armasm User Guide:
• Polynomial arithmetic over {0,1} on page 11-26.
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-76
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.69 VMUL{L}, VMLA{L}, and VMLS{L} (by scalar)
VMUL (Vector Multiply by scalar) multiplies each element in a vector by a scalar, and places the
results in the destination vector.

VMLA (Vector Multiply Accumulate) multiplies each element in a vector by a scalar, and
accumulates the results into the corresponding elements of the destination vector.

VMLS (Vector Multiply Subtract) multiplies each element in a vector by a scalar, and subtracts the
results from the corresponding elements of the destination vector, and places the final results in
the destination vector.

4.69.1 Syntax

Vop{cond}.datatype {Qd}, Qn, Dm[x]

Vop{cond}.datatype {Dd}, Dn, Dm[x]

VopL{cond}.datatype Qd, Dn, Dm[x]

where:

op must be one of:
MUL Multiply
MLA Multiply Accumulate
MLS Multiply Subtract.

cond is an optional condition code.

datatype must be one of:
I16, I32, F32 for VMUL, VMLA, or VMLS
S16, S32 for VMULL, VMLAL, or VMLSL
U16, U32 for VMULL, VMLAL, or VMLSL.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Qd, Dn are the destination vector and the first operand vector, for a long operation.

Dm[x] is the scalar holding the second operand.

4.69.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-77
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.70 VPADD{L}, VPADAL
VPADD (Vector Pairwise Add) adds adjacent pairs of elements of two vectors, and places the
results in the destination vector.

Figure 4-3 Example of operation of VPADD (in this case, for data type I16)

VPADDL (Vector Pairwise Add Long) adds adjacent pairs of elements of a vector, sign or zero
extends the results to twice their original width, and places the final results in the destination
vector.

Figure 4-4 Example of operation of doubleword VPADDL (in this case, for data type S16)

VPADAL (Vector Pairwise Add and Accumulate Long) adds adjacent pairs of elements of a vector,
and accumulates the absolute values of the results into the elements of the destination vector.

Figure 4-5 Example of operation of VPADAL (in this case for data type S16)

4.70.1 Syntax

VPADD{cond}.datatype {Dd}, Dn, Dm

VPopL{cond}.datatype Qd, Qm

VPopL{cond}.datatype Dd, Dm

where:

op must be either ADD or ADA.

cond is an optional condition code.

Dd

DnDm

+ + ++

Dd

Dm

+ +

Dd

Dm

+ +
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-78
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
datatype must be one of:
I8, I16, I32, F32 for VPADD
S8, S16, S32 for VPADDL or VPADAL
U8, U16, U32 for VPADDL or VPADAL.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a VPADD instruction.

Qd, Qm are the destination vector and the operand vector, for a quadword VPADDL or
VPADAL.

Dd, Dm are the destination vector and the operand vector, for a doubleword VPADDL or
VPADAL.

4.70.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-79
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.71 VQ{R}DMULH (by vector or by scalar)
Vector Saturating Doubling Multiply instructions multiply their operands and double the results.
They return only the high half of the results.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if
saturation occurs.

4.71.1 Syntax

VQ{R}DMULH{cond}.datatype {Qd}, Qn, Qm

VQ{R}DMULH{cond}.datatype {Dd}, Dn, Dm

VQ{R}DMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQ{R}DMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

R if present, indicates that each result is rounded. Otherwise, each result is
truncated.

cond is an optional condition code.

datatype must be either S16 or S32.

Qd, Qn are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn are the destination vector and the first operand vector, for a doubleword
operation.

Qm or Dm is the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand, for a by scalar operation.

4.71.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-80
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.72 VQ{R}SHR{U}N (by immediate)
VQ{R}SHR{U}N (Vector Saturating Shift Right, Narrow, by immediate value, with optional
Rounding) takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the results in a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

4.72.1 Syntax

VQ{R}SHR{U}N{cond}.datatype Dd, Qm, #imm

where:

R if present, indicates that the results are rounded. Otherwise, the results are
truncated.

U if present, indicates that the results are unsigned, although the operands are
signed. Otherwise, the results are the same type as the operands.

cond is an optional condition code.

datatype must be one of:
I16, I32, I64 for VQ{R}SHRN or VQ{R}SHRUN. Only a #0 immediate is

permitted with these datatypes.
S16, S32, S64 for VQ{R}SHRN or VQ{R}SHRUN
U16, U32, U64 for VQ{R}SHRN only.

Dd, Qm are the destination vector and the operand vector.

imm is the immediate value specifying the size of the shift. The ranges are shown in
Table 4-9.

4.72.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.

Table 4-9

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-81
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.73 VQDMULL, VQDMLAL, and VQDMLSL (by vector or by scalar)
Vector Saturating Doubling Multiply instructions multiply their operands and double the results.
VQDMULL places the results in the destination register. VQDMLAL adds the results to the values in the
destination register. VQDMLSL subtracts the results from the values in the destination register.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if
saturation occurs.

4.73.1 Syntax

VQDopL{cond}.datatype Qd, Dn, Dm

VQDopL{cond}.datatype Qd, Dn, Dm[x]

where:

op must be one of:
MUL Multiply
MLA Multiply Accumulate
MLS Multiply Subtract.

cond is an optional condition code.

datatype must be either S16 or S32.

Qd, Dn are the destination vector and the first operand vector.

Dm is the vector holding the second operand, for a by vector operation.

Dm[x] is the scalar holding the second operand, for a by scalar operation.

4.73.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-82
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.74 VRECPE and VRSQRTE
VRECPE (Vector Reciprocal Estimate) finds an approximate reciprocal of each element in a vector,
and places the results in a second vector.

VRSQRTE (Vector Reciprocal Square Root Estimate) finds an approximate reciprocal square root
of each element in a vector, and places the results in a second vector.

4.74.1 Syntax

Vop{cond}.datatype Qd, Qm

Vop{cond}.datatype Dd, Dm

where:

op must be either RECPE or RSQRTE.

cond is an optional condition code.

datatype must be either U32 or F32.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

4.74.2 Results for out-of-range inputs

Table 4-10 shows the results where input values are out of range.

4.74.3 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.

Table 4-10 Results for out-of-range inputs

Operand element (VRECPE) Operand element (VRSQRTE) Result element

Integer <= 0x7FFFFFFF <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN NaN, Negative Normal, Negative Infinity Default NaN

Negative 0, Negative Denormal Negative 0, Negative Denormal Negative Infinity a

Positive 0, Positive Denormal Positive 0, Positive Denormal Positive Infinity a

Positive infinity Positive infinity Positive 0

Negative infinity Negative 0

a. The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-83
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.75 VRECPS and VRSQRTS
VRECPS (Vector Reciprocal Step) multiplies the elements of one vector by the corresponding
elements of another vector, subtracts each of the results from 2, and places the final results into
the elements of the destination vector.

VRSQRTS (Vector Reciprocal Square Root Step) multiplies the elements of one vector by the
corresponding elements of another vector, subtracts each of the results from 3, divides these
results by two, and places the final results into the elements of the destination vector.

4.75.1 Syntax

Vop{cond}.F32 {Qd}, Qn, Qm

Vop{cond}.F32 {Dd}, Dn, Dm

where:

op must be either RECPS or RSQRTS.

cond is an optional condition code.

Qd, Qn, Qm are the destination vector, the first operand vector, and the second operand vector,
for a quadword operation.

Dd, Dn, Dm are the destination vector, the first operand vector, and the second operand vector,
for a doubleword operation.

4.75.2 Results for out-of-range inputs

Table 4-11 shows the results where input values are out of range.

4.75.3 Usage

The Newton-Raphson iteration:

xn+1 = xn(2-dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

The Newton-Raphson iteration:

xn+1 = xn(3-dxn2)/2

converges to (1/√d)if x0 is the result of VRSQRTE applied to d.

Table 4-11 Results for out-of-range inputs

1st operand element 2nd operand element Result element (VRECPS) Result element (VRSQRTS)

NaN - Default NaN Default NaN

- NaN Default NaN Default NaN

+/– 0.0 or denormal +/– infinity 2.0 1.5

+/– infinity +/– 0.0 or denormal 2.0 1.5
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-84
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.75.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-85
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.76 VREV
VREV16 (Vector Reverse within halfwords) reverses the order of 8-bit elements within each
halfword of the vector, and places the result in the corresponding destination vector.

VREV32 (Vector Reverse within words) reverses the order of 8-bit or 16-bit elements within each
word of the vector, and places the result in the corresponding destination vector.

VREV64 (Vector Reverse within doublewords) reverses the order of 8-bit, 16-bit, or 32-bit
elements within each doubleword of the vector, and places the result in the corresponding
destination vector.

4.76.1 Syntax

VREVn{cond}.size Qd, Qm

VREVn{cond}.size Dd, Dm

where:

n must be one of 16, 32, or 64.

cond is an optional condition code.

size must be one of 8, 16, or 32, and must be less than n.

Qd, Qm specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm specifies the destination vector and the operand vector, for a doubleword
operation.

4.76.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-86
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.77 VRINT (Advanced SIMD)
VRINT (Vector Round to Integer) rounds each floating-point element in a vector to integer, and
places the results in the destination vector.

The resulting integers are represented in floating-point format.

4.77.1 Syntax

VRINTmode.F32.F32 Qd, Qm

VRINTmode.F32.F32 Dd, Dm

where:

mode must be one of:
A meaning round to nearest, ties away from zero. This cannot generate

an Inexact exception, even if the result is not exact.
N meaning round to nearest, ties to even. This cannot generate an Inexact

exception, even if the result is not exact.
X meaning round to nearest, ties to even, generating an Inexact exception

if the result is not exact.
P meaning round towards plus infinity. This cannot generate an Inexact

exception, even if the result is not exact.
M meaning round towards minus infinity. This cannot generate an Inexact

exception, even if the result is not exact.
Z meaning round towards zero. This cannot generate an Inexact

exception, even if the result is not exact.

Qd, Qm specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm specifies the destination and operand vectors, for a doubleword operation.

4.77.2 Notes

You cannot use VRINT inside an IT block.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-87
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.78 VRINT (floating-point)
Rounds a floating-point number to integer and places the result in the destination register. The
resulting integer is represented in floating-point format.

4.78.1 Syntax

VRINTmode{cond}.F64.F64 Dd, Dm

VRINTmode{cond}.F32.F32 Sd, Sm

where:

mode must be one of:
Z meaning round towards zero.
R meaning use the rounding mode specified in the FPSCR.
X meaning use the rounding mode specified in the FPSCR, generating an

Inexact exception if the result is not exact.
A meaning round to nearest, ties away from zero.
N meaning round to nearest, ties to even.
P meaning round towards plus infinity.
M meaning round towards minus infinity.

cond is an optional condition code. This can only be used when mode is Z, R or X.

Sd, Sm specifies the destination and operand registers, for a word operation.

Dd, Dm specifies the destination and operand registers, for a doubleword operation.

4.78.2 Notes

You cannot use VRINT with a rounding mode of A, N, P or M inside an IT block.

4.78.3 Floating-point exceptions

These instructions cannot produce any exceptions, except VRINTX which can generate an Inexact
exception.

4.78.4 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-88
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.79 VSEL
Floating-point select.

4.79.1 Syntax

VSELcond.F32 Sd, Sn, Sm

VSELcond.F64 Dd, Dn, Dm

where:

cond must be one of GE, GT, EQ, VS.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

4.79.2 Usage

The VSEL instruction compares the values in the operand registers. If the condition is true, it
copies the value in the first operand register into the destination operand register. Otherwise, it
copies the value in the second operand register.

You cannot use VSEL inside an IT block.

4.79.3 Floating-point exceptions

VSEL instructions cannot produce any exceptions.

4.79.4 See also

Concepts
armasm User Guide:
• Comparison of condition code meanings in integer and floating-point code on page 8-14.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-89
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.80 VSHL, VQSHL, VQSHLU, and VSHLL (by immediate)
Vector Shift Left (by immediate) instructions take each element in a vector of integers, left shift
them by an immediate value, and place the results in the destination vector.

For VSHL (Vector Shift Left), bits shifted out of the left of each element are lost.

For VQSHL (Vector Saturating Shift Left) and VQSHLU (Vector Saturating Shift Left Unsigned), the
sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

For VSHLL (Vector Shift Left Long), values are sign or zero extended.

Figure 4-6 shows the operation of VSHL with two elements and a shift value of one. The least
significant bit in each element in the destination vector is set to zero.

Figure 4-6 Operation of quadword VSHL.64 Qd, Qm, #1

4.80.1 Syntax

V{Q}SHL{U}{cond}.datatype {Qd}, Qm, #imm

V{Q}SHL{U}{cond}.datatype {Dd}, Dm, #imm

VSHLL{cond}.datatype Qd, Dm, #imm

where:

Q if present, indicates that if any of the results overflow, they are saturated.

U only permitted if Q is also present. Indicates that the results are unsigned even
though the operands are signed.

cond is an optional condition code.

datatype must be one of:
I8, I16, I32, I64 for VSHL
S8, S16, S32 for VSHLL, VQSHL, or VQSHLU
U8, U16, U32 for VSHLL or VQSHL
S64 for VQSHL or VQSHLU
U64 for VQSHL.

Qd, Qm are the destination and operand vectors, for a quadword operation.

Dd, Dm are the destination and operand vectors, for a doubleword operation.

Qd, Dm are the destination and operand vectors, for a long operation.

imm is the immediate value specifying the size of the shift, in the range:
• 1 to (size in bits of datatype) for VSHLL.

Qd

Qm
Element 0

0

Element 1

0

... ...
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-90
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
• 0 to (size in bits of datatype – 1) for VSHL, VQSHL, or VQSHLU.
For VSHLL, 0 is permitted, but the resulting code disassembles to VMOVL.

4.80.2 See also

Concepts
armasm User Guide:
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-91
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.81 VSLI and VSRI
VSLI (Vector Shift Left and Insert) takes each element in a vector, left shifts them by an
immediate value, and inserts the results in the destination vector. Bits shifted out of the left of
each element are lost. Figure 4-7 shows the operation of VSLI with two elements and a shift value
of one. The least significant bit in each element in the destination vector is unchanged.

VSRI (Vector Shift Right and Insert) takes each element in a vector, right shifts them by an
immediate value, and inserts the results in the destination vector. Bits shifted out of the right of
each element are lost. Figure 4-8 shows the operation of VSRI with a single element and a shift
value of two. The two most significant bits in the destination vector are unchanged.

Figure 4-7 Operation of quadword VSLI.64 Qd, Qm, #1

Figure 4-8 Operation of doubleword VSRI.64 Dd, Dm, #2

4.81.1 Syntax

Vop{cond}.size {Qd}, Qm, #imm

Vop{cond}.size {Dd}, Dm, #imm

where:

op must be either SLI or SRI.

cond is an optional condition code.

size must be one of 8, 16, 32, or 64.

Qd, Qm are the destination vector and the operand vector, for a quadword operation.

Dd, Dm are the destination vector and the operand vector, for a doubleword operation.

Qd

Qm
Element 0Element 1

... ...

Unchanged
bit

Unchanged
bit

Dd

Dm
Element 0

... ...

Unchanged
bits
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-92
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
imm is the immediate value specifying the size of the shift, in the range:
• 0 to (size – 1) for VSLI.
• 1 to size for VSRI.

4.81.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-93
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.82 VSWP
VSWP (Vector Swap) exchanges the contents of two vectors. The vectors can be either
doubleword or quadword. There is no distinction between data types.

4.82.1 Syntax

VSWP{cond}{.datatype} Qd, Qm

VSWP{cond}{.datatype} Dd, Dm

where:

cond is an optional condition code.

datatype is an optional datatype. The assembler ignores datatype.

Qd, Qm specifies the vectors for a quadword operation.

Dd, Dm specifies the vectors for a doubleword operation.

4.82.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-94
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.83 VTBL, VTBX
VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up byte values in a table
and generate a new vector. Indexes out of range return 0.

VTBX (Vector Table Extension) works in the same way, except that indexes out of range leave the
destination element unchanged.

4.83.1 Syntax

Vop{cond}.8 Dd, list, Dm

where:

op must be either TBL or TBX.

cond is an optional condition code.

Dd specifies the destination vector.

list Specifies the vectors containing the table. It must be one of:
• {Dn}.
• {Dn,D(n+1)}.
• {Dn,D(n+1),D(n+2)}.
• {Dn,D(n+1),D(n+2),D(n+3)}.
• {Qn,Q(n+1)}.
All the registers in list must be in the range D0-D31 or Q0-Q15 and must not
wraparound the end of the register bank. For example {D31,D0,D1} is not
permitted. If list contains Q registers, they disassemble to the equivalent D
registers.

Dm specifies the index vector.

4.83.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-95
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.84 VTRN
VTRN (Vector Transpose) treats the elements of its operand vectors as elements of 2 x 2 matrices,
and transposes the matrices. Figure 4-9 and Figure 4-10 show examples of the operation of VTRN.

Figure 4-9 Operation of doubleword VTRN.8

Figure 4-10 Operation of doubleword VTRN.32

4.84.1 Syntax

VTRN{cond}.size Qd, Qm

VTRN{cond}.size Dd, Dm

where:

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qm specifies the vectors, for a quadword operation.

Dd, Dm specifies the vectors, for a doubleword operation.

4.84.2 See also

Reference
• Condition codes on page 3-26.

Dd

Dm
017 6 5 4 3 2

Dd

Dm
01
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-96
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.85 VTST
VTST (Vector Test Bits) takes each element in a vector, and bitwise logical ANDs them with the
corresponding element of a second vector. If the result is not zero, the corresponding element in
the destination vector is set to all ones. Otherwise, it is set to all zeros.

4.85.1 Syntax

VTST{cond}.size {Qd}, Qn, Qm

VTST{cond}.size {Dd}, Dn, Dm

where:

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qn, Qm specifies the destination register, the first operand register, and the second
operand register, for a quadword operation.

Dd, Dn, Dm specifies the destination register, the first operand register, and the second
operand register, for a doubleword operation.

4.85.2 See also

Reference
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-97
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
4.86 VUZP, VZIP
VZIP (Vector Zip) interleaves the elements of two vectors.

VUZP (Vector Unzip) de-interleaves the elements of two vectors.

De-interleaving is the inverse process of interleaving.

4.86.1 Syntax

Vop{cond}.size Qd, Qm

Vop{cond}.size Dd, Dm

where:

op must be either UZP or ZIP.

cond is an optional condition code.

size must be one of 8, 16, or 32.

Qd, Qm specifies the vectors, for a quadword operation.

Dd, Dm specifies the vectors, for a doubleword operation.

Note
 The following are all the same instruction:
• VZIP.32 Dd, Dm.

Table 4-12 Operation of doubleword VZIP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B3 A3 B2 A2 B1 A1 B0 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 A7 B6 A6 B5 A5 B4 A4

Table 4-13 Operation of quadword VZIP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B1 A1 B0 A0

Qm B3 B2 B1 B0 B3 A3 B2 A2

Table 4-14 Operation of doubleword VUZP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1

Table 4-15 Operation of quadword VUZP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B2 B0 A2 A0

Qm B3 B2 B1 B0 B3 B1 A3 A1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-98
ID031214 Non-Confidential

Advanced SIMD and Floating-point Programming (32-bit)
• VUZP.32 Dd, Dm .
• VTRN.32 Dd, Dm.

The instruction is disassembled as VTRN.32 Dd, Dm.

4.86.2 See also

Reference
• De-interleaving an array of 3-element structures on page 4-14.
• VTRN on page 4-96.
• Condition codes on page 3-26.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 4-99
ID031214 Non-Confidential

Chapter 5
A64 General Instructions

The following topics give a summary of the A64 general instructions and pseudo-instructions
supported by armasm:

• A64 general instructions in alphabetical order on page 5-2.

• Register restrictions for A64 instructions on page 5-8.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-1
ID031214 Non-Confidential

A64 General Instructions
5.1 A64 general instructions in alphabetical order
The following A64 general instructions and pseudo-instructions are supported:

Table 5-1 Location of general instructions

Mnemonic Brief description See

ADC Add with carry page 5-9

ADCS Add with carry, setting the condition flags page 5-10

ADD (extended register) Add (extended register) page 5-11

ADD (immediate) Add (immediate) page 5-13

ADD (shifted register) Add (shifted register) page 5-14

ADDS (extended register) Add (extended register), setting the condition flags page 5-15

ADDS (immediate) Add (immediate), setting the condition flags page 5-17

ADDS (shifted register) Add (shifted register), setting the condition flags page 5-18

ADR Address of label at a PC-relative offset page 5-19

ADRL pseudo-instruction Load a PC-relative address into a register page 5-20

ADRP Address of 4KB page at a PC-relative offset page 5-21

AND (immediate) Bitwise AND (immediate) page 5-22

AND (shifted register) Bitwise AND (shifted register) page 5-23

ANDS (immediate) Bitwise AND (immediate), setting the condition flags page 5-24

ANDS (shifted register) Bitwise AND (shifted register), setting the condition flags page 5-25

ASR (register) Arithmetic shift right (register) page 5-26

ASR (immediate) Arithmetic shift right (immediate) page 5-27

ASRV Arithmetic shift right variable page 5-28

AT Address translate page 5-29

B.cond Branch conditionally to a label at a PC-relative offset, with
a hint that this is not a subroutine call or return

page 5-30

B Branch unconditionally to a label at a PC-relative offset,
with a hint that this is not a subroutine call or return

page 5-31

BFI Bitfield insert, leaving other bits unchanged page 5-32

BFM Bitfield move, leaving other bits unchanged page 5-33

BFXIL Bitfield extract and insert at low end, leaving other bits
unchanged

page 5-34

BIC (shifted register) Bitwise bit clear (shifted register) page 5-35

BICS (shifted register) Bitwise bit clear (shifted register), setting the condition
flags

page 5-36

BL Branch with link, calls a subroutine at a PC-relative offset,
setting register X30 to PC + 4

page 5-37
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-2
ID031214 Non-Confidential

A64 General Instructions
BLR Branch with link to register, calls a subroutine at an address
in a register, setting register X30 to PC + 4

page 5-38

BR Branch to register, branches unconditionally to an address
in a register, with a hint that this is not a subroutine return

page 5-39

BRK Self-hosted debug breakpoint page 5-40

CBNZ Compare and branch if nonzero to a label at a PC-relative
offset, without affecting the condition flags, and with a hint
that this is not a subroutine call or return

page 5-41

CBZ Compare and branch if zero to a label at a PC-relative
offset, without affecting the condition flags, and with a hint
that this is not a subroutine call or return

page 5-42

CCMN (immediate) Conditional compare negative (immediate), setting
condition flags to result of comparison or an immediate
value

page 5-43

CCMN (register) Conditional compare negative (register), setting condition
flags to result of comparison or an immediate value

page 5-44

CCMP (immediate) Conditional compare (immediate), setting condition flags
to result of comparison or an immediate value

page 5-45

CCMP (register) Conditional compare (register), setting condition flags to
result of comparison or an immediate value

page 5-46

CINC Conditional increment page 5-47

CINV Conditional invert page 5-48

CLREX Clear exclusive monitor page 5-49

CLS Count leading sign bits page 5-50

CLZ Count leading zero bits page 5-51

CMN (extended register) Compare negative (extended register), setting the
condition flags and discarding the result

page 5-52

CMN (immediate) Compare negative (immediate), setting the condition flags
and discarding the result

page 5-54

CMN (shifted register) Compare negative (shifted register), setting the condition
flags and discarding the result

page 5-55

CMP (extended register) Compare (extended register), setting the condition flags
and discarding the result

page 5-56

CMP (immediate) Compare (immediate), setting the condition flags and
discarding the result

page 5-58

CMP (shifted register) Compare (shifted register), setting the condition flags and
discarding the result

page 5-59

CNEG Conditional negate page 5-60

CRC32B, CRC32H, CRC32W, CRC32X CRC-32 checksum from byte, halfword, word or
doubleword

page 5-61

Table 5-1 Location of general instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-3
ID031214 Non-Confidential

A64 General Instructions
CRC32CB, CRC32CH, CRC32CW,
CRC32CX

CRC-32C checksum from byte, halfword, word, or
doubleword

page 5-62

CSEL Conditional select, returning the first or second input page 5-63

CSET Conditional set page 5-64

CSETM Conditional set mask page 5-65

CSINC Conditional select increment, returning the first input or
incremented second input

page 5-66

CSINV Conditional select inversion, returning the first input or
inverted second input

page 5-67

CSNEG Conditional select negation, returning the first input or
negated second input

page 5-68

DC Data cache operation page 5-69

DCPS1 Debug switch to exception level 1 page 5-70

DCPS2 Debug switch to exception level 2 page 5-71

DCPS3 Debug switch to exception level 3 page 5-72

DMB Data memory barrier page 5-73

DRPS Debug restore processor state page 5-74

DSB Data synchronization barrier page 5-75

EON (shifted register) Bitwise exclusive OR NOT (shifted register) page 5-76

EOR (immediate) Bitwise exclusive OR (immediate) page 5-77

EOR (shifted register) Bitwise exclusive OR (shifted register) page 5-78

ERET Returns from an exception page 5-79

EXTR Extract register from pair of registers page 5-80

HINT Hint instruction page 5-81

HLT External debug breakpoint page 5-82

HVC Hypervisor call to allow OS code to call the Hypervisor page 5-83

IC Instruction cache operation page 5-84

ISB Instruction synchronization barrier page 5-85

LSL (register) Logical shift left (register) page 5-86

LSL (immediate) Logical shift left (immediate) page 5-87

LSLV Logical shift left variable page 5-88

LSR (register) Logical shift right (register) page 5-89

LSR (immediate) Logical shift right (immediate) page 5-90

LSRV Logical shift right variable page 5-91

Table 5-1 Location of general instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-4
ID031214 Non-Confidential

A64 General Instructions
MADD Multiply-add page 5-92

MNEG Multiply-negate page 5-93

MOV (to or from SP) Move between register and stack pointer page 5-94

MOV (inverted wide immediate) Move inverted 16-bit immediate to register page 5-95

MOV (wide immediate) Move 16-bit immediate to register page 5-96

MOV (bitmask immediate) Move bitmask immediate to register page 5-97

MOV (register) Move register to register page 5-98

MOVK Move 16-bit immediate into register, keeping other bits
unchanged

page 5-99

MOVL pseudo-instruction Load a register page 5-100

MOVN Move inverse of shifted 16-bit immediate to register page 5-102

MOVZ Move shifted 16-bit immediate to register page 5-103

MRS Move from system register page 5-104

MSR (immediate) Move immediate to processor state field page 5-105

MSR (register) Move to system register page 5-106

MSUB Multiply-subtract page 5-107

MUL Multiply page 5-108

MVN Bitwise NOT (shifted register) page 5-109

NEG Negate page 5-110

NEGS Negate, setting the condition flags page 5-111

NGC Negate with carry page 5-112

NGCS Negate with carry, setting the condition flags page 5-113

NOP No operation page 5-114

ORN (shifted register) Bitwise inclusive OR NOT (shifted register) page 5-115

ORR (immediate) Bitwise inclusive OR (immediate) page 5-116

ORR (shifted register) Bitwise inclusive OR (shifted register) page 5-117

RBIT Reverse bit order page 5-118

RET Return from subroutine, branches unconditionally to an
address in a register, with a hint that this is a subroutine
return

page 5-119

REV Reverse bytes page 5-120

REV16 Reverse bytes in 16-bit halfwords page 5-121

REV32 Reverse bytes in 32-bit words page 5-122

ROR (immediate) Rotate right (immediate) page 5-123

Table 5-1 Location of general instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-5
ID031214 Non-Confidential

A64 General Instructions
ROR (register) Rotate right (register) page 5-124

RORV Rotate right variable page 5-125

SBC Subtract with carry page 5-126

SBCS Subtract with carry, setting the condition flags page 5-127

SBFIZ Signed bitfield insert in zero, with sign replication to left
and zeros to right

page 5-128

SBFM Signed bitfield move, with sign replication to left and zeros
to right

page 5-129

SBFX Signed bitfield extract page 5-131

SDIV Signed divide page 5-132

SEV Send event page 5-133

SEVL Send event locally page 5-134

SMADDL Signed multiply-add long page 5-135

SMC Supervisor call to allow OS or Hypervisor code to call the
Secure Monitor

page 5-136

SMNEGL Signed multiply-negate long page 5-137

SMSUBL Signed multiply-subtract long page 5-138

SMULH Signed multiply high page 5-139

SMULL Signed multiply long page 5-140

SUB (extended register) Subtract (extended register) page 5-141

SUB (immediate) Subtract (immediate) page 5-143

SUB (shifted register) Subtract (shifted register) page 5-144

SUBS (extended register) Subtract (extended register), setting the condition flags page 5-145

SUBS (immediate) Subtract (immediate), setting the condition flags page 5-147

SUBS (shifted register) Subtract (shifted register), setting the condition flags page 5-148

SVC Supervisor call to allow application code to call the OS page 5-149

SXTB Signed extend byte page 5-150

SXTH Signed extend halfword page 5-151

SXTW Signed extend word page 5-152

SYS System instruction page 5-153

SYSL System instruction with result page 5-154

TBNZ Test bit and branch if nonzero to a label at a PC-relative
offset, without affecting the condition flags, and with a hint
that this is not a subroutine call or return

page 5-155

Table 5-1 Location of general instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-6
ID031214 Non-Confidential

A64 General Instructions
TBZ Test bit and branch if zero to a label at a PC-relative offset,
without affecting the condition flags, and with a hint that
this is not a subroutine call or return

page 5-156

TLBI TLB invalidate operation page 5-157

TST (immediate) Test bits (immediate), setting the condition flags and
discarding the result

page 5-158

TST (shifted register) Test bits (shifted register), setting the condition flags and
discarding the result

page 5-159

UBFIZ Unsigned bitfield insert in zero, with zeros to left and right page 5-160

UBFM Unsigned bitfield move, with zeros to left and right page 5-161

UBFX Unsigned bitfield extract page 5-163

UDIV Unsigned divide page 5-164

UMADDL Unsigned multiply-add long page 5-165

UMNEGL Unsigned multiply-negate long page 5-166

UMSUBL Unsigned multiply-subtract long page 5-167

UMULH Unsigned multiply high page 5-168

UMULL Unsigned multiply long page 5-169

UXTB Unsigned extend byte page 5-170

UXTH Unsigned extend halfword page 5-171

WFE Wait for event page 5-172

WFI Wait for interrupt page 5-173

YIELD Yield hint page 5-174

Table 5-1 Location of general instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-7
ID031214 Non-Confidential

A64 General Instructions
5.2 Register restrictions for A64 instructions
In A64 instructions, the range of general-purpose integer registers is as follows:
• W0-W30 for 32-bit registers.
• X0-X30 for 64-bit registers.

You cannot refer to register 31 by number. In a few instructions, you can refer to it using one of
the following names:
WSP the current stack pointer in a 32-bit context.
SP the current stack pointer in a 64-bit context.
WZR the zero register in a 32-bit context.
XZR the zero register in a 64-bit context.

You can only use one of these names if it is mentioned in the Syntax section for the instruction.

You cannot refer to the Program Counter (PC) explicitly by name or by number.

5.2.1 See also

Concepts
armasm User Guide:
• Registers in AArch64 state on page 5-2
• Program Counter in AArch64 state on page 5-8.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-8
ID031214 Non-Confidential

A64 General Instructions
5.3 ADC
Add with carry.

5.3.1 Syntax

ADC Wd, Wn, Wm ; 32-bit general registers

ADC Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.3.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-9
ID031214 Non-Confidential

A64 General Instructions
5.4 ADCS
Add with carry, setting the condition flags.

5.4.1 Syntax

ADCS Wd, Wn, Wm ; 32-bit general registers

ADCS Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.4.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-10
ID031214 Non-Confidential

A64 General Instructions
5.5 ADD (extended register)
Add (extended register).

5.5.1 Syntax

ADD Wd|WSP, Wn|WSP, Wm{, extend {#amount}} ; 32-bit general registers

ADD Xd|SP, Xn|SP, Rm{, extend {#amount}} ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn|WSP Is the 32-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

extend Is the extension to be applied to the second source operand:
32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
If Rd or Rn is WSP then LSL is preferred rather than UXTW, and can be
omitted when amount is 0. In all other cases extend is required and must
be UXTW rather than LSL.

64-bit general registers
Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.
If Rd or Rn is SP then LSL is preferred rather than UXTX, and can be
omitted when amount is 0. In all other cases extend is required and must
be UXTX rather than LSL.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn|SP Is the 64-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

R Is a width specifier, and can be either W or X.

m Is the number of the second general-purpose source register, in the range 0 to 30,
or the name ZR (31).

amount Is the left shift amount to be applied after extension in the range 0 to 4, defaulting
to 0. It must be absent when extend is absent, is required when extend is LSL, and
is optional when extend is present but not LSL.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-11
ID031214 Non-Confidential

A64 General Instructions
5.5.2 Usage

The following table shows valid specifier combinations:

5.5.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 5-2 ADD (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-12
ID031214 Non-Confidential

A64 General Instructions
5.6 ADD (immediate)
Add (immediate).

This instruction is used by the alias MOV (to or from SP).

5.6.1 Syntax

ADD Wd|WSP, Wn|WSP, #imm{, shift} ; 32-bit general registers

ADD Xd|SP, Xn|SP, #imm{, shift} ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

imm Is an unsigned immediate, in the range 0 to 4095.

shift Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can
be either LSL #0 or LSL #12.

5.6.2 See also

Reference
• MOV (to or from SP) on page 5-94.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-13
ID031214 Non-Confidential

A64 General Instructions
5.7 ADD (shifted register)
Add (shifted register).

5.7.1 Syntax

ADD Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

ADD Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.7.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-14
ID031214 Non-Confidential

A64 General Instructions
5.8 ADDS (extended register)
Add (extended register), setting the condition flags.

This instruction is used by the alias CMN (extended register).

5.8.1 Syntax

ADDS Wd, Wn|WSP, Wm{, extend {#amount}} ; 32-bit general registers

ADDS Xd, Xn|SP, Rm{, extend {#amount}} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn|WSP Is the 32-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

extend Is the extension to be applied to the second source operand:
32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTW
rather than LSL.

64-bit general registers
Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is SP then LSL is preferred rather than UXTX, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTX
rather than LSL.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn|SP Is the 64-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

R Is a width specifier, and can be either W or X.

m Is the number of the second general-purpose source register, in the range 0 to 30,
or the name ZR (31).

amount Is the left shift amount to be applied after extension in the range 0 to 4, defaulting
to 0. It must be absent when extend is absent, is required when extend is LSL, and
is optional when extend is present but not LSL.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-15
ID031214 Non-Confidential

A64 General Instructions
5.8.2 Usage

The following table shows valid specifier combinations:

5.8.3 See also

Reference
• CMN (extended register) on page 5-52.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 5-3 ADDS (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-16
ID031214 Non-Confidential

A64 General Instructions
5.9 ADDS (immediate)
Add (immediate), setting the condition flags.

This instruction is used by the alias CMN (immediate).

5.9.1 Syntax

ADDS Wd, Wn|WSP, #imm{, shift} ; 32-bit general registers

ADDS Xd, Xn|SP, #imm{, shift} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

imm Is an unsigned immediate, in the range 0 to 4095.

shift Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can
be either LSL #0 or LSL #12.

5.9.2 See also

Reference
• CMN (immediate) on page 5-54.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-17
ID031214 Non-Confidential

A64 General Instructions
5.10 ADDS (shifted register)
Add (shifted register), setting the condition flags.

This instruction is used by the alias CMN (shifted register).

5.10.1 Syntax

ADDS Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

ADDS Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.10.2 See also

Reference
• CMN (shifted register) on page 5-55.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-18
ID031214 Non-Confidential

A64 General Instructions
5.11 ADR
Address of label at a PC-relative offset.

5.11.1 Syntax

ADR Xd, label

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

label Is the program label whose address is to be calculated. It is an offset from the
address of this instruction, in the range ±1MB.

5.11.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-19
ID031214 Non-Confidential

A64 General Instructions
5.12 ADRL pseudo-instruction
Load a PC-relative address into a register. It is similar to the ADR instruction. ADRL can load a
wider range of addresses than ADR because it generates two data processing instructions.

5.12.1 Syntax

ADRL Wd,label

ADRL Xd,label

where:

Wd Is the register to load with a 32-bit address.

Xd Is the register to load with a 64-bit address.

label Is a PC-relative expression.

5.12.2 Usage

ADRL assembles to two instructions, an ADRP followed by ADD.

If the assembler cannot construct the address in two instructions, it generates a relocation. The
linker then generates the correct offsets.

ADRL produces position-independent code, because the address is calculated relative to PC.

5.12.3 Example

 ADRL x0, mylabel ; loads address of mylabel into x0

5.12.4 See also

Concepts
armasm User Guide
• Register-relative and PC-relative expressions on page 10-7

Reference
• ADD (immediate) on page 5-13.
• ADR on page 5-19.
• ADRP on page 5-21.
• RELOC on page 10-77.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-20
ID031214 Non-Confidential

A64 General Instructions
5.13 ADRP
Address of 4KB page at a PC-relative offset.

5.13.1 Syntax

ADRP Xd, label

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

label Is the program label whose 4KB page address is to be calculated. An offset from
the page address of this instruction, in the range ±4GB.

5.13.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-21
ID031214 Non-Confidential

A64 General Instructions
5.14 AND (immediate)
Bitwise AND (immediate).

5.14.1 Syntax

AND Wd|WSP, Wn, #imm ; 32-bit general registers

AND Xd|SP, Xn, #imm ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

imm Is the bitmask immediate. Such an immediate is a 32-bit or 64-bit pattern viewed
as a vector of identical elements of size e = 2, 4, 8, 16, 32, or 64 bits. Each element
contains the same sub-pattern: a single run of 1 to e-1 non-zero bits, rotated by 0
to e-1 bits. This mechanism can generate 5,334 unique 64-bit patterns (as 2,667
pairs of pattern and their bitwise inverse). Because the all-zeros and all-ones
values cannot be described in this way, the assembler generates an error message.

Note
 Logical immediate instructions do not set the condition flags, but interesting

results can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

5.14.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-22
ID031214 Non-Confidential

A64 General Instructions
5.15 AND (shifted register)
Bitwise AND (shifted register).

5.15.1 Syntax

AND Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

AND Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.15.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-23
ID031214 Non-Confidential

A64 General Instructions
5.16 ANDS (immediate)
Bitwise AND (immediate), setting the condition flags.

This instruction is used by the alias TST (immediate).

5.16.1 Syntax

ANDS Wd, Wn, #imm ; 32-bit general registers

ANDS Xd, Xn, #imm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

imm Is the bitmask immediate. Such an immediate is a 32-bit or 64-bit pattern viewed
as a vector of identical elements of size e = 2, 4, 8, 16, 32, or 64 bits. Each element
contains the same sub-pattern: a single run of 1 to e-1 non-zero bits, rotated by 0
to e-1 bits. This mechanism can generate 5,334 unique 64-bit patterns (as 2,667
pairs of pattern and their bitwise inverse). Because the all-zeros and all-ones
values cannot be described in this way, the assembler generates an error message.

5.16.2 See also

Reference
• TST (immediate) on page 5-158.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-24
ID031214 Non-Confidential

A64 General Instructions
5.17 ANDS (shifted register)
Bitwise AND (shifted register), setting the condition flags.

This instruction is used by the alias TST (shifted register).

5.17.1 Syntax

ANDS Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

ANDS Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.17.2 See also

Reference
• TST (shifted register) on page 5-159.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-25
ID031214 Non-Confidential

A64 General Instructions
5.18 ASR (register)
Arithmetic shift right (register).

This instruction is an alias of ASRV.

5.18.1 Syntax

ASR Wd, Wn, Wm ; 32-bit general registers

ASR Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.18.2 See also

Reference
• ASRV on page 5-28.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-26
ID031214 Non-Confidential

A64 General Instructions
5.19 ASR (immediate)
Arithmetic shift right (immediate).

This instruction is an alias of SBFM.

5.19.1 Syntax

ASR Wd, Wn, #shift ; 32-bit general registers

ASR Xd, Xn, #shift ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

shift The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31.
64-bit general registers

Is the shift amount, in the range 0 to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.19.2 See also

Reference
• SBFM on page 5-129.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-27
ID031214 Non-Confidential

A64 General Instructions
5.20 ASRV
Arithmetic shift right variable.

This instruction is used by the alias ASR (register).

5.20.1 Syntax

ASRV Wd, Wn, Wm ; 32-bit general registers

ASRV Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.20.2 See also

Reference
• ASR (register) on page 5-26.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-28
ID031214 Non-Confidential

A64 General Instructions
5.21 AT
Address translate.

This instruction is an alias of SYS.

5.21.1 Syntax

AT at_op, Xt

Where:

at_op Is an AT operation name, as listed for the AT system operation group specified by
the parameters op1, Cn, Cm, and op2.

op1 Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn Is a name Cn, with n in the range 0 to 15.

Cm Is a name Cm, with m in the range 0 to 15.

op2 Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.21.2 See also

Reference
• SYS on page 5-153.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-29
ID031214 Non-Confidential

A64 General Instructions
5.22 B.cond
Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine
call or return.

5.22.1 Syntax

B.cond label

Where:

cond Is one of the standard conditions.

label Is the program label to be conditionally branched to. It is an offset from the
address of this instruction, in the range ±1MB.

5.22.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-30
ID031214 Non-Confidential

A64 General Instructions
5.23 B
Branch unconditionally to a label at a PC-relative offset, with a hint that this is not a subroutine
call or return.

5.23.1 Syntax

B label

Where:

label Is the program label to be unconditionally branched to. It is an offset from the
address of this instruction, in the range ±128MB.

5.23.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-31
ID031214 Non-Confidential

A64 General Instructions
5.24 BFI
Bitfield insert, leaving other bits unchanged.

This instruction is an alias of BFM.

5.24.1 Syntax

BFI Wd, Wn, #lsb, #width ; 32-bit general registers

BFI Xd, Xn, #lsb, #width ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 31.
64-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width The value depends on the instruction variant:
32-bit general registers

Is the width of the bitfield, in the range 1 to 32-lsb.
64-bit general registers

Is the width of the bitfield, in the range 1 to 64-lsb.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.24.2 See also

Reference
• BFM on page 5-33.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-32
ID031214 Non-Confidential

A64 General Instructions
5.25 BFM
Bitfield move, leaving other bits unchanged.

This instruction is used by the aliases:
• BFI.
• BFXIL.

5.25.1 Syntax

BFM Wd, Wn, #immr, #imms ; 32-bit general registers

BFM Xd, Xn, #immr, #imms ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

immr The value depends on the instruction variant:
32-bit general registers

Is the right rotate amount, in the range 0 to 31.
64-bit general registers

Is the right rotate amount, in the range 0 to 63.

imms The value depends on the instruction variant:
32-bit general registers

Is the leftmost bit number to be moved from the source, in the range 0
to 31.

64-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0
to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.25.2 See also

Reference
• BFI on page 5-32.
• BFXIL on page 5-34.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-33
ID031214 Non-Confidential

A64 General Instructions
5.26 BFXIL
Bitfield extract and insert at low end, leaving other bits unchanged.

This instruction is an alias of BFM.

5.26.1 Syntax

BFXIL Wd, Wn, #lsb, #width ; 32-bit general registers

BFXIL Xd, Xn, #lsb, #width ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 31.
64-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width The value depends on the instruction variant:
32-bit general registers

Is the width of the bitfield, in the range 1 to 32-lsb.
64-bit general registers

Is the width of the bitfield, in the range 1 to 64-lsb.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.26.2 See also

Reference
• BFM on page 5-33.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-34
ID031214 Non-Confidential

A64 General Instructions
5.27 BIC (shifted register)
Bitwise bit clear (shifted register).

5.27.1 Syntax

BIC Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

BIC Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.27.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-35
ID031214 Non-Confidential

A64 General Instructions
5.28 BICS (shifted register)
Bitwise bit clear (shifted register), setting the condition flags.

5.28.1 Syntax

BICS Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

BICS Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.28.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-36
ID031214 Non-Confidential

A64 General Instructions
5.29 BL
Branch with link, calls a subroutine at a PC-relative offset, setting register X30 to PC + 4.

5.29.1 Syntax

BL label

Where:

label Is the program label to be unconditionally branched to. It is an offset from the
address of this instruction, in the range ±128MB.

5.29.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-37
ID031214 Non-Confidential

A64 General Instructions
5.30 BLR
Branch with link to register, calls a subroutine at an address in a register, setting register X30 to
PC + 4.

5.30.1 Syntax

BLR Xn

Where:

Xn Is the 64-bit name of the general-purpose register holding the address to be
branched to, in the range 0 to 31.

5.30.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-38
ID031214 Non-Confidential

A64 General Instructions
5.31 BR
Branch to register, branches unconditionally to an address in a register, with a hint that this is
not a subroutine return.

5.31.1 Syntax

BR Xn

Where:

Xn Is the 64-bit name of the general-purpose register holding the address to be
branched to, in the range 0 to 31.

5.31.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-39
ID031214 Non-Confidential

A64 General Instructions
5.32 BRK
Self-hosted debug breakpoint.

5.32.1 Syntax

BRK #imm

Where:

imm Is a 16-bit unsigned immediate, in the range 0 to 65535.

5.32.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-40
ID031214 Non-Confidential

A64 General Instructions
5.33 CBNZ
Compare and branch if nonzero to a label at a PC-relative offset, without affecting the condition
flags, and with a hint that this is not a subroutine call or return.

5.33.1 Syntax

CBNZ Wt, label ; 32-bit general registers

CBNZ Xt, label ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be tested, in the range 0 to 31.

Xt Is the 64-bit name of the general-purpose register to be tested, in the range 0 to 31.

label Is the program label to be conditionally branched to. It is an offset from the
address of this instruction, in the range ±1MB.

5.33.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-41
ID031214 Non-Confidential

A64 General Instructions
5.34 CBZ
Compare and branch if zero to a label at a PC-relative offset, without affecting the condition
flags, and with a hint that this is not a subroutine call or return.

5.34.1 Syntax

CBZ Wt, label ; 32-bit general registers

CBZ Xt, label ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be tested, in the range 0 to 31.

Xt Is the 64-bit name of the general-purpose register to be tested, in the range 0 to 31.

label Is the program label to be conditionally branched to. It is an offset from the
address of this instruction, in the range ±1MB.

5.34.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-42
ID031214 Non-Confidential

A64 General Instructions
5.35 CCMN (immediate)
Conditional compare negative (immediate), setting condition flags to result of comparison or an
immediate value.

5.35.1 Syntax

CCMN Wn, #imm, #nzcv, cond ; 32-bit general registers

CCMN Xn, #imm, #nzcv, cond ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

imm Is a five bit unsigned immediate.

nzcv Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative
state for the 4-bit NZCV condition flags. Bit 3 is the N flag, bit 2 is the Z flag, bit
1 is the C flag, and bit 0 is the V flag.

cond Is one of the standard conditions.

5.35.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-43
ID031214 Non-Confidential

A64 General Instructions
5.36 CCMN (register)
Conditional compare negative (register), setting condition flags to result of comparison or an
immediate value.

5.36.1 Syntax

CCMN Wn, Wm, #nzcv, cond ; 32-bit general registers

CCMN Xn, Xm, #nzcv, cond ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

nzcv Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative
state for the 4-bit NZCV condition flags. Bit 3 is the N flag, bit 2 is the Z flag, bit
1 is the C flag, and bit 0 is the V flag.

cond Is one of the standard conditions.

5.36.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-44
ID031214 Non-Confidential

A64 General Instructions
5.37 CCMP (immediate)
Conditional compare (immediate), setting condition flags to result of comparison or an
immediate value.

5.37.1 Syntax

CCMP Wn, #imm, #nzcv, cond ; 32-bit general registers

CCMP Xn, #imm, #nzcv, cond ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

imm Is a five bit unsigned immediate.

nzcv Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative
state for the 4-bit NZCV condition flags. Bit 3 is the N flag, bit 2 is the Z flag, bit
1 is the C flag, and bit 0 is the V flag.

cond Is one of the standard conditions.

5.37.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-45
ID031214 Non-Confidential

A64 General Instructions
5.38 CCMP (register)
Conditional compare (register), setting condition flags to result of comparison or an immediate
value.

5.38.1 Syntax

CCMP Wn, Wm, #nzcv, cond ; 32-bit general registers

CCMP Xn, Xm, #nzcv, cond ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

nzcv Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative
state for the 4-bit NZCV condition flags. Bit 3 is the N flag, bit 2 is the Z flag, bit
1 is the C flag, and bit 0 is the V flag.

cond Is one of the standard conditions.

5.38.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-46
ID031214 Non-Confidential

A64 General Instructions
5.39 CINC
Conditional increment.

This instruction is an alias of CSINC.

5.39.1 Syntax

CINC Wd, Wn, cond ; 32-bit general registers

CINC Xd, Xn, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register in the range 0 to 31.

cond Is one of the standard conditions, excluding AL and NV.

5.39.2 See also

Reference
• CSINC on page 5-66.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-47
ID031214 Non-Confidential

A64 General Instructions
5.40 CINV
Conditional invert.

This instruction is an alias of CSINV.

5.40.1 Syntax

CINV Wd, Wn, cond ; 32-bit general registers

CINV Xd, Xn, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register in the range 0 to 31.

cond Is one of the standard conditions, excluding AL and NV.

5.40.2 See also

Reference
• CSINV on page 5-67.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-48
ID031214 Non-Confidential

A64 General Instructions
5.41 CLREX
Clear exclusive monitor.

5.41.1 Syntax

CLREX {#imm}

Where:

imm Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15.

5.41.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-49
ID031214 Non-Confidential

A64 General Instructions
5.42 CLS
Count leading sign bits.

5.42.1 Syntax

CLS Wd, Wn ; 32-bit general registers

CLS Xd, Xn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.42.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-50
ID031214 Non-Confidential

A64 General Instructions
5.43 CLZ
Count leading zero bits.

5.43.1 Syntax

CLZ Wd, Wn ; 32-bit general registers

CLZ Xd, Xn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.43.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-51
ID031214 Non-Confidential

A64 General Instructions
5.44 CMN (extended register)
Compare negative (extended register), setting the condition flags and discarding the result.

This instruction is an alias of ADDS (extended register).

5.44.1 Syntax

CMN Wn|WSP, Wm{, extend {#amount}} ; 32-bit general registers

CMN Xn|SP, Rm{, extend {#amount}} ; 64-bit general registers

Where:

Wn|WSP Is the 32-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

extend Is the extension to be applied to the second source operand:
32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTW
rather than LSL.

64-bit general registers
Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is SP then LSL is preferred rather than UXTX, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTX
rather than LSL.

Xn|SP Is the 64-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

R Is a width specifier, and can be either W or X.

m Is the number of the second general-purpose source register, in the range 0 to 30,
or the name ZR (31).

amount Is the left shift amount to be applied after extension in the range 0 to 4, defaulting
to 0. It must be absent when extend is absent, is required when extend is LSL, and
is optional when extend is present but not LSL.

5.44.2 Usage

The following table shows valid specifier combinations:

Table 5-4 CMN (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-52
ID031214 Non-Confidential

A64 General Instructions
5.44.3 See also

Reference
• ADDS (extended register) on page 5-15.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Table 5-4 CMN (64-bit general registers) specifier combinations (continued)

R extend
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-53
ID031214 Non-Confidential

A64 General Instructions
5.45 CMN (immediate)
Compare negative (immediate), setting the condition flags and discarding the result.

This instruction is an alias of ADDS (immediate).

5.45.1 Syntax

CMN Wn|WSP, #imm{, shift} ; 32-bit general registers

CMN Xn|SP, #imm{, shift} ; 64-bit general registers

Where:

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

imm Is an unsigned immediate, in the range 0 to 4095.

shift Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can
be either LSL #0 or LSL #12.

5.45.2 See also

Reference
• ADDS (immediate) on page 5-17.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-54
ID031214 Non-Confidential

A64 General Instructions
5.46 CMN (shifted register)
Compare negative (shifted register), setting the condition flags and discarding the result.

This instruction is an alias of ADDS (shifted register).

5.46.1 Syntax

CMN Wn, Wm{, shift #amount} ; 32-bit general registers

CMN Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.46.2 See also

Reference
• ADDS (shifted register) on page 5-18.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-55
ID031214 Non-Confidential

A64 General Instructions
5.47 CMP (extended register)
Compare (extended register), setting the condition flags and discarding the result.

This instruction is an alias of SUBS (extended register).

5.47.1 Syntax

CMP Wn|WSP, Wm{, extend {#amount}} ; 32-bit general registers

CMP Xn|SP, Rm{, extend {#amount}} ; 64-bit general registers

Where:

Wn|WSP Is the 32-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

extend Is the extension to be applied to the second source operand:
32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTW
rather than LSL.

64-bit general registers
Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is SP then LSL is preferred rather than UXTX, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTX
rather than LSL.

Xn|SP Is the 64-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

R Is a width specifier, and can be either W or X.

m Is the number of the second general-purpose source register, in the range 0 to 30,
or the name ZR (31).

amount Is the left shift amount to be applied after extension in the range 0 to 4, defaulting
to 0. It must be absent when extend is absent, is required when extend is LSL, and
is optional when extend is present but not LSL.

5.47.2 Usage

The following table shows valid specifier combinations:

Table 5-5 CMP (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-56
ID031214 Non-Confidential

A64 General Instructions
5.47.3 See also

Reference
• SUBS (extended register) on page 5-145.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Table 5-5 CMP (64-bit general registers) specifier combinations (continued)

R extend
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-57
ID031214 Non-Confidential

A64 General Instructions
5.48 CMP (immediate)
Compare (immediate), setting the condition flags and discarding the result.

This instruction is an alias of SUBS (immediate).

5.48.1 Syntax

CMP Wn|WSP, #imm{, shift} ; 32-bit general registers

CMP Xn|SP, #imm{, shift} ; 64-bit general registers

Where:

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

imm Is an unsigned immediate, in the range 0 to 4095.

shift Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can
be either LSL #0 or LSL #12.

5.48.2 See also

Reference
• SUBS (immediate) on page 5-147.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-58
ID031214 Non-Confidential

A64 General Instructions
5.49 CMP (shifted register)
Compare (shifted register), setting the condition flags and discarding the result.

This instruction is an alias of SUBS (shifted register).

5.49.1 Syntax

CMP Wn, Wm{, shift #amount} ; 32-bit general registers

CMP Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.49.2 See also

Reference
• SUBS (shifted register) on page 5-148.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-59
ID031214 Non-Confidential

A64 General Instructions
5.50 CNEG
Conditional negate.

This instruction is an alias of CSNEG.

5.50.1 Syntax

CNEG Wd, Wn, cond ; 32-bit general registers

CNEG Xd, Xn, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register in the range 0 to 31.

cond Is one of the standard conditions, excluding AL and NV.

5.50.2 See also

Reference
• CSNEG on page 5-68.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-60
ID031214 Non-Confidential

A64 General Instructions
5.51 CRC32B, CRC32H, CRC32W, CRC32X
CRC-32 checksum from byte, halfword, word or doubleword.

5.51.1 Syntax

CRC32B Wd, Wn, Wm ; Wd = CRC32(Wn, Rm[7:0])

CRC32H Wd, Wn, Wm ; Wd = CRC32(Wn, Rm[15:0])

CRC32W Wd, Wn, Wm ; Wd = CRC32(Wn, Rm[31:0])

CRC32X Wd, Wn, Xm ; Wd = CRC32(Wn, Rm[63:0])

Where:

Wm Is the 32-bit name of the general-purpose data source register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose data source register, in the range 0 to 31.

Wd Is the 32-bit name of the general-purpose accumulator output register, in the range
0 to 31.

Wn Is the 32-bit name of the general-purpose accumulator input register, in the range
0 to 31.

5.51.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-61
ID031214 Non-Confidential

A64 General Instructions
5.52 CRC32CB, CRC32CH, CRC32CW, CRC32CX
CRC-32C checksum from byte, halfword, word, or doubleword.

5.52.1 Syntax

CRC32CB Wd, Wn, Wm ; Wd = CRC32C(Wn, Rm[7:0])

CRC32CH Wd, Wn, Wm ; Wd = CRC32C(Wn, Rm[15:0])

CRC32CW Wd, Wn, Wm ; Wd = CRC32C(Wn, Rm[31:0])

CRC32CX Wd, Wn, Xm ; Wd = CRC32C(Wn, Rm[63:0])

Where:

Wm Is the 32-bit name of the general-purpose data source register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose data source register, in the range 0 to 31.

Wd Is the 32-bit name of the general-purpose accumulator output register, in the range
0 to 31.

Wn Is the 32-bit name of the general-purpose accumulator input register, in the range
0 to 31.

5.52.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-62
ID031214 Non-Confidential

A64 General Instructions
5.53 CSEL
Conditional select, returning the first or second input.

5.53.1 Syntax

CSEL Wd, Wn, Wm, cond ; 32-bit general registers

CSEL Xd, Xn, Xm, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

cond Is one of the standard conditions.

5.53.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-63
ID031214 Non-Confidential

A64 General Instructions
5.54 CSET
Conditional set.

This instruction is an alias of CSINC.

5.54.1 Syntax

CSET Wd, cond ; 32-bit general registers

CSET Xd, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

cond Is one of the standard conditions, excluding AL and NV.

5.54.2 See also

Reference
• CSINC on page 5-66.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-64
ID031214 Non-Confidential

A64 General Instructions
5.55 CSETM
Conditional set mask.

This instruction is an alias of CSINV.

5.55.1 Syntax

CSETM Wd, cond ; 32-bit general registers

CSETM Xd, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

cond Is one of the standard conditions, excluding AL and NV.

5.55.2 See also

Reference
• CSINV on page 5-67.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-65
ID031214 Non-Confidential

A64 General Instructions
5.56 CSINC
Conditional select increment, returning the first input or incremented second input.

This instruction is used by the aliases:
• CINC.
• CSET.

5.56.1 Syntax

CSINC Wd, Wn, Wm, cond ; 32-bit general registers

CSINC Xd, Xn, Xm, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

cond Is one of the standard conditions.

5.56.2 See also

Reference
• CINC on page 5-47.
• CSET on page 5-64.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-66
ID031214 Non-Confidential

A64 General Instructions
5.57 CSINV
Conditional select inversion, returning the first input or inverted second input.

This instruction is used by the aliases:
• CINV.
• CSETM.

5.57.1 Syntax

CSINV Wd, Wn, Wm, cond ; 32-bit general registers

CSINV Xd, Xn, Xm, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

cond Is one of the standard conditions.

5.57.2 See also

Reference
• CINV on page 5-48.
• CSETM on page 5-65.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-67
ID031214 Non-Confidential

A64 General Instructions
5.58 CSNEG
Conditional select negation, returning the first input or negated second input.

This instruction is used by the alias CNEG.

5.58.1 Syntax

CSNEG Wd, Wn, Wm, cond ; 32-bit general registers

CSNEG Xd, Xn, Xm, cond ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

cond Is one of the standard conditions.

5.58.2 See also

Reference
• CNEG on page 5-60.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-68
ID031214 Non-Confidential

A64 General Instructions
5.59 DC
Data cache operation.

This instruction is an alias of SYS.

5.59.1 Syntax

DC dc_op, Xt

Where:

dc_op Is a DC operation name, as listed for the DC system operation group specified by
the parameters op1, Cn, Cm, and op2.

op1 Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn Is a name Cn, with n in the range 0 to 15.

Cm Is a name Cm, with m in the range 0 to 15.

op2 Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.59.2 See also

Reference
• SYS on page 5-153.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-69
ID031214 Non-Confidential

A64 General Instructions
5.60 DCPS1
Debug switch to exception level 1.

5.60.1 Syntax

DCPS1 {#imm}

Where:

imm Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0.

5.60.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-70
ID031214 Non-Confidential

A64 General Instructions
5.61 DCPS2
Debug switch to exception level 2.

5.61.1 Syntax

DCPS2 {#imm}

Where:

imm Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0.

5.61.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-71
ID031214 Non-Confidential

A64 General Instructions
5.62 DCPS3
Debug switch to exception level 3.

5.62.1 Syntax

DCPS3 {#imm}

Where:

imm Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0.

5.62.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-72
ID031214 Non-Confidential

A64 General Instructions
5.63 DMB
Data memory barrier.

5.63.1 Syntax

DMB option|#imm

Where:

option Is a barrier option name. The options are ordered in decreasing scope of the
shareability domain. ARM recommends that you use the option names in
preference to the equivalent #imm values.

imm Is a 4-bit unsigned immediate, in the range 0 to 15.

5.63.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 5-6 Data memory barrier options

option imm Ordered Accesses
(before-after) Shareability domain

LD 13 Load-Load, Load-Store

ST 14 Store-Store Full system

SY 15 Any-Any

OSHLD 1 Load-Load, Load-Store

OSHST 2 Store-Store Outer shareable

OSH 3 Any-Any

ISHLD 9 Load-Load, Load-Store

ISHST 10 Store-Store Inner shareable

ISH 11 Any-Any

NSHLD 5 Load-Load, Load-Store

NSHST 6 Store-Store Non-shareable

NSH 7 Any-Any
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-73
ID031214 Non-Confidential

A64 General Instructions
5.64 DRPS
Debug restore processor state.

5.64.1 Syntax

DRPS

5.64.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-74
ID031214 Non-Confidential

A64 General Instructions
5.65 DSB
Data synchronization barrier.

5.65.1 Syntax

DSB option|#imm

Where:

option Is a barrier option name. The options are ordered in decreasing scope of the
shareability domain. ARM recommends that you use the option names in
preference to the equivalent #imm values.

imm Is a 4-bit unsigned immediate, in the range 0 to 15.

5.65.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 5-7 Data synchronization barrier options

option imm Ordered Accesses
(before-after) Shareability domain

LD 13 Load-Load, Load-Store

ST 14 Store-Store Full system

SY 15 Any-Any

OSHLD 1 Load-Load, Load-Store

OSHST 2 Store-Store Outer shareable

OSH 3 Any-Any

ISHLD 9 Load-Load, Load-Store

ISHST 10 Store-Store Inner shareable

ISH 11 Any-Any

NSHLD 5 Load-Load, Load-Store

NSHST 6 Store-Store Non-shareable

NSH 7 Any-Any
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-75
ID031214 Non-Confidential

A64 General Instructions
5.66 EON (shifted register)
Bitwise exclusive OR NOT (shifted register).

5.66.1 Syntax

EON Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

EON Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.66.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-76
ID031214 Non-Confidential

A64 General Instructions
5.67 EOR (immediate)
Bitwise exclusive OR (immediate).

5.67.1 Syntax

EOR Wd|WSP, Wn, #imm ; 32-bit general registers

EOR Xd|SP, Xn, #imm ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

imm Is the bitmask immediate. Such an immediate is a 32-bit or 64-bit pattern viewed
as a vector of identical elements of size e = 2, 4, 8, 16, 32, or 64 bits. Each element
contains the same sub-pattern: a single run of 1 to e-1 non-zero bits, rotated by 0
to e-1 bits. This mechanism can generate 5,334 unique 64-bit patterns (as 2,667
pairs of pattern and their bitwise inverse). Because the all-zeros and all-ones
values cannot be described in this way, the assembler generates an error message.

Note
 Logical immediate instructions do not set the condition flags, but interesting

results can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

5.67.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-77
ID031214 Non-Confidential

A64 General Instructions
5.68 EOR (shifted register)
Bitwise exclusive OR (shifted register).

5.68.1 Syntax

EOR Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

EOR Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.68.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-78
ID031214 Non-Confidential

A64 General Instructions
5.69 ERET
Returns from an exception. It restores the processor state based on SPSR_ELn and branches to
ELR_ELn, where n is the current exception level.

5.69.1 Syntax

ERET

5.69.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-79
ID031214 Non-Confidential

A64 General Instructions
5.70 EXTR
Extract register from pair of registers.

This instruction is used by the alias ROR (immediate).

5.70.1 Syntax

EXTR Wd, Wn, Wm, #lsb ; 32-bit general registers

EXTR Xd, Xn, Xm, #lsb ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the least significant bit position from which to extract, in the range
0 to 31.

64-bit general registers
Is the least significant bit position from which to extract, in the range
0 to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.70.2 See also

Reference
• ROR (immediate) on page 5-123.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-80
ID031214 Non-Confidential

A64 General Instructions
5.71 HINT
Hint instruction.

This instruction is used by the aliases:
• NOP.
• SEVL.
• SEV.
• WFE.
• WFI.
• YIELD.

5.71.1 Syntax

HINT #imm

Where:

imm Is a 7-bit unsigned immediate, in the range 0 to 127.

5.71.2 See also

Reference
• NOP on page 5-114.
• SEVL on page 5-134.
• SEV on page 5-133.
• WFE on page 5-172.
• WFI on page 5-173.
• YIELD on page 5-174.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-81
ID031214 Non-Confidential

A64 General Instructions
5.72 HLT
External debug breakpoint.

5.72.1 Syntax

HLT #imm

Where:

imm Is a 16-bit unsigned immediate, in the range 0 to 65535.

5.72.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-82
ID031214 Non-Confidential

A64 General Instructions
5.73 HVC
Hypervisor call to allow OS code to call the Hypervisor. It generates an exception targeting
exception level 2 (EL2).

5.73.1 Syntax

HVC #imm

Where:

imm Is a 16-bit unsigned immediate, in the range 0 to 65535. This value is made
available to the handler in the Exception Syndrome Register.

5.73.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-83
ID031214 Non-Confidential

A64 General Instructions
5.74 IC
Instruction cache operation.

This instruction is an alias of SYS.

5.74.1 Syntax

IC ic_op{, Xt}

Where:

ic_op Is an IC operation name, as listed for the IC system operation group specified by
the parameters op1, Cn, Cm, and op2.

op1 Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn Is a name Cn, with n in the range 0 to 15.

Cm Is a name Cm, with m in the range 0 to 15.

op2 Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt Is the 64-bit name of the optional general-purpose source register, defaulting to
31.

5.74.2 See also

Reference
• SYS on page 5-153.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-84
ID031214 Non-Confidential

A64 General Instructions
5.75 ISB
Instruction synchronization barrier.

5.75.1 Syntax

ISB {option|#imm}

Where:

option Is the barrier option name SY.

imm Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15.

5.75.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-85
ID031214 Non-Confidential

A64 General Instructions
5.76 LSL (register)
Logical shift left (register).

This instruction is an alias of LSLV.

5.76.1 Syntax

LSL Wd, Wn, Wm ; 32-bit general registers

LSL Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.76.2 See also

Reference
• LSLV on page 5-88.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-86
ID031214 Non-Confidential

A64 General Instructions
5.77 LSL (immediate)
Logical shift left (immediate).

This instruction is an alias of UBFM.

5.77.1 Syntax

LSL Wd, Wn, #shift ; 32-bit general registers

LSL Xd, Xn, #shift ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

shift The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31.
64-bit general registers

Is the shift amount, in the range 0 to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.77.2 See also

Reference
• UBFM on page 5-161.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-87
ID031214 Non-Confidential

A64 General Instructions
5.78 LSLV
Logical shift left variable.

This instruction is used by the alias LSL (register).

5.78.1 Syntax

LSLV Wd, Wn, Wm ; 32-bit general registers

LSLV Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.78.2 See also

Reference
• LSL (register) on page 5-86.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-88
ID031214 Non-Confidential

A64 General Instructions
5.79 LSR (register)
Logical shift right (register).

This instruction is an alias of LSRV.

5.79.1 Syntax

LSR Wd, Wn, Wm ; 32-bit general registers

LSR Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.79.2 See also

Reference
• LSRV on page 5-91.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-89
ID031214 Non-Confidential

A64 General Instructions
5.80 LSR (immediate)
Logical shift right (immediate).

This instruction is an alias of UBFM.

5.80.1 Syntax

LSR Wd, Wn, #shift ; 32-bit general registers

LSR Xd, Xn, #shift ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

shift The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31.
64-bit general registers

Is the shift amount, in the range 0 to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.80.2 See also

Reference
• UBFM on page 5-161.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-90
ID031214 Non-Confidential

A64 General Instructions
5.81 LSRV
Logical shift right variable.

This instruction is used by the alias LSR (register).

5.81.1 Syntax

LSRV Wd, Wn, Wm ; 32-bit general registers

LSRV Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.81.2 See also

Reference
• LSR (register) on page 5-89.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-91
ID031214 Non-Confidential

A64 General Instructions
5.82 MADD
Multiply-add.

This instruction is used by the alias MUL.

5.82.1 Syntax

MADD Wd, Wn, Wm, Wa ; 32-bit general registers

MADD Xd, Xn, Xm, Xa ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Wa Is the 32-bit name of the third general-purpose source register holding the addend.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xa Is the 64-bit name of the third general-purpose source register holding the addend.

5.82.2 See also

Reference
• MUL on page 5-108.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-92
ID031214 Non-Confidential

A64 General Instructions
5.83 MNEG
Multiply-negate.

This instruction is an alias of MSUB.

5.83.1 Syntax

MNEG Wd, Wn, Wm ; 32-bit general registers

MNEG Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.83.2 See also

Reference
• MSUB on page 5-107.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-93
ID031214 Non-Confidential

A64 General Instructions
5.84 MOV (to or from SP)
Move between register and stack pointer.

This instruction is an alias of ADD (immediate).

5.84.1 Syntax

MOV Wd|WSP, Wn|WSP ; 32-bit general registers

MOV Xd|SP, Xn|SP ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

5.84.2 See also

Reference
• ADD (immediate) on page 5-13.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-94
ID031214 Non-Confidential

A64 General Instructions
5.85 MOV (inverted wide immediate)
Move inverted 16-bit immediate to register.

This instruction is an alias of MOVN.

5.85.1 Syntax

MOV Wd, #imm ; 32-bit general registers

MOV Xd, #imm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

imm The value depends on the instruction variant:
32-bit general registers

Is a 32-bit immediate.
64-bit general registers

Is a 64-bit immediate.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

5.85.2 See also

Reference
• MOVN on page 5-102.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-95
ID031214 Non-Confidential

A64 General Instructions
5.86 MOV (wide immediate)
Move 16-bit immediate to register.

This instruction is an alias of MOVZ.

5.86.1 Syntax

MOV Wd, #imm ; 32-bit general registers

MOV Xd, #imm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

imm The value depends on the instruction variant:
32-bit general registers

Is a 32-bit immediate.
64-bit general registers

Is a 64-bit immediate.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

5.86.2 See also

Reference
• MOVZ on page 5-103.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-96
ID031214 Non-Confidential

A64 General Instructions
5.87 MOV (bitmask immediate)
Move bitmask immediate to register.

This instruction is an alias of ORR (immediate).

5.87.1 Syntax

MOV Wd|WSP, #imm ; 32-bit general registers

MOV Xd|SP, #imm ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

imm Is the bitmask immediate. Such an immediate is a 32-bit or 64-bit pattern viewed
as a vector of identical elements of size e = 2, 4, 8, 16, 32, or 64 bits. Each element
contains the same sub-pattern: a single run of 1 to e-1 non-zero bits, rotated by 0
to e-1 bits. This mechanism can generate 5,334 unique 64-bit patterns (as 2,667
pairs of pattern and their bitwise inverse). Because the all-zeros and all-ones
values cannot be described in this way, the assembler generates an error message.

Note
 Logical immediate instructions do not set the condition flags, but interesting

results can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

5.87.2 See also

Reference
• ORR (immediate) on page 5-116.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-97
ID031214 Non-Confidential

A64 General Instructions
5.88 MOV (register)
Move register to register.

This instruction is an alias of ORR (shifted register).

5.88.1 Syntax

MOV Wd, Wm ; 32-bit general registers

MOV Xd, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wm Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.88.2 See also

Reference
• ORR (shifted register) on page 5-117.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-98
ID031214 Non-Confidential

A64 General Instructions
5.89 MOVK
Move 16-bit immediate into register, keeping other bits unchanged.

5.89.1 Syntax

MOVK Wd, #imm{, LSL #shift} ; 32-bit general registers

MOVK Xd, #imm{, LSL #shift} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

shift Is the amount by which to shift the immediate left:
32-bit general registers

Can be 0 or 16.
64-bit general registers

Can be 0, 16, 32 or 48.
Defaults to zero.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

imm Is the 16-bit unsigned immediate, in the range 0 to 65535.

5.89.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-99
ID031214 Non-Confidential

A64 General Instructions
5.90 MOVL pseudo-instruction
Load a register with either:
• A 32-bit or 64-bit immediate value.
• Any address.

MOVL generates either two or four instructions. If a Wd register is specified, MOVL generates a MOV,
MOVK pair. If an Xd register is specified, MOVL generates a MOV followed by three MOVK instructions.
If the assembler can load the register using a single MOV instruction, it additionally generates
either one or three NOPs.

5.90.1 Syntax

MOVL Wd,expr

MOVL Xd,expr

where:

Wd Is the register to load with a 32-bit value.

Xd Is the register to load with a 64-bit value.

expr Can be any one of the following:
symbol A label in this or another program area.
#constant Any 32-bit or 64-bit immediate value.
symbol + constant A label plus a 32-bit or 64-bit immediate value.

5.90.2 Usage

Use the MOVL pseudo-instruction to:

• Generate literal constants when an immediate value cannot be generated in a single
instruction.

• Load a PC-relative or external address into a register. The address remains valid
regardless of where the linker places the ELF section containing the MOVL.

Note
 An address loaded in this way is fixed at link time, so the code is not position-independent.

5.90.3 Examples

 MOVL w3, #0xABCDEF12 ; loads 0xABCDEF12 into w3
 MOVL x1, Trigger+12 ; loads the address that is 12 bytes higher than

; the address Trigger into x1

5.90.4 See also

Reference
• MOV (bitmask immediate) on page 5-97.
• MOVK on page 5-99.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-100
ID031214 Non-Confidential

A64 General Instructions
Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-101
ID031214 Non-Confidential

A64 General Instructions
5.91 MOVN
Move inverse of shifted 16-bit immediate to register.

This instruction is used by the alias MOV (inverted wide immediate).

5.91.1 Syntax

MOVN Wd, #imm{, LSL #shift} ; 32-bit general registers

MOVN Xd, #imm{, LSL #shift} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

shift Is the amount by which to shift the immediate left:
32-bit general registers

Can be 0 or 16.
64-bit general registers

Can be 0, 16, 32 or 48.
Defaults to zero.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

imm Is the 16-bit unsigned immediate, in the range 0 to 65535.

5.91.2 See also

Reference
• MOV (inverted wide immediate) on page 5-95.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-102
ID031214 Non-Confidential

A64 General Instructions
5.92 MOVZ
Move shifted 16-bit immediate to register.

This instruction is used by the alias MOV (wide immediate).

5.92.1 Syntax

MOVZ Wd, #imm{, LSL #shift} ; 32-bit general registers

MOVZ Xd, #imm{, LSL #shift} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

shift Is the amount by which to shift the immediate left:
32-bit general registers

Can be 0 or 16.
64-bit general registers

Can be 0, 16, 32 or 48.
Defaults to zero.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

imm Is the 16-bit unsigned immediate, in the range 0 to 65535.

5.92.2 See also

Reference
• MOV (wide immediate) on page 5-96.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-103
ID031214 Non-Confidential

A64 General Instructions
5.93 MRS
Move from system register.

5.93.1 Syntax

MRS Xt, systemreg

Where:

Xt Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

systemreg Is a system register name.

5.93.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-104
ID031214 Non-Confidential

A64 General Instructions
5.94 MSR (immediate)
Move immediate to processor state field.

5.94.1 Syntax

MSR pstatefield, #imm

Where:

pstatefield Is a PSTATE field name, and can be one of SPSel, DAIFSet or DAIFClr.

imm Is a 4-bit unsigned immediate, in the range 0 to 15.

5.94.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-105
ID031214 Non-Confidential

A64 General Instructions
5.95 MSR (register)
Move to system register.

5.95.1 Syntax

MSR systemreg, Xt

Where:

systemreg Is a system register name.

Xt Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.95.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-106
ID031214 Non-Confidential

A64 General Instructions
5.96 MSUB
Multiply-subtract.

This instruction is used by the alias MNEG.

5.96.1 Syntax

MSUB Wd, Wn, Wm, Wa ; 32-bit general registers

MSUB Xd, Xn, Xm, Xa ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Wa Is the 32-bit name of the third general-purpose source register holding the
minuend.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xa Is the 64-bit name of the third general-purpose source register holding the
minuend.

5.96.2 See also

Reference
• MNEG on page 5-93.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-107
ID031214 Non-Confidential

A64 General Instructions
5.97 MUL
Multiply.

This instruction is an alias of MADD.

5.97.1 Syntax

MUL Wd, Wn, Wm ; 32-bit general registers

MUL Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.97.2 See also

Reference
• MADD on page 5-92.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-108
ID031214 Non-Confidential

A64 General Instructions
5.98 MVN
Bitwise NOT (shifted register).

This instruction is an alias of ORN (shifted register).

5.98.1 Syntax

MVN Wd, Wm{, shift #amount} ; 32-bit general registers

MVN Xd, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wm Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.98.2 See also

Reference
• ORN (shifted register) on page 5-115.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-109
ID031214 Non-Confidential

A64 General Instructions
5.99 NEG
Negate.

This instruction is an alias of SUB (shifted register).

5.99.1 Syntax

NEG Wd, Wm{, shift #amount} ; 32-bit general registers

NEG Xd, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wm Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.99.2 See also

Reference
• SUB (shifted register) on page 5-144.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-110
ID031214 Non-Confidential

A64 General Instructions
5.100 NEGS
Negate, setting the condition flags.

This instruction is an alias of SUBS (shifted register).

5.100.1 Syntax

NEGS Wd, Wm{, shift #amount} ; 32-bit general registers

NEGS Xd, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wm Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.100.2 See also

Reference
• SUBS (shifted register) on page 5-148.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-111
ID031214 Non-Confidential

A64 General Instructions
5.101 NGC
Negate with carry.

This instruction is an alias of SBC.

5.101.1 Syntax

NGC Wd, Wm ; 32-bit general registers

NGC Xd, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wm Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.101.2 See also

Reference
• SBC on page 5-126.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-112
ID031214 Non-Confidential

A64 General Instructions
5.102 NGCS
Negate with carry, setting the condition flags.

This instruction is an alias of SBCS.

5.102.1 Syntax

NGCS Wd, Wm ; 32-bit general registers

NGCS Xd, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wm Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xm Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.102.2 See also

Reference
• SBCS on page 5-127.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-113
ID031214 Non-Confidential

A64 General Instructions
5.103 NOP
No operation.

This instruction is an alias of HINT.

5.103.1 See also

Reference
• HINT on page 5-81.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-114
ID031214 Non-Confidential

A64 General Instructions
5.104 ORN (shifted register)
Bitwise inclusive OR NOT (shifted register).

This instruction is used by the alias MVN.

5.104.1 Syntax

ORN Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

ORN Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.104.2 See also

Reference
• MVN on page 5-109.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-115
ID031214 Non-Confidential

A64 General Instructions
5.105 ORR (immediate)
Bitwise inclusive OR (immediate).

This instruction is used by the alias MOV (bitmask immediate).

5.105.1 Syntax

ORR Wd|WSP, Wn, #imm ; 32-bit general registers

ORR Xd|SP, Xn, #imm ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

imm Is the bitmask immediate. Such an immediate is a 32-bit or 64-bit pattern viewed
as a vector of identical elements of size e = 2, 4, 8, 16, 32, or 64 bits. Each element
contains the same sub-pattern: a single run of 1 to e-1 non-zero bits, rotated by 0
to e-1 bits. This mechanism can generate 5,334 unique 64-bit patterns (as 2,667
pairs of pattern and their bitwise inverse). Because the all-zeros and all-ones
values cannot be described in this way, the assembler generates an error message.

Note
 Logical immediate instructions do not set the condition flags, but interesting

results can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

5.105.2 See also

Reference
• MOV (bitmask immediate) on page 5-97.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-116
ID031214 Non-Confidential

A64 General Instructions
5.106 ORR (shifted register)
Bitwise inclusive OR (shifted register).

This instruction is used by the alias MOV (register).

5.106.1 Syntax

ORR Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

ORR Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.106.2 See also

Reference
• MOV (register) on page 5-98.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-117
ID031214 Non-Confidential

A64 General Instructions
5.107 RBIT
Reverse bit order.

5.107.1 Syntax

RBIT Wd, Wn ; 32-bit general registers

RBIT Xd, Xn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.107.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-118
ID031214 Non-Confidential

A64 General Instructions
5.108 RET
Return from subroutine, branches unconditionally to an address in a register, with a hint that this
is a subroutine return.

5.108.1 Syntax

RET {Xn}

Where:

Xn Is the 64-bit name of the general-purpose register holding the address to be
branched to, in the range 0 to 31. Defaults to X30 if absent.

5.108.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-119
ID031214 Non-Confidential

A64 General Instructions
5.109 REV
Reverse bytes.

5.109.1 Syntax

REV Wd, Wn ; 32-bit general registers

REV Xd, Xn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.109.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-120
ID031214 Non-Confidential

A64 General Instructions
5.110 REV16
Reverse bytes in 16-bit halfwords.

5.110.1 Syntax

REV16 Wd, Wn ; 32-bit general registers

REV16 Xd, Xn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.110.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-121
ID031214 Non-Confidential

A64 General Instructions
5.111 REV32
Reverse bytes in 32-bit words.

5.111.1 Syntax

REV32 Xd, Xn

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.111.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-122
ID031214 Non-Confidential

A64 General Instructions
5.112 ROR (immediate)
Rotate right (immediate).

This instruction is an alias of EXTR.

5.112.1 Syntax

ROR Wd, Ws, #shift ; 32-bit general registers

ROR Xd, Xs, #shift ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Ws Is the 32-bit name of the general-purpose source register in the range 0 to 31.

shift The value depends on the instruction variant:
32-bit general registers

Is the amount by which to rotate, in the range 0 to 31.
64-bit general registers

Is the amount by which to rotate, in the range 0 to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xs Is the 64-bit name of the general-purpose source register in the range 0 to 31.

5.112.2 See also

Reference
• EXTR on page 5-80.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-123
ID031214 Non-Confidential

A64 General Instructions
5.113 ROR (register)
Rotate right (register).

This instruction is an alias of RORV.

5.113.1 Syntax

ROR Wd, Wn, Wm ; 32-bit general registers

ROR Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.113.2 See also

Reference
• RORV on page 5-125.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-124
ID031214 Non-Confidential

A64 General Instructions
5.114 RORV
Rotate right variable.

This instruction is used by the alias ROR (register).

5.114.1 Syntax

RORV Wd, Wn, Wm ; 32-bit general registers

RORV Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 31 in its bottom 5 bits.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register in the range 0 to
31. It holds a shift amount from 0 to 63 in its bottom 6 bits.

5.114.2 See also

Reference
• ROR (register) on page 5-124.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-125
ID031214 Non-Confidential

A64 General Instructions
5.115 SBC
Subtract with carry.

This instruction is used by the alias NGC.

5.115.1 Syntax

SBC Wd, Wn, Wm ; 32-bit general registers

SBC Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.115.2 See also

Reference
• NGC on page 5-112.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-126
ID031214 Non-Confidential

A64 General Instructions
5.116 SBCS
Subtract with carry, setting the condition flags.

This instruction is used by the alias NGCS.

5.116.1 Syntax

SBCS Wd, Wn, Wm ; 32-bit general registers

SBCS Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.116.2 See also

Reference
• NGCS on page 5-113.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-127
ID031214 Non-Confidential

A64 General Instructions
5.117 SBFIZ
Signed bitfield insert in zero, with sign replication to left and zeros to right.

This instruction is an alias of SBFM.

5.117.1 Syntax

SBFIZ Wd, Wn, #lsb, #width ; 32-bit general registers

SBFIZ Xd, Xn, #lsb, #width ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 31.
64-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width The value depends on the instruction variant:
32-bit general registers

Is the width of the bitfield, in the range 1 to 32-lsb.
64-bit general registers

Is the width of the bitfield, in the range 1 to 64-lsb.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.117.2 See also

Reference
• SBFM on page 5-129.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-128
ID031214 Non-Confidential

A64 General Instructions
5.118 SBFM
Signed bitfield move, with sign replication to left and zeros to right.

This instruction is used by the aliases:
• ASR (immediate).
• SBFIZ.
• SBFX.
• SXTB.
• SXTH.
• SXTW.

5.118.1 Syntax

SBFM Wd, Wn, #immr, #imms ; 32-bit general registers

SBFM Xd, Xn, #immr, #imms ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

immr The value depends on the instruction variant:
32-bit general registers

Is the right rotate amount, in the range 0 to 31.
64-bit general registers

Is the right rotate amount, in the range 0 to 63.

imms The value depends on the instruction variant:
32-bit general registers

Is the leftmost bit number to be moved from the source, in the range 0
to 31.

64-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0
to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.118.2 See also

Reference
• ASR (immediate) on page 5-27.
• SBFIZ on page 5-128.
• SBFX on page 5-131.
• SXTB on page 5-150.
• SXTH on page 5-151.
• SXTW on page 5-152.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-129
ID031214 Non-Confidential

A64 General Instructions

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-130
ID031214 Non-Confidential

A64 General Instructions
5.119 SBFX
Signed bitfield extract.

This instruction is an alias of SBFM.

5.119.1 Syntax

SBFX Wd, Wn, #lsb, #width ; 32-bit general registers

SBFX Xd, Xn, #lsb, #width ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 31.
64-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width The value depends on the instruction variant:
32-bit general registers

Is the width of the bitfield, in the range 1 to 32-lsb.
64-bit general registers

Is the width of the bitfield, in the range 1 to 64-lsb.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.119.2 See also

Reference
• SBFM on page 5-129.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-131
ID031214 Non-Confidential

A64 General Instructions
5.120 SDIV
Signed divide.

5.120.1 Syntax

SDIV Wd, Wn, Wm ; 32-bit general registers

SDIV Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.120.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-132
ID031214 Non-Confidential

A64 General Instructions
5.121 SEV
Send event.

This instruction is an alias of HINT.

5.121.1 See also

Reference
• HINT on page 5-81.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-133
ID031214 Non-Confidential

A64 General Instructions
5.122 SEVL
Send event locally.

This instruction is an alias of HINT.

5.122.1 See also

Reference
• HINT on page 5-81.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-134
ID031214 Non-Confidential

A64 General Instructions
5.123 SMADDL
Signed multiply-add long.

This instruction is used by the alias SMULL.

5.123.1 Syntax

SMADDL Xd, Wn, Wm, Xa

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xa Is the 64-bit name of the third general-purpose source register holding the addend.

5.123.2 See also

Reference
• SMULL on page 5-140.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-135
ID031214 Non-Confidential

A64 General Instructions
5.124 SMC
Supervisor call to allow OS or Hypervisor code to call the Secure Monitor. It generates an
exception targeting exception level 3 (EL3).

5.124.1 Syntax

SMC #imm

Where:

imm Is a 16-bit unsigned immediate, in the range 0 to 65535. This value is made
available to the handler in the Exception Syndrome Register.

5.124.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-136
ID031214 Non-Confidential

A64 General Instructions
5.125 SMNEGL
Signed multiply-negate long.

This instruction is an alias of SMSUBL.

5.125.1 Syntax

SMNEGL Xd, Wn, Wm

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.125.2 See also

Reference
• SMSUBL on page 5-138.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-137
ID031214 Non-Confidential

A64 General Instructions
5.126 SMSUBL
Signed multiply-subtract long.

This instruction is used by the alias SMNEGL.

5.126.1 Syntax

SMSUBL Xd, Wn, Wm, Xa

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xa Is the 64-bit name of the third general-purpose source register holding the
minuend.

5.126.2 See also

Reference
• SMNEGL on page 5-137.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-138
ID031214 Non-Confidential

A64 General Instructions
5.127 SMULH
Signed multiply high.

5.127.1 Syntax

SMULH Xd, Xn, Xm

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.127.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-139
ID031214 Non-Confidential

A64 General Instructions
5.128 SMULL
Signed multiply long.

This instruction is an alias of SMADDL.

5.128.1 Syntax

SMULL Xd, Wn, Wm

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.128.2 See also

Reference
• SMADDL on page 5-135.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-140
ID031214 Non-Confidential

A64 General Instructions
5.129 SUB (extended register)
Subtract (extended register).

5.129.1 Syntax

SUB Wd|WSP, Wn|WSP, Wm{, extend {#amount}} ; 32-bit general registers

SUB Xd|SP, Xn|SP, Rm{, extend {#amount}} ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn|WSP Is the 32-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

extend Is the extension to be applied to the second source operand:
32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
If Rd or Rn is WSP then LSL is preferred rather than UXTW, and can be
omitted when amount is 0. In all other cases extend is required and must
be UXTW rather than LSL.

64-bit general registers
Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.
If Rd or Rn is SP then LSL is preferred rather than UXTX, and can be
omitted when amount is 0. In all other cases extend is required and must
be UXTX rather than LSL.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn|SP Is the 64-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

R Is a width specifier, and can be either W or X.

m Is the number of the second general-purpose source register, in the range 0 to 30,
or the name ZR (31).

amount Is the left shift amount to be applied after extension in the range 0 to 4, defaulting
to 0. It must be absent when extend is absent, is required when extend is LSL, and
is optional when extend is present but not LSL.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-141
ID031214 Non-Confidential

A64 General Instructions
5.129.2 Usage

The following table shows valid specifier combinations:

5.129.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 5-8 SUB (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-142
ID031214 Non-Confidential

A64 General Instructions
5.130 SUB (immediate)
Subtract (immediate).

5.130.1 Syntax

SUB Wd|WSP, Wn|WSP, #imm{, shift} ; 32-bit general registers

SUB Xd|SP, Xn|SP, #imm{, shift} ; 64-bit general registers

Where:

Wd|WSP Is the 32-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xd|SP Is the 64-bit name of the destination general-purpose register or stack pointer, in
the range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

imm Is an unsigned immediate, in the range 0 to 4095.

shift Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can
be either LSL #0 or LSL #12.

5.130.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-143
ID031214 Non-Confidential

A64 General Instructions
5.131 SUB (shifted register)
Subtract (shifted register).

This instruction is used by the alias NEG.

5.131.1 Syntax

SUB Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

SUB Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.131.2 See also

Reference
• NEG on page 5-110.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-144
ID031214 Non-Confidential

A64 General Instructions
5.132 SUBS (extended register)
Subtract (extended register), setting the condition flags.

This instruction is used by the alias CMP (extended register).

5.132.1 Syntax

SUBS Wd, Wn|WSP, Wm{, extend {#amount}} ; 32-bit general registers

SUBS Xd, Xn|SP, Rm{, extend {#amount}} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn|WSP Is the 32-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

extend Is the extension to be applied to the second source operand:
32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTW
rather than LSL.

64-bit general registers
Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.
If Rn is SP then LSL is preferred rather than UXTX, and can be omitted
when amount is 0. In all other cases extend is required and must be UXTX
rather than LSL.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn|SP Is the 64-bit name of the first source general-purpose register or stack pointer, in
the range 0 to 31.

R Is a width specifier, and can be either W or X.

m Is the number of the second general-purpose source register, in the range 0 to 30,
or the name ZR (31).

amount Is the left shift amount to be applied after extension in the range 0 to 4, defaulting
to 0. It must be absent when extend is absent, is required when extend is LSL, and
is optional when extend is present but not LSL.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-145
ID031214 Non-Confidential

A64 General Instructions
5.132.2 Usage

The following table shows valid specifier combinations:

5.132.3 See also

Reference
• CMP (extended register) on page 5-56.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 5-9 SUBS (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-146
ID031214 Non-Confidential

A64 General Instructions
5.133 SUBS (immediate)
Subtract (immediate), setting the condition flags.

This instruction is used by the alias CMP (immediate).

5.133.1 Syntax

SUBS Wd, Wn|WSP, #imm{, shift} ; 32-bit general registers

SUBS Xd, Xn|SP, #imm{, shift} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn|WSP Is the 32-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn|SP Is the 64-bit name of the source general-purpose register or stack pointer, in the
range 0 to 31.

imm Is an unsigned immediate, in the range 0 to 4095.

shift Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can
be either LSL #0 or LSL #12.

5.133.2 See also

Reference
• CMP (immediate) on page 5-58.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-147
ID031214 Non-Confidential

A64 General Instructions
5.134 SUBS (shifted register)
Subtract (shifted register), setting the condition flags.

This instruction is used by the aliases:
• CMP (shifted register).
• NEGS.

5.134.1 Syntax

SUBS Wd, Wn, Wm{, shift #amount} ; 32-bit general registers

SUBS Xd, Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift type to be applied to the second source operand, defaulting to
LSL, and can be one of LSL, LSR, or ASR.

5.134.2 See also

Reference
• CMP (shifted register) on page 5-59.
• NEGS on page 5-111.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-148
ID031214 Non-Confidential

A64 General Instructions
5.135 SVC
Supervisor call to allow application code to call the OS. It generates an exception targeting
exception level 1 (EL1).

5.135.1 Syntax

SVC #imm

Where:

imm Is a 16-bit unsigned immediate, in the range 0 to 65535. This value is made
available to the handler in the Exception Syndrome Register.

5.135.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-149
ID031214 Non-Confidential

A64 General Instructions
5.136 SXTB
Signed extend byte.

This instruction is an alias of SBFM.

5.136.1 Syntax

SXTB Wd, Wn ; 32-bit general registers

SXTB Xd, Wn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

5.136.2 See also

Reference
• SBFM on page 5-129.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-150
ID031214 Non-Confidential

A64 General Instructions
5.137 SXTH
Signed extend halfword.

This instruction is an alias of SBFM.

5.137.1 Syntax

SXTH Wd, Wn ; 32-bit general registers

SXTH Xd, Wn ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

5.137.2 See also

Reference
• SBFM on page 5-129.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-151
ID031214 Non-Confidential

A64 General Instructions
5.138 SXTW
Signed extend word.

This instruction is an alias of SBFM.

5.138.1 Syntax

SXTW Xd, Wn

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

5.138.2 See also

Reference
• SBFM on page 5-129.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-152
ID031214 Non-Confidential

A64 General Instructions
5.139 SYS
System instruction.

This instruction is used by the aliases:
• AT.
• DC.
• IC.
• TLBI.

5.139.1 Syntax

SYS #op1, Cn, Cm, #op2{, Xt}

Where:

op1 Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn Is a name Cn, with n in the range 0 to 15.

Cm Is a name Cm, with m in the range 0 to 15.

op2 Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt Is the 64-bit name of the optional general-purpose source register, defaulting to
31.

5.139.2 See also

Reference
• AT on page 5-29.
• DC on page 5-69.
• IC on page 5-84.
• TLBI on page 5-157.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-153
ID031214 Non-Confidential

A64 General Instructions
5.140 SYSL
System instruction with result.

5.140.1 Syntax

SYSL Xt, #op1, Cn, Cm, #op2

Where:

Xt Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

op1 Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn Is a name Cn, with n in the range 0 to 15.

Cm Is a name Cm, with m in the range 0 to 15.

op2 Is a 3-bit unsigned immediate, in the range 0 to 7.

5.140.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-154
ID031214 Non-Confidential

A64 General Instructions
5.141 TBNZ
Test bit and branch if nonzero to a label at a PC-relative offset, without affecting the condition
flags, and with a hint that this is not a subroutine call or return.

5.141.1 Syntax

TBNZ Rt, #imm, label

Where:

R Is a width specifier, and can be either W or X.
In assembler source code an X specifier is always permitted, but a W specifier is
only permitted when the bit number is less than 32.

t Is the number of the general-purpose register to be tested, in the range 0 to 30, or
the name ZR (31).

imm Is the bit number to be tested, in the range 0 to 63.

label Is the program label to be conditionally branched to. It is an offset from the
address of this instruction, in the range ±32KB.

5.141.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-155
ID031214 Non-Confidential

A64 General Instructions
5.142 TBZ
Test bit and branch if zero to a label at a PC-relative offset, without affecting the condition flags,
and with a hint that this is not a subroutine call or return.

5.142.1 Syntax

TBZ Rt, #imm, label

Where:

R Is a width specifier, and can be either W or X.
In assembler source code an X specifier is always permitted, but a W specifier is
only permitted when the bit number is less than 32.

t Is the number of the general-purpose register to be tested, in the range 0 to 30, or
the name ZR (31).

imm Is the bit number to be tested, in the range 0 to 63.

label Is the program label to be conditionally branched to. It is an offset from the
address of this instruction, in the range ±32KB.

5.142.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-156
ID031214 Non-Confidential

A64 General Instructions
5.143 TLBI
TLB invalidate operation.

This instruction is an alias of SYS.

5.143.1 Syntax

TLBI tlbi_op{, Xt}

Where:

op1 Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn Is a name Cn, with n in the range 0 to 15.

Cm Is a name Cm, with m in the range 0 to 15.

op2 Is a 3-bit unsigned immediate, in the range 0 to 7.

tlbi_op Is a TLBI operation name, as listed for the TLBI system operation group specified
by the parameters op1, Cn, Cm, and op2.

Xt Is the 64-bit name of the optional general-purpose source register, defaulting to
31.

5.143.2 See also

Reference
• SYS on page 5-153.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-157
ID031214 Non-Confidential

A64 General Instructions
5.144 TST (immediate)
Test bits (immediate), setting the condition flags and discarding the result.

This instruction is an alias of ANDS (immediate).

5.144.1 Syntax

TST Wn, #imm ; 32-bit general registers

TST Xn, #imm ; 64-bit general registers

Where:

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

imm Is the bitmask immediate. Such an immediate is a 32-bit or 64-bit pattern viewed
as a vector of identical elements of size e = 2, 4, 8, 16, 32, or 64 bits. Each element
contains the same sub-pattern: a single run of 1 to e-1 non-zero bits, rotated by 0
to e-1 bits. This mechanism can generate 5,334 unique 64-bit patterns (as 2,667
pairs of pattern and their bitwise inverse). Because the all-zeros and all-ones
values cannot be described in this way, the assembler generates an error message.

Note
 Logical immediate instructions do not set the condition flags, but interesting

results can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

5.144.2 See also

Reference
• ANDS (immediate) on page 5-24.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-158
ID031214 Non-Confidential

A64 General Instructions
5.145 TST (shifted register)
Test bits (shifted register), setting the condition flags and discarding the result.

This instruction is an alias of ANDS (shifted register).

5.145.1 Syntax

TST Wn, Wm{, shift #amount} ; 32-bit general registers

TST Xn, Xm{, shift #amount} ; 64-bit general registers

Where:

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

amount The value depends on the instruction variant:
32-bit general registers

Is the shift amount, in the range 0 to 31, defaulting to 0.
64-bit general registers

Is the shift amount, in the range 0 to 63, defaulting to 0.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

shift Is the optional shift to be applied to the final source, defaulting to LSL, and can be
one of LSL, LSR, ASR, or ROR.

5.145.2 See also

Reference
• ANDS (shifted register) on page 5-25.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-159
ID031214 Non-Confidential

A64 General Instructions
5.146 UBFIZ
Unsigned bitfield insert in zero, with zeros to left and right.

This instruction is an alias of UBFM.

5.146.1 Syntax

UBFIZ Wd, Wn, #lsb, #width ; 32-bit general registers

UBFIZ Xd, Xn, #lsb, #width ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 31.
64-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width The value depends on the instruction variant:
32-bit general registers

Is the width of the bitfield, in the range 1 to 32-lsb.
64-bit general registers

Is the width of the bitfield, in the range 1 to 64-lsb.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.146.2 See also

Reference
• UBFM on page 5-161.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-160
ID031214 Non-Confidential

A64 General Instructions
5.147 UBFM
Unsigned bitfield move, with zeros to left and right.

This instruction is used by the aliases:
• LSL (immediate).
• LSR (immediate).
• UBFIZ.
• UBFX.
• UXTB.
• UXTH.

5.147.1 Syntax

UBFM Wd, Wn, #immr, #imms ; 32-bit general registers

UBFM Xd, Xn, #immr, #imms ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

immr The value depends on the instruction variant:
32-bit general registers

Is the right rotate amount, in the range 0 to 31.
64-bit general registers

Is the right rotate amount, in the range 0 to 63.

imms The value depends on the instruction variant:
32-bit general registers

Is the leftmost bit number to be moved from the source, in the range 0
to 31.

64-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0
to 63.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.147.2 See also

Reference
• LSL (immediate) on page 5-87.
• LSR (immediate) on page 5-90.
• UBFIZ on page 5-160.
• UBFX on page 5-163.
• UXTB on page 5-170.
• UXTH on page 5-171.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-161
ID031214 Non-Confidential

A64 General Instructions

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-162
ID031214 Non-Confidential

A64 General Instructions
5.148 UBFX
Unsigned bitfield extract.

This instruction is an alias of UBFM.

5.148.1 Syntax

UBFX Wd, Wn, #lsb, #width ; 32-bit general registers

UBFX Xd, Xn, #lsb, #width ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

lsb The value depends on the instruction variant:
32-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 31.
64-bit general registers

Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width The value depends on the instruction variant:
32-bit general registers

Is the width of the bitfield, in the range 1 to 32-lsb.
64-bit general registers

Is the width of the bitfield, in the range 1 to 64-lsb.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

5.148.2 See also

Reference
• UBFM on page 5-161.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-163
ID031214 Non-Confidential

A64 General Instructions
5.149 UDIV
Unsigned divide.

5.149.1 Syntax

UDIV Wd, Wn, Wm ; 32-bit general registers

UDIV Xd, Xn, Xm ; 64-bit general registers

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register, in the range 0 to
31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register, in the range 0 to
31.

5.149.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-164
ID031214 Non-Confidential

A64 General Instructions
5.150 UMADDL
Unsigned multiply-add long.

This instruction is used by the alias UMULL.

5.150.1 Syntax

UMADDL Xd, Wn, Wm, Xa

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xa Is the 64-bit name of the third general-purpose source register holding the addend.

5.150.2 See also

Reference
• UMULL on page 5-169.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-165
ID031214 Non-Confidential

A64 General Instructions
5.151 UMNEGL
Unsigned multiply-negate long.

This instruction is an alias of UMSUBL.

5.151.1 Syntax

UMNEGL Xd, Wn, Wm

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.151.2 See also

Reference
• UMSUBL on page 5-167.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-166
ID031214 Non-Confidential

A64 General Instructions
5.152 UMSUBL
Unsigned multiply-subtract long.

This instruction is used by the alias UMNEGL.

5.152.1 Syntax

UMSUBL Xd, Wn, Wm, Xa

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

Xa Is the 64-bit name of the third general-purpose source register holding the
minuend.

5.152.2 See also

Reference
• UMNEGL on page 5-166.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-167
ID031214 Non-Confidential

A64 General Instructions
5.153 UMULH
Unsigned multiply high.

5.153.1 Syntax

UMULH Xd, Xn, Xm

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Xn Is the 64-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Xm Is the 64-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.153.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-168
ID031214 Non-Confidential

A64 General Instructions
5.154 UMULL
Unsigned multiply long.

This instruction is an alias of UMADDL.

5.154.1 Syntax

UMULL Xd, Wn, Wm

Where:

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the first general-purpose source register holding the
multiplicand, in the range 0 to 31.

Wm Is the 32-bit name of the second general-purpose source register holding the
multiplier. The register name can be in the range 0 to 31.

5.154.2 See also

Reference
• UMADDL on page 5-165.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-169
ID031214 Non-Confidential

A64 General Instructions
5.155 UXTB
Unsigned extend byte.

This instruction is an alias of UBFM.

5.155.1 Syntax

UXTB Wd, Wn

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

5.155.2 See also

Reference
• UBFM on page 5-161.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-170
ID031214 Non-Confidential

A64 General Instructions
5.156 UXTH
Unsigned extend halfword.

This instruction is an alias of UBFM.

5.156.1 Syntax

UXTH Wd, Wn

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

5.156.2 See also

Reference
• UBFM on page 5-161.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-171
ID031214 Non-Confidential

A64 General Instructions
5.157 WFE
Wait for event.

This instruction is an alias of HINT.

5.157.1 See also

Reference
• HINT on page 5-81.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-172
ID031214 Non-Confidential

A64 General Instructions
5.158 WFI
Wait for interrupt.

This instruction is an alias of HINT.

5.158.1 See also

Reference
• HINT on page 5-81.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-173
ID031214 Non-Confidential

A64 General Instructions
5.159 YIELD
Yield hint.

This instruction is an alias of HINT.

5.159.1 See also

Reference
• HINT on page 5-81.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 5-174
ID031214 Non-Confidential

Chapter 6
A64 Data Transfer Instructions

The following topics give a summary of the A64 data transfer instructions and
pseudo-instructions supported by armasm:

• A64 data transfer instructions in alphabetical order on page 6-2.

• Register restrictions for A64 instructions on page 6-5.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-1
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.1 A64 data transfer instructions in alphabetical order
The following A64 data transfer instructions and pseudo-instructions are supported:

Table 6-1 Location of data transfer instructions

Mnemonic Brief description See

LDAR Load-acquire register page 6-6

LDARB Load-acquire register byte page 6-7

LDARH Load-acquire register halfword page 6-8

LDAXP Load-acquire exclusive pair of registers page 6-9

LDAXR Load-acquire exclusive register page 6-10

LDAXRB Load-acquire exclusive register byte page 6-11

LDAXRH Load-acquire exclusive register halfword page 6-12

LDNP (SIMD and FP) Load pair of SIMD and FP registers, with non-temporal
hint

page 6-13

LDNP Load pair of registers, with non-temporal hint page 6-14

LDP (SIMD and FP) Load pair of SIMD and FP registers page 6-15

LDP Load pair of registers page 6-17

LDPSW Load pair of registers signed word page 6-18

LDR (immediate, SIMD and FP) Load SIMD and FP register (immediate offset) page 6-19

LDR (immediate) Load register (immediate offset) page 6-21

LDR (literal, SIMD and FP) Load SIMD and FP register (PC-relative literal) page 6-22

LDR (literal) Load register (PC-relative literal) page 6-23

LDR pseudo-instruction Load a register page 6-24

LDR (register, SIMD and FP) Load SIMD and FP register (register offset) page 6-26

LDR (register) Load register (register offset) page 6-28

LDRB (immediate) Load register byte (immediate offset) page 6-29

LDRB (register) Load register byte (register offset) page 6-30

LDRH (immediate) Load register halfword (register offset) page 6-31

LDRH (register) Load register halfword (register offset) page 6-32

LDRSB (immediate) Load register signed byte (immediate offset) page 6-33

LDRSB (register) Load register signed byte (register offset) page 6-34

LDRSH (immediate) Load register signed halfword (immediate offset) page 6-35

LDRSH (register) Load register signed halfword (register offset) page 6-36

LDRSW (immediate) Load register signed word (immediate offset) page 6-37

LDRSW (literal) Load register signed word (PC-relative literal) page 6-38

LDRSW (register) Load register signed word (register offset) page 6-39
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-2
ID031214 Non-Confidential

A64 Data Transfer Instructions
LDTR Load register (unprivileged) page 6-40

LDTRB Load register byte (unprivileged) page 6-41

LDTRH Load register halfword (unprivileged) page 6-42

LDTRSB Load register signed byte (unprivileged) page 6-43

LDTRSH Load register signed halfword (unprivileged) page 6-44

LDTRSW Load register signed word (unprivileged) page 6-45

LDUR (SIMD and FP) Load SIMD and FP register (unscaled offset) page 6-46

LDUR Load register (unscaled offset) page 6-47

LDURB Load register byte (unscaled offset) page 6-48

LDURH Load register halfword (unscaled offset) page 6-49

LDURSB Load register signed byte (unscaled offset) page 6-50

LDURSH Load register signed halfword (unscaled offset) page 6-51

LDURSW Load register signed word (unscaled offset) page 6-52

LDXP Load exclusive pair of registers page 6-53

LDXR Load exclusive register page 6-54

LDXRB Load exclusive register byte page 6-55

LDXRH Load exclusive register halfword page 6-56

PRFM (immediate) Prefetch memory (immediate offset) page 6-57

PRFM (literal) Prefetch memory (PC-relative offset) page 6-59

PRFM (register) Prefetch memory (register offset) page 6-60

PRFUM Prefetch memory (unscaled offset) page 6-62

STLR Store-release register page 6-64

STLRB Store-release register byte page 6-65

STLRH Store-release register halfword page 6-66

STLXP Store-release exclusive pair of registers, returning status page 6-67

STLXR Store-release exclusive register, returning status page 6-68

STLXRB Store-release exclusive register byte, returning status page 6-69

STLXRH Store-release exclusive register halfword, returning status page 6-70

STNP (SIMD and FP) Store pair of SIMD and FP registers, with non-temporal
hint

page 6-71

STNP Store pair of registers, with non-temporal hint page 6-72

STP (SIMD and FP) Store pair of SIMD and FP registers page 6-73

STP Store pair of registers page 6-75

Table 6-1 Location of data transfer instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-3
ID031214 Non-Confidential

A64 Data Transfer Instructions
STR (immediate, SIMD and FP) Store SIMD and FP register (immediate offset) page 6-76

STR (immediate) Store register (immediate offset) page 6-78

STR (register, SIMD and FP) Store SIMD and FP register (register offset) page 6-79

STR (register) Store register (register offset) page 6-81

STRB (immediate) Store register byte (immediate offset) page 6-82

STRB (register) Store register byte (register offset) page 6-83

STRH (immediate) Store register halfword (immediate offset) page 6-84

STRH (register) Store register halfword (register offset) page 6-85

STTR Store register (unprivileged) page 6-86

STTRB Store register byte (unprivileged) page 6-87

STTRH Store register halfword (unprivileged) page 6-88

STUR (SIMD and FP) Store SIMD and FP register (unscaled offset) page 6-89

STUR Store register (unscaled offset) page 6-90

STURB Store register byte (unscaled offset) page 6-91

STURH Store register halfword (unscaled offset) page 6-92

STXP Store exclusive pair of registers, returning status page 6-93

STXR Store exclusive register, returning status page 6-94

STXRB Store exclusive register byte, returning status page 6-95

STXRH Store exclusive register halfword, returning status page 6-96

Table 6-1 Location of data transfer instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-4
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.2 Register restrictions for A64 instructions
In A64 instructions, the range of general-purpose integer registers is as follows:
• W0-W30 for 32-bit registers.
• X0-X30 for 64-bit registers.

You cannot refer to register 31 by number. In a few instructions, you can refer to it using one of
the following names:
WSP the current stack pointer in a 32-bit context.
SP the current stack pointer in a 64-bit context.
WZR the zero register in a 32-bit context.
XZR the zero register in a 64-bit context.

You can only use one of these names if it is mentioned in the Syntax section for the instruction.

You cannot refer to the Program Counter (PC) explicitly by name or by number.

6.2.1 See also

Concepts
armasm User Guide:
• Registers in AArch64 state on page 5-2
• Program Counter in AArch64 state on page 5-8.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-5
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.3 LDAR
Load-acquire register.

6.3.1 Syntax

LDAR Wt, [Xn|SP{,#0}] ; 32-bit general registers

LDAR Xt, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.3.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-6
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.4 LDARB
Load-acquire register byte.

6.4.1 Syntax

LDARB Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.4.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-7
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.5 LDARH
Load-acquire register halfword.

6.5.1 Syntax

LDARH Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.5.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-8
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.6 LDAXP
Load-acquire exclusive pair of registers.

6.6.1 Syntax

LDAXP Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit general registers

LDAXP Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.6.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-9
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.7 LDAXR
Load-acquire exclusive register.

6.7.1 Syntax

LDAXR Wt, [Xn|SP{,#0}] ; 32-bit general registers

LDAXR Xt, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.7.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-10
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.8 LDAXRB
Load-acquire exclusive register byte.

6.8.1 Syntax

LDAXRB Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.8.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-11
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.9 LDAXRH
Load-acquire exclusive register halfword.

6.9.1 Syntax

LDAXRH Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.9.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-12
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.10 LDNP (SIMD and FP)
Load pair of SIMD and FP registers, with non-temporal hint.

6.10.1 Syntax

LDNP St1, St2, [Xn|SP{, #imm}] ; 32-bit FP/SIMD registers, Signed offset

LDNP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit FP/SIMD registers, Signed offset

LDNP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit FP/SIMD registers, Signed offset

Where:

St1 Is the 32-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

St2 Is the 32-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit FP/SIMD registers

Is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0.

64-bit FP/SIMD registers
Is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0.

128-bit FP/SIMD registers
Is the optional signed immediate byte offset, a multiple of 16 in the
range -1024 to 1008, defaulting to 0.

Dt1 Is the 64-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

Dt2 Is the 64-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

Qt1 Is the 128-bit name of the first SIMD and FP register to be transferred, in the
range 0 to 31.

Qt2 Is the 128-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.10.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-13
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.11 LDNP
Load pair of registers, with non-temporal hint.

6.11.1 Syntax

LDNP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit general registers, Signed offset

LDNP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit general registers, Signed offset

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit general registers

Is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0.

64-bit general registers
Is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.11.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-14
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.12 LDP (SIMD and FP)
Load pair of SIMD and FP registers.

6.12.1 Syntax

LDP St1, St2, [Xn|SP], #imm ; 32-bit FP/SIMD registers, Post-index

LDP Dt1, Dt2, [Xn|SP], #imm ; 64-bit FP/SIMD registers, Post-index

LDP Qt1, Qt2, [Xn|SP], #imm ; 128-bit FP/SIMD registers, Post-index

LDP St1, St2, [Xn|SP, #imm]! ; 32-bit FP/SIMD registers, Pre-index

LDP Dt1, Dt2, [Xn|SP, #imm]! ; 64-bit FP/SIMD registers, Pre-index

LDP Qt1, Qt2, [Xn|SP, #imm]! ; 128-bit FP/SIMD registers, Pre-index

LDP St1, St2, [Xn|SP{, #imm}] ; 32-bit FP/SIMD registers, Signed offset

LDP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit FP/SIMD registers, Signed offset

LDP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit FP/SIMD registers, Signed offset

Where:

St1 Is the 32-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

St2 Is the 32-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit FP/SIMD registers

For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 4 in the range -256 to 252.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 4 in the range -256 to 252, defaulting to 0.

64-bit FP/SIMD registers
For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 8 in the range -512 to 504.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 8 in the range -512 to 504, defaulting to 0.

128-bit FP/SIMD registers
For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 16 in the range -1024 to 1008.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0.

Dt1 Is the 64-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

Dt2 Is the 64-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

Qt1 Is the 128-bit name of the first SIMD and FP register to be transferred, in the
range 0 to 31.

Qt2 Is the 128-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-15
ID031214 Non-Confidential

A64 Data Transfer Instructions
Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.12.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-16
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.13 LDP
Load pair of registers.

6.13.1 Syntax

LDP Wt1, Wt2, [Xn|SP], #imm ; 32-bit general registers, Post-index

LDP Xt1, Xt2, [Xn|SP], #imm ; 64-bit general registers, Post-index

LDP Wt1, Wt2, [Xn|SP, #imm]! ; 32-bit general registers, Pre-index

LDP Xt1, Xt2, [Xn|SP, #imm]! ; 64-bit general registers, Pre-index

LDP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit general registers, Signed offset

LDP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit general registers, Signed offset

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit general registers

For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 4 in the range -256 to 252.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 4 in the range -256 to 252, defaulting to 0.

64-bit general registers
For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 8 in the range -512 to 504.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 8 in the range -512 to 504, defaulting to 0.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.13.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-17
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.14 LDPSW
Load pair of registers signed word.

6.14.1 Syntax

LDPSW Xt1, Xt2, [Xn|SP], #imm ; Post-index general registers

LDPSW Xt1, Xt2, [Xn|SP, #imm]! ; Pre-index general registers

LDPSW Xt1, Xt2, [Xn|SP{, #imm}] ; Signed offset general registers

Where:

imm The value depends on the instruction variant:
Post-index and Pre-index general registers

For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 4 in the range -256 to 252.

Signed offset general registers
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 4 in the range -256 to 252, defaulting to 0.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.14.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-18
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.15 LDR (immediate, SIMD and FP)
Load SIMD and FP register (immediate offset).

6.15.1 Syntax

LDR Bt, [Xn|SP], #simm ; 8-bit FP/SIMD registers, Post-index

LDR Ht, [Xn|SP], #simm ; 16-bit FP/SIMD registers, Post-index

LDR St, [Xn|SP], #simm ; 32-bit FP/SIMD registers, Post-index

LDR Dt, [Xn|SP], #simm ; 64-bit FP/SIMD registers, Post-index

LDR Qt, [Xn|SP], #simm ; 128-bit FP/SIMD registers, Post-index

LDR Bt, [Xn|SP, #simm]! ; 8-bit FP/SIMD registers, Pre-index

LDR Ht, [Xn|SP, #simm]! ; 16-bit FP/SIMD registers, Pre-index

LDR St, [Xn|SP, #simm]! ; 32-bit FP/SIMD registers, Pre-index

LDR Dt, [Xn|SP, #simm]! ; 64-bit FP/SIMD registers, Pre-index

LDR Qt, [Xn|SP, #simm]! ; 128-bit FP/SIMD registers, Pre-index

LDR Bt, [Xn|SP{, #pimm}] ; 8-bit FP/SIMD registers

LDR Ht, [Xn|SP{, #pimm}] ; 16-bit FP/SIMD registers

LDR St, [Xn|SP{, #pimm}] ; 32-bit FP/SIMD registers

LDR Dt, [Xn|SP{, #pimm}] ; 64-bit FP/SIMD registers

LDR Qt, [Xn|SP{, #pimm}] ; 128-bit FP/SIMD registers

Where:

Bt Is the 8-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

simm Is the signed immediate byte offset, in the range -256 to 255.

Ht Is the 16-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

St Is the 32-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Dt Is the 64-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Qt Is the 128-bit name of the SIMD and FP register to be transferred, in the range 0
to 31.

pimm The value depends on the instruction variant:
8-bit FP/SIMD registers

Is the optional positive immediate byte offset, in the range 0 to 4095,
defaulting to 0.

16-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 2 in the
range 0 to 8190, defaulting to 0.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-19
ID031214 Non-Confidential

A64 Data Transfer Instructions
32-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0.

64-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0.

128-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 16 in the
range 0 to 65520, defaulting to 0.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.15.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-20
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.16 LDR (immediate)
Load register (immediate offset).

6.16.1 Syntax

LDR Wt, [Xn|SP], #simm ; 32-bit general registers, Post-index

LDR Xt, [Xn|SP], #simm ; 64-bit general registers, Post-index

LDR Wt, [Xn|SP, #simm]! ; 32-bit general registers, Pre-index

LDR Xt, [Xn|SP, #simm]! ; 64-bit general registers, Pre-index

LDR Wt, [Xn|SP{, #pimm}] ; 32-bit general registers

LDR Xt, [Xn|SP{, #pimm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

simm Is the signed immediate byte offset, in the range -256 to 255.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

pimm The value depends on the instruction variant:
32-bit general registers

Is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0.

64-bit general registers
Is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.16.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-21
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.17 LDR (literal, SIMD and FP)
Load SIMD and FP register (PC-relative literal).

6.17.1 Syntax

LDR St, label ; 32-bit FP/SIMD registers

LDR Dt, label ; 64-bit FP/SIMD registers

LDR Qt, label ; 128-bit FP/SIMD registers

Where:

St Is the 32-bit name of the SIMD and FP register to be loaded, in the range 0 to 31.

Dt Is the 64-bit name of the SIMD and FP register to be loaded, in the range 0 to 31.

Qt Is the 128-bit name of the SIMD and FP register to be loaded, in the range 0 to 31.

label Is the program label from which the data is to be loaded. It is an offset from the
address of this instruction, in the range ±1MB.

6.17.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-22
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.18 LDR (literal)
Load register (PC-relative literal).

6.18.1 Syntax

LDR Wt, label ; 32-bit general registers

LDR Xt, label ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be loaded, in the range 0 to
31.

Xt Is the 64-bit name of the general-purpose register to be loaded, in the range 0 to
31.

label Is the program label from which the data is to be loaded. It is an offset from the
address of this instruction, in the range ±1MB.

6.18.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-23
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.19 LDR pseudo-instruction
Load a register with either:
• A 32-bit or 64-bit immediate value.
• An address.

Note
 This description is for the LDR pseudo-instruction only, and not for the LDR instruction.

6.19.1 Syntax

LDR Wd, =expr

LDR Xd, =expr

LDR Wd, =label_expr

LDR Xd, =label_expr

where:

Wd Is the register to load with a 32-bit value.

Xd Is the register to load with a 64-bit value.

expr Evaluates to a numeric value.

label_expr Is a PC-relative or external expression of an address in the form of a label plus or
minus a numeric value.

6.19.2 Usage

When using the LDR pseudo-instruction:

• If the value of expr can be loaded with a valid MOV or MVN instruction, the assembler uses
that instruction.

• If a valid MOV or MVN instruction cannot be used, or if the label_expr syntax is used, the
assembler places the constant in a literal pool and generates a PC-relative LDR instruction
that reads the constant from the literal pool.

Note
 — An address loaded in this way is fixed at link time, so the code is not

position-independent.
— The address holding the constant remains valid regardless of where the linker places

the ELF section containing the LDR instruction.

The assembler places the value of label_expr in a literal pool and generates a PC-relative LDR
instruction that loads the value from the literal pool.

If label_expr is an external expression, or is not contained in the current section, the assembler
places a linker relocation directive in the object file. The linker generates the address at link
time.

If label_expr is a local label, the assembler places a linker relocation directive in the object file
and generates a symbol for that local label. The address is generated at link time.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-24
ID031214 Non-Confidential

A64 Data Transfer Instructions
The offset from the PC to the value in the literal pool must be less than ±1MB . You are
responsible for ensuring that there is a literal pool within range.

6.19.3 Examples

 LDR w1,=0xfff ; loads 0xfff into W1
 ; => LDR w1,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD 4095
 LDR x2,=place ; loads the address of
 ; place into X2
 ; => LDR x2,[pc,offset_to_litpool]
 ; ...
 ; litpool DCQ place

6.19.4 See also

Concepts
armasm User Guide
• Numeric constants on page 10-5.
• Register-relative and PC-relative expressions on page 10-7.
• Numeric local labels on page 10-12.
• Load immediate 32-bit values to a register using LDR Rd, =const on page 7-11.

Reference
• LTORG on page 10-66.
• MOVL pseudo-instruction on page 5-100.
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Other information
• ARM Architecture Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-25
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.20 LDR (register, SIMD and FP)
Load SIMD and FP register (register offset).

6.20.1 Syntax

LDR Bt, [Xn|SP, Rm{, extend {amount}}] ; 8-bit FP/SIMD registers

LDR Ht, [Xn|SP, Rm{, extend {amount}}] ; 16-bit FP/SIMD registers

LDR St, [Xn|SP, Rm{, extend {amount}}] ; 32-bit FP/SIMD registers

LDR Dt, [Xn|SP, Rm{, extend {amount}}] ; 64-bit FP/SIMD registers

LDR Qt, [Xn|SP, Rm{, extend {amount}}] ; 128-bit FP/SIMD registers

Where:

Bt Is the 8-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL:
8-bit FP/SIMD registers

Must be #0.
16-bit FP/SIMD registers

Can be one of #0 or #1.
32-bit FP/SIMD registers

Can be one of #0 or #2.
64-bit FP/SIMD registers

Can be one of #0 or #3.
128-bit FP/SIMD registers

Can be one of #0 or #4.

Ht Is the 16-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

St Is the 32-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Dt Is the 64-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Qt Is the 128-bit name of the SIMD and FP register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-26
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.20.2 Usage

The following table shows valid specifier combinations:

6.20.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-2 LDR (register, SIMD and FP) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-27
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.21 LDR (register)
Load register (register offset).

6.21.1 Syntax

LDR Wt, [Xn|SP, Rm{, extend {amount}}] ; 32-bit general registers

LDR Xt, [Xn|SP, Rm{, extend {amount}}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL:
32-bit general registers

Can be one of #0 or #2.
64-bit general registers

Can be one of #0 or #3.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

6.21.2 Usage

The following table shows valid specifier combinations:

6.21.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-3 LDR (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-28
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.22 LDRB (immediate)
Load register byte (immediate offset).

6.22.1 Syntax

LDRB Wt, [Xn|SP], #simm ; Post-index general registers

LDRB Wt, [Xn|SP, #simm]! ; Pre-index general registers

LDRB Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm Is the signed immediate byte offset, in the range -256 to 255.

pimm Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.22.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-29
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.23 LDRB (register)
Load register byte (register offset).

6.23.1 Syntax

LDRB Wt, [Xn|SP, Rm{, extend {amount}}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL.

6.23.2 Usage

The following table shows valid specifier combinations:

6.23.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-4 LDRB (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-30
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.24 LDRH (immediate)
Load register halfword (register offset).

6.24.1 Syntax

LDRH Wt, [Xn|SP], #simm ; Post-index general registers

LDRH Wt, [Xn|SP, #simm]! ; Pre-index general registers

LDRH Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm Is the signed immediate byte offset, in the range -256 to 255.

pimm Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to
8190, defaulting to 0.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.24.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-31
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.25 LDRH (register)
Load register halfword (register offset).

6.25.1 Syntax

LDRH Wt, [Xn|SP, Rm{, extend {amount}}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL,
and can be either #0 or #1.

6.25.2 Usage

The following table shows valid specifier combinations:

6.25.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-5 LDRH (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-32
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.26 LDRSB (immediate)
Load register signed byte (immediate offset).

6.26.1 Syntax

LDRSB Wt, [Xn|SP], #simm ; 32-bit general registers, Post-index

LDRSB Xt, [Xn|SP], #simm ; 64-bit general registers, Post-index

LDRSB Wt, [Xn|SP, #simm]! ; 32-bit general registers, Pre-index

LDRSB Xt, [Xn|SP, #simm]! ; 64-bit general registers, Pre-index

LDRSB Wt, [Xn|SP{, #pimm}] ; 32-bit general registers

LDRSB Xt, [Xn|SP{, #pimm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

simm Is the signed immediate byte offset, in the range -256 to 255.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

pimm Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.26.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-33
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.27 LDRSB (register)
Load register signed byte (register offset).

6.27.1 Syntax

LDRSB Wt, [Xn|SP, Rm{, extend {amount}}] ; 32-bit general registers

LDRSB Xt, [Xn|SP, Rm{, extend {amount}}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL.

6.27.2 Usage

The following table shows valid specifier combinations:

6.27.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-6 LDRSB (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-34
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.28 LDRSH (immediate)
Load register signed halfword (immediate offset).

6.28.1 Syntax

LDRSH Wt, [Xn|SP], #simm ; 32-bit general registers, Post-index

LDRSH Xt, [Xn|SP], #simm ; 64-bit general registers, Post-index

LDRSH Wt, [Xn|SP, #simm]! ; 32-bit general registers, Pre-index

LDRSH Xt, [Xn|SP, #simm]! ; 64-bit general registers, Pre-index

LDRSH Wt, [Xn|SP{, #pimm}] ; 32-bit general registers

LDRSH Xt, [Xn|SP{, #pimm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

simm Is the signed immediate byte offset, in the range -256 to 255.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

pimm Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to
8190, defaulting to 0.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.28.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-35
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.29 LDRSH (register)
Load register signed halfword (register offset).

6.29.1 Syntax

LDRSH Wt, [Xn|SP, Rm{, extend {amount}}] ; 32-bit general registers

LDRSH Xt, [Xn|SP, Rm{, extend {amount}}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL,
and can be either #0 or #1.

6.29.2 Usage

The following table shows valid specifier combinations:

6.29.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-7 LDRSH (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-36
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.30 LDRSW (immediate)
Load register signed word (immediate offset).

6.30.1 Syntax

LDRSW Xt, [Xn|SP], #simm ; Post-index general registers

LDRSW Xt, [Xn|SP, #simm]! ; Pre-index general registers

LDRSW Xt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm Is the signed immediate byte offset, in the range -256 to 255.

pimm Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to
16380, defaulting to 0.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.30.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-37
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.31 LDRSW (literal)
Load register signed word (PC-relative literal).

6.31.1 Syntax

LDRSW Xt, label

Where:

Xt Is the 64-bit name of the general-purpose register to be loaded, in the range 0 to
31.

label Is the program label from which the data is to be loaded. It is an offset from the
address of this instruction, in the range ±1MB.

6.31.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-38
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.32 LDRSW (register)
Load register signed word (register offset).

6.32.1 Syntax

LDRSW Xt, [Xn|SP, Rm{, extend {amount}}]

Where:

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL,
and can be either #0 or #2.

6.32.2 Usage

The following table shows valid specifier combinations:

6.32.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-8 LDRSW (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-39
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.33 LDTR
Load register (unprivileged).

6.33.1 Syntax

LDTR Wt, [Xn|SP{, #simm}] ; 32-bit general registers

LDTR Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.33.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-40
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.34 LDTRB
Load register byte (unprivileged).

6.34.1 Syntax

LDTRB Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.34.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-41
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.35 LDTRH
Load register halfword (unprivileged).

6.35.1 Syntax

LDTRH Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.35.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-42
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.36 LDTRSB
Load register signed byte (unprivileged).

6.36.1 Syntax

LDTRSB Wt, [Xn|SP{, #simm}] ; 32-bit general registers

LDTRSB Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.36.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-43
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.37 LDTRSH
Load register signed halfword (unprivileged).

6.37.1 Syntax

LDTRSH Wt, [Xn|SP{, #simm}] ; 32-bit general registers

LDTRSH Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.37.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-44
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.38 LDTRSW
Load register signed word (unprivileged).

6.38.1 Syntax

LDTRSW Xt, [Xn|SP{, #simm}]

Where:

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.38.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-45
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.39 LDUR (SIMD and FP)
Load SIMD and FP register (unscaled offset).

6.39.1 Syntax

LDUR Bt, [Xn|SP{, #simm}] ; 8-bit FP/SIMD registers

LDUR Ht, [Xn|SP{, #simm}] ; 16-bit FP/SIMD registers

LDUR St, [Xn|SP{, #simm}] ; 32-bit FP/SIMD registers

LDUR Dt, [Xn|SP{, #simm}] ; 64-bit FP/SIMD registers

LDUR Qt, [Xn|SP{, #simm}] ; 128-bit FP/SIMD registers

Where:

Bt Is the 8-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Ht Is the 16-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

St Is the 32-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Dt Is the 64-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Qt Is the 128-bit name of the SIMD and FP register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.39.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-46
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.40 LDUR
Load register (unscaled offset).

6.40.1 Syntax

LDUR Wt, [Xn|SP{, #simm}] ; 32-bit general registers

LDUR Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.40.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-47
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.41 LDURB
Load register byte (unscaled offset).

6.41.1 Syntax

LDURB Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.41.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-48
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.42 LDURH
Load register halfword (unscaled offset).

6.42.1 Syntax

LDURH Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.42.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-49
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.43 LDURSB
Load register signed byte (unscaled offset).

6.43.1 Syntax

LDURSB Wt, [Xn|SP{, #simm}] ; 32-bit general registers

LDURSB Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.43.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-50
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.44 LDURSH
Load register signed halfword (unscaled offset).

6.44.1 Syntax

LDURSH Wt, [Xn|SP{, #simm}] ; 32-bit general registers

LDURSH Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.44.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-51
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.45 LDURSW
Load register signed word (unscaled offset).

6.45.1 Syntax

LDURSW Xt, [Xn|SP{, #simm}]

Where:

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.45.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-52
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.46 LDXP
Load exclusive pair of registers.

6.46.1 Syntax

LDXP Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit general registers

LDXP Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.46.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-53
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.47 LDXR
Load exclusive register.

6.47.1 Syntax

LDXR Wt, [Xn|SP{,#0}] ; 32-bit general registers

LDXR Xt, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.47.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-54
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.48 LDXRB
Load exclusive register byte.

6.48.1 Syntax

LDXRB Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.48.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-55
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.49 LDXRH
Load exclusive register halfword.

6.49.1 Syntax

LDXRH Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.49.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-56
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.50 PRFM (immediate)
Prefetch memory (immediate offset).

6.50.1 Syntax

PRFM prfop, [Xn|SP{, #pimm}]

Where:

prfop Is the prefetch operation, and contains the following fields without spaces
between them:
type target policy

type Can be one of:

target Can be one of:

policy Can be one of:

For example, PLDL1KEEP.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

pimm Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0.

6.50.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.

Table 6-9 PRFM (immediate) type options

option meaning

PLD prefetch for load

PST prefetch for store

Table 6-10 PRFM (immediate) target options

option meaning

L1 exception level 1

L2 exception level 2

L3 exception level 3

Table 6-11 PRFM (immediate) policy options

option meaning

KEEP keep in cache

STRM Streaming data
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-57
ID031214 Non-Confidential

A64 Data Transfer Instructions
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-58
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.51 PRFM (literal)
Prefetch memory (PC-relative offset).

6.51.1 Syntax

PRFM prfop, label

Where:

prfop Is the prefetch operation, and contains the following fields without spaces
between them:
type target policy

type Can be one of:

target Can be one of:

policy Can be one of:

For example, PLDL1KEEP.

label Is the program label from which the data is to be loaded. It is an offset from the
address of this instruction, in the range ±1MB.

6.51.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-12 PRFM (literal) type options

option meaning

PLD prefetch for load

PST prefetch for store

Table 6-13 PRFM (literal) target options

option meaning

L1 exception level 1

L2 exception level 2

L3 exception level 3

Table 6-14 PRFM (literal) policy options

option meaning

KEEP keep in cache

STRM Streaming data
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-59
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.52 PRFM (register)
Prefetch memory (register offset).

6.52.1 Syntax

PRFM prfop, [Xn|SP, Rm{, extend {amount}}]

Where:

prfop Is the prefetch operation, and contains the following fields without spaces
between them:
type target policy

type Can be one of:

target Can be one of:

policy Can be one of:

For example, PLDL1KEEP.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL,
and can be either #0 or #3.

Table 6-15 PRFM (register) type options

option meaning

PLD prefetch for load

PST prefetch for store

Table 6-16 PRFM (register) target options

option meaning

L1 exception level 1

L2 exception level 2

L3 exception level 3

Table 6-17 PRFM (register) policy options

option meaning

KEEP keep in cache

STRM Streaming data
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-60
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.52.2 Usage

The following table shows valid specifier combinations:

6.52.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-18 PRFM (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-61
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.53 PRFUM
Prefetch memory (unscaled offset).

6.53.1 Syntax

PRFUM prfop, [Xn|SP{, #simm}]

Where:

prfop Is the prefetch operation, and contains the following fields without spaces
between them:
type target policy

type Can be one of:

target Can be one of:

policy Can be one of:

For example, PLDL1KEEP.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.53.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.

Table 6-19 PRFUM type options

option meaning

PLD prefetch for load

PST prefetch for store

Table 6-20 PRFUM target options

option meaning

L1 exception level 1

L2 exception level 2

L3 exception level 3

Table 6-21 PRFUM policy options

option meaning

KEEP keep in cache

STRM Streaming data
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-62
ID031214 Non-Confidential

A64 Data Transfer Instructions
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-63
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.54 STLR
Store-release register.

6.54.1 Syntax

STLR Wt, [Xn|SP{,#0}] ; 32-bit general registers

STLR Xt, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.54.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-64
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.55 STLRB
Store-release register byte.

6.55.1 Syntax

STLRB Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.55.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-65
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.56 STLRH
Store-release register halfword.

6.56.1 Syntax

STLRH Wt, [Xn|SP{,#0}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.56.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-66
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.57 STLXP
Store-release exclusive pair of registers, returning status.

6.57.1 Syntax

STLXP Ws, Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit general registers

STLXP Ws, Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.57.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-67
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.58 STLXR
Store-release exclusive register, returning status.

6.58.1 Syntax

STLXR Ws, Wt, [Xn|SP{,#0}] ; 32-bit general registers

STLXR Ws, Xt, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.58.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-68
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.59 STLXRB
Store-release exclusive register byte, returning status.

6.59.1 Syntax

STLXRB Ws, Wt, [Xn|SP{,#0}]

Where:

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.59.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-69
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.60 STLXRH
Store-release exclusive register halfword, returning status.

6.60.1 Syntax

STLXRH Ws, Wt, [Xn|SP{,#0}]

Where:

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.60.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-70
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.61 STNP (SIMD and FP)
Store pair of SIMD and FP registers, with non-temporal hint.

6.61.1 Syntax

STNP St1, St2, [Xn|SP{, #imm}] ; 32-bit FP/SIMD registers, Signed offset

STNP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit FP/SIMD registers, Signed offset

STNP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit FP/SIMD registers, Signed offset

Where:

St1 Is the 32-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

St2 Is the 32-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit FP/SIMD registers

Is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0.

64-bit FP/SIMD registers
Is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0.

128-bit FP/SIMD registers
Is the optional signed immediate byte offset, a multiple of 16 in the
range -1024 to 1008, defaulting to 0.

Dt1 Is the 64-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

Dt2 Is the 64-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

Qt1 Is the 128-bit name of the first SIMD and FP register to be transferred, in the
range 0 to 31.

Qt2 Is the 128-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.61.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-71
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.62 STNP
Store pair of registers, with non-temporal hint.

6.62.1 Syntax

STNP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit general registers, Signed offset

STNP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit general registers, Signed offset

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit general registers

Is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0.

64-bit general registers
Is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.62.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-72
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.63 STP (SIMD and FP)
Store pair of SIMD and FP registers.

6.63.1 Syntax

STP St1, St2, [Xn|SP], #imm ; 32-bit FP/SIMD registers, Post-index

STP Dt1, Dt2, [Xn|SP], #imm ; 64-bit FP/SIMD registers, Post-index

STP Qt1, Qt2, [Xn|SP], #imm ; 128-bit FP/SIMD registers, Post-index

STP St1, St2, [Xn|SP, #imm]! ; 32-bit FP/SIMD registers, Pre-index

STP Dt1, Dt2, [Xn|SP, #imm]! ; 64-bit FP/SIMD registers, Pre-index

STP Qt1, Qt2, [Xn|SP, #imm]! ; 128-bit FP/SIMD registers, Pre-index

STP St1, St2, [Xn|SP{, #imm}] ; 32-bit FP/SIMD registers, Signed offset

STP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit FP/SIMD registers, Signed offset

STP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit FP/SIMD registers, Signed offset

Where:

St1 Is the 32-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

St2 Is the 32-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit FP/SIMD registers

For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 4 in the range -256 to 252.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 4 in the range -256 to 252, defaulting to 0.

64-bit FP/SIMD registers
For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 8 in the range -512 to 504.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 8 in the range -512 to 504, defaulting to 0.

128-bit FP/SIMD registers
For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 16 in the range -1024 to 1008.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0.

Dt1 Is the 64-bit name of the first SIMD and FP register to be transferred, in the range
0 to 31.

Dt2 Is the 64-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.

Qt1 Is the 128-bit name of the first SIMD and FP register to be transferred, in the
range 0 to 31.

Qt2 Is the 128-bit name of the second SIMD and FP register to be transferred, in the
range 0 to 31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-73
ID031214 Non-Confidential

A64 Data Transfer Instructions
Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.63.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-74
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.64 STP
Store pair of registers.

6.64.1 Syntax

STP Wt1, Wt2, [Xn|SP], #imm ; 32-bit general registers, Post-index

STP Xt1, Xt2, [Xn|SP], #imm ; 64-bit general registers, Post-index

STP Wt1, Wt2, [Xn|SP, #imm]! ; 32-bit general registers, Pre-index

STP Xt1, Xt2, [Xn|SP, #imm]! ; 64-bit general registers, Pre-index

STP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit general registers, Signed offset

STP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit general registers, Signed offset

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

imm The value depends on the instruction variant:
32-bit general registers

For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 4 in the range -256 to 252.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 4 in the range -256 to 252, defaulting to 0.

64-bit general registers
For the post-index and pre-index variant is the signed immediate byte
offset, a multiple of 8 in the range -512 to 504.
For the signed offset variant is the optional signed immediate byte
offset, a multiple of 8 in the range -512 to 504, defaulting to 0.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.64.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-75
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.65 STR (immediate, SIMD and FP)
Store SIMD and FP register (immediate offset).

6.65.1 Syntax

STR Bt, [Xn|SP], #simm ; 8-bit FP/SIMD registers, Post-index

STR Ht, [Xn|SP], #simm ; 16-bit FP/SIMD registers, Post-index

STR St, [Xn|SP], #simm ; 32-bit FP/SIMD registers, Post-index

STR Dt, [Xn|SP], #simm ; 64-bit FP/SIMD registers, Post-index

STR Qt, [Xn|SP], #simm ; 128-bit FP/SIMD registers, Post-index

STR Bt, [Xn|SP, #simm]! ; 8-bit FP/SIMD registers, Pre-index

STR Ht, [Xn|SP, #simm]! ; 16-bit FP/SIMD registers, Pre-index

STR St, [Xn|SP, #simm]! ; 32-bit FP/SIMD registers, Pre-index

STR Dt, [Xn|SP, #simm]! ; 64-bit FP/SIMD registers, Pre-index

STR Qt, [Xn|SP, #simm]! ; 128-bit FP/SIMD registers, Pre-index

STR Bt, [Xn|SP{, #pimm}] ; 8-bit FP/SIMD registers

STR Ht, [Xn|SP{, #pimm}] ; 16-bit FP/SIMD registers

STR St, [Xn|SP{, #pimm}] ; 32-bit FP/SIMD registers

STR Dt, [Xn|SP{, #pimm}] ; 64-bit FP/SIMD registers

STR Qt, [Xn|SP{, #pimm}] ; 128-bit FP/SIMD registers

Where:

Bt Is the 8-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

simm Is the signed immediate byte offset, in the range -256 to 255.

Ht Is the 16-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

St Is the 32-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Dt Is the 64-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Qt Is the 128-bit name of the SIMD and FP register to be transferred, in the range 0
to 31.

pimm The value depends on the instruction variant:
8-bit FP/SIMD registers

Is the optional positive immediate byte offset, in the range 0 to 4095,
defaulting to 0.

16-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 2 in the
range 0 to 8190, defaulting to 0.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-76
ID031214 Non-Confidential

A64 Data Transfer Instructions
32-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0.

64-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0.

128-bit FP/SIMD registers
Is the optional positive immediate byte offset, a multiple of 16 in the
range 0 to 65520, defaulting to 0.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.65.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-77
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.66 STR (immediate)
Store register (immediate offset).

6.66.1 Syntax

STR Wt, [Xn|SP], #simm ; 32-bit general registers, Post-index

STR Xt, [Xn|SP], #simm ; 64-bit general registers, Post-index

STR Wt, [Xn|SP, #simm]! ; 32-bit general registers, Pre-index

STR Xt, [Xn|SP, #simm]! ; 64-bit general registers, Pre-index

STR Wt, [Xn|SP{, #pimm}] ; 32-bit general registers

STR Xt, [Xn|SP{, #pimm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

simm Is the signed immediate byte offset, in the range -256 to 255.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

pimm The value depends on the instruction variant:
32-bit general registers

Is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0.

64-bit general registers
Is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.66.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-78
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.67 STR (register, SIMD and FP)
Store SIMD and FP register (register offset).

6.67.1 Syntax

STR Bt, [Xn|SP, Rm{, extend {amount}}] ; 8-bit FP/SIMD registers

STR Ht, [Xn|SP, Rm{, extend {amount}}] ; 16-bit FP/SIMD registers

STR St, [Xn|SP, Rm{, extend {amount}}] ; 32-bit FP/SIMD registers

STR Dt, [Xn|SP, Rm{, extend {amount}}] ; 64-bit FP/SIMD registers

STR Qt, [Xn|SP, Rm{, extend {amount}}] ; 128-bit FP/SIMD registers

Where:

Bt Is the 8-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL:
8-bit FP/SIMD registers

Must be #0.
16-bit FP/SIMD registers

Can be one of #0 or #1.
32-bit FP/SIMD registers

Can be one of #0 or #2.
64-bit FP/SIMD registers

Can be one of #0 or #3.
128-bit FP/SIMD registers

Can be one of #0 or #4.

Ht Is the 16-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

St Is the 32-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Dt Is the 64-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Qt Is the 128-bit name of the SIMD and FP register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-79
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.67.2 Usage

The following table shows valid specifier combinations:

6.67.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-22 STR (register, SIMD and FP) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-80
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.68 STR (register)
Store register (register offset).

6.68.1 Syntax

STR Wt, [Xn|SP, Rm{, extend {amount}}] ; 32-bit general registers

STR Xt, [Xn|SP, Rm{, extend {amount}}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL:
32-bit general registers

Can be one of #0 or #2.
64-bit general registers

Can be one of #0 or #3.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

6.68.2 Usage

The following table shows valid specifier combinations:

6.68.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-23 STR (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-81
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.69 STRB (immediate)
Store register byte (immediate offset).

6.69.1 Syntax

STRB Wt, [Xn|SP], #simm ; Post-index general registers

STRB Wt, [Xn|SP, #simm]! ; Pre-index general registers

STRB Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm Is the signed immediate byte offset, in the range -256 to 255.

pimm Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.69.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-82
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.70 STRB (register)
Store register byte (register offset).

6.70.1 Syntax

STRB Wt, [Xn|SP, Rm{, extend {amount}}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL.

6.70.2 Usage

The following table shows valid specifier combinations:

6.70.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-24 STRB (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-83
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.71 STRH (immediate)
Store register halfword (immediate offset).

6.71.1 Syntax

STRH Wt, [Xn|SP], #simm ; Post-index general registers

STRH Wt, [Xn|SP, #simm]! ; Pre-index general registers

STRH Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm Is the signed immediate byte offset, in the range -256 to 255.

pimm Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to
8190, defaulting to 0.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.71.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-84
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.72 STRH (register)
Store register halfword (register offset).

6.72.1 Syntax

STRH Wt, [Xn|SP, Rm{, extend {amount}}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

R Is the index width specifier, and can be either W or X.

m Is the number of the general-purpose index register, in the range 0 to 30, or the
name ZR (31).

extend Is the index extend/shift specifier, defaulting to LSL, and can be one of the values
shown in Usage.

amount Is the index shift amount, optional and defaulting to #0 when extend is not LSL,
and can be either #0 or #1.

6.72.2 Usage

The following table shows valid specifier combinations:

6.72.3 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

Table 6-25 STRH (register) specifier combinations

R extend

W SXTW

W UXTW

X LSL

X SXTX
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-85
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.73 STTR
Store register (unprivileged).

6.73.1 Syntax

STTR Wt, [Xn|SP{, #simm}] ; 32-bit general registers

STTR Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.73.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-86
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.74 STTRB
Store register byte (unprivileged).

6.74.1 Syntax

STTRB Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.74.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-87
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.75 STTRH
Store register halfword (unprivileged).

6.75.1 Syntax

STTRH Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.75.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-88
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.76 STUR (SIMD and FP)
Store SIMD and FP register (unscaled offset).

6.76.1 Syntax

STUR Bt, [Xn|SP{, #simm}] ; 8-bit FP/SIMD registers

STUR Ht, [Xn|SP{, #simm}] ; 16-bit FP/SIMD registers

STUR St, [Xn|SP{, #simm}] ; 32-bit FP/SIMD registers

STUR Dt, [Xn|SP{, #simm}] ; 64-bit FP/SIMD registers

STUR Qt, [Xn|SP{, #simm}] ; 128-bit FP/SIMD registers

Where:

Bt Is the 8-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Ht Is the 16-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

St Is the 32-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Dt Is the 64-bit name of the SIMD and FP register to be transferred, in the range 0 to
31.

Qt Is the 128-bit name of the SIMD and FP register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.76.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-89
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.77 STUR
Store register (unscaled offset).

6.77.1 Syntax

STUR Wt, [Xn|SP{, #simm}] ; 32-bit general registers

STUR Xt, [Xn|SP{, #simm}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.77.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-90
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.78 STURB
Store register byte (unscaled offset).

6.78.1 Syntax

STURB Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.78.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-91
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.79 STURH
Store register halfword (unscaled offset).

6.79.1 Syntax

STURH Wt, [Xn|SP{, #simm}]

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

simm Is the optional signed immediate byte offset, in the range -256 to 255, defaulting
to 0.

6.79.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-92
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.80 STXP
Store exclusive pair of registers, returning status.

6.80.1 Syntax

STXP Ws, Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit general registers

STXP Ws, Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt1 Is the 32-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Wt2 Is the 32-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Xt1 Is the 64-bit name of the first general-purpose register to be transferred, in the
range 0 to 31.

Xt2 Is the 64-bit name of the second general-purpose register to be transferred, in the
range 0 to 31.

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.80.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-93
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.81 STXR
Store exclusive register, returning status.

6.81.1 Syntax

STXR Ws, Wt, [Xn|SP{,#0}] ; 32-bit general registers

STXR Ws, Xt, [Xn|SP{,#0}] ; 64-bit general registers

Where:

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xt Is the 64-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.81.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-94
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.82 STXRB
Store exclusive register byte, returning status.

6.82.1 Syntax

STXRB Ws, Wt, [Xn|SP{,#0}]

Where:

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.82.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-95
ID031214 Non-Confidential

A64 Data Transfer Instructions
6.83 STXRH
Store exclusive register halfword, returning status.

6.83.1 Syntax

STXRH Ws, Wt, [Xn|SP{,#0}]

Where:

Ws Is the 32-bit name of the general-purpose register into which the status result of
the store exclusive is written.

Wt Is the 32-bit name of the general-purpose register to be transferred, in the range 0
to 31.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

6.83.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 6-96
ID031214 Non-Confidential

Chapter 7
A64 Floating-point Instructions

The following topic gives a summary of the A64 floating-point instructions supported by
armasm:

• A64 floating-point instructions in alphabetical order on page 7-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-1
ID031214 Non-Confidential

A64 Floating-point Instructions
7.1 A64 floating-point instructions in alphabetical order
The following A64 floating-point instructions are supported:

Table 7-1 Location of floating-point instructions

Mnemonic Brief description See

FABS (scalar) Floating-point absolute value page 7-4

FADD (scalar) Floating-point add page 7-5

FCCMP Floating-point conditional quiet compare, setting condition
flags to result of comparison or an immediate value

page 7-6

FCCMPE Floating-point conditional signaling compare, setting
condition flags to result of comparison or an immediate
value

page 7-7

FCMP Floating-point quiet compare page 7-8

FCMPE Floating-point signaling compare page 7-9

FCSEL Floating-point conditional select page 7-10

FCVT Floating-point convert precision page 7-11

FCVTAS (scalar) Floating-point convert to signed integer, rounding to
nearest with ties to away

page 7-12

FCVTAU (scalar) Floating-point convert to unsigned integer, rounding to
nearest with ties to away

page 7-13

FCVTMS (scalar) Floating-point convert to signed integer, rounding toward
minus infinity

page 7-14

FCVTMU (scalar) Floating-point convert to unsigned integer, rounding
toward minus infinity

page 7-15

FCVTNS (scalar) Floating-point convert to signed integer, rounding to
nearest with ties to even

page 7-16

FCVTNU (scalar) Floating-point convert to unsigned integer, rounding to
nearest with ties to even

page 7-17

FCVTPS (scalar) Floating-point convert to signed integer, rounding toward
positive infinity

page 7-18

FCVTPU (scalar) Floating-point convert to unsigned integer, rounding
toward positive infinity

page 7-19

FCVTZS (scalar, fixed-point) Floating-point convert to signed fixed-point, rounding
toward zero

page 7-20

FCVTZS (scalar, integer) Floating-point convert to signed integer, rounding toward
zero

page 7-21

FCVTZU (scalar, fixed-point) Floating-point convert to unsigned fixed-point, rounding
toward zero

page 7-22

FCVTZU (scalar, integer) Floating-point convert to unsigned integer, rounding
toward zero

page 7-23

FDIV (scalar) Floating-point divide page 7-24

FMADD Floating-point fused multiply-add page 7-25
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-2
ID031214 Non-Confidential

A64 Floating-point Instructions
FMAX (scalar) Floating-point maximum page 7-26

FMAXNM (scalar) Floating-point maximum number page 7-27

FMIN (scalar) Floating-point minimum page 7-28

FMINNM (scalar) Floating-point minimum number page 7-29

FMOV (register) Floating-point move register without conversion page 7-30

FMOV (general) Floating-point move to or from general-purpose register
without conversion

page 7-31

FMOV (scalar, immediate) Floating-point move immediate page 7-32

FMSUB Floating-point fused multiply-subtract page 7-33

FMUL (scalar) Floating-point multiply page 7-34

FNEG (scalar) Floating-point negate page 7-35

FNMADD Floating-point negated fused multiply-add page 7-36

FNMSUB Floating-point negated fused multiply-subtract page 7-37

FNMUL Floating-point multiply-negate page 7-38

FRINTA (scalar) Floating-point round to integral, to nearest with ties to
away

page 7-39

FRINTI (scalar) Floating-point round to integral, using current rounding
mode

page 7-40

FRINTM (scalar) Floating-point round to integral, toward minus infinity page 7-41

FRINTN (scalar) Floating-point round to integral, to nearest with ties to even page 7-42

FRINTP (scalar) Floating-point round to integral, toward positive infinity page 7-43

FRINTX (scalar) Floating-point round to integral exact, using current
rounding mode

page 7-44

FRINTZ (scalar) Floating-point round to integral, toward zero page 7-45

FSQRT (scalar) Floating-point square root page 7-46

FSUB (scalar) Floating-point subtract page 7-47

SCVTF (scalar, fixed-point) Signed fixed-point convert to floating-point page 7-48

SCVTF (scalar, integer) Signed integer convert to floating-point page 7-49

UCVTF (scalar, fixed-point) Unsigned fixed-point convert to floating-point page 7-50

UCVTF (scalar, integer) Unsigned integer convert to floating-point page 7-51

Table 7-1 Location of floating-point instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-3
ID031214 Non-Confidential

A64 Floating-point Instructions
7.2 FABS (scalar)
Floating-point absolute value.

7.2.1 Syntax

FABS Sd, Sn ; Single-precision

FABS Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.2.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-4
ID031214 Non-Confidential

A64 Floating-point Instructions
7.3 FADD (scalar)
Floating-point add.

7.3.1 Syntax

FADD Sd, Sn, Sm ; Single-precision

FADD Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.3.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-5
ID031214 Non-Confidential

A64 Floating-point Instructions
7.4 FCCMP
Floating-point conditional quiet compare, setting condition flags to result of comparison or an
immediate value.

7.4.1 Syntax

FCCMP Sn, Sm, #nzcv, cond ; Single-precision

FCCMP Dn, Dm, #nzcv, cond ; Double-precision

Where:

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

nzcv Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative
state for the 4-bit NZCV condition flags. Bit 3 is the N flag, bit 2 is the Z flag, bit
1 is the C flag, and bit 0 is the V flag.

cond Is one of the standard conditions.

7.4.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-6
ID031214 Non-Confidential

A64 Floating-point Instructions
7.5 FCCMPE
Floating-point conditional signaling compare, setting condition flags to result of comparison or
an immediate value.

7.5.1 Syntax

FCCMPE Sn, Sm, #nzcv, cond ; Single-precision

FCCMPE Dn, Dm, #nzcv, cond ; Double-precision

Where:

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

nzcv Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative
state for the 4-bit NZCV condition flags. Bit 3 is the N flag, bit 2 is the Z flag, bit
1 is the C flag, and bit 0 is the V flag.

cond Is one of the standard conditions.

7.5.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-7
ID031214 Non-Confidential

A64 Floating-point Instructions
7.6 FCMP
Floating-point quiet compare.

7.6.1 Syntax

FCMP Sn, Sm ; Single-precision

FCMP Sn, #0.0 ; Single-precision, zero

FCMP Dn, Dm ; Double-precision

FCMP Dn, #0.0 ; Double-precision, zero

Where:

Sn The value depends on the instruction variant:
Single-precision

Is the 32-bit name of the first SIMD and FP source register, in the range
0 to 31.

Single-precision, zero
Is the 32-bit name of the SIMD and FP source register, in the range 0
to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dn The value depends on the instruction variant:
Double-precision

Is the 64-bit name of the first SIMD and FP source register, in the range
0 to 31.

Double-precision, zero
Is the 64-bit name of the SIMD and FP source register, in the range 0
to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.6.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-8
ID031214 Non-Confidential

A64 Floating-point Instructions
7.7 FCMPE
Floating-point signaling compare.

7.7.1 Syntax

FCMPE Sn, Sm ; Single-precision

FCMPE Sn, #0.0 ; Single-precision, zero

FCMPE Dn, Dm ; Double-precision

FCMPE Dn, #0.0 ; Double-precision, zero

Where:

Sn The value depends on the instruction variant:
Single-precision

Is the 32-bit name of the first SIMD and FP source register, in the range
0 to 31.

Single-precision, zero
Is the 32-bit name of the SIMD and FP source register, in the range 0
to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dn The value depends on the instruction variant:
Double-precision

Is the 64-bit name of the first SIMD and FP source register, in the range
0 to 31.

Double-precision, zero
Is the 64-bit name of the SIMD and FP source register, in the range 0
to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.7.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-9
ID031214 Non-Confidential

A64 Floating-point Instructions
7.8 FCSEL
Floating-point conditional select.

7.8.1 Syntax

FCSEL Sd, Sn, Sm, cond ; Single-precision

FCSEL Dd, Dn, Dm, cond ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

cond Is one of the standard conditions.

7.8.2 See also

Reference
• Condition codes on page 3-26
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-10
ID031214 Non-Confidential

A64 Floating-point Instructions
7.9 FCVT
Floating-point convert precision.

7.9.1 Syntax

FCVT Sd, Hn ; Half-precision to single-precision

FCVT Dd, Hn ; Half-precision to double-precision

FCVT Hd, Sn ; Single-precision to half-precision

FCVT Dd, Sn ; Single-precision to double-precision

FCVT Hd, Dn ; Double-precision to half-precision

FCVT Sd, Dn ; Double-precision to single-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Hn Is the 16-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Hd Is the 16-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.9.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-11
ID031214 Non-Confidential

A64 Floating-point Instructions
7.10 FCVTAS (scalar)
Floating-point convert to signed integer, rounding to nearest with ties to away.

7.10.1 Syntax

FCVTAS Wd, Sn ; Single-precision to 32-bit

FCVTAS Xd, Sn ; Single-precision to 64-bit

FCVTAS Wd, Dn ; Double-precision to 32-bit

FCVTAS Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.10.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-12
ID031214 Non-Confidential

A64 Floating-point Instructions
7.11 FCVTAU (scalar)
Floating-point convert to unsigned integer, rounding to nearest with ties to away.

7.11.1 Syntax

FCVTAU Wd, Sn ; Single-precision to 32-bit

FCVTAU Xd, Sn ; Single-precision to 64-bit

FCVTAU Wd, Dn ; Double-precision to 32-bit

FCVTAU Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.11.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-13
ID031214 Non-Confidential

A64 Floating-point Instructions
7.12 FCVTMS (scalar)
Floating-point convert to signed integer, rounding toward minus infinity.

7.12.1 Syntax

FCVTMS Wd, Sn ; Single-precision to 32-bit

FCVTMS Xd, Sn ; Single-precision to 64-bit

FCVTMS Wd, Dn ; Double-precision to 32-bit

FCVTMS Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.12.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-14
ID031214 Non-Confidential

A64 Floating-point Instructions
7.13 FCVTMU (scalar)
Floating-point convert to unsigned integer, rounding toward minus infinity.

7.13.1 Syntax

FCVTMU Wd, Sn ; Single-precision to 32-bit

FCVTMU Xd, Sn ; Single-precision to 64-bit

FCVTMU Wd, Dn ; Double-precision to 32-bit

FCVTMU Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.13.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-15
ID031214 Non-Confidential

A64 Floating-point Instructions
7.14 FCVTNS (scalar)
Floating-point convert to signed integer, rounding to nearest with ties to even.

7.14.1 Syntax

FCVTNS Wd, Sn ; Single-precision to 32-bit

FCVTNS Xd, Sn ; Single-precision to 64-bit

FCVTNS Wd, Dn ; Double-precision to 32-bit

FCVTNS Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.14.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-16
ID031214 Non-Confidential

A64 Floating-point Instructions
7.15 FCVTNU (scalar)
Floating-point convert to unsigned integer, rounding to nearest with ties to even.

7.15.1 Syntax

FCVTNU Wd, Sn ; Single-precision to 32-bit

FCVTNU Xd, Sn ; Single-precision to 64-bit

FCVTNU Wd, Dn ; Double-precision to 32-bit

FCVTNU Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.15.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-17
ID031214 Non-Confidential

A64 Floating-point Instructions
7.16 FCVTPS (scalar)
Floating-point convert to signed integer, rounding toward positive infinity.

7.16.1 Syntax

FCVTPS Wd, Sn ; Single-precision to 32-bit

FCVTPS Xd, Sn ; Single-precision to 64-bit

FCVTPS Wd, Dn ; Double-precision to 32-bit

FCVTPS Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.16.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-18
ID031214 Non-Confidential

A64 Floating-point Instructions
7.17 FCVTPU (scalar)
Floating-point convert to unsigned integer, rounding toward positive infinity.

7.17.1 Syntax

FCVTPU Wd, Sn ; Single-precision to 32-bit

FCVTPU Xd, Sn ; Single-precision to 64-bit

FCVTPU Wd, Dn ; Double-precision to 32-bit

FCVTPU Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.17.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-19
ID031214 Non-Confidential

A64 Floating-point Instructions
7.18 FCVTZS (scalar, fixed-point)
Floating-point convert to signed fixed-point, rounding toward zero.

7.18.1 Syntax

FCVTZS Wd, Sn, #fbits ; Single-precision to 32-bit

FCVTZS Xd, Sn, #fbits ; Single-precision to 64-bit

FCVTZS Wd, Dn, #fbits ; Double-precision to 32-bit

FCVTZS Xd, Dn, #fbits ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

fbits The value depends on the instruction variant:
32-bit Is the number of bits after the binary point in the fixed-point

destination, in the range 1 to 32.
64-bit Is the number of bits after the binary point in the fixed-point

destination, in the range 1 to 64.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.18.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-20
ID031214 Non-Confidential

A64 Floating-point Instructions
7.19 FCVTZS (scalar, integer)
Floating-point convert to signed integer, rounding toward zero.

7.19.1 Syntax

FCVTZS Wd, Sn ; Single-precision to 32-bit

FCVTZS Xd, Sn ; Single-precision to 64-bit

FCVTZS Wd, Dn ; Double-precision to 32-bit

FCVTZS Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.19.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-21
ID031214 Non-Confidential

A64 Floating-point Instructions
7.20 FCVTZU (scalar, fixed-point)
Floating-point convert to unsigned fixed-point, rounding toward zero.

7.20.1 Syntax

FCVTZU Wd, Sn, #fbits ; Single-precision to 32-bit

FCVTZU Xd, Sn, #fbits ; Single-precision to 64-bit

FCVTZU Wd, Dn, #fbits ; Double-precision to 32-bit

FCVTZU Xd, Dn, #fbits ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

fbits The value depends on the instruction variant:
32-bit Is the number of bits after the binary point in the fixed-point

destination, in the range 1 to 32.
64-bit Is the number of bits after the binary point in the fixed-point

destination, in the range 1 to 64.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.20.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-22
ID031214 Non-Confidential

A64 Floating-point Instructions
7.21 FCVTZU (scalar, integer)
Floating-point convert to unsigned integer, rounding toward zero.

7.21.1 Syntax

FCVTZU Wd, Sn ; Single-precision to 32-bit

FCVTZU Xd, Sn ; Single-precision to 64-bit

FCVTZU Wd, Dn ; Double-precision to 32-bit

FCVTZU Xd, Dn ; Double-precision to 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.21.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-23
ID031214 Non-Confidential

A64 Floating-point Instructions
7.22 FDIV (scalar)
Floating-point divide.

7.22.1 Syntax

FDIV Sd, Sn, Sm ; Single-precision

FDIV Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.22.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-24
ID031214 Non-Confidential

A64 Floating-point Instructions
7.23 FMADD
Floating-point fused multiply-add.

7.23.1 Syntax

FMADD Sd, Sn, Sm, Sa ; Single-precision

FMADD Dd, Dn, Dm, Da ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Sa Is the 32-bit name of the third SIMD and FP source register holding the addend.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Da Is the 64-bit name of the third SIMD and FP source register holding the addend.

7.23.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-25
ID031214 Non-Confidential

A64 Floating-point Instructions
7.24 FMAX (scalar)
Floating-point maximum.

7.24.1 Syntax

FMAX Sd, Sn, Sm ; Single-precision

FMAX Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.24.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-26
ID031214 Non-Confidential

A64 Floating-point Instructions
7.25 FMAXNM (scalar)
Floating-point maximum number.

7.25.1 Syntax

FMAXNM Sd, Sn, Sm ; Single-precision

FMAXNM Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.25.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-27
ID031214 Non-Confidential

A64 Floating-point Instructions
7.26 FMIN (scalar)
Floating-point minimum.

7.26.1 Syntax

FMIN Sd, Sn, Sm ; Single-precision

FMIN Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.26.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-28
ID031214 Non-Confidential

A64 Floating-point Instructions
7.27 FMINNM (scalar)
Floating-point minimum number.

7.27.1 Syntax

FMINNM Sd, Sn, Sm ; Single-precision

FMINNM Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.27.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-29
ID031214 Non-Confidential

A64 Floating-point Instructions
7.28 FMOV (register)
Floating-point move register without conversion.

7.28.1 Syntax

FMOV Sd, Sn ; Single-precision

FMOV Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.28.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-30
ID031214 Non-Confidential

A64 Floating-point Instructions
7.29 FMOV (general)
Floating-point move to or from general-purpose register without conversion.

7.29.1 Syntax

FMOV Sd, Wn ; 32-bit to single-precision

FMOV Wd, Sn ; Single-precision to 32-bit

FMOV Dd, Xn ; 64-bit to double-precision

FMOV Vd.D[1], Xn ; 64-bit to top half of 128-bit

FMOV Xd, Dn ; Double-precision to 64-bit

FMOV Xd, Vn.D[1] ; Top half of 128-bit to 64-bit

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

7.29.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-31
ID031214 Non-Confidential

A64 Floating-point Instructions
7.30 FMOV (scalar, immediate)
Floating-point move immediate.

7.30.1 Syntax

FMOV Sd, #imm ; Single-precision

FMOV Dd, #imm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

imm Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of
precision.

7.30.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-32
ID031214 Non-Confidential

A64 Floating-point Instructions
7.31 FMSUB
Floating-point fused multiply-subtract.

7.31.1 Syntax

FMSUB Sd, Sn, Sm, Sa ; Single-precision

FMSUB Dd, Dn, Dm, Da ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Sa Is the 32-bit name of the third SIMD and FP source register holding the minuend.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Da Is the 64-bit name of the third SIMD and FP source register holding the minuend.

7.31.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-33
ID031214 Non-Confidential

A64 Floating-point Instructions
7.32 FMUL (scalar)
Floating-point multiply.

7.32.1 Syntax

FMUL Sd, Sn, Sm ; Single-precision

FMUL Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.32.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-34
ID031214 Non-Confidential

A64 Floating-point Instructions
7.33 FNEG (scalar)
Floating-point negate.

7.33.1 Syntax

FNEG Sd, Sn ; Single-precision

FNEG Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.33.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-35
ID031214 Non-Confidential

A64 Floating-point Instructions
7.34 FNMADD
Floating-point negated fused multiply-add.

7.34.1 Syntax

FNMADD Sd, Sn, Sm, Sa ; Single-precision

FNMADD Dd, Dn, Dm, Da ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Sa Is the 32-bit name of the third SIMD and FP source register holding the addend.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Da Is the 64-bit name of the third SIMD and FP source register holding the addend.

7.34.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-36
ID031214 Non-Confidential

A64 Floating-point Instructions
7.35 FNMSUB
Floating-point negated fused multiply-subtract.

7.35.1 Syntax

FNMSUB Sd, Sn, Sm, Sa ; Single-precision

FNMSUB Dd, Dn, Dm, Da ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Sa Is the 32-bit name of the third SIMD and FP source register holding the minuend.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register holding the
multiplicand, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register holding the
multiplier. The register name can be in the range 0 to 31.

Da Is the 64-bit name of the third SIMD and FP source register holding the minuend.

7.35.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-37
ID031214 Non-Confidential

A64 Floating-point Instructions
7.36 FNMUL
Floating-point multiply-negate.

7.36.1 Syntax

FNMUL Sd, Sn, Sm ; Single-precision

FNMUL Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.36.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-38
ID031214 Non-Confidential

A64 Floating-point Instructions
7.37 FRINTA (scalar)
Floating-point round to integral, to nearest with ties to away.

7.37.1 Syntax

FRINTA Sd, Sn ; Single-precision

FRINTA Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.37.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-39
ID031214 Non-Confidential

A64 Floating-point Instructions
7.38 FRINTI (scalar)
Floating-point round to integral, using current rounding mode.

7.38.1 Syntax

FRINTI Sd, Sn ; Single-precision

FRINTI Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.38.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-40
ID031214 Non-Confidential

A64 Floating-point Instructions
7.39 FRINTM (scalar)
Floating-point round to integral, toward minus infinity.

7.39.1 Syntax

FRINTM Sd, Sn ; Single-precision

FRINTM Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.39.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-41
ID031214 Non-Confidential

A64 Floating-point Instructions
7.40 FRINTN (scalar)
Floating-point round to integral, to nearest with ties to even.

7.40.1 Syntax

FRINTN Sd, Sn ; Single-precision

FRINTN Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.40.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-42
ID031214 Non-Confidential

A64 Floating-point Instructions
7.41 FRINTP (scalar)
Floating-point round to integral, toward positive infinity.

7.41.1 Syntax

FRINTP Sd, Sn ; Single-precision

FRINTP Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.41.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-43
ID031214 Non-Confidential

A64 Floating-point Instructions
7.42 FRINTX (scalar)
Floating-point round to integral exact, using current rounding mode.

7.42.1 Syntax

FRINTX Sd, Sn ; Single-precision

FRINTX Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.42.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-44
ID031214 Non-Confidential

A64 Floating-point Instructions
7.43 FRINTZ (scalar)
Floating-point round to integral, toward zero.

7.43.1 Syntax

FRINTZ Sd, Sn ; Single-precision

FRINTZ Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.43.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-45
ID031214 Non-Confidential

A64 Floating-point Instructions
7.44 FSQRT (scalar)
Floating-point square root.

7.44.1 Syntax

FSQRT Sd, Sn ; Single-precision

FSQRT Dd, Dn ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the SIMD and FP source register, in the range 0 to 31.

7.44.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-46
ID031214 Non-Confidential

A64 Floating-point Instructions
7.45 FSUB (scalar)
Floating-point subtract.

7.45.1 Syntax

FSUB Sd, Sn, Sm ; Single-precision

FSUB Dd, Dn, Dm ; Double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Sn Is the 32-bit name of the first SIMD and FP source register, in the range 0 to 31.

Sm Is the 32-bit name of the second SIMD and FP source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Dn Is the 64-bit name of the first SIMD and FP source register, in the range 0 to 31.

Dm Is the 64-bit name of the second SIMD and FP source register, in the range 0 to 31.

7.45.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-47
ID031214 Non-Confidential

A64 Floating-point Instructions
7.46 SCVTF (scalar, fixed-point)
Signed fixed-point convert to floating-point.

7.46.1 Syntax

SCVTF Sd, Wn, #fbits ; 32-bit to single-precision

SCVTF Dd, Wn, #fbits ; 32-bit to double-precision

SCVTF Sd, Xn, #fbits ; 64-bit to single-precision

SCVTF Dd, Xn, #fbits ; 64-bit to double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

fbits The value depends on the instruction variant:
32-bit Is the number of bits after the binary point in the fixed-point source, in

the range 1 to 32.
64-bit Is the number of bits after the binary point in the fixed-point source, in

the range 1 to 64.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

7.46.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-48
ID031214 Non-Confidential

A64 Floating-point Instructions
7.47 SCVTF (scalar, integer)
Signed integer convert to floating-point.

7.47.1 Syntax

SCVTF Sd, Wn ; 32-bit to single-precision

SCVTF Dd, Wn ; 32-bit to double-precision

SCVTF Sd, Xn ; 64-bit to single-precision

SCVTF Dd, Xn ; 64-bit to double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

7.47.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-49
ID031214 Non-Confidential

A64 Floating-point Instructions
7.48 UCVTF (scalar, fixed-point)
Unsigned fixed-point convert to floating-point.

7.48.1 Syntax

UCVTF Sd, Wn, #fbits ; 32-bit to single-precision

UCVTF Dd, Wn, #fbits ; 32-bit to double-precision

UCVTF Sd, Xn, #fbits ; 64-bit to single-precision

UCVTF Dd, Xn, #fbits ; 64-bit to double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

fbits The value depends on the instruction variant:
32-bit Is the number of bits after the binary point in the fixed-point source, in

the range 1 to 32.
64-bit Is the number of bits after the binary point in the fixed-point source, in

the range 1 to 64.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

7.48.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-50
ID031214 Non-Confidential

A64 Floating-point Instructions
7.49 UCVTF (scalar, integer)
Unsigned integer convert to floating-point.

7.49.1 Syntax

UCVTF Sd, Wn ; 32-bit to single-precision

UCVTF Dd, Wn ; 32-bit to double-precision

UCVTF Sd, Xn ; 64-bit to single-precision

UCVTF Dd, Xn ; 64-bit to double-precision

Where:

Sd Is the 32-bit name of the SIMD and FP destination register, in the range 0 to 31.

Wn Is the 32-bit name of the general-purpose source register, in the range 0 to 31.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

Xn Is the 64-bit name of the general-purpose source register, in the range 0 to 31.

7.49.2 See also

Reference
• A64 general instructions in alphabetical order on page 5-2.
• A64 data transfer instructions in alphabetical order on page 6-2.
• A64 floating-point instructions in alphabetical order on page 7-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 7-51
ID031214 Non-Confidential

Chapter 8
A64 Advanced SIMD Scalar Instructions

The following topic gives a summary of the A64 Advanced SIMD scalar instructions supported
by the ARM assembler:

• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-1
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.1 A64 Advanced SIMD scalar instructions in alphabetical order
The following A64 Advanced SIMD scalar instructions are supported:

Table 8-1 Location of Advanced SIMD (Scalar) instructions

Mnemonic Brief description See

ABS (scalar) Absolute value page 8-7

ADD (scalar) Add page 8-8

ADDP (scalar) Add pair of elements page 8-9

CMEQ (scalar, register) Compare bitwise equal, setting destination vector element
to all ones if the condition holds, else zero

page 8-10

CMEQ (scalar, zero) Compare bitwise equal to zero, setting destination vector
element to all ones if the condition holds, else zero

page 8-11

CMGE (scalar, register) Compare signed greater than or equal page 8-12

CMGE (scalar, zero) Compare signed greater than or equal to zero, setting
destination vector element to all ones if the condition
holds, else zero

page 8-13

CMGT (scalar, register) Compare signed greater than, setting destination vector
element to all ones if the condition holds, else zero

page 8-14

CMGT (scalar, zero) Compare signed greater than zero, setting destination
vector element to all ones if the condition holds, else zero

page 8-15

CMHI (scalar, register) Compare unsigned higher, setting destination vector
element to all ones if the condition holds, else zero

page 8-16

CMHS (scalar, register) Compare unsigned higher or same, setting destination
vector element to all ones if the condition holds, else zero

page 8-17

CMLE (scalar, zero) Compare signed less than or equal to zero, setting
destination vector element to all ones if the condition
holds, else zero

page 8-18

CMLT (scalar, zero) Compare signed less than zero, setting destination vector
element to all ones if the condition holds, else zero

page 8-19

CMTST (scalar) Compare bitwise test bits nonzero, setting destination
vector element to all ones if the condition holds, else zero

page 8-20

DUP (scalar, element) Duplicate vector element to scalar page 8-21

FABD (scalar) Floating-point absolute difference page 8-22

FACGE (scalar) Floating-point absolute compare greater than or equal page 8-23

FACGT (scalar) Floating-point absolute compare greater than page 8-24

FADDP (scalar) Floating-point add pair of elements page 8-25

FCMEQ (scalar, register) Floating-point compare equal, setting destination vector
element to all ones if the condition holds, else zero

page 8-26

FCMEQ (scalar, zero) Floating-point compare equal to zero, setting destination
vector element to all ones if the condition holds, else zero

page 8-27
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-2
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
FCMGE (scalar, register) Floating-point compare greater than or equal, setting
destination vector element to all ones if the condition
holds, else zero

page 8-28

FCMGE (scalar, zero) Floating-point compare greater than or equal to zero,
setting destination vector element to all ones if the
condition holds, else zero

page 8-29

FCMGT (scalar, register) Floating-point compare greater than, setting destination
vector element to all ones if the condition holds, else zero

page 8-30

FCMGT (scalar, zero) Floating-point compare greater than zero, setting
destination vector element to all ones if the condition
holds, else zero

page 8-31

FCMLE (scalar, zero) Floating-point compare less than or equal to zero, setting
destination vector element to all ones if the condition
holds, else zero

page 8-32

FCMLT (scalar, zero) Floating-point compare less than zero, setting destination
vector element to all ones if the condition holds, else zero

page 8-33

FCVTAS (scalar) Floating-point convert to signed integer, rounding to
nearest with ties to away

page 8-34

FCVTAU (scalar) Floating-point convert to unsigned integer, rounding to
nearest with ties to away

page 8-35

FCVTMS (scalar) Floating-point convert to signed integer, rounding toward
minus infinity

page 8-36

FCVTMU (scalar) Floating-point convert to unsigned integer, rounding
toward minus infinity

page 8-37

FCVTNS (scalar) Floating-point convert to signed integer, rounding to
nearest with ties to even

page 8-38

FCVTNU (scalar) Floating-point convert to unsigned integer, rounding to
nearest with ties to even

page 8-39

FCVTPS (scalar) Floating-point convert to signed integer, rounding toward
positive infinity

page 8-40

FCVTPU (scalar) Floating-point convert to unsigned integer, rounding
toward positive infinity

page 8-41

FCVTXN (scalar) Floating-point convert to lower precision narrow, rounding
to odd

page 8-42

FCVTZS (scalar, fixed-point) Floating-point convert to signed fixed-point, rounding
toward zero

page 8-43

FCVTZS (scalar, integer) Floating-point convert to signed integer, rounding toward
zero

page 8-44

FCVTZU (scalar, fixed-point) Floating-point convert to unsigned fixed-point, rounding
toward zero

page 8-45

FCVTZU (scalar, integer) Floating-point convert to unsigned integer, rounding
toward zero

page 8-46

Table 8-1 Location of Advanced SIMD (Scalar) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-3
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
FMAXNMP (scalar) Floating-point maximum number of pair of elements page 8-47

FMAXP (scalar) Floating-point maximum of pair of elements page 8-48

FMINNMP (scalar) Floating-point minimum number of pair of elements page 8-49

FMINP (scalar) Floating-point minimum of pair of elements page 8-50

FMLA (scalar, by element) Floating-point fused multiply-add to accumulator (by
element)

page 8-51

FMLS (scalar, by element) Floating-point fused multiply-subtract from accumulator
(by element)

page 8-52

FMUL (scalar, by element) Floating-point multiply (by element) page 8-53

FMULX (scalar, by element) Floating-point multiply extended (by element) page 8-54

FMULX (scalar) Floating-point multiply extended page 8-55

FRECPE (scalar) Floating-point reciprocal estimate page 8-56

FRECPS (scalar) Floating-point reciprocal step page 8-57

FRECPX (scalar) Floating-point reciprocal exponent page 8-58

FRSQRTE (scalar) Floating-point reciprocal square root estimate page 8-59

FRSQRTS (scalar) Floating-point reciprocal square root step page 8-60

MOV (scalar) Move vector element to scalar page 8-61

NEG (scalar) Negate page 8-62

SCVTF (scalar, fixed-point) Signed fixed-point convert to floating-point page 8-63

SCVTF (scalar, integer) Signed integer convert to floating-point page 8-64

SHL (scalar) Shift left (immediate) page 8-65

SLI (scalar) Shift left and insert (immediate) page 8-66

SQABS (scalar) Signed saturating absolute value page 8-67

SQADD (scalar) Signed saturating add page 8-68

SQDMLAL (scalar, by element) Signed saturating doubling multiply-add long (by element) page 8-69

SQDMLAL (scalar) Signed saturating doubling multiply-add long page 8-70

SQDMLSL (scalar, by element) Signed saturating doubling multiply-subtract long (by
element)

page 8-71

SQDMLSL (scalar) Signed saturating doubling multiply-subtract long page 8-72

SQDMULH (scalar, by element) Signed saturating doubling multiply returning high half (by
element)

page 8-73

SQDMULH (scalar) Signed saturating doubling multiply returning high half page 8-74

SQDMULL (scalar, by element) Signed saturating doubling multiply long (by element) page 8-75

SQDMULL (scalar) Signed saturating doubling multiply long page 8-76

Table 8-1 Location of Advanced SIMD (Scalar) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-4
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
SQNEG (scalar) Signed saturating negate page 8-77

SQRDMULH (scalar, by element) Signed saturating rounding doubling multiply returning
high half (by element)

page 8-78

SQRDMULH (scalar) Signed saturating rounding doubling multiply returning
high half

page 8-79

SQRSHL (scalar) Signed saturating rounding shift left (register) page 8-80

SQRSHRN (scalar) Signed saturating rounded shift right narrow (immediate) page 8-81

SQRSHRUN (scalar) Signed saturating rounded shift right unsigned narrow
(immediate)

page 8-82

SQSHL (scalar, immediate) Signed saturating shift left (immediate) page 8-83

SQSHL (scalar, register) Signed saturating shift left (register) page 8-84

SQSHLU (scalar) Signed saturating shift left unsigned (immediate) page 8-85

SQSHRN (scalar) Signed saturating shift right narrow (immediate) page 8-86

SQSHRUN (scalar) Signed saturating shift right unsigned narrow (immediate) page 8-87

SQSUB (scalar) Signed saturating subtract page 8-88

SQXTN (scalar) Signed saturating extract narrow page 8-89

SQXTUN (scalar) Signed saturating extract unsigned narrow page 8-90

SRI (scalar) Shift right and insert (immediate) page 8-91

SRSHL (scalar) Signed rounding shift left (register) page 8-92

SRSHR (scalar) Signed rounding shift right (immediate) page 8-93

SRSRA (scalar) Signed rounding shift right and accumulate (immediate) page 8-94

SSHL (scalar) Signed shift left (register) page 8-95

SSHR (scalar) Signed shift right (immediate) page 8-96

SSRA (scalar) Signed shift right and accumulate (immediate) page 8-97

SUB (scalar) Subtract page 8-98

SUQADD (scalar) Signed saturating accumulate of unsigned value page 8-99

UCVTF (scalar, fixed-point) Unsigned fixed-point convert to floating-point page 8-100

UCVTF (scalar, integer) Unsigned integer convert to floating-point page 8-101

UQADD (scalar) Unsigned saturating add page 8-102

UQRSHL (scalar) Unsigned saturating rounding shift left (register) page 8-103

UQRSHRN (scalar) Unsigned saturating rounded shift right narrow
(immediate)

page 8-104

UQSHL (scalar, immediate) Unsigned saturating shift left (immediate) page 8-105

UQSHL (scalar, register) Unsigned saturating shift left (register) page 8-106

Table 8-1 Location of Advanced SIMD (Scalar) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-5
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
UQSHRN (scalar) Unsigned saturating shift right narrow (immediate) page 8-107

UQSUB (scalar) Unsigned saturating subtract page 8-108

UQXTN (scalar) Unsigned saturating extract narrow page 8-109

URSHL (scalar) Unsigned rounding shift left (register) page 8-110

URSHR (scalar) Unsigned rounding shift right (immediate) page 8-111

URSRA (scalar) Unsigned rounding shift right and accumulate (immediate) page 8-112

USHL (scalar) Unsigned shift left (register) page 8-113

USHR (scalar) Unsigned shift right (immediate) page 8-114

USQADD (scalar) Unsigned saturating accumulate of signed value page 8-115

USRA (scalar) Unsigned shift right and accumulate (immediate) page 8-116

Table 8-1 Location of Advanced SIMD (Scalar) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-6
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.2 ABS (scalar)
Absolute value.

8.2.1 Syntax

ABS Vd, Vn

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.2.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-7
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.3 ADD (scalar)
Add.

8.3.1 Syntax

ADD Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.3.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-8
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.4 ADDP (scalar)
Add pair of elements.

8.4.1 Syntax

ADDP Vd, Vn.T

Where:

V Is the destination width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the source arrangement specifier, 2D.

8.4.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-9
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.5 CMEQ (scalar, register)
Compare bitwise equal, setting destination vector element to all ones if the condition holds, else
zero.

8.5.1 Syntax

CMEQ Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.5.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-10
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.6 CMEQ (scalar, zero)
Compare bitwise equal to zero, setting destination vector element to all ones if the condition
holds, else zero.

8.6.1 Syntax

CMEQ Vd, Vn, #0

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.6.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-11
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.7 CMGE (scalar, register)
Compare signed greater than or equal.

8.7.1 Syntax

CMGE Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.7.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-12
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.8 CMGE (scalar, zero)
Compare signed greater than or equal to zero, setting destination vector element to all ones if
the condition holds, else zero.

8.8.1 Syntax

CMGE Vd, Vn, #0

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.8.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-13
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.9 CMGT (scalar, register)
Compare signed greater than, setting destination vector element to all ones if the condition
holds, else zero.

8.9.1 Syntax

CMGT Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.9.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-14
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.10 CMGT (scalar, zero)
Compare signed greater than zero, setting destination vector element to all ones if the condition
holds, else zero.

8.10.1 Syntax

CMGT Vd, Vn, #0

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.10.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-15
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.11 CMHI (scalar, register)
Compare unsigned higher, setting destination vector element to all ones if the condition holds,
else zero.

8.11.1 Syntax

CMHI Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.11.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-16
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.12 CMHS (scalar, register)
Compare unsigned higher or same, setting destination vector element to all ones if the condition
holds, else zero.

8.12.1 Syntax

CMHS Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.12.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-17
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.13 CMLE (scalar, zero)
Compare signed less than or equal to zero, setting destination vector element to all ones if the
condition holds, else zero.

8.13.1 Syntax

CMLE Vd, Vn, #0

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.13.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-18
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.14 CMLT (scalar, zero)
Compare signed less than zero, setting destination vector element to all ones if the condition
holds, else zero.

8.14.1 Syntax

CMLT Vd, Vn, #0

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.14.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-19
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.15 CMTST (scalar)
Compare bitwise test bits nonzero, setting destination vector element to all ones if the condition
holds, else zero.

8.15.1 Syntax

CMTST Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.15.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-20
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.16 DUP (scalar, element)
Duplicate vector element to scalar.

This instruction is used by the alias MOV (scalar).

8.16.1 Syntax

DUP Vd, Vn.T[index]

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

T Is the element width specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

index Is the element index, in the range shown in Usage.

8.16.2 Usage

The following table shows valid specifier combinations:

8.16.3 See also

Reference
• MOV (scalar) on page 8-61.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-2 DUP (Scalar) specifier combinations

V T index

B B 0 to 15

H H 0 to 7

S S 0 to 3

D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-21
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.17 FABD (scalar)
Floating-point absolute difference.

8.17.1 Syntax

FABD Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.17.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-22
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.18 FACGE (scalar)
Floating-point absolute compare greater than or equal.

8.18.1 Syntax

FACGE Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.18.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-23
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.19 FACGT (scalar)
Floating-point absolute compare greater than.

8.19.1 Syntax

FACGT Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.19.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-24
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.20 FADDP (scalar)
Floating-point add pair of elements.

8.20.1 Syntax

FADDP Vd, Vn.T

Where:

V Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the source arrangement specifier, and can be either 2S or 2D.

8.20.2 Usage

The following table shows valid specifier combinations:

8.20.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-3 FADDP specifier combinations

V T

S 2S

D 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-25
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.21 FCMEQ (scalar, register)
Floating-point compare equal, setting destination vector element to all ones if the condition
holds, else zero.

8.21.1 Syntax

FCMEQ Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.21.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-26
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.22 FCMEQ (scalar, zero)
Floating-point compare equal to zero, setting destination vector element to all ones if the
condition holds, else zero.

8.22.1 Syntax

FCMEQ Vd, Vn, #0.0

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.22.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-27
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.23 FCMGE (scalar, register)
Floating-point compare greater than or equal, setting destination vector element to all ones if the
condition holds, else zero.

8.23.1 Syntax

FCMGE Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.23.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-28
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.24 FCMGE (scalar, zero)
Floating-point compare greater than or equal to zero, setting destination vector element to all
ones if the condition holds, else zero.

8.24.1 Syntax

FCMGE Vd, Vn, #0.0

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.24.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-29
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.25 FCMGT (scalar, register)
Floating-point compare greater than, setting destination vector element to all ones if the
condition holds, else zero.

8.25.1 Syntax

FCMGT Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.25.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-30
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.26 FCMGT (scalar, zero)
Floating-point compare greater than zero, setting destination vector element to all ones if the
condition holds, else zero.

8.26.1 Syntax

FCMGT Vd, Vn, #0.0

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.26.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-31
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.27 FCMLE (scalar, zero)
Floating-point compare less than or equal to zero, setting destination vector element to all ones
if the condition holds, else zero.

8.27.1 Syntax

FCMLE Vd, Vn, #0.0

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.27.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-32
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.28 FCMLT (scalar, zero)
Floating-point compare less than zero, setting destination vector element to all ones if the
condition holds, else zero.

8.28.1 Syntax

FCMLT Vd, Vn, #0.0

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.28.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-33
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.29 FCVTAS (scalar)
Floating-point convert to signed integer, rounding to nearest with ties to away.

8.29.1 Syntax

FCVTAS Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.29.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-34
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.30 FCVTAU (scalar)
Floating-point convert to unsigned integer, rounding to nearest with ties to away.

8.30.1 Syntax

FCVTAU Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.30.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-35
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.31 FCVTMS (scalar)
Floating-point convert to signed integer, rounding toward minus infinity.

8.31.1 Syntax

FCVTMS Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.31.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-36
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.32 FCVTMU (scalar)
Floating-point convert to unsigned integer, rounding toward minus infinity.

8.32.1 Syntax

FCVTMU Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.32.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-37
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.33 FCVTNS (scalar)
Floating-point convert to signed integer, rounding to nearest with ties to even.

8.33.1 Syntax

FCVTNS Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.33.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-38
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.34 FCVTNU (scalar)
Floating-point convert to unsigned integer, rounding to nearest with ties to even.

8.34.1 Syntax

FCVTNU Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.34.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-39
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.35 FCVTPS (scalar)
Floating-point convert to signed integer, rounding toward positive infinity.

8.35.1 Syntax

FCVTPS Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.35.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-40
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.36 FCVTPU (scalar)
Floating-point convert to unsigned integer, rounding toward positive infinity.

8.36.1 Syntax

FCVTPU Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.36.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-41
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.37 FCVTXN (scalar)
Floating-point convert to lower precision narrow, rounding to odd.

8.37.1 Syntax

FCVTXN Vbd, Van

Where:

Vb Is the destination width specifier, S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, D.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.37.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-42
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.38 FCVTZS (scalar, fixed-point)
Floating-point convert to signed fixed-point, rounding toward zero.

8.38.1 Syntax

FCVTZS Vd, Vn, #fbits

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the operand width.

8.38.2 Usage

The following table shows valid specifier combinations:

8.38.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-4 FCVTZS (Scalar) specifier combinations

V fbits

S 1 to 32

D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-43
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.39 FCVTZS (scalar, integer)
Floating-point convert to signed integer, rounding toward zero.

8.39.1 Syntax

FCVTZS Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.39.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-44
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.40 FCVTZU (scalar, fixed-point)
Floating-point convert to unsigned fixed-point, rounding toward zero.

8.40.1 Syntax

FCVTZU Vd, Vn, #fbits

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the operand width.

8.40.2 Usage

The following table shows valid specifier combinations:

8.40.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-5 FCVTZU (Scalar) specifier combinations

V fbits

S 1 to 32

D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-45
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.41 FCVTZU (scalar, integer)
Floating-point convert to unsigned integer, rounding toward zero.

8.41.1 Syntax

FCVTZU Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.41.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-46
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.42 FMAXNMP (scalar)
Floating-point maximum number of pair of elements.

8.42.1 Syntax

FMAXNMP Vd, Vn.T

Where:

V Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the source arrangement specifier, and can be either 2S or 2D.

8.42.2 Usage

The following table shows valid specifier combinations:

8.42.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-6 FMAXNMP specifier combinations

V T

S 2S

D 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-47
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.43 FMAXP (scalar)
Floating-point maximum of pair of elements.

8.43.1 Syntax

FMAXP Vd, Vn.T

Where:

V Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the source arrangement specifier, and can be either 2S or 2D.

8.43.2 Usage

The following table shows valid specifier combinations:

8.43.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-7 FMAXP specifier combinations

V T

S 2S

D 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-48
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.44 FMINNMP (scalar)
Floating-point minimum number of pair of elements.

8.44.1 Syntax

FMINNMP Vd, Vn.T

Where:

V Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the source arrangement specifier, and can be either 2S or 2D.

8.44.2 Usage

The following table shows valid specifier combinations:

8.44.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-8 FMINNMP specifier combinations

V T

S 2S

D 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-49
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.45 FMINP (scalar)
Floating-point minimum of pair of elements.

8.45.1 Syntax

FMINP Vd, Vn.T

Where:

V Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the source arrangement specifier, and can be either 2S or 2D.

8.45.2 Usage

The following table shows valid specifier combinations:

8.45.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-9 FMINP specifier combinations

V T

S 2S

D 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-50
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.46 FMLA (scalar, by element)
Floating-point fused multiply-add to accumulator (by element).

8.46.1 Syntax

FMLA Vd, Vn, Vm.Ts[index]

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the SIMD and FP source register in the range 0 to 31.

Ts Is the element width specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

8.46.2 Usage

The following table shows valid specifier combinations:

8.46.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-10 FMLA (Scalar) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-51
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.47 FMLS (scalar, by element)
Floating-point fused multiply-subtract from accumulator (by element).

8.47.1 Syntax

FMLS Vd, Vn, Vm.Ts[index]

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the SIMD and FP source register in the range 0 to 31.

Ts Is the element width specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

8.47.2 Usage

The following table shows valid specifier combinations:

8.47.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-11 FMLS (Scalar) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-52
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.48 FMUL (scalar, by element)
Floating-point multiply (by element).

8.48.1 Syntax

FMUL Vd, Vn, Vm.Ts[index]

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the SIMD and FP source register in the range 0 to 31.

Ts Is the element width specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

8.48.2 Usage

The following table shows valid specifier combinations:

8.48.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-12 FMUL (Scalar) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-53
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.49 FMULX (scalar, by element)
Floating-point multiply extended (by element).

8.49.1 Syntax

FMULX Vd, Vn, Vm.Ts[index]

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the SIMD and FP source register in the range 0 to 31.

Ts Is the element width specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

8.49.2 Usage

The following table shows valid specifier combinations:

8.49.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-13 FMULX (Scalar) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-54
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.50 FMULX (scalar)
Floating-point multiply extended.

8.50.1 Syntax

FMULX Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.50.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-55
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.51 FRECPE (scalar)
Floating-point reciprocal estimate.

8.51.1 Syntax

FRECPE Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.51.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-56
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.52 FRECPS (scalar)
Floating-point reciprocal step.

8.52.1 Syntax

FRECPS Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.52.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-57
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.53 FRECPX (scalar)
Floating-point reciprocal exponent.

8.53.1 Syntax

FRECPX Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.53.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-58
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.54 FRSQRTE (scalar)
Floating-point reciprocal square root estimate.

8.54.1 Syntax

FRSQRTE Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.54.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-59
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.55 FRSQRTS (scalar)
Floating-point reciprocal square root step.

8.55.1 Syntax

FRSQRTS Vd, Vn, Vm

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.55.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-60
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.56 MOV (scalar)
Move vector element to scalar.

This instruction is an alias of DUP (element).

8.56.1 Syntax

MOV Vd, Vn.T[index]

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is the element width specifier, and can be one of the values shown in Usage.

index Is the element index, in the range shown in Usage.

8.56.2 Usage

The following table shows valid specifier combinations:

8.56.3 See also

Reference
• DUP (scalar, element) on page 8-21.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-14 MOV specifier combinations

V T index

B B 0 to 15

H H 0 to 7

S S 0 to 3

D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-61
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.57 NEG (scalar)
Negate.

8.57.1 Syntax

NEG Vd, Vn

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.57.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-62
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.58 SCVTF (scalar, fixed-point)
Signed fixed-point convert to floating-point.

8.58.1 Syntax

SCVTF Vd, Vn, #fbits

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the operand width.

8.58.2 Usage

The following table shows valid specifier combinations:

8.58.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-15 SCVTF (Scalar) specifier combinations

V fbits

S 1 to 32

D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-63
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.59 SCVTF (scalar, integer)
Signed integer convert to floating-point.

8.59.1 Syntax

SCVTF Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.59.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-64
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.60 SHL (scalar)
Shift left (immediate).

8.60.1 Syntax

SHL Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to 63.

8.60.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-65
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.61 SLI (scalar)
Shift left and insert (immediate).

8.61.1 Syntax

SLI Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to 63.

8.61.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-66
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.62 SQABS (scalar)
Signed saturating absolute value.

8.62.1 Syntax

SQABS Vd, Vn

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.62.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-67
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.63 SQADD (scalar)
Signed saturating add.

8.63.1 Syntax

SQADD Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.63.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-68
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.64 SQDMLAL (scalar, by element)
Signed saturating doubling multiply-add long (by element).

8.64.1 Syntax

SQDMLAL Vad, Vbn, Vm.Ts[index]

Where:

Va Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vb Is the source width specifier, and can be either H or S.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Ts Is the element width specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

8.64.2 Usage

The following table shows valid specifier combinations:

8.64.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-16 SQDMLAL (Scalar) specifier combinations

Va Vb Ts index

S H H 0 to 7

D S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-69
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.65 SQDMLAL (scalar)
Signed saturating doubling multiply-add long.

8.65.1 Syntax

SQDMLAL Vad, Vbn, Vbm

Where:

Va Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vb Is the source width specifier, and can be either H or S.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.65.2 Usage

The following table shows valid specifier combinations:

8.65.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-17 SQDMLAL (Scalar) specifier combinations

Va Vb

S H

D S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-70
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.66 SQDMLSL (scalar, by element)
Signed saturating doubling multiply-subtract long (by element).

8.66.1 Syntax

SQDMLSL Vad, Vbn, Vm.Ts[index]

Where:

Va Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vb Is the source width specifier, and can be either H or S.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Ts Is the element width specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

8.66.2 Usage

The following table shows valid specifier combinations:

8.66.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-18 SQDMLSL (Scalar) specifier combinations

Va Vb Ts index

S H H 0 to 7

D S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-71
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.67 SQDMLSL (scalar)
Signed saturating doubling multiply-subtract long.

8.67.1 Syntax

SQDMLSL Vad, Vbn, Vbm

Where:

Va Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vb Is the source width specifier, and can be either H or S.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.67.2 Usage

The following table shows valid specifier combinations:

8.67.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-19 SQDMLSL (Scalar) specifier combinations

Va Vb

S H

D S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-72
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.68 SQDMULH (scalar, by element)
Signed saturating doubling multiply returning high half (by element).

8.68.1 Syntax

SQDMULH Vd, Vn, Vm.Ts[index]

Where:

V Is a width specifier, and can be either H or S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Ts Is the element width specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

8.68.2 Usage

The following table shows valid specifier combinations:

8.68.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-20 SQDMULH (Scalar) specifier combinations

V Ts index

H H 0 to 7

S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-73
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.69 SQDMULH (scalar)
Signed saturating doubling multiply returning high half.

8.69.1 Syntax

SQDMULH Vd, Vn, Vm

Where:

V Is a width specifier, and can be either H or S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.69.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-74
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.70 SQDMULL (scalar, by element)
Signed saturating doubling multiply long (by element).

8.70.1 Syntax

SQDMULL Vad, Vbn, Vm.Ts[index]

Where:

Va Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vb Is the source width specifier, and can be either H or S.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Ts Is the element width specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

8.70.2 Usage

The following table shows valid specifier combinations:

8.70.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-21 SQDMULL (Scalar) specifier combinations

Va Vb Ts index

S H H 0 to 7

D S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-75
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.71 SQDMULL (scalar)
Signed saturating doubling multiply long.

8.71.1 Syntax

SQDMULL Vad, Vbn, Vbm

Where:

Va Is the destination width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vb Is the source width specifier, and can be either H or S.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.71.2 Usage

The following table shows valid specifier combinations:

8.71.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-22 SQDMULL (Scalar) specifier combinations

Va Vb

S H

D S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-76
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.72 SQNEG (scalar)
Signed saturating negate.

8.72.1 Syntax

SQNEG Vd, Vn

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.72.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-77
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.73 SQRDMULH (scalar, by element)
Signed saturating rounding doubling multiply returning high half (by element).

8.73.1 Syntax

SQRDMULH Vd, Vn, Vm.Ts[index]

Where:

V Is a width specifier, and can be either H or S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

Ts Is the element width specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

8.73.2 Usage

The following table shows valid specifier combinations:

8.73.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-23 SQRDMULH (Scalar) specifier combinations

V Ts index

H H 0 to 7

S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-78
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.74 SQRDMULH (scalar)
Signed saturating rounding doubling multiply returning high half.

8.74.1 Syntax

SQRDMULH Vd, Vn, Vm

Where:

V Is a width specifier, and can be either H or S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.74.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-79
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.75 SQRSHL (scalar)
Signed saturating rounding shift left (register).

8.75.1 Syntax

SQRSHL Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.75.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-80
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.76 SQRSHRN (scalar)
Signed saturating rounded shift right narrow (immediate).

8.76.1 Syntax

SQRSHRN Vbd, Van, #shift

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the destination operand width in bits,
and can be one of the values shown in Usage.

8.76.2 Usage

The following table shows valid specifier combinations:

8.76.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-24 SQRSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-81
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.77 SQRSHRUN (scalar)
Signed saturating rounded shift right unsigned narrow (immediate).

8.77.1 Syntax

SQRSHRUN Vbd, Van, #shift

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the destination operand width in bits,
and can be one of the values shown in Usage.

8.77.2 Usage

The following table shows valid specifier combinations:

8.77.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-25 SQRSHRUN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-82
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.78 SQSHL (scalar, immediate)
Signed saturating shift left (immediate).

8.78.1 Syntax

SQSHL Vd, Vn, #shift

Where:

V Is a width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the operand width in bits minus 1, and
can be one of the values shown in Usage.

8.78.2 Usage

The following table shows valid specifier combinations:

8.78.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-26 SQSHL (Scalar) specifier combinations

V shift

B 0 to 7

H 0 to 15

S 0 to 31

D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-83
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.79 SQSHL (scalar, register)
Signed saturating shift left (register).

8.79.1 Syntax

SQSHL Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.79.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-84
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.80 SQSHLU (scalar)
Signed saturating shift left unsigned (immediate).

8.80.1 Syntax

SQSHLU Vd, Vn, #shift

Where:

V Is a width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the operand width in bits minus 1, and
can be one of the values shown in Usage.

8.80.2 Usage

The following table shows valid specifier combinations:

8.80.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-27 SQSHLU (Scalar) specifier combinations

V shift

B 0 to 7

H 0 to 15

S 0 to 31

D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-85
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.81 SQSHRN (scalar)
Signed saturating shift right narrow (immediate).

8.81.1 Syntax

SQSHRN Vbd, Van, #shift

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the destination operand width in bits,
and can be one of the values shown in Usage.

8.81.2 Usage

The following table shows valid specifier combinations:

8.81.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-28 SQSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-86
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.82 SQSHRUN (scalar)
Signed saturating shift right unsigned narrow (immediate).

8.82.1 Syntax

SQSHRUN Vbd, Van, #shift

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the destination operand width in bits,
and can be one of the values shown in Usage.

8.82.2 Usage

The following table shows valid specifier combinations:

8.82.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-29 SQSHRUN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-87
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.83 SQSUB (scalar)
Signed saturating subtract.

8.83.1 Syntax

SQSUB Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.83.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-88
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.84 SQXTN (scalar)
Signed saturating extract narrow.

8.84.1 Syntax

SQXTN Vbd, Van

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.84.2 Usage

The following table shows valid specifier combinations:

8.84.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-30 SQXTN (Scalar) specifier combinations

Vb Va

B H

H S

S D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-89
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.85 SQXTUN (scalar)
Signed saturating extract unsigned narrow.

8.85.1 Syntax

SQXTUN Vbd, Van

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.85.2 Usage

The following table shows valid specifier combinations:

8.85.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-31 SQXTUN (Scalar) specifier combinations

Vb Va

B H

H S

S D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-90
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.86 SRI (scalar)
Shift right and insert (immediate).

8.86.1 Syntax

SRI Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.86.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-91
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.87 SRSHL (scalar)
Signed rounding shift left (register).

8.87.1 Syntax

SRSHL Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.87.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-92
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.88 SRSHR (scalar)
Signed rounding shift right (immediate).

8.88.1 Syntax

SRSHR Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.88.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-93
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.89 SRSRA (scalar)
Signed rounding shift right and accumulate (immediate).

8.89.1 Syntax

SRSRA Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.89.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-94
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.90 SSHL (scalar)
Signed shift left (register).

8.90.1 Syntax

SSHL Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.90.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-95
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.91 SSHR (scalar)
Signed shift right (immediate).

8.91.1 Syntax

SSHR Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.91.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-96
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.92 SSRA (scalar)
Signed shift right and accumulate (immediate).

8.92.1 Syntax

SSRA Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.92.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-97
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.93 SUB (scalar)
Subtract.

8.93.1 Syntax

SUB Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.93.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-98
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.94 SUQADD (scalar)
Signed saturating accumulate of unsigned value.

8.94.1 Syntax

SUQADD Vd, Vn

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.94.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-99
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.95 UCVTF (scalar, fixed-point)
Unsigned fixed-point convert to floating-point.

8.95.1 Syntax

UCVTF Vd, Vn, #fbits

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the operand width.

8.95.2 Usage

The following table shows valid specifier combinations:

8.95.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-32 UCVTF (Scalar) specifier combinations

V fbits

S 1 to 32

D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-100
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.96 UCVTF (scalar, integer)
Unsigned integer convert to floating-point.

8.96.1 Syntax

UCVTF Vd, Vn

Where:

V Is a width specifier, and can be either S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.96.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-101
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.97 UQADD (scalar)
Unsigned saturating add.

8.97.1 Syntax

UQADD Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.97.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-102
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.98 UQRSHL (scalar)
Unsigned saturating rounding shift left (register).

8.98.1 Syntax

UQRSHL Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.98.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-103
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.99 UQRSHRN (scalar)
Unsigned saturating rounded shift right narrow (immediate).

8.99.1 Syntax

UQRSHRN Vbd, Van, #shift

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the destination operand width in bits,
and can be one of the values shown in Usage.

8.99.2 Usage

The following table shows valid specifier combinations:

8.99.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-33 UQRSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-104
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.100 UQSHL (scalar, immediate)
Unsigned saturating shift left (immediate).

8.100.1 Syntax

UQSHL Vd, Vn, #shift

Where:

V Is a width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the operand width in bits minus 1, and
can be one of the values shown in Usage.

8.100.2 Usage

The following table shows valid specifier combinations:

8.100.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-34 UQSHL (Scalar) specifier combinations

V shift

B 0 to 7

H 0 to 15

S 0 to 31

D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-105
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.101 UQSHL (scalar, register)
Unsigned saturating shift left (register).

8.101.1 Syntax

UQSHL Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.101.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-106
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.102 UQSHRN (scalar)
Unsigned saturating shift right narrow (immediate).

8.102.1 Syntax

UQSHRN Vbd, Van, #shift

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the destination operand width in bits,
and can be one of the values shown in Usage.

8.102.2 Usage

The following table shows valid specifier combinations:

8.102.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-35 UQSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-107
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.103 UQSUB (scalar)
Unsigned saturating subtract.

8.103.1 Syntax

UQSUB Vd, Vn, Vm

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.103.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-108
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.104 UQXTN (scalar)
Unsigned saturating extract narrow.

8.104.1 Syntax

UQXTN Vbd, Van

Where:

Vb Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Va Is the source width specifier, and can be one of the values shown in Usage.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.104.2 Usage

The following table shows valid specifier combinations:

8.104.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 8-36 UQXTN (Scalar) specifier combinations

Vb Va

B H

H S

S D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-109
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.105 URSHL (scalar)
Unsigned rounding shift left (register).

8.105.1 Syntax

URSHL Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.105.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-110
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.106 URSHR (scalar)
Unsigned rounding shift right (immediate).

8.106.1 Syntax

URSHR Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.106.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-111
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.107 URSRA (scalar)
Unsigned rounding shift right and accumulate (immediate).

8.107.1 Syntax

URSRA Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.107.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-112
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.108 USHL (scalar)
Unsigned shift left (register).

8.108.1 Syntax

USHL Vd, Vn, Vm

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

m Is the number of the second SIMD and FP source register, in the range 0 to 31.

8.108.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-113
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.109 USHR (scalar)
Unsigned shift right (immediate).

8.109.1 Syntax

USHR Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.109.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-114
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.110 USQADD (scalar)
Unsigned saturating accumulate of signed value.

8.110.1 Syntax

USQADD Vd, Vn

Where:

V Is a width specifier, and can be one of B, H, S or D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the SIMD and FP source register, in the range 0 to 31.

8.110.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-115
ID031214 Non-Confidential

A64 Advanced SIMD Scalar Instructions
8.111 USRA (scalar)
Unsigned shift right and accumulate (immediate).

8.111.1 Syntax

USRA Vd, Vn, #shift

Where:

V Is a width specifier, D.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

n Is the number of the first SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to 64.

8.111.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 8-116
ID031214 Non-Confidential

Chapter 9
A64 Advanced SIMD Vector Instructions

The following topic gives a summary of the A64 Advanced SIMD vector instructions supported
by armasm:

• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-1
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.1 A64 Advanced SIMD vector instructions in alphabetical order
The following A64 Advanced SIMD vector instructions are supported:

Table 9-1 Location of Advanced SIMD (Vector) instructions

Mnemonic Brief description See

ABS (vector) Absolute value page 9-12

ADD (vector) Add page 9-13

ADDHN, ADDHN2 (vector) Add returning high narrow page 9-14

ADDP (vector) Add pairwise page 9-15

ADDV (vector) Add across vector page 9-16

AND (vector) Bitwise AND page 9-17

BIC (vector, immediate) Bitwise bit clear (immediate) page 9-18

BIC (vector, register) Bitwise bit clear (register) page 9-19

BIF (vector) Bitwise insert if false page 9-20

BIT (vector) Bitwise insert if true page 9-21

BSL (vector) Bitwise select page 9-22

CLS (vector) Count leading sign bits page 9-23

CLZ (vector) Count leading zero bits page 9-24

CMEQ (vector, register) Compare bitwise equal, setting destination vector element
to all ones if the condition holds, else zero

page 9-25

CMEQ (vector, zero) Compare bitwise equal to zero, setting destination vector
element to all ones if the condition holds, else zero

page 9-26

CMGE (vector, register) Compare signed greater than or equal page 9-27

CMGE (vector, zero) Compare signed greater than or equal to zero, setting
destination vector element to all ones if the condition
holds, else zero

page 9-28

CMGT (vector, register) Compare signed greater than, setting destination vector
element to all ones if the condition holds, else zero

page 9-29

CMGT (vector, zero) Compare signed greater than zero, setting destination
vector element to all ones if the condition holds, else zero

page 9-30

CMHI (vector, register) Compare unsigned higher, setting destination vector
element to all ones if the condition holds, else zero

page 9-31

CMHS (vector, register) Compare unsigned higher or same, setting destination
vector element to all ones if the condition holds, else zero

page 9-32

CMLE (vector, zero) Compare signed less than or equal to zero, setting
destination vector element to all ones if the condition
holds, else zero

page 9-33

CMLT (vector, zero) Compare signed less than zero, setting destination vector
element to all ones if the condition holds, else zero

page 9-34
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-2
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
CMTST (vector) Compare bitwise test bits nonzero, setting destination
vector element to all ones if the condition holds, else zero

page 9-35

CNT (vector) Population count per byte page 9-36

DUP (vector, element) Duplicate vector element to vector page 9-37

DUP (vector) Duplicate general-purpose register to vector page 9-38

EOR (vector) Bitwise exclusive OR page 9-39

EXT (vector) Extract vector from pair of vectors page 9-40

FABD (vector) Floating-point absolute difference page 9-41

FABS (vector) Floating-point absolute value page 9-42

FACGE (vector) Floating-point absolute compare greater than or equal page 9-43

FACGT (vector) Floating-point absolute compare greater than page 9-44

FADD (vector) Floating-point add page 9-45

FADDP (vector) Floating-point add pairwise page 9-46

FCMEQ (vector, register) Floating-point compare equal, setting destination vector
element to all ones if the condition holds, else zero

page 9-47

FCMEQ (vector, zero) Floating-point compare equal to zero, setting destination
vector element to all ones if the condition holds, else zero

page 9-48

FCMGE (vector, register) Floating-point compare greater than or equal, setting
destination vector element to all ones if the condition
holds, else zero

page 9-49

FCMGE (vector, zero) Floating-point compare greater than or equal to zero,
setting destination vector element to all ones if the
condition holds, else zero

page 9-50

FCMGT (vector, register) Floating-point compare greater than, setting destination
vector element to all ones if the condition holds, else zero

page 9-51

FCMGT (vector, zero) Floating-point compare greater than zero, setting
destination vector element to all ones if the condition
holds, else zero

page 9-52

FCMLE (vector, zero) Floating-point compare less than or equal to zero, setting
destination vector element to all ones if the condition
holds, else zero

page 9-53

FCMLT (vector, zero) Floating-point compare less than zero, setting destination
vector element to all ones if the condition holds, else zero

page 9-54

FCVTAS (vector) Floating-point convert to signed integer, rounding to
nearest with ties to away

page 9-55

FCVTAU (vector) Floating-point convert to unsigned integer, rounding to
nearest with ties to away

page 9-56

FCVTL, FCVTL2 (vector) Floating-point convert to higher precision long page 9-57

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-3
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
FCVTMS (vector) Floating-point convert to signed integer, rounding toward
minus infinity

page 9-58

FCVTMU (vector) Floating-point convert to unsigned integer, rounding
toward minus infinity

page 9-59

FCVTN, FCVTN2 (vector) Floating-point convert to lower precision narrow page 9-60

FCVTNS (vector) Floating-point convert to signed integer, rounding to
nearest with ties to even

page 9-61

FCVTNU (vector) Floating-point convert to unsigned integer, rounding to
nearest with ties to even

page 9-62

FCVTPS (vector) Floating-point convert to signed integer, rounding toward
positive infinity

page 9-63

FCVTPU (vector) Floating-point convert to unsigned integer, rounding
toward positive infinity

page 9-64

FCVTXN, FCVTXN2 (vector) Floating-point convert to lower precision narrow, rounding
to odd

page 9-65

FCVTZS (vector, fixed-point) Floating-point convert to signed fixed-point, rounding
toward zero

page 9-66

FCVTZS (vector, integer) Floating-point convert to signed integer, rounding toward
zero

page 9-67

FCVTZU (vector, fixed-point) Floating-point convert to unsigned fixed-point, rounding
toward zero

page 9-68

FCVTZU (vector, integer) Floating-point convert to unsigned integer, rounding
toward zero

page 9-69

FDIV (vector) Floating-point divide page 9-70

FMAX (vector) Floating-point maximum page 9-71

FMAXNM (vector) Floating-point maximum number page 9-72

FMAXNMP (vector) Floating-point maximum number pairwise page 9-73

FMAXNMV (vector) Floating-point maximum number across vector page 9-74

FMAXP (vector) Floating-point maximum pairwise page 9-75

FMAXV (vector) Floating-point maximum across vector page 9-76

FMIN (vector) Floating-point minimum page 9-77

FMINNM (vector) Floating-point minimum number page 9-78

FMINNMP (vector) Floating-point minimum number pairwise page 9-79

FMINNMV (vector) Floating-point minimum number across vector page 9-80

FMINP (vector) Floating-point minimum pairwise page 9-81

FMINV (vector) Floating-point minimum across vector page 9-82

FMLA (vector, by element) Floating-point fused multiply-add to accumulator (by
element)

page 9-83

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-4
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
FMLA (vector) Floating-point fused multiply-add to accumulator page 9-84

FMLS (vector, by element) Floating-point fused multiply-subtract from accumulator
(by element)

page 9-85

FMLS (vector) Floating-point fused multiply-subtract from accumulator page 9-86

FMOV (vector, immediate) Floating-point move immediate page 9-87

FMUL (vector, by element) Floating-point multiply (by element) page 9-88

FMUL (vector) Floating-point multiply page 9-89

FMULX (vector, by element) Floating-point multiply extended (by element) page 9-90

FMULX (vector) Floating-point multiply extended page 9-91

FNEG (vector) Floating-point negate page 9-92

FRECPE (vector) Floating-point reciprocal estimate page 9-93

FRECPS (vector) Floating-point reciprocal step page 9-94

FRINTA (vector) Floating-point round to integral, to nearest with ties to
away

page 9-95

FRINTI (vector) Floating-point round to integral, using current rounding
mode

page 9-96

FRINTM (vector) Floating-point round to integral, toward minus infinity page 9-97

FRINTN (vector) Floating-point round to integral, to nearest with ties to even page 9-98

FRINTP (vector) Floating-point round to integral, toward positive infinity page 9-99

FRINTX (vector) Floating-point round to integral exact, using current
rounding mode

page 9-100

FRINTZ (vector) Floating-point round to integral, toward zero page 9-101

FRSQRTE (vector) Floating-point reciprocal square root estimate page 9-102

FRSQRTS (vector) Floating-point reciprocal square root step page 9-103

FSQRT (vector) Floating-point square root page 9-104

FSUB (vector) Floating-point subtract page 9-105

INS (vector, element) Insert vector element from another vector element page 9-106

INS (vector) Insert vector element from general-purpose register page 9-107

LD1 (vector, multiple structures) Load multiple 1-element structures to one, two, three or
four registers

page 9-108

LD1 (vector, single structure) Load single 1-element structure to one lane of one register page 9-111

LD1R (vector) Load single 1-element structure and replicate to all lanes
(of one register)

page 9-112

LD2 (vector, multiple structures) Load multiple 2-element structures to two registers page 9-113

LD2 (vector, single structure) Load single 2-element structure to one lane of two registers page 9-114

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-5
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
LD2R (vector) Load single 2-element structure and replicate to all lanes of
two registers

page 9-115

LD3 (vector, multiple structures) Load multiple 3-element structures to three registers page 9-117

LD3 (vector, single structure) Load single 3-element structure to one lane of three
registers)

page 9-118

LD3R (vector) Load single 3-element structure and replicate to all lanes of
three registers

page 9-120

LD4 (vector, multiple structures) Load multiple 4-element structures to four registers page 9-122

LD4 (vector, single structure) Load single 4-element structure to one lane of four
registers

page 9-123

LD4R (vector) Load single 4-element structure and replicate to all lanes of
four registers

page 9-125

MLA (vector, by element) Multiply-add to accumulator (by element) page 9-127

MLA (vector) Multiply-add to accumulator page 9-128

MLS (vector, by element) Multiply-subtract from accumulator (by element) page 9-129

MLS (vector) Multiply-subtract from accumulator page 9-130

MOV (vector, element) Move vector element to another vector element page 9-131

MOV (vector, from general) Move general-purpose register to a vector element page 9-132

MOV (vector) Move vector page 9-133

MOV (vector, to general) Move vector element to general-purpose register page 9-134

MOVI (vector) Move immediate page 9-135

MUL (vector, by element) Multiply (by element) page 9-136

MUL (vector) Multiply page 9-137

MVN (vector) Bitwise NOT page 9-138

MVNI (vector) Move inverted immediate page 9-139

NEG (vector) Negate page 9-140

NOT (vector) Bitwise NOT page 9-141

ORN (vector) Bitwise inclusive OR NOT page 9-142

ORR (vector, immediate) Bitwise inclusive OR (immediate) page 9-143

ORR (vector, register) Bitwise inclusive OR (register) page 9-144

PMUL (vector) Polynomial multiply page 9-145

PMULL, PMULL2 (vector) Polynomial multiply long page 9-146

RADDHN, RADDHN2 (vector) Rounding add returning high narrow page 9-147

RBIT (vector) Reverse bit order page 9-148

REV16 (vector) Reverse elements in 16-bit halfwords page 9-149

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-6
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
REV32 (vector) Reverse elements in 32-bit words page 9-150

REV64 (vector) Reverse elements in 64-bit doublewords page 9-151

RSHRN, RSHRN2 (vector) Rounding shift right narrow (immediate) page 9-152

RSUBHN, RSUBHN2 (vector) Rounding subtract returning high narrow page 9-153

SABA (vector) Signed absolute difference and accumulate page 9-154

SABAL, SABAL2 (vector) Signed absolute difference and accumulate long page 9-155

SABD (vector) Signed absolute difference page 9-156

SABDL, SABDL2 (vector) Signed absolute difference long page 9-157

SADALP (vector) Signed add and accumulate long pairwise page 9-158

SADDL, SADDL2 (vector) Signed add long page 9-159

SADDLP (vector) Signed add long pairwise page 9-160

SADDLV (vector) Signed add long across vector page 9-161

SADDW, SADDW2 (vector) Signed add wide page 9-162

SCVTF (vector, fixed-point) Signed fixed-point convert to floating-point page 9-163

SCVTF (vector, integer) Signed integer convert to floating-point page 9-164

SHADD (vector) Signed halving add page 9-165

SHL (vector) Shift left (immediate) page 9-166

SHLL, SHLL2 (vector) Shift left long (by element size) page 9-167

SHRN, SHRN2 (vector) Shift right narrow (immediate) page 9-168

SHSUB (vector) Signed halving subtract page 9-169

SLI (vector) Shift left and insert (immediate) page 9-170

SMAX (vector) Signed maximum page 9-171

SMAXP (vector) Signed maximum pairwise page 9-172

SMAXV (vector) Signed maximum across vector page 9-173

SMIN (vector) Signed minimum page 9-174

SMINP (vector) Signed minimum pairwise page 9-175

SMINV (vector) Signed minimum across vector page 9-176

SMLAL, SMLAL2 (vector, by
element)

Signed multiply-add long (by element) page 9-177

SMLAL, SMLAL2 (vector) Signed multiply-add long page 9-178

SMLSL, SMLSL2 (vector, by
element)

Signed multiply-subtract long (by element) page 9-179

SMLSL, SMLSL2 (vector) Signed multiply-subtract long page 9-180

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-7
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
SMOV (vector) Signed move vector element to general-purpose register page 9-181

SMULL, SMULL2 (vector, by
element)

Signed multiply long (by element) page 9-182

SMULL, SMULL2 (vector) Signed multiply long page 9-183

SQABS (vector) Signed saturating absolute value page 9-184

SQADD (vector) Signed saturating add page 9-185

SQDMLAL, SQDMLAL2 (vector, by
element)

Signed saturating doubling multiply-add long (by element) page 9-186

SQDMLAL, SQDMLAL2 (vector) Signed saturating doubling multiply-add long page 9-187

SQDMLSL, SQDMLSL2 (vector, by
element)

Signed saturating doubling multiply-subtract long (by
element)

page 9-188

SQDMLSL, SQDMLSL2 (vector) Signed saturating doubling multiply-subtract long page 9-189

SQDMULH (vector, by element) Signed saturating doubling multiply returning high half (by
element)

page 9-190

SQDMULH (vector) Signed saturating doubling multiply returning high half page 9-191

SQDMULL, SQDMULL2 (vector, by
element)

Signed saturating doubling multiply long (by element) page 9-192

SQDMULL, SQDMULL2 (vector) Signed saturating doubling multiply long page 9-193

SQNEG (vector) Signed saturating negate page 9-194

SQRDMULH (vector, by element) Signed saturating rounding doubling multiply returning
high half (by element)

page 9-195

SQRDMULH (vector) Signed saturating rounding doubling multiply returning
high half

page 9-196

SQRSHL (vector) Signed saturating rounding shift left (register) page 9-197

SQRSHRN, SQRSHRN2 (vector) Signed saturating rounded shift right narrow (immediate) page 9-198

SQRSHRUN, SQRSHRUN2 (vector) Signed saturating rounded shift right unsigned narrow
(immediate)

page 9-199

SQSHL (vector, immediate) Signed saturating shift left (immediate) page 9-200

SQSHL (vector, register) Signed saturating shift left (register) page 9-201

SQSHLU (vector) Signed saturating shift left unsigned (immediate) page 9-202

SQSHRN, SQSHRN2 (vector) Signed saturating shift right narrow (immediate) page 9-203

SQSHRUN, SQSHRUN2 (vector) Signed saturating shift right unsigned narrow (immediate) page 9-204

SQSUB (vector) Signed saturating subtract page 9-205

SQXTN, SQXTN2 (vector) Signed saturating extract narrow page 9-206

SQXTUN, SQXTUN2 (vector) Signed saturating extract unsigned narrow page 9-207

SRHADD (vector) Signed rounding halving add page 9-208

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-8
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
SRI (vector) Shift right and insert (immediate) page 9-209

SRSHL (vector) Signed rounding shift left (register) page 9-210

SRSHR (vector) Signed rounding shift right (immediate) page 9-211

SRSRA (vector) Signed rounding shift right and accumulate (immediate) page 9-212

SSHL (vector) Signed shift left (register) page 9-213

SSHLL, SSHLL2 (vector) Signed shift left long (immediate) page 9-214

SSHR (vector) Signed shift right (immediate) page 9-215

SSRA (vector) Signed shift right and accumulate (immediate) page 9-216

SSUBL, SSUBL2 (vector) Signed subtract long page 9-217

SSUBW, SSUBW2 (vector) Signed subtract wide page 9-218

ST1 (vector, multiple structures) Store multiple 1-element structures from one, two three or
four registers

page 9-219

ST1 (vector, single structure) Store single 1-element structure from one lane of one
register

page 9-222

ST2 (vector, multiple structures) Store multiple 2-element structures from two registers page 9-223

ST2 (vector, single structure) Store single 2-element structure from one lane of two
registers

page 9-224

ST3 (vector, multiple structures) Store multiple 3-element structures from three registers page 9-225

ST3 (vector, single structure) Store single 3-element structure from one lane of three
registers

page 9-226

ST4 (vector, multiple structures) Store multiple 4-element structures from four registers page 9-227

ST4 (vector, single structure) Store single 4-element structure from one lane of four
registers

page 9-228

SUB (vector) Subtract page 9-230

SUBHN, SUBHN2 (vector) Subtract returning high narrow page 9-231

SUQADD (vector) Signed saturating accumulate of unsigned value page 9-232

SXTL, SXTL2 (vector) Signed extend long page 9-233

TBL (vector) Table vector lookup page 9-234

TBX (vector) Table vector lookup extension page 9-235

TRN1 (vector) Transpose vectors (primary) page 9-236

TRN2 (vector) Transpose vectors (secondary) page 9-237

UABA (vector) Unsigned absolute difference and accumulate page 9-238

UABAL, UABAL2 (vector) Unsigned absolute difference and accumulate long page 9-239

UABD (vector) Unsigned absolute difference page 9-240

UABDL, UABDL2 (vector) Unsigned absolute difference long page 9-241

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-9
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
UADALP (vector) Unsigned add and accumulate long pairwise page 9-242

UADDL, UADDL2 (vector) Unsigned add long page 9-243

UADDLP (vector) Unsigned add long pairwise page 9-244

UADDLV (vector) Unsigned sum long across vector page 9-245

UADDW, UADDW2 (vector) Unsigned add wide page 9-246

UCVTF (vector, fixed-point) Unsigned fixed-point convert to floating-point page 9-247

UCVTF (vector, integer) Unsigned integer convert to floating-point page 9-248

UHADD (vector) Unsigned halving add page 9-249

UHSUB (vector) Unsigned halving subtract page 9-250

UMAX (vector) Unsigned maximum page 9-251

UMAXP (vector) Unsigned maximum pairwise page 9-252

UMAXV (vector) Unsigned maximum across vector page 9-253

UMIN (vector) Unsigned minimum page 9-254

UMINP (vector) Unsigned minimum pairwise page 9-255

UMINV (vector) Unsigned minimum across vector page 9-256

UMLAL, UMLAL2 (vector, by
element)

Unsigned multiply-add long (by element) page 9-257

UMLAL, UMLAL2 (vector) Unsigned multiply-add long page 9-258

UMLSL, UMLSL2 (vector, by
element)

Unsigned multiply-subtract long (by element) page 9-259

UMLSL, UMLSL2 (vector) Unsigned multiply-subtract long page 9-260

UMOV (vector) Unsigned move vector element to general-purpose register page 9-261

UMULL, UMULL2 (vector, by
element)

Unsigned multiply long (by element) page 9-262

UMULL, UMULL2 (vector) Unsigned multiply long page 9-263

UQADD (vector) Unsigned saturating add page 9-264

UQRSHL (vector) Unsigned saturating rounding shift left (register) page 9-265

UQRSHRN, UQRSHRN2 (vector) Unsigned saturating rounded shift right narrow
(immediate)

page 9-266

UQSHL (vector, immediate) Unsigned saturating shift left (immediate) page 9-267

UQSHL (vector, register) Unsigned saturating shift left (register) page 9-268

UQSHRN, UQSHRN2 (vector) Unsigned saturating shift right narrow (immediate) page 9-269

UQSUB (vector) Unsigned saturating subtract page 9-270

UQXTN, UQXTN2 (vector) Unsigned saturating extract narrow page 9-271

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-10
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
URECPE (vector) Unsigned reciprocal estimate page 9-272

URHADD (vector) Unsigned rounding halving add page 9-273

URSHL (vector) Unsigned rounding shift left (register) page 9-274

URSHR (vector) Unsigned rounding shift right (immediate) page 9-275

URSQRTE (vector) Unsigned reciprocal square root estimate page 9-276

URSRA (vector) Unsigned rounding shift right and accumulate (immediate) page 9-277

USHL (vector) Unsigned shift left (register) page 9-278

USHLL, USHLL2 (vector) Unsigned shift left long (immediate) page 9-279

USHR (vector) Unsigned shift right (immediate) page 9-280

USQADD (vector) Unsigned saturating accumulate of signed value page 9-281

USRA (vector) Unsigned shift right and accumulate (immediate) page 9-282

USUBL, USUBL2 (vector) Unsigned subtract long page 9-283

USUBW, USUBW2 (vector) Unsigned subtract wide page 9-284

UXTL, UXTL2 (vector) Unsigned extend long page 9-285

UZP1 (vector) Unzip vectors (primary) page 9-286

UZP2 (vector) Unzip vectors (secondary) page 9-287

XTN, XTN2 (vector) Extract narrow page 9-288

ZIP1 (vector) Zip vectors (primary) page 9-289

ZIP2 (vector) Zip vectors (secondary) page 9-290

Table 9-1 Location of Advanced SIMD (Vector) instructions (continued)

Mnemonic Brief description See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-11
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.2 ABS (vector)
Absolute value.

9.2.1 Syntax

ABS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.2.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-12
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.3 ADD (vector)
Add.

9.3.1 Syntax

ADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.3.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-13
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.4 ADDHN, ADDHN2 (vector)
Add returning high narrow.

9.4.1 Syntax

ADDHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.4.2 Usage

The following table shows valid specifier combinations:

9.4.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-2 ADDHN, ADDHN2 specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-14
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.5 ADDP (vector)
Add pairwise.

9.5.1 Syntax

ADDP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.5.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-15
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.6 ADDV (vector)
Add across vector.

9.6.1 Syntax

ADDV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.6.2 Usage

The following table shows valid specifier combinations:

9.6.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-3 ADDV specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-16
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.7 AND (vector)
Bitwise AND.

9.7.1 Syntax

AND Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.7.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-17
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.8 BIC (vector, immediate)
Bitwise bit clear (immediate).

9.8.1 Syntax

BIC Vd.T, #imm8{, LSL #amount} ; 16-bit

BIC Vd.T, #imm8{, LSL #amount} ; 32-bit

Where:

T Is an arrangement specifier:
16-bit Can be one of 4H or 8H.
32-bit Can be one of 2S or 4S.

amount Is the shift amount:
16-bit Can be one of 0 or 8.
32-bit Can be one of 0, 8, 16 or 24.
Defaults to zero if LSL is omitted.

Vd Is the name of the SIMD and FP register, in the range 0 to 31.

imm8 Is an 8-bit immediate.

9.8.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-18
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.9 BIC (vector, register)
Bitwise bit clear (register).

9.9.1 Syntax

BIC Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.9.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-19
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.10 BIF (vector)
Bitwise insert if false.

9.10.1 Syntax

BIF Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.10.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-20
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.11 BIT (vector)
Bitwise insert if true.

9.11.1 Syntax

BIT Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.11.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-21
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.12 BSL (vector)
Bitwise select.

9.12.1 Syntax

BSL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.12.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-22
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.13 CLS (vector)
Count leading sign bits.

9.13.1 Syntax

CLS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.13.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-23
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.14 CLZ (vector)
Count leading zero bits.

9.14.1 Syntax

CLZ Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.14.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-24
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.15 CMEQ (vector, register)
Compare bitwise equal, setting destination vector element to all ones if the condition holds, else
zero.

9.15.1 Syntax

CMEQ Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.15.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-25
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.16 CMEQ (vector, zero)
Compare bitwise equal to zero, setting destination vector element to all ones if the condition
holds, else zero.

9.16.1 Syntax

CMEQ Vd.T, Vn.T, #0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.16.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-26
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.17 CMGE (vector, register)
Compare signed greater than or equal.

9.17.1 Syntax

CMGE Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.17.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-27
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.18 CMGE (vector, zero)
Compare signed greater than or equal to zero, setting destination vector element to all ones if
the condition holds, else zero.

9.18.1 Syntax

CMGE Vd.T, Vn.T, #0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.18.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-28
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.19 CMGT (vector, register)
Compare signed greater than, setting destination vector element to all ones if the condition
holds, else zero.

9.19.1 Syntax

CMGT Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.19.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-29
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.20 CMGT (vector, zero)
Compare signed greater than zero, setting destination vector element to all ones if the condition
holds, else zero.

9.20.1 Syntax

CMGT Vd.T, Vn.T, #0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.20.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-30
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.21 CMHI (vector, register)
Compare unsigned higher, setting destination vector element to all ones if the condition holds,
else zero.

9.21.1 Syntax

CMHI Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.21.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-31
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.22 CMHS (vector, register)
Compare unsigned higher or same, setting destination vector element to all ones if the condition
holds, else zero.

9.22.1 Syntax

CMHS Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.22.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-32
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.23 CMLE (vector, zero)
Compare signed less than or equal to zero, setting destination vector element to all ones if the
condition holds, else zero.

9.23.1 Syntax

CMLE Vd.T, Vn.T, #0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.23.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-33
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.24 CMLT (vector, zero)
Compare signed less than zero, setting destination vector element to all ones if the condition
holds, else zero.

9.24.1 Syntax

CMLT Vd.T, Vn.T, #0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.24.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-34
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.25 CMTST (vector)
Compare bitwise test bits nonzero, setting destination vector element to all ones if the condition
holds, else zero.

9.25.1 Syntax

CMTST Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.25.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-35
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.26 CNT (vector)
Population count per byte.

9.26.1 Syntax

CNT Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.26.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-36
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.27 DUP (vector, element)
Duplicate vector element to vector.

9.27.1 Syntax

DUP Vd.T, Vn.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Ts Is an element size specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

index Is the element index, in the range shown in Usage.

9.27.2 Usage

The following table shows valid specifier combinations:

9.27.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-4 DUP (Vector) specifier combinations

T Ts index

8B B 0 to 15

16B B 0 to 15

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-37
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.28 DUP (vector) (general)
Duplicate general-purpose register to vector.

9.28.1 Syntax

DUP Vd.T, Rn

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

R Is the width specifier for the general-purpose source register, and can be either W
or X.

n Is the number, in the range 0 to 30, or the name ZR (31).

9.28.2 Usage

The following table shows valid specifier combinations:

9.28.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-5 DUP specifier combinations

T R

8B W

16B W

4H W

8H W

2S W

4S W

2D X
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-38
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.29 EOR (vector)
Bitwise exclusive OR.

9.29.1 Syntax

EOR Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.29.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-39
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.30 EXT (vector)
Extract vector from pair of vectors.

9.30.1 Syntax

EXT Vd.T, Vn.T, Vm.T, #index

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

index Is the lowest numbered byte element to be extracted in the range shown in Usage.

9.30.2 Usage

The following table shows valid specifier combinations:

9.30.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-6 EXT specifier combinations

T index

8B 0 to 7

16B 0 to 15
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-40
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.31 FABD (vector)
Floating-point absolute difference.

9.31.1 Syntax

FABD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.31.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-41
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.32 FABS (vector)
Floating-point absolute value.

9.32.1 Syntax

FABS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.32.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-42
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.33 FACGE (vector)
Floating-point absolute compare greater than or equal.

9.33.1 Syntax

FACGE Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.33.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-43
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.34 FACGT (vector)
Floating-point absolute compare greater than.

9.34.1 Syntax

FACGT Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.34.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-44
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.35 FADD (vector)
Floating-point add.

9.35.1 Syntax

FADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.35.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-45
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.36 FADDP (vector)
Floating-point add pairwise.

9.36.1 Syntax

FADDP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.36.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-46
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.37 FCMEQ (vector, register)
Floating-point compare equal, setting destination vector element to all ones if the condition
holds, else zero.

9.37.1 Syntax

FCMEQ Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.37.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-47
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.38 FCMEQ (vector, zero)
Floating-point compare equal to zero, setting destination vector element to all ones if the
condition holds, else zero.

9.38.1 Syntax

FCMEQ Vd.T, Vn.T, #0.0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.38.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-48
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.39 FCMGE (vector, register)
Floating-point compare greater than or equal, setting destination vector element to all ones if the
condition holds, else zero.

9.39.1 Syntax

FCMGE Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.39.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-49
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.40 FCMGE (vector, zero)
Floating-point compare greater than or equal to zero, setting destination vector element to all
ones if the condition holds, else zero.

9.40.1 Syntax

FCMGE Vd.T, Vn.T, #0.0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.40.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-50
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.41 FCMGT (vector, register)
Floating-point compare greater than, setting destination vector element to all ones if the
condition holds, else zero.

9.41.1 Syntax

FCMGT Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.41.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-51
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.42 FCMGT (vector, zero)
Floating-point compare greater than zero, setting destination vector element to all ones if the
condition holds, else zero.

9.42.1 Syntax

FCMGT Vd.T, Vn.T, #0.0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.42.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-52
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.43 FCMLE (vector, zero)
Floating-point compare less than or equal to zero, setting destination vector element to all ones
if the condition holds, else zero.

9.43.1 Syntax

FCMLE Vd.T, Vn.T, #0.0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.43.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-53
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.44 FCMLT (vector, zero)
Floating-point compare less than zero, setting destination vector element to all ones if the
condition holds, else zero.

9.44.1 Syntax

FCMLT Vd.T, Vn.T, #0.0

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.44.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-54
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.45 FCVTAS (vector)
Floating-point convert to signed integer, rounding to nearest with ties to away.

9.45.1 Syntax

FCVTAS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.45.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-55
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.46 FCVTAU (vector)
Floating-point convert to unsigned integer, rounding to nearest with ties to away.

9.46.1 Syntax

FCVTAU Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.46.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-56
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.47 FCVTL, FCVTL2 (vector)
Floating-point convert to higher precision long.

9.47.1 Syntax

FCVTL{2} Vd.Ta, Vn.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.47.2 Usage

The following table shows valid specifier combinations:

9.47.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-7 FCVTL, FCVTL2 specifier combinations

Q Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-57
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.48 FCVTMS (vector)
Floating-point convert to signed integer, rounding toward minus infinity.

9.48.1 Syntax

FCVTMS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.48.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-58
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.49 FCVTMU (vector)
Floating-point convert to unsigned integer, rounding toward minus infinity.

9.49.1 Syntax

FCVTMU Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.49.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-59
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.50 FCVTN, FCVTN2 (vector)
Floating-point convert to lower precision narrow.

9.50.1 Syntax

FCVTN{2} Vd.Tb, Vn.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

9.50.2 Usage

The following table shows valid specifier combinations:

9.50.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-8 FCVTN, FCVTN2 specifier combinations

Q Tb Ta

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-60
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.51 FCVTNS (vector)
Floating-point convert to signed integer, rounding to nearest with ties to even.

9.51.1 Syntax

FCVTNS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.51.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-61
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.52 FCVTNU (vector)
Floating-point convert to unsigned integer, rounding to nearest with ties to even.

9.52.1 Syntax

FCVTNU Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.52.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-62
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.53 FCVTPS (vector)
Floating-point convert to signed integer, rounding toward positive infinity.

9.53.1 Syntax

FCVTPS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.53.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-63
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.54 FCVTPU (vector)
Floating-point convert to unsigned integer, rounding toward positive infinity.

9.54.1 Syntax

FCVTPU Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.54.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-64
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.55 FCVTXN, FCVTXN2 (vector)
Floating-point convert to lower precision narrow, rounding to odd.

9.55.1 Syntax

FCVTXN{2} Vd.Tb, Vn.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be either 2S or 4S.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, 2D.

9.55.2 Usage

The following table shows valid specifier combinations:

9.55.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-9 FCVTXN{2} (Vector) specifier combinations

Q Tb Ta

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-65
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.56 FCVTZS (vector, fixed-point)
Floating-point convert to signed fixed-point, rounding toward zero.

9.56.1 Syntax

FCVTZS Vd.T, Vn.T, #fbits

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the element width.

9.56.2 Usage

The following table shows valid specifier combinations:

9.56.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-10 FCVTZS (Vector) specifier combinations

T fbits

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-66
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.57 FCVTZS (vector, integer)
Floating-point convert to signed integer, rounding toward zero.

9.57.1 Syntax

FCVTZS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.57.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-67
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.58 FCVTZU (vector, fixed-point)
Floating-point convert to unsigned fixed-point, rounding toward zero.

9.58.1 Syntax

FCVTZU Vd.T, Vn.T, #fbits

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the element width.

9.58.2 Usage

The following table shows valid specifier combinations:

9.58.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-11 FCVTZU (Vector) specifier combinations

T fbits

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-68
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.59 FCVTZU (vector, integer)
Floating-point convert to unsigned integer, rounding toward zero.

9.59.1 Syntax

FCVTZU Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.59.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-69
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.60 FDIV (vector)
Floating-point divide.

9.60.1 Syntax

FDIV Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.60.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-70
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.61 FMAX (vector)
Floating-point maximum.

9.61.1 Syntax

FMAX Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.61.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-71
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.62 FMAXNM (vector)
Floating-point maximum number.

9.62.1 Syntax

FMAXNM Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.62.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-72
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.63 FMAXNMP (vector)
Floating-point maximum number pairwise.

9.63.1 Syntax

FMAXNMP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.63.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-73
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.64 FMAXNMV (vector)
Floating-point maximum number across vector.

9.64.1 Syntax

FMAXNMV Vd, Vn.T

Where:

V Is the destination width specifier, S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, 4S.

9.64.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-74
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.65 FMAXP (vector)
Floating-point maximum pairwise.

9.65.1 Syntax

FMAXP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.65.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-75
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.66 FMAXV (vector)
Floating-point maximum across vector.

9.66.1 Syntax

FMAXV Vd, Vn.T

Where:

V Is the destination width specifier, S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, 4S.

9.66.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-76
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.67 FMIN (vector)
Floating-point minimum.

9.67.1 Syntax

FMIN Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.67.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-77
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.68 FMINNM (vector)
Floating-point minimum number.

9.68.1 Syntax

FMINNM Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.68.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-78
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.69 FMINNMP (vector)
Floating-point minimum number pairwise.

9.69.1 Syntax

FMINNMP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.69.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-79
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.70 FMINNMV (vector)
Floating-point minimum number across vector.

9.70.1 Syntax

FMINNMV Vd, Vn.T

Where:

V Is the destination width specifier, S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, 4S.

9.70.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-80
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.71 FMINP (vector)
Floating-point minimum pairwise.

9.71.1 Syntax

FMINP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.71.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-81
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.72 FMINV (vector)
Floating-point minimum across vector.

9.72.1 Syntax

FMINV Vd, Vn.T

Where:

V Is the destination width specifier, S.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, 4S.

9.72.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-82
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.73 FMLA (vector, by element)
Floating-point fused multiply-add to accumulator (by element).

9.73.1 Syntax

FMLA Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register in the range 0 to 31.

Ts Is an element size specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

9.73.2 Usage

The following table shows valid specifier combinations:

9.73.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-12 FMLA (Vector) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-83
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.74 FMLA (vector)
Floating-point fused multiply-add to accumulator.

9.74.1 Syntax

FMLA Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.74.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-84
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.75 FMLS (vector, by element)
Floating-point fused multiply-subtract from accumulator (by element).

9.75.1 Syntax

FMLS Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register in the range 0 to 31.

Ts Is an element size specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

9.75.2 Usage

The following table shows valid specifier combinations:

9.75.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-13 FMLS (Vector) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-85
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.76 FMLS (vector)
Floating-point fused multiply-subtract from accumulator.

9.76.1 Syntax

FMLS Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.76.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-86
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.77 FMOV (vector, immediate)
Floating-point move immediate.

9.77.1 Syntax

FMOV Vd.T, #imm ; Single-precision

FMOV Vd.2D, #imm ; Double-precision

Where:

T Is an arrangement specifier, and can be either 2S or 4S.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

imm Is a floating-point constant with sign, 3-bit exponent and normalized 4 bits of
precision.

9.77.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-87
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.78 FMUL (vector, by element)
Floating-point multiply (by element).

9.78.1 Syntax

FMUL Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register in the range 0 to 31.

Ts Is an element size specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

9.78.2 Usage

The following table shows valid specifier combinations:

9.78.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-14 FMUL (Vector) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-88
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.79 FMUL (vector)
Floating-point multiply.

9.79.1 Syntax

FMUL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.79.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-89
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.80 FMULX (vector, by element)
Floating-point multiply extended (by element).

9.80.1 Syntax

FMULX Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register in the range 0 to 31.

Ts Is an element size specifier, and can be either S or D.

index Is the element index, in the range shown in Usage.

9.80.2 Usage

The following table shows valid specifier combinations:

9.80.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-15 FMULX (Vector) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-90
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.81 FMULX (vector)
Floating-point multiply extended.

9.81.1 Syntax

FMULX Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.81.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-91
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.82 FNEG (vector)
Floating-point negate.

9.82.1 Syntax

FNEG Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.82.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-92
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.83 FRECPE (vector)
Floating-point reciprocal estimate.

9.83.1 Syntax

FRECPE Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.83.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-93
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.84 FRECPS (vector)
Floating-point reciprocal step.

9.84.1 Syntax

FRECPS Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.84.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-94
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.85 FRINTA (vector)
Floating-point round to integral, to nearest with ties to away.

9.85.1 Syntax

FRINTA Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.85.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-95
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.86 FRINTI (vector)
Floating-point round to integral, using current rounding mode.

9.86.1 Syntax

FRINTI Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.86.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-96
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.87 FRINTM (vector)
Floating-point round to integral, toward minus infinity.

9.87.1 Syntax

FRINTM Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.87.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-97
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.88 FRINTN (vector)
Floating-point round to integral, to nearest with ties to even.

9.88.1 Syntax

FRINTN Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.88.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-98
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.89 FRINTP (vector)
Floating-point round to integral, toward positive infinity.

9.89.1 Syntax

FRINTP Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.89.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-99
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.90 FRINTX (vector)
Floating-point round to integral exact, using current rounding mode.

9.90.1 Syntax

FRINTX Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.90.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-100
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.91 FRINTZ (vector)
Floating-point round to integral, toward zero.

9.91.1 Syntax

FRINTZ Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.91.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-101
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.92 FRSQRTE (vector)
Floating-point reciprocal square root estimate.

9.92.1 Syntax

FRSQRTE Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.92.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-102
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.93 FRSQRTS (vector)
Floating-point reciprocal square root step.

9.93.1 Syntax

FRSQRTS Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.93.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-103
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.94 FSQRT (vector)
Floating-point square root.

9.94.1 Syntax

FSQRT Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.94.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-104
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.95 FSUB (vector)
Floating-point subtract.

9.95.1 Syntax

FSUB Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.95.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-105
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.96 INS (vector, element)
Insert vector element from another vector element.

9.96.1 Syntax

INS Vd.Ts[index1], Vn.Ts[index2]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ts Is an element size specifier, and can be one of the values shown in Usage.

index1 Is the destination element index, in the range shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

index2 Is the source element index in the range shown in Usage.

9.96.2 Usage

The following table shows valid specifier combinations:

9.96.3 See also

Reference
• MOV (vector, element) on page 9-131.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-16 INS specifier combinations

Ts index1 index2

B 0 to 15 0 to 15

H 0 to 7 0 to 7

S 0 to 3 0 to 3

D 0 or 1 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-106
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.97 INS (vector) (general)
Insert vector element from general-purpose register.

9.97.1 Syntax

INS Vd.Ts[index], Rn

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ts Is an element size specifier, and can be one of the values shown in Usage.

index Is the element index, in the range shown in Usage.

R Is the width specifier for the general-purpose source register, and can be either W
or X.

n Is the number, in the range 0 to 30, or the name ZR (31).

9.97.2 Usage

The following table shows valid specifier combinations:

9.97.3 See also

Reference
• MOV (vector, from general) on page 9-132.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-17 INS specifier combinations

Ts index R

B 0 to 15 W

H 0 to 7 W

S 0 to 3 W

D 0 or 1 X
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-107
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.98 LD1 (vector, multiple structures)
Load multiple 1-element structures to one, two, three or four registers.

9.98.1 Syntax

LD1 { Vt.T }, [Xn|SP] ; One register

LD1 { Vt.T, Vt2.T }, [Xn|SP] ; Two registers

LD1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; Three registers

LD1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; Four registers

LD1 { Vt.T }, [Xn|SP], imm ; One register, immediate offset, Post-index

LD1 { Vt.T }, [Xn|SP], Xm ; One register, register offset, Post-index

LD1 { Vt.T, Vt2.T }, [Xn|SP], imm ; Two registers, immediate offset, Post-index

LD1 { Vt.T, Vt2.T }, [Xn|SP], Xm ; Two registers, register offset, Post-index

LD1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Three registers, immediate offset,
Post-index

LD1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Three registers, register offset,
Post-index

LD1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Four registers, immediate offset,
Post-index

LD1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Four registers, register offset,
Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

imm Is the post-index immediate offset:
One register, immediate offset

Can be one of #8 or #16.
Two registers, immediate offset

Can be one of #16 or #32.
Three registers, immediate offset

Can be one of #24 or #48.
Four registers, immediate offset

Can be one of #32 or #64.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-108
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.98.2 Usage

The following table shows valid specifier combinations:

Table 9-18 LD1 (One register, immediate offset) specifier combinations

T imm

8B #8

16B #16

4H #8

8H #16

2S #8

4S #16

1D #8

2D #16

Table 9-19 LD1 (Two registers, immediate offset) specifier combinations

T imm

8B #16

16B #32

4H #16

8H #32

2S #16

4S #32

1D #16

2D #32

Table 9-20 LD1 (Three registers, immediate offset) specifier combinations

T imm

8B #24

16B #48

4H #24

8H #48

2S #24
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-109
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.98.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

4S #48

1D #24

2D #48

Table 9-21 LD1 (Four registers, immediate offset) specifier combinations

T imm

8B #32

16B #64

4H #32

8H #64

2S #32

4S #64

1D #32

2D #64

Table 9-20 LD1 (Three registers, immediate offset) specifier combinations (continued)

T imm
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-110
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.99 LD1 (vector, single structure)
Load single 1-element structure to one lane of one register.

9.99.1 Syntax

LD1 { Vt.B }[index], [Xn|SP] ; 8-bit

LD1 { Vt.H }[index], [Xn|SP] ; 16-bit

LD1 { Vt.S }[index], [Xn|SP] ; 32-bit

LD1 { Vt.D }[index], [Xn|SP] ; 64-bit

LD1 { Vt.B }[index], [Xn|SP], #1 ; 8-bit, immediate offset, Post-index

LD1 { Vt.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

LD1 { Vt.H }[index], [Xn|SP], #2 ; 16-bit, immediate offset, Post-index

LD1 { Vt.H }[index], [Xn|SP], Xm ; 16-bit, register offset, Post-index

LD1 { Vt.S }[index], [Xn|SP], #4 ; 32-bit, immediate offset, Post-index

LD1 { Vt.S }[index], [Xn|SP], Xm ; 32-bit, register offset, Post-index

LD1 { Vt.D }[index], [Xn|SP], #8 ; 64-bit, immediate offset, Post-index

LD1 { Vt.D }[index], [Xn|SP], Xm ; 64-bit, register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

9.99.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-111
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.100 LD1R (vector)
Load single 1-element structure and replicate to all lanes (of one register).

9.100.1 Syntax

LD1R { Vt.T }, [Xn|SP] ; No offset

LD1R { Vt.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD1R { Vt.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

imm Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

9.100.2 Usage

The following table shows valid specifier combinations:

9.100.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-22 LD1R (Immediate offset) specifier combinations

T imm

8B #1

16B #1

4H #2

8H #2

2S #4

4S #4

1D #8

2D #8
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-112
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.101 LD2 (vector, multiple structures)
Load multiple 2-element structures to two registers.

9.101.1 Syntax

LD2 { Vt.T, Vt2.T }, [Xn|SP] ; No offset

LD2 { Vt.T, Vt2.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD2 { Vt.T, Vt2.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be either #16 or #32.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt and Vt2 must be consecutive registers. The next consecutive register after V31 is V0.

9.101.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-113
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.102 LD2 (vector, single structure)
Load single 2-element structure to one lane of two registers.

9.102.1 Syntax

LD2 { Vt.B, Vt2.B }[index], [Xn|SP] ; 8-bit

LD2 { Vt.H, Vt2.H }[index], [Xn|SP] ; 16-bit

LD2 { Vt.S, Vt2.S }[index], [Xn|SP] ; 32-bit

LD2 { Vt.D, Vt2.D }[index], [Xn|SP] ; 64-bit

LD2 { Vt.B, Vt2.B }[index], [Xn|SP], #2 ; 8-bit, immediate offset, Post-index

LD2 { Vt.B, Vt2.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

LD2 { Vt.H, Vt2.H }[index], [Xn|SP], #4 ; 16-bit, immediate offset, Post-index

LD2 { Vt.H, Vt2.H }[index], [Xn|SP], Xm ; 16-bit, register offset, Post-index

LD2 { Vt.S, Vt2.S }[index], [Xn|SP], #8 ; 32-bit, immediate offset, Post-index

LD2 { Vt.S, Vt2.S }[index], [Xn|SP], Xm ; 32-bit, register offset, Post-index

LD2 { Vt.D, Vt2.D }[index], [Xn|SP], #16 ; 64-bit, immediate offset, Post-index

LD2 { Vt.D, Vt2.D }[index], [Xn|SP], Xm ; 64-bit, register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

Note
 Vt and Vt2 must be consecutive registers. The next consecutive register after V31 is V0.

9.102.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-114
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.103 LD2R (vector)
Load single 2-element structure and replicate to all lanes of two registers.

9.103.1 Syntax

LD2R { Vt.T, Vt2.T }, [Xn|SP] ; No offset

LD2R { Vt.T, Vt2.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD2R { Vt.T, Vt2.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt and Vt2 must be consecutive registers. The next consecutive register after V31 is V0.

9.103.2 Usage

The following table shows valid specifier combinations:

9.103.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-23 LD2R (Immediate offset) specifier combinations

T imm

8B #2

16B #2

4H #4

8H #4

2S #8

4S #8

1D #16

2D #16
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-115
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-116
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.104 LD3 (vector, multiple structures)
Load multiple 3-element structures to three registers.

9.104.1 Syntax

LD3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; No offset

LD3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be either #24 or #48.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt, Vt2, and Vt3 must be consecutive registers. The next consecutive register after V31 is V0.

9.104.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-117
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.105 LD3 (vector, single structure)
Load single 3-element structure to one lane of three registers).

9.105.1 Syntax

LD3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP] ; 8-bit

LD3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP] ; 16-bit

LD3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP] ; 32-bit

LD3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP] ; 64-bit

LD3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], #3 ; 8-bit, immediate offset,
Post-index

LD3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

LD3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], #6 ; 16-bit, immediate offset,
Post-index

LD3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], Xm ; 16-bit, register offset,
Post-index

LD3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], #12 ; 32-bit, immediate offset,
Post-index

LD3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], Xm ; 32-bit, register offset,
Post-index

LD3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], #24 ; 64-bit, immediate offset,
Post-index

LD3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], Xm ; 64-bit, register offset,
Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

Note
 Vt, Vt2, and Vt3 must be consecutive registers. The next consecutive register after V31 is V0.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-118
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.105.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-119
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.106 LD3R (vector)
Load single 3-element structure and replicate to all lanes of three registers.

9.106.1 Syntax

LD3R { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; No offset

LD3R { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD3R { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt, Vt2, and Vt3 must be consecutive registers. The next consecutive register after V31 is V0.

9.106.2 Usage

The following table shows valid specifier combinations:

Table 9-24 LD3R (Immediate offset) specifier combinations

T imm

8B #3

16B #3

4H #6

8H #6

2S #12

4S #12

1D #24

2D #24
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-120
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.106.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-121
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.107 LD4 (vector, multiple structures)
Load multiple 4-element structures to four registers.

9.107.1 Syntax

LD4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; No offset

LD4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be either #32 or #64.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.107.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-122
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.108 LD4 (vector, single structure)
Load single 4-element structure to one lane of four registers.

9.108.1 Syntax

LD4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP] ; 8-bit

LD4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP] ; 16-bit

LD4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP] ; 32-bit

LD4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP] ; 64-bit

LD4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], #4 ; 8-bit, immediate offset,
Post-index

LD4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], Xm ; 8-bit, register offset,
Post-index

LD4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], #8 ; 16-bit, immediate offset,
Post-index

LD4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], Xm ; 16-bit, register offset,
Post-index

LD4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], #16 ; 32-bit, immediate offset,
Post-index

LD4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], Xm ; 32-bit, register offset,
Post-index

LD4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], #32 ; 64-bit, immediate offset,
Post-index

LD4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], Xm ; 64-bit, register offset,
Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-123
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.108.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-124
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.109 LD4R (vector)
Load single 4-element structure and replicate to all lanes of four registers.

9.109.1 Syntax

LD4R { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; No offset

LD4R { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD4R { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.109.2 Usage

The following table shows valid specifier combinations:

Table 9-25 LD4R (Immediate offset) specifier combinations

T imm

8B #4

16B #4

4H #8

8H #8

2S #16

4S #16

1D #32

2D #32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-125
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.109.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-126
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.110 MLA (vector, by element)
Multiply-add to accumulator (by element).

9.110.1 Syntax

MLA Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.110.2 Usage

The following table shows valid specifier combinations:

9.110.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-26 MLA specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-127
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.111 MLA (vector)
Multiply-add to accumulator.

9.111.1 Syntax

MLA Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.111.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-128
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.112 MLS (vector, by element)
Multiply-subtract from accumulator (by element).

9.112.1 Syntax

MLS Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.112.2 Usage

The following table shows valid specifier combinations:

9.112.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-27 MLS specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-129
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.113 MLS (vector)
Multiply-subtract from accumulator.

9.113.1 Syntax

MLS Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.113.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-130
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.114 MOV (vector, element)
Move vector element to another vector element.

9.114.1 Syntax

MOV Vd.Ts[index1], Vn.Ts[index2]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ts Is an element size specifier, and can be one of the values shown in Usage.

index1 Is the destination element index, in the range shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

index2 Is the source element index in the range shown in Usage.

9.114.2 Usage

The following table shows valid specifier combinations:

9.114.3 See also

Reference
• INS (vector, element) on page 9-106.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-28 MOV specifier combinations

Ts index1 index2

B 0 to 15 0 to 15

H 0 to 7 0 to 7

S 0 to 3 0 to 3

D 0 or 1 0 or 1
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-131
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.115 MOV (vector, from general)
Move general-purpose register to a vector element.

9.115.1 Syntax

MOV Vd.Ts[index], Rn

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ts Is an element size specifier, and can be one of the values shown in Usage.

index Is the element index, in the range shown in Usage.

R Is the width specifier for the general-purpose source register, and can be either W
or X.

n Is the number, in the range 0 to 30, or the name ZR (31).

9.115.2 Usage

The following table shows valid specifier combinations:

9.115.3 See also

Reference
• INS (vector) (general) on page 9-107.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-29 MOV specifier combinations

Ts index R

B 0 to 15 W

H 0 to 7 W

S 0 to 3 W

D 0 or 1 X
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-132
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.116 MOV (vector)
Move vector.

This instruction is an alias of ORR (vector, register).

9.116.1 Syntax

MOV Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

9.116.2 See also

Reference
• ORR (vector, register) on page 9-144.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-133
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.117 MOV (vector, to general)
Move vector element to general-purpose register.

9.117.1 Syntax

MOV Wd, Vn.S[index] ; 32-bit

MOV Xd, Vn.D[index] ; 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

index The value depends on the instruction variant:
32-bit Is the element index, in the range shown in Usage.
64-bit Is the element index and can be either 0 or 1.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.117.2 See also

Reference
• UMOV (vector) on page 9-261.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-134
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.118 MOVI (vector)
Move immediate.

9.118.1 Syntax

MOVI Vd.T, #imm8{, LSL #0} ; 8-bit

MOVI Vd.T, #imm8{, LSL #amount} ; 16-bit shifted immediate

MOVI Vd.T, #imm8{, LSL #amount} ; 32-bit shifted immediate

MOVI Vd.T, #imm8, MSL #amount ; 32-bit shifting ones

MOVI Dd, #imm ; 64-bit scalar

MOVI Vd.2D, #imm ; 64-bit vector

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier:
8-bit Can be one of 8B or 16B.
16-bit shifted immediate

Can be one of 4H or 8H.
32-bit shifted immediate

Can be one of 2S or 4S.
32-bit shifting ones

Can be one of 2S or 4S.

imm8 Is an 8-bit immediate.

amount Is the shift amount:
16-bit shifted immediate

Can be one of 0 or 8.
32-bit shifted immediate

Can be one of 0, 8, 16 or 24.
32-bit shifting ones

Can be one of 8 or 16.
Defaults to zero if LSL is omitted.

Dd Is the 64-bit name of the SIMD and FP destination register, in the range 0 to 31.

imm Is a 64-bit immediate.

9.118.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-135
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.119 MUL (vector, by element)
Multiply (by element).

9.119.1 Syntax

MUL Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.119.2 Usage

The following table shows valid specifier combinations:

9.119.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-30 MUL specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-136
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.120 MUL (vector)
Multiply.

9.120.1 Syntax

MUL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.120.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-137
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.121 MVN (vector)
Bitwise NOT.

This instruction is an alias of NOT.

9.121.1 Syntax

MVN Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.121.2 See also

Reference
• NOT (vector) on page 9-141.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-138
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.122 MVNI (vector)
Move inverted immediate.

9.122.1 Syntax

MVNI Vd.T, #imm8{, LSL #amount} ; 16-bit shifted immediate

MVNI Vd.T, #imm8{, LSL #amount} ; 32-bit shifted immediate

MVNI Vd.T, #imm8, MSL #amount ; 32-bit shifting ones

Where:

T Is an arrangement specifier:
16-bit shifted immediate

Can be one of 4H or 8H.
32-bit shifted immediate

Can be one of 2S or 4S.
32-bit shifting ones

Can be one of 2S or 4S.

amount Is the shift amount:
16-bit shifted immediate

Can be one of 0 or 8.
32-bit shifted immediate

Can be one of 0, 8, 16 or 24.
32-bit shifting ones

Can be one of 8 or 16.
Defaults to zero if LSL is omitted.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

imm8 Is an 8-bit immediate.

9.122.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-139
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.123 NEG (vector)
Negate.

9.123.1 Syntax

NEG Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.123.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-140
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.124 NOT (vector)
Bitwise NOT.

This instruction is used by the alias MVN.

9.124.1 Syntax

NOT Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.124.2 See also

Reference
• MVN (vector) on page 9-138.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-141
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.125 ORN (vector)
Bitwise inclusive OR NOT.

9.125.1 Syntax

ORN Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.125.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-142
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.126 ORR (vector, immediate)
Bitwise inclusive OR (immediate).

9.126.1 Syntax

ORR Vd.T, #imm8{, LSL #amount} ; 16-bit

ORR Vd.T, #imm8{, LSL #amount} ; 32-bit

Where:

T Is an arrangement specifier:
16-bit Can be one of 4H or 8H.
32-bit Can be one of 2S or 4S.

amount Is the shift amount:
16-bit Can be one of 0 or 8.
32-bit Can be one of 0, 8, 16 or 24.
Defaults to zero if LSL is omitted.

Vd Is the name of the SIMD and FP register, in the range 0 to 31.

imm8 Is an 8-bit immediate.

9.126.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-143
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.127 ORR (vector, register)
Bitwise inclusive OR (register).

This instruction is used by the alias MOV (vector).

9.127.1 Syntax

ORR Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.127.2 See also

Reference
• MOV (vector) on page 9-133.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-144
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.128 PMUL (vector)
Polynomial multiply.

9.128.1 Syntax

PMUL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.128.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-145
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.129 PMULL, PMULL2 (vector)
Polynomial multiply long.

9.129.1 Syntax

PMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, 8H.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.129.2 Usage

The following table shows valid specifier combinations:

9.129.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-31 PMULL, PMULL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-146
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.130 RADDHN, RADDHN2 (vector)
Rounding add returning high narrow.

9.130.1 Syntax

RADDHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.130.2 Usage

The following table shows valid specifier combinations:

9.130.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-32 RADDHN, RADDHN2 specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-147
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.131 RBIT (vector)
Reverse bit order.

9.131.1 Syntax

RBIT Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.131.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-148
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.132 REV16 (vector)
Reverse elements in 16-bit halfwords.

9.132.1 Syntax

REV16 Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 8B or 16B.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.132.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-149
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.133 REV32 (vector)
Reverse elements in 32-bit words.

9.133.1 Syntax

REV32 Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H or 8H.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.133.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-150
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.134 REV64 (vector)
Reverse elements in 64-bit doublewords.

9.134.1 Syntax

REV64 Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.134.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-151
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.135 RSHRN, RSHRN2 (vector)
Rounding shift right narrow (immediate).

9.135.1 Syntax

RSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.135.2 Usage

The following table shows valid specifier combinations:

9.135.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-33 RSHRN, RSHRN2 specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-152
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.136 RSUBHN, RSUBHN2 (vector)
Rounding subtract returning high narrow.

9.136.1 Syntax

RSUBHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.136.2 Usage

The following table shows valid specifier combinations:

9.136.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-34 RSUBHN, RSUBHN2 specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-153
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.137 SABA (vector)
Signed absolute difference and accumulate.

9.137.1 Syntax

SABA Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.137.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-154
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.138 SABAL, SABAL2 (vector)
Signed absolute difference and accumulate long.

9.138.1 Syntax

SABAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.138.2 Usage

The following table shows valid specifier combinations:

9.138.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-35 SABAL, SABAL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-155
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.139 SABD (vector)
Signed absolute difference.

9.139.1 Syntax

SABD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.139.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-156
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.140 SABDL, SABDL2 (vector)
Signed absolute difference long.

9.140.1 Syntax

SABDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.140.2 Usage

The following table shows valid specifier combinations:

9.140.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-36 SABDL, SABDL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-157
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.141 SADALP (vector)
Signed add and accumulate long pairwise.

9.141.1 Syntax

SADALP Vd.Ta, Vn.Tb

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.141.2 Usage

The following table shows valid specifier combinations:

9.141.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-37 SADALP specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-158
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.142 SADDL, SADDL2 (vector)
Signed add long.

9.142.1 Syntax

SADDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.142.2 Usage

The following table shows valid specifier combinations:

9.142.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-38 SADDL, SADDL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-159
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.143 SADDLP (vector)
Signed add long pairwise.

9.143.1 Syntax

SADDLP Vd.Ta, Vn.Tb

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.143.2 Usage

The following table shows valid specifier combinations:

9.143.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-39 SADDLP specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-160
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.144 SADDLV (vector)
Signed add long across vector.

9.144.1 Syntax

SADDLV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.144.2 Usage

The following table shows valid specifier combinations:

9.144.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-40 SADDLV specifier combinations

V T

H 8B

H 16B

S 4H

S 8H

D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-161
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.145 SADDW, SADDW2 (vector)
Signed add wide.

9.145.1 Syntax

SADDW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.145.2 Usage

The following table shows valid specifier combinations:

9.145.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-41 SADDW, SADDW2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-162
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.146 SCVTF (vector, fixed-point)
Signed fixed-point convert to floating-point.

9.146.1 Syntax

SCVTF Vd.T, Vn.T, #fbits

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the element width.

9.146.2 Usage

The following table shows valid specifier combinations:

9.146.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-42 SCVTF (Vector) specifier combinations

T fbits

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-163
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.147 SCVTF (vector, integer)
Signed integer convert to floating-point.

9.147.1 Syntax

SCVTF Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.147.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-164
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.148 SHADD (vector)
Signed halving add.

9.148.1 Syntax

SHADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.148.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-165
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.149 SHL (vector)
Shift left (immediate).

9.149.1 Syntax

SHL Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the element width in bits minus 1, and
can be one of the values shown in Usage.

9.149.2 Usage

The following table shows valid specifier combinations:

9.149.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-43 SHL (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-166
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.150 SHLL, SHLL2 (vector)
Shift left long (by element size).

9.150.1 Syntax

SHLL{2} Vd.Ta, Vn.Tb, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the left shift amount, which must be equal to the source element width in bits,
and can be one of the values shown in Usage.

9.150.2 Usage

The following table shows valid specifier combinations:

9.150.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-44 SHLL, SHLL2 specifier combinations

Q Ta Tb shift

- 8H 8B 8

2 8H 16B 8

- 4S 4H 16

2 4S 8H 16

- 2D 2S 32

2 2D 4S 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-167
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.151 SHRN, SHRN2 (vector)
Shift right narrow (immediate).

9.151.1 Syntax

SHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.151.2 Usage

The following table shows valid specifier combinations:

9.151.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-45 SHRN, SHRN2 specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-168
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.152 SHSUB (vector)
Signed halving subtract.

9.152.1 Syntax

SHSUB Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.152.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-169
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.153 SLI (vector)
Shift left and insert (immediate).

9.153.1 Syntax

SLI Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the element width in bits minus 1, and
can be one of the values shown in Usage.

9.153.2 Usage

The following table shows valid specifier combinations:

9.153.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-46 SLI (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-170
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.154 SMAX (vector)
Signed maximum.

9.154.1 Syntax

SMAX Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.154.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-171
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.155 SMAXP (vector)
Signed maximum pairwise.

9.155.1 Syntax

SMAXP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.155.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-172
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.156 SMAXV (vector)
Signed maximum across vector.

9.156.1 Syntax

SMAXV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.156.2 Usage

The following table shows valid specifier combinations:

9.156.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-47 SMAXV specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-173
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.157 SMIN (vector)
Signed minimum.

9.157.1 Syntax

SMIN Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.157.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-174
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.158 SMINP (vector)
Signed minimum pairwise.

9.158.1 Syntax

SMINP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.158.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-175
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.159 SMINV (vector)
Signed minimum across vector.

9.159.1 Syntax

SMINV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.159.2 Usage

The following table shows valid specifier combinations:

9.159.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-48 SMINV specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-176
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.160 SMLAL, SMLAL2 (vector, by element)
Signed multiply-add long (by element).

9.160.1 Syntax

SMLAL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.160.2 Usage

The following table shows valid specifier combinations:

9.160.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-49 SMLAL, SMLAL2 specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-177
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.161 SMLAL, SMLAL2 (vector)
Signed multiply-add long.

9.161.1 Syntax

SMLAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.161.2 Usage

The following table shows valid specifier combinations:

9.161.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-50 SMLAL, SMLAL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-178
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.162 SMLSL, SMLSL2 (vector, by element)
Signed multiply-subtract long (by element).

9.162.1 Syntax

SMLSL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.162.2 Usage

The following table shows valid specifier combinations:

9.162.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-51 SMLSL, SMLSL2 specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-179
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.163 SMLSL, SMLSL2 (vector)
Signed multiply-subtract long.

9.163.1 Syntax

SMLSL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.163.2 Usage

The following table shows valid specifier combinations:

9.163.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-52 SMLSL, SMLSL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-180
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.164 SMOV (vector)
Signed move vector element to general-purpose register.

9.164.1 Syntax

SMOV Wd, Vn.Ts[index] ; 32-bit

SMOV Xd, Vn.Ts[index] ; 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Ts Is an element size specifier:
32-bit Can be one of B or H.
64-bit Can be one of B, H or S.

index Is the element index, in the range shown in Usage.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.164.2 Usage

The following table shows valid specifier combinations:

9.164.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-53 SMOV (32-bit) specifier combinations

Ts index

B 0 to 15

H 0 to 7

Table 9-54 SMOV (64-bit) specifier combinations

Ts index

B 0 to 15

H 0 to 7

S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-181
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.165 SMULL, SMULL2 (vector, by element)
Signed multiply long (by element).

9.165.1 Syntax

SMULL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.165.2 Usage

The following table shows valid specifier combinations:

9.165.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-55 SMULL, SMULL2 specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-182
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.166 SMULL, SMULL2 (vector)
Signed multiply long.

9.166.1 Syntax

SMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.166.2 Usage

The following table shows valid specifier combinations:

9.166.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-56 SMULL, SMULL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-183
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.167 SQABS (vector)
Signed saturating absolute value.

9.167.1 Syntax

SQABS Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.167.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-184
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.168 SQADD (vector)
Signed saturating add.

9.168.1 Syntax

SQADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.168.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-185
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.169 SQDMLAL, SQDMLAL2 (vector, by element)
Signed saturating doubling multiply-add long (by element).

9.169.1 Syntax

SQDMLAL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

9.169.2 Usage

The following table shows valid specifier combinations:

9.169.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-57 SQDMLAL{2} (Vector) specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-186
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.170 SQDMLAL, SQDMLAL2 (vector)
Signed saturating doubling multiply-add long.

9.170.1 Syntax

SQDMLAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.170.2 Usage

The following table shows valid specifier combinations:

9.170.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-58 SQDMLAL{2} (Vector) specifier combinations

Q Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-187
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.171 SQDMLSL, SQDMLSL2 (vector, by element)
Signed saturating doubling multiply-subtract long (by element).

9.171.1 Syntax

SQDMLSL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

9.171.2 Usage

The following table shows valid specifier combinations:

9.171.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-59 SQDMLSL{2} (Vector) specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-188
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.172 SQDMLSL, SQDMLSL2 (vector)
Signed saturating doubling multiply-subtract long.

9.172.1 Syntax

SQDMLSL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.172.2 Usage

The following table shows valid specifier combinations:

9.172.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-60 SQDMLSL{2} (Vector) specifier combinations

Q Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-189
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.173 SQDMULH (vector, by element)
Signed saturating doubling multiply returning high half (by element).

9.173.1 Syntax

SQDMULH Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

9.173.2 Usage

The following table shows valid specifier combinations:

9.173.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-61 SQDMULH (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-190
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.174 SQDMULH (vector)
Signed saturating doubling multiply returning high half.

9.174.1 Syntax

SQDMULH Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.174.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-191
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.175 SQDMULL, SQDMULL2 (vector, by element)
Signed saturating doubling multiply long (by element).

9.175.1 Syntax

SQDMULL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

9.175.2 Usage

The following table shows valid specifier combinations:

9.175.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-62 SQDMULL{2} (Vector) specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-192
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.176 SQDMULL, SQDMULL2 (vector)
Signed saturating doubling multiply long.

9.176.1 Syntax

SQDMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.176.2 Usage

The following table shows valid specifier combinations:

9.176.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-63 SQDMULL{2} (Vector) specifier combinations

Q Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-193
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.177 SQNEG (vector)
Signed saturating negate.

9.177.1 Syntax

SQNEG Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.177.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-194
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.178 SQRDMULH (vector, by element)
Signed saturating rounding doubling multiply returning high half (by element).

9.178.1 Syntax

SQRDMULH Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

9.178.2 Usage

The following table shows valid specifier combinations:

9.178.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-64 SQRDMULH (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-195
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.179 SQRDMULH (vector)
Signed saturating rounding doubling multiply returning high half.

9.179.1 Syntax

SQRDMULH Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.179.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-196
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.180 SQRSHL (vector)
Signed saturating rounding shift left (register).

9.180.1 Syntax

SQRSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.180.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-197
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.181 SQRSHRN, SQRSHRN2 (vector)
Signed saturating rounded shift right narrow (immediate).

9.181.1 Syntax

SQRSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.181.2 Usage

The following table shows valid specifier combinations:

9.181.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-65 SQRSHRN{2} (Vector) specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-198
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.182 SQRSHRUN, SQRSHRUN2 (vector)
Signed saturating rounded shift right unsigned narrow (immediate).

9.182.1 Syntax

SQRSHRUN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.182.2 Usage

The following table shows valid specifier combinations:

9.182.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-66 SQRSHRUN{2} (Vector) specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-199
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.183 SQSHL (vector, immediate)
Signed saturating shift left (immediate).

9.183.1 Syntax

SQSHL Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the element width in bits minus 1, and
can be one of the values shown in Usage.

9.183.2 Usage

The following table shows valid specifier combinations:

9.183.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-67 SQSHL (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-200
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.184 SQSHL (vector, register)
Signed saturating shift left (register).

9.184.1 Syntax

SQSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.184.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-201
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.185 SQSHLU (vector)
Signed saturating shift left unsigned (immediate).

9.185.1 Syntax

SQSHLU Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the element width in bits minus 1, and
can be one of the values shown in Usage.

9.185.2 Usage

The following table shows valid specifier combinations:

9.185.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-68 SQSHLU (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-202
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.186 SQSHRN, SQSHRN2 (vector)
Signed saturating shift right narrow (immediate).

9.186.1 Syntax

SQSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.186.2 Usage

The following table shows valid specifier combinations:

9.186.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-69 SQSHRN{2} (Vector) specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-203
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.187 SQSHRUN, SQSHRUN2 (vector)
Signed saturating shift right unsigned narrow (immediate).

9.187.1 Syntax

SQSHRUN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.187.2 Usage

The following table shows valid specifier combinations:

9.187.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-70 SQSHRUN{2} (Vector) specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-204
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.188 SQSUB (vector)
Signed saturating subtract.

9.188.1 Syntax

SQSUB Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.188.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-205
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.189 SQXTN, SQXTN2 (vector)
Signed saturating extract narrow.

9.189.1 Syntax

SQXTN{2} Vd.Tb, Vn.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

9.189.2 Usage

The following table shows valid specifier combinations:

9.189.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-71 SQXTN{2} (Vector) specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-206
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.190 SQXTUN, SQXTUN2 (vector)
Signed saturating extract unsigned narrow.

9.190.1 Syntax

SQXTUN{2} Vd.Tb, Vn.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

9.190.2 Usage

The following table shows valid specifier combinations:

9.190.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-72 SQXTUN{2} (Vector) specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-207
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.191 SRHADD (vector)
Signed rounding halving add.

9.191.1 Syntax

SRHADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.191.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-208
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.192 SRI (vector)
Shift right and insert (immediate).

9.192.1 Syntax

SRI Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.192.2 Usage

The following table shows valid specifier combinations:

9.192.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-73 SRI (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-209
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.193 SRSHL (vector)
Signed rounding shift left (register).

9.193.1 Syntax

SRSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.193.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-210
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.194 SRSHR (vector)
Signed rounding shift right (immediate).

9.194.1 Syntax

SRSHR Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.194.2 Usage

The following table shows valid specifier combinations:

9.194.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-74 SRSHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-211
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.195 SRSRA (vector)
Signed rounding shift right and accumulate (immediate).

9.195.1 Syntax

SRSRA Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.195.2 Usage

The following table shows valid specifier combinations:

9.195.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-75 SRSRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-212
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.196 SSHL (vector)
Signed shift left (register).

9.196.1 Syntax

SSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.196.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-213
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.197 SSHLL, SSHLL2 (vector)
Signed shift left long (immediate).

This instruction is used by the alias SXTL, SXTL2.

9.197.1 Syntax

SSHLL{2} Vd.Ta, Vn.Tb, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the left shift amount, in the range 0 to the source element width in bits minus
1, and can be one of the values shown in Usage.

9.197.2 Usage

The following table shows valid specifier combinations:

9.197.3 See also

Reference
• SXTL, SXTL2 (vector) on page 9-233.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-76 SSHLL, SSHLL2 specifier combinations

Q Ta Tb shift

- 8H 8B 0 to 7

2 8H 16B 0 to 7

- 4S 4H 0 to 15

2 4S 8H 0 to 15

- 2D 2S 0 to 31

2 2D 4S 0 to 31
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-214
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.198 SSHR (vector)
Signed shift right (immediate).

9.198.1 Syntax

SSHR Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.198.2 Usage

The following table shows valid specifier combinations:

9.198.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-77 SSHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-215
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.199 SSRA (vector)
Signed shift right and accumulate (immediate).

9.199.1 Syntax

SSRA Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.199.2 Usage

The following table shows valid specifier combinations:

9.199.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-78 SSRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-216
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.200 SSUBL, SSUBL2 (vector)
Signed subtract long.

9.200.1 Syntax

SSUBL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.200.2 Usage

The following table shows valid specifier combinations:

9.200.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-79 SSUBL, SSUBL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-217
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.201 SSUBW, SSUBW2 (vector)
Signed subtract wide.

9.201.1 Syntax

SSUBW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.201.2 Usage

The following table shows valid specifier combinations:

9.201.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-80 SSUBW, SSUBW2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-218
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.202 ST1 (vector, multiple structures)
Store multiple 1-element structures from one, two three or four registers.

9.202.1 Syntax

ST1 { Vt.T }, [Xn|SP] ; One register

ST1 { Vt.T, Vt2.T }, [Xn|SP] ; Two registers

ST1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; Three registers

ST1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; Four registers

ST1 { Vt.T }, [Xn|SP], imm ; One register, immediate offset, Post-index

ST1 { Vt.T }, [Xn|SP], Xm ; One register, register offset, Post-index

ST1 { Vt.T, Vt2.T }, [Xn|SP], imm ; Two registers, immediate offset, Post-index

ST1 { Vt.T, Vt2.T }, [Xn|SP], Xm ; Two registers, register offset, Post-index

ST1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Three registers, immediate offset,
Post-index

ST1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Three registers, register offset,
Post-index

ST1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Four registers, immediate offset,
Post-index

ST1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Four registers, register offset,
Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

imm Is the post-index immediate offset:
One register, immediate offset

Can be one of #8 or #16.
Two registers, immediate offset

Can be one of #16 or #32.
Three registers, immediate offset

Can be one of #24 or #48.
Four registers, immediate offset

Can be one of #32 or #64.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-219
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.202.2 Usage

The following table shows valid specifier combinations:

Table 9-81 ST1 (One register, immediate offset) specifier combinations

T imm

8B #8

16B #16

4H #8

8H #16

2S #8

4S #16

1D #8

2D #16

Table 9-82 ST1 (Two registers, immediate offset) specifier combinations

T imm

8B #16

16B #32

4H #16

8H #32

2S #16

4S #32

1D #16

2D #32

Table 9-83 ST1 (Three registers, immediate offset) specifier combinations

T imm

8B #24

16B #48

4H #24

8H #48

2S #24
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-220
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.202.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

4S #48

1D #24

2D #48

Table 9-84 ST1 (Four registers, immediate offset) specifier combinations

T imm

8B #32

16B #64

4H #32

8H #64

2S #32

4S #64

1D #32

2D #64

Table 9-83 ST1 (Three registers, immediate offset) specifier combinations (continued)

T imm
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-221
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.203 ST1 (vector, single structure)
Store single 1-element structure from one lane of one register.

9.203.1 Syntax

ST1 { Vt.B }[index], [Xn|SP] ; 8-bit

ST1 { Vt.H }[index], [Xn|SP] ; 16-bit

ST1 { Vt.S }[index], [Xn|SP] ; 32-bit

ST1 { Vt.D }[index], [Xn|SP] ; 64-bit

ST1 { Vt.B }[index], [Xn|SP], #1 ; 8-bit, immediate offset, Post-index

ST1 { Vt.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

ST1 { Vt.H }[index], [Xn|SP], #2 ; 16-bit, immediate offset, Post-index

ST1 { Vt.H }[index], [Xn|SP], Xm ; 16-bit, register offset, Post-index

ST1 { Vt.S }[index], [Xn|SP], #4 ; 32-bit, immediate offset, Post-index

ST1 { Vt.S }[index], [Xn|SP], Xm ; 32-bit, register offset, Post-index

ST1 { Vt.D }[index], [Xn|SP], #8 ; 64-bit, immediate offset, Post-index

ST1 { Vt.D }[index], [Xn|SP], Xm ; 64-bit, register offset, Post-index

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

9.203.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-222
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.204 ST2 (vector, multiple structures)
Store multiple 2-element structures from two registers.

9.204.1 Syntax

ST2 { Vt.T, Vt2.T }, [Xn|SP]

ST2 { Vt.T, Vt2.T }, [Xn|SP], imm

ST2 { Vt.T, Vt2.T }, [Xn|SP], Xm

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be either #16 or #32.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt and Vt2 must be consecutive registers. The next consecutive register after V31 is V0.

9.204.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-223
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.205 ST2 (vector, single structure)
Store single 2-element structure from one lane of two registers.

9.205.1 Syntax

ST2 { Vt.B, Vt2.B }[index], [Xn|SP]

ST2 { Vt.H, Vt2.H }[index], [Xn|SP]

ST2 { Vt.S, Vt2.S }[index], [Xn|SP]

ST2 { Vt.D, Vt2.D }[index], [Xn|SP]

ST2 { Vt.B, Vt2.B }[index], [Xn|SP], #2

ST2 { Vt.B, Vt2.B }[index], [Xn|SP], Xm

ST2 { Vt.H, Vt2.H }[index], [Xn|SP], #4

ST2 { Vt.H, Vt2.H }[index], [Xn|SP], Xm

ST2 { Vt.S, Vt2.S }[index], [Xn|SP], #8

ST2 { Vt.S, Vt2.S }[index], [Xn|SP], Xm

ST2 { Vt.D, Vt2.D }[index], [Xn|SP], #16

ST2 { Vt.D, Vt2.D }[index], [Xn|SP], Xm

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

Note
 Vt and Vt2 must be consecutive registers. The next consecutive register after V31 is V0.

9.205.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-224
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.206 ST3 (vector, multiple structures)
Store multiple 3-element structures from three registers.

9.206.1 Syntax

ST3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP]

ST3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm

ST3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be either #24 or #48.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt, Vt2, and Vt3 must be consecutive registers. The next consecutive register after V31 is V0.

9.206.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-225
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.207 ST3 (vector, single structure)
Store single 3-element structure from one lane of three registers.

9.207.1 Syntax

ST3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP]

ST3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP]

ST3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP]

ST3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP]

ST3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], #3

ST3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], Xm

ST3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], #6

ST3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], Xm

ST3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], #12

ST3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], Xm

ST3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], #24

ST3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], Xm

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

Note
 Vt, Vt2, and Vt3 must be consecutive registers. The next consecutive register after V31 is V0.

9.207.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-226
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.208 ST4 (vector, multiple structures)
Store multiple 4-element structures from four registers.

9.208.1 Syntax

ST4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP]

ST4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm

ST4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

imm Is the post-index immediate offset, and can be either #32 or #64.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.208.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-227
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.209 ST4 (vector, single structure)
Store single 4-element structure from one lane of four registers.

9.209.1 Syntax

ST4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP]

ST4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP]

ST4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP]

ST4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP]

ST4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], #4

ST4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], Xm

ST4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], #8

ST4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], Xm

ST4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], #16

ST4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], Xm

ST4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], #32

ST4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], Xm

Where:

Vt Is the name of the first or only SIMD and FP register to be transferred, in the range
0 to 31.

Vt2 Is the name of the second SIMD and FP register to be transferred.

Vt3 Is the name of the third SIMD and FP register to be transferred.

Vt4 Is the name of the fourth SIMD and FP register to be transferred.

index The value depends on the instruction variant:
8-bit Is the element index, in the range 0 to 15.
16-bit Is the element index, in the range 0 to 7.
32-bit Is the element index, in the range 0 to 3.
64-bit Is the element index, and can be either 0 or 1.

Xn|SP Is the 64-bit name of the general-purpose base register or stack pointer, in the
range 0 to 31.

Xm Is the 64-bit name of the general-purpose post-index register, excluding XZR, in
the range 0 to 31.

Note
 Vt, Vt2, Vt3, and Vt4 must be consecutive registers. The next consecutive register after V31 is
V0.

9.209.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-228
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-229
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.210 SUB (vector)
Subtract.

9.210.1 Syntax

SUB Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.210.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-230
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.211 SUBHN, SUBHN2 (vector)
Subtract returning high narrow.

9.211.1 Syntax

SUBHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.211.2 Usage

The following table shows valid specifier combinations:

9.211.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-85 SUBHN, SUBHN2 specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-231
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.212 SUQADD (vector)
Signed saturating accumulate of unsigned value.

9.212.1 Syntax

SUQADD Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.212.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-232
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.213 SXTL, SXTL2 (vector)
Signed extend long.

This instruction is an alias of SSHLL, SSHLL2.

9.213.1 Syntax

SXTL{2} Vd.Ta, Vn.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.213.2 Usage

The following table shows valid specifier combinations:

9.213.3 See also

Reference
• SSHLL, SSHLL2 (vector) on page 9-214.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-86 SXTL, SXTL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-233
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.214 TBL (vector)
Table vector lookup.

9.214.1 Syntax

TBL Vd.Ta, { Vn.16B }, Vm.Ta ; Single register table

TBL Vd.Ta, { Vn.16B, Vn+1.16B }, Vm.Ta ; Two register table

TBL Vd.Ta, { Vn.16B, Vn+1.16B, Vn+2.16B }, Vm.Ta ; Three register table

TBL Vd.Ta, { Vn.16B, Vn+1.16B, Vn+2.16B, Vn+3.16B }, Vm.Ta ; Four register table

Where:

Vn The value depends on the instruction variant:
Single register table

Is the name of the SIMD and FP table register, in the range 0 to 31.
Two, Three, or Four register table

Is the name of the first SIMD and FP table register, in the range 0 to 31.

Vn+1 Is the name of the second SIMD and FP table register.

Vn+2 Is the name of the third SIMD and FP table register.

Vn+3 Is the name of the fourth SIMD and FP table register.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 8B or 16B.

Vm Is the name of the SIMD and FP index register, in the range 0 to 31.

Note
 Vn, Vn+1, Vn+2, and Vn+3 must be consecutive registers. The next consecutive register after
V31 is V0.

9.214.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-234
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.215 TBX (vector)
Table vector lookup extension.

9.215.1 Syntax

TBX Vd.Ta, { Vn.16B }, Vm.Ta ; Single register table

TBX Vd.Ta, { Vn.16B, Vn+1.16B }, Vm.Ta ; Two register table

TBX Vd.Ta, { Vn.16B, Vn+1.16B, Vn+2.16B }, Vm.Ta ; Three register table

TBX Vd.Ta, { Vn.16B, Vn+1.16B, Vn+2.16B, Vn+3.16B }, Vm.Ta ; Four register table

Where:

Vn The value depends on the instruction variant:
Single register table

Is the name of the SIMD and FP table register, in the range 0 to 31.
Two, Three, or Four register table

Is the name of the first SIMD and FP table register, in the range 0 to 31.

Vn+1 Is the name of the second SIMD and FP table register.

Vn+2 Is the name of the third SIMD and FP table register.

Vn+3 Is the name of the fourth SIMD and FP table register.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 8B or 16B.

Vm Is the name of the SIMD and FP index register, in the range 0 to 31.

Note
 Vn, Vn+1, Vn+2, and Vn+3 must be consecutive registers. The next consecutive register after
V31 is V0.

9.215.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-235
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.216 TRN1 (vector)
Transpose vectors (primary).

9.216.1 Syntax

TRN1 Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.216.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-236
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.217 TRN2 (vector)
Transpose vectors (secondary).

9.217.1 Syntax

TRN2 Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.217.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-237
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.218 UABA (vector)
Unsigned absolute difference and accumulate.

9.218.1 Syntax

UABA Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.218.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-238
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.219 UABAL, UABAL2 (vector)
Unsigned absolute difference and accumulate long.

9.219.1 Syntax

UABAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.219.2 Usage

The following table shows valid specifier combinations:

9.219.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-87 UABAL, UABAL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-239
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.220 UABD (vector)
Unsigned absolute difference.

9.220.1 Syntax

UABD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.220.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-240
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.221 UABDL, UABDL2 (vector)
Unsigned absolute difference long.

9.221.1 Syntax

UABDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.221.2 Usage

The following table shows valid specifier combinations:

9.221.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-88 UABDL, UABDL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-241
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.222 UADALP (vector)
Unsigned add and accumulate long pairwise.

9.222.1 Syntax

UADALP Vd.Ta, Vn.Tb

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.222.2 Usage

The following table shows valid specifier combinations:

9.222.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-89 UADALP specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-242
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.223 UADDL, UADDL2 (vector)
Unsigned add long.

9.223.1 Syntax

UADDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.223.2 Usage

The following table shows valid specifier combinations:

9.223.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-90 UADDL, UADDL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-243
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.224 UADDLP (vector)
Unsigned add long pairwise.

9.224.1 Syntax

UADDLP Vd.Ta, Vn.Tb

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.224.2 Usage

The following table shows valid specifier combinations:

9.224.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-91 UADDLP specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-244
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.225 UADDLV (vector)
Unsigned sum long across vector.

9.225.1 Syntax

UADDLV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.225.2 Usage

The following table shows valid specifier combinations:

9.225.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-92 UADDLV specifier combinations

V T

H 8B

H 16B

S 4H

S 8H

D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-245
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.226 UADDW, UADDW2 (vector)
Unsigned add wide.

9.226.1 Syntax

UADDW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.226.2 Usage

The following table shows valid specifier combinations:

9.226.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-93 UADDW, UADDW2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-246
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.227 UCVTF (vector, fixed-point)
Unsigned fixed-point convert to floating-point.

9.227.1 Syntax

UCVTF Vd.T, Vn.T, #fbits

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

fbits Is the number of fractional bits, in the range 1 to the element width.

9.227.2 Usage

The following table shows valid specifier combinations:

9.227.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-94 UCVTF (Vector) specifier combinations

T fbits

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-247
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.228 UCVTF (vector, integer)
Unsigned integer convert to floating-point.

9.228.1 Syntax

UCVTF Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.228.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-248
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.229 UHADD (vector)
Unsigned halving add.

9.229.1 Syntax

UHADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.229.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-249
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.230 UHSUB (vector)
Unsigned halving subtract.

9.230.1 Syntax

UHSUB Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.230.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-250
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.231 UMAX (vector)
Unsigned maximum.

9.231.1 Syntax

UMAX Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.231.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-251
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.232 UMAXP (vector)
Unsigned maximum pairwise.

9.232.1 Syntax

UMAXP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.232.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-252
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.233 UMAXV (vector)
Unsigned maximum across vector.

9.233.1 Syntax

UMAXV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.233.2 Usage

The following table shows valid specifier combinations:

9.233.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-95 UMAXV specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-253
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.234 UMIN (vector)
Unsigned minimum.

9.234.1 Syntax

UMIN Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.234.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-254
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.235 UMINP (vector)
Unsigned minimum pairwise.

9.235.1 Syntax

UMINP Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.235.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-255
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.236 UMINV (vector)
Unsigned minimum across vector.

9.236.1 Syntax

UMINV Vd, Vn.T

Where:

V Is the destination width specifier, and can be one of the values shown in Usage.

d Is the number of the SIMD and FP destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

9.236.2 Usage

The following table shows valid specifier combinations:

9.236.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-96 UMINV specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-256
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.237 UMLAL, UMLAL2 (vector, by element)
Unsigned multiply-add long (by element).

9.237.1 Syntax

UMLAL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.237.2 Usage

The following table shows valid specifier combinations:

9.237.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-97 UMLAL, UMLAL2 specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-257
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.238 UMLAL, UMLAL2 (vector)
Unsigned multiply-add long.

9.238.1 Syntax

UMLAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.238.2 Usage

The following table shows valid specifier combinations:

9.238.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-98 UMLAL, UMLAL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-258
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.239 UMLSL, UMLSL2 (vector, by element)
Unsigned multiply-subtract long (by element).

9.239.1 Syntax

UMLSL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.239.2 Usage

The following table shows valid specifier combinations:

9.239.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-99 UMLSL, UMLSL2 specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-259
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.240 UMLSL, UMLSL2 (vector)
Unsigned multiply-subtract long.

9.240.1 Syntax

UMLSL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.240.2 Usage

The following table shows valid specifier combinations:

9.240.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-100 UMLSL, UMLSL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-260
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.241 UMOV (vector)
Unsigned move vector element to general-purpose register.

9.241.1 Syntax

UMOV Wd, Vn.Ts[index] ; 32-bit

UMOV Xd, Vn.Ts[index] ; 64-bit

Where:

Wd Is the 32-bit name of the general-purpose destination register, in the range 0 to 31.

Ts Is an element size specifier:
32-bit Can be one of B, H or S.
64-bit Must be D.

index The value depends on the instruction variant:
32-bit Is the element index, in the range shown in Usage.
64-bit Is the element index and can be either 0 or 1.

Xd Is the 64-bit name of the general-purpose destination register, in the range 0 to 31.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.241.2 Usage

The following table shows valid specifier combinations:

9.241.3 See also

Reference
• MOV (vector, to general) on page 9-134.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-101 UMOV (32-bit) specifier combinations

Ts index

B 0 to 15

H 0 to 7

S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-261
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.242 UMULL, UMULL2 (vector, by element)
Unsigned multiply long (by element).

9.242.1 Syntax

UMULL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be either 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts Is an element size specifier, and can be either H or S.

index Is the element index, in the range shown in Usage.

9.242.2 Usage

The following table shows valid specifier combinations:

9.242.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-102 UMULL, UMULL2 specifier combinations

Q Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-262
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.243 UMULL, UMULL2 (vector)
Unsigned multiply long.

9.243.1 Syntax

UMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.243.2 Usage

The following table shows valid specifier combinations:

9.243.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-103 UMULL, UMULL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-263
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.244 UQADD (vector)
Unsigned saturating add.

9.244.1 Syntax

UQADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.244.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-264
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.245 UQRSHL (vector)
Unsigned saturating rounding shift left (register).

9.245.1 Syntax

UQRSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.245.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-265
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.246 UQRSHRN, UQRSHRN2 (vector)
Unsigned saturating rounded shift right narrow (immediate).

9.246.1 Syntax

UQRSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.246.2 Usage

The following table shows valid specifier combinations:

9.246.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-104 UQRSHRN{2} (Vector) specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-266
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.247 UQSHL (vector, immediate)
Unsigned saturating shift left (immediate).

9.247.1 Syntax

UQSHL Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the left shift amount, in the range 0 to the element width in bits minus 1, and
can be one of the values shown in Usage.

9.247.2 Usage

The following table shows valid specifier combinations:

9.247.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-105 UQSHL (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-267
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.248 UQSHL (vector, register)
Unsigned saturating shift left (register).

9.248.1 Syntax

UQSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.248.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-268
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.249 UQSHRN, UQSHRN2 (vector)
Unsigned saturating shift right narrow (immediate).

9.249.1 Syntax

UQSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the right shift amount, in the range 1 to the destination element width in bits,
and can be one of the values shown in Usage.

9.249.2 Usage

The following table shows valid specifier combinations:

9.249.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-106 UQSHRN{2} (Vector) specifier combinations

Q Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-269
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.250 UQSUB (vector)
Unsigned saturating subtract.

9.250.1 Syntax

UQSUB Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.250.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-270
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.251 UQXTN, UQXTN2 (vector)
Unsigned saturating extract narrow.

9.251.1 Syntax

UQXTN{2} Vd.Tb, Vn.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

9.251.2 Usage

The following table shows valid specifier combinations:

9.251.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-107 UQXTN{2} (Vector) specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-271
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.252 URECPE (vector)
Unsigned reciprocal estimate.

9.252.1 Syntax

URECPE Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 2S or 4S.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.252.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-272
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.253 URHADD (vector)
Unsigned rounding halving add.

9.253.1 Syntax

URHADD Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.253.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-273
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.254 URSHL (vector)
Unsigned rounding shift left (register).

9.254.1 Syntax

URSHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.254.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-274
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.255 URSHR (vector)
Unsigned rounding shift right (immediate).

9.255.1 Syntax

URSHR Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.255.2 Usage

The following table shows valid specifier combinations:

9.255.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-108 URSHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-275
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.256 URSQRTE (vector)
Unsigned reciprocal square root estimate.

9.256.1 Syntax

URSQRTE Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be either 2S or 4S.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.256.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-276
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.257 URSRA (vector)
Unsigned rounding shift right and accumulate (immediate).

9.257.1 Syntax

URSRA Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.257.2 Usage

The following table shows valid specifier combinations:

9.257.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-109 URSRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-277
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.258 USHL (vector)
Unsigned shift left (register).

9.258.1 Syntax

USHL Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.258.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-278
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.259 USHLL, USHLL2 (vector)
Unsigned shift left long (immediate).

This instruction is used by the alias UXTL, UXTL2.

9.259.1 Syntax

USHLL{2} Vd.Ta, Vn.Tb, #shift

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

shift Is the left shift amount, in the range 0 to the source element width in bits minus
1, and can be one of the values shown in Usage.

9.259.2 Usage

The following table shows valid specifier combinations:

9.259.3 See also

Reference
• UXTL, UXTL2 (vector) on page 9-285.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-110 USHLL, USHLL2 specifier combinations

Q Ta Tb shift

- 8H 8B 0 to 7

2 8H 16B 0 to 7

- 4S 4H 0 to 15

2 4S 8H 0 to 15

- 2D 2S 0 to 31

2 2D 4S 0 to 31
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-279
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.260 USHR (vector)
Unsigned shift right (immediate).

9.260.1 Syntax

USHR Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.260.2 Usage

The following table shows valid specifier combinations:

9.260.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-111 USHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-280
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.261 USQADD (vector)
Unsigned saturating accumulate of signed value.

9.261.1 Syntax

USQADD Vd.T, Vn.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

9.261.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-281
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.262 USRA (vector)
Unsigned shift right and accumulate (immediate).

9.262.1 Syntax

USRA Vd.T, Vn.T, #shift

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

shift Is the right shift amount, in the range 1 to the element width in bits, and can be
one of the values shown in Usage.

9.262.2 Usage

The following table shows valid specifier combinations:

9.262.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-112 USRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-282
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.263 USUBL, USUBL2 (vector)
Unsigned subtract long.

9.263.1 Syntax

USUBL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.263.2 Usage

The following table shows valid specifier combinations:

9.263.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-113 USUBL, USUBL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-283
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.264 USUBW, USUBW2 (vector)
Unsigned subtract wide.

9.264.1 Syntax

USUBW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.264.2 Usage

The following table shows valid specifier combinations:

9.264.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-114 USUBW, USUBW2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-284
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.265 UXTL, UXTL2 (vector)
Unsigned extend long.

This instruction is an alias of USHLL, USHLL2.

9.265.1 Syntax

UXTL{2} Vd.Ta, Vn.Tb

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

9.265.2 Usage

The following table shows valid specifier combinations:

9.265.3 See also

Reference
• USHLL, USHLL2 (vector) on page 9-279.
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-115 UXTL, UXTL2 specifier combinations

Q Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-285
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.266 UZP1 (vector)
Unzip vectors (primary).

9.266.1 Syntax

UZP1 Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.266.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-286
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.267 UZP2 (vector)
Unzip vectors (secondary).

9.267.1 Syntax

UZP2 Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.267.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-287
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.268 XTN, XTN2 (vector)
Extract narrow.

9.268.1 Syntax

XTN{2} Vd.Tb, Vn.Ta

Where:

2 Is the second and upper half specifier. If present it causes the operation to be
performed on the upper 64 bits of the registers holding the narrower elements. See
Q in the Usage table.

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

Tb Is an arrangement specifier, and can be one of the values shown in Usage.

Vn Is the name of the SIMD and FP source register, in the range 0 to 31.

Ta Is an arrangement specifier, and can be one of the values shown in Usage.

9.268.2 Usage

The following table shows valid specifier combinations:

9.268.3 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

Table 9-116 XTN, XTN2 specifier combinations

Q Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-288
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.269 ZIP1 (vector)
Zip vectors (primary).

9.269.1 Syntax

ZIP1 Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.269.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-289
ID031214 Non-Confidential

A64 Advanced SIMD Vector Instructions
9.270 ZIP2 (vector)
Zip vectors (secondary).

9.270.1 Syntax

ZIP2 Vd.T, Vn.T, Vm.T

Where:

Vd Is the name of the SIMD and FP destination register, in the range 0 to 31.

T Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn Is the name of the first SIMD and FP source register, in the range 0 to 31.

Vm Is the name of the second SIMD and FP source register, in the range 0 to 31.

9.270.2 See also

Reference
• A64 Advanced SIMD scalar instructions in alphabetical order on page 8-2.
• A64 Advanced SIMD vector instructions in alphabetical order on page 9-2.

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 9-290
ID031214 Non-Confidential

Chapter 10
Directives Reference

The following topics describe the directives that are provided by the ARM assembler, armasm:
• Alphabetical list of directives on page 10-2.
• Symbol definition directives on page 10-4.
• Data definition directives on page 10-5.
• About assembly control directives on page 10-6.
• About frame directives on page 10-7.
• Reporting directives on page 10-8.
• Instruction set and syntax selection directives on page 10-9.
• Miscellaneous directives on page 10-10.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-1
ID031214 Non-Confidential

Directives Reference
10.1 Alphabetical list of directives
Table 10-1 shows a complete list of the directives. Use it to locate individual directives.

Table 10-1 Location of directives

Directive See Directive See Directive See

ALIAS page 10-11 EQU page 10-36 MACRO and MEND page 10-6
7

ALIGN page 10-12 EXPORT or GLOBAL page 10-37 MAP page 10-7
0

ARM and CODE32 page 10-17 EXPORTAS page 10-39 MEND see MACRO page 10-6
7

AREA page 10-14 EXTERN page 10-58 MEXIT page 10-7
1

ASSERT page 10-18 FIELD page 10-40 NOFP page 10-7
2

ATTR page 10-19 FRAME ADDRESS page 10-42 OPT page 10-7
3

CN page 10-20 FRAME POP page 10-43 PRESERVE8 see REQUIRE8 page 10-7
9

CODE16 page 10-17 FRAME PUSH page 10-44 PROC see FUNCTION page 10-5
3

COMMON page 10-21 FRAME REGISTER page 10-45 QN page 10-7
5

CP page 10-22 FRAME RESTORE page 10-46 RELOC page 10-7
7

DATA page 10-23 FRAME SAVE page 10-48 REQUIRE page 10-7
8

DCB page 10-24 FRAME STATE REMEMBER page 10-49 REQUIRE8 and PRESERVE8 page 10-7
9

DCD and DCDU page 10-25 FRAME STATE RESTORE page 10-50 RLIST page 10-8
1

DCDO page 10-26 FRAME UNWIND ON or OFF page 10-51 RN page 10-8
2

DCFD and DCFDU page 10-27 FUNCTION or PROC page 10-53 ROUT page 10-8
3

DCFS and DCFSU page 10-28 GBLA, GBLL, and GBLS page 10-55 SETA, SETL, and SETS page 10-8
4

DCI page 10-29 GET or INCLUDE page 10-57 SN page 10-7
5

DCO and DCOU page 10-30 GLOBAL see EXPORT page 10-37 SPACE or FILL page 10-8
6

DCQ and DCQU page 10-31 IF, ELSE, ENDIF, and ELIF page 10-61 SUBT page 10-8
7

ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-2
ID031214 Non-Confidential

Directives Reference
DCW and DCWU page 10-32 IMPORT page 10-58 THUMB page 10-1
7

DN page 10-75 INCBIN page 10-60 TTL page 10-8
7

ELIF, ELSE see IF page 10-61 INCLUDE see GET page 10-57 WHILE and WEND page 10-8
8

END page 10-33 INFO page 10-63 WN and XN page 10-8
9

ENDFUNC or ENDP page 10-34 KEEP page 10-64

ENDIF see IF page 10-61 LCLA, LCLL, and LCLS page 10-65

ENTRY page 10-35 LTORG page 10-66

Table 10-1 Location of directives (continued)

Directive See Directive See Directive See
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-3
ID031214 Non-Confidential

Directives Reference
10.2 Symbol definition directives
The following are symbol definition directives:

• GBLA, GBLL, and GBLS on page 10-55
Declare a global arithmetic, logical, or string variable.

• LCLA, LCLL, and LCLS on page 10-65
Declare a local arithmetic, logical, or string variable.

• SETA, SETL, and SETS on page 10-84
Set the value of an arithmetic, logical, or string variable.

• RELOC on page 10-77
Encode an ELF relocation in an object file.

• RN on page 10-82
Define a name for a specified AArch32 state register.

• WN and XN on page 10-89
Define a name for a specified AArch64 state register.

• RLIST on page 10-81
Define a name for a set of general-purpose AArch32 state registers.

• CN on page 10-20
Define a coprocessor register name.

• CP on page 10-22
Define a coprocessor name.

• QN, DN, and SN on page 10-75
Define a double-precision or single-precision floating-point register name.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-4
ID031214 Non-Confidential

Directives Reference
10.3 Data definition directives
The following directives allocate memory, define data structures, and set initial contents of
memory:

• LTORG on page 10-66
Set an origin for a literal pool.

• MAP on page 10-70
Set the origin of a storage map.

• FIELD on page 10-40
Define a field within a storage map.

• SPACE or FILL on page 10-86
Allocate a zeroed block of memory.

• DCB on page 10-24
Allocate bytes of memory, and specify the initial contents.

• DCD and DCDU on page 10-25
Allocate words of memory, and specify the initial contents.

• DCDO on page 10-26
Allocate words of memory, and specify the initial contents as offsets from the static base
register.

• DCFD and DCFDU on page 10-27
Allocate doublewords of memory, and specify the initial contents as double-precision
floating-point numbers.

• DCFS and DCFSU on page 10-28
Allocate words of memory, and specify the initial contents as single-precision
floating-point numbers.

• DCI on page 10-29
Allocate words of memory, and specify the initial contents. Mark the location as code not
data.

• DCQ and DCQU on page 10-31
Allocate doublewords of memory, and specify the initial contents.

• DCO and DCOU on page 10-30
Allocate quadwords of memory, and specify the initial contents.

• DCW and DCWU on page 10-32
Allocate halfwords of memory, and specify the initial contents.

• COMMON on page 10-21
Allocate a block of memory at a symbol, and specify the alignment.

• DATA on page 10-23
Mark data within a code section. Obsolete, for backwards compatibility only.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-5
ID031214 Non-Confidential

Directives Reference
10.4 About assembly control directives
The following directives control conditional assembly, looping, inclusions, and macros:
• MACRO and MEND.
• MEXIT.
• IF, ELSE, ENDIF, and ELIF.
• WHILE and WEND.

10.4.1 Nesting directives

The following structures can be nested to a total depth of 256:
• MACRO definitions.
• WHILE...WEND loops.
• IF...ELSE...ENDIF conditional structures.
• INCLUDE file inclusions.

The limit applies to all structures taken together, regardless of how they are nested. The limit is
not 256 of each type of structure.

10.4.2 See also

Reference
• MACRO and MEND on page 10-67.
• MEXIT on page 10-71.
• IF, ELSE, ENDIF, and ELIF on page 10-61.
• WHILE and WEND on page 10-88.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-6
ID031214 Non-Confidential

Directives Reference
10.5 About frame directives
Correct use of the frame directives:

• Enables the armlink --callgraph option to calculate stack usage of assembler functions.
The following are the rules that determine stack usage:
— If a function is not marked with PROC or ENDP, stack usage is unknown.
— If a function is marked with PROC or ENDP but with no FRAME PUSH or FRAME POP, stack

usage is assumed to be zero. This means that there is no requirement to manually
add FRAME PUSH 0 or FRAME POP 0.

— If a function is marked with PROC or ENDP and with FRAME PUSH n or FRAME POP n, stack
usage is assumed to be n bytes.

• Helps you to avoid errors in function construction, particularly when you are modifying
existing code.

• Enables the assembler to alert you to errors in function construction.

• Enables backtracing of function calls during debugging.

• Enables the debugger to profile assembler functions.

If you require profiling of assembler functions, but do not want frame description directives for
other purposes:

• You must use the FUNCTION and ENDFUNC, or PROC and ENDP, directives.

• You can omit the other FRAME directives.

• You only have to use the FUNCTION and ENDFUNC directives for the functions you want to
profile.

In DWARF, the canonical frame address is an address on the stack specifying where the call
frame of an interrupted function is located.

10.5.1 See also

Reference
• FRAME ADDRESS on page 10-42.
• FRAME POP on page 10-43.
• FRAME PUSH on page 10-44.
• FRAME REGISTER on page 10-45.
• FRAME RESTORE on page 10-46.
• FRAME RETURN ADDRESS on page 10-47.
• FRAME SAVE on page 10-48.
• FRAME STATE REMEMBER on page 10-49.
• FRAME STATE RESTORE on page 10-50.
• FRAME UNWIND ON on page 10-51.
• FRAME UNWIND OFF on page 10-52.
• FUNCTION or PROC on page 10-53.
• ENDFUNC or ENDP on page 10-34.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-7
ID031214 Non-Confidential

Directives Reference
10.6 Reporting directives
The following are reporting directives:

• ASSERT on page 10-18
Generates an error message if an assertion is false during assembly.

• INFO on page 10-63
Generates diagnostic information during assembly.

• OPT on page 10-73
Sets listing options.

• TTL and SUBT on page 10-87
Inserts titles and subtitles in listings.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-8
ID031214 Non-Confidential

Directives Reference
10.7 Instruction set and syntax selection directives
The following are the instruction set and syntax selection directives:
• ARM, THUMB, CODE16 and CODE32 on page 10-17.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-9
ID031214 Non-Confidential

Directives Reference
10.8 Miscellaneous directives
The following topics describe miscellaneous directives:
• ALIAS on page 10-11.
• ALIGN on page 10-12.
• AREA on page 10-14.
• ATTR on page 10-19.
• END on page 10-33.
• ENTRY on page 10-35.
• EQU on page 10-36.
• EXPORT or GLOBAL on page 10-37.
• EXPORTAS on page 10-39.
• GET or INCLUDE on page 10-57.
• IMPORT and EXTERN on page 10-58.
• INCBIN on page 10-60.
• KEEP on page 10-64.
• NOFP on page 10-72.
• REQUIRE on page 10-78.
• REQUIRE8 and PRESERVE8 on page 10-79.
• ROUT on page 10-83.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-10
ID031214 Non-Confidential

Directives Reference
10.9 ALIAS
The ALIAS directive creates an alias for a symbol.

10.9.1 Syntax

ALIAS name, aliasname

where:
name is the name of the symbol to create an alias for
aliasname is the name of the alias to be created.

10.9.2 Usage

The symbol name must already be defined in the source file before creating an alias for it.
Properties of name set by the EXPORT directive are not inherited by aliasname, so you must use
EXPORT on aliasname if you want to make the alias available outside the current source file. Apart
from the properties set by the EXPORT directive, name and aliasname are identical.

10.9.3 Example

baz
bar PROC

BX lr
ENDP
ALIAS bar,foo ; foo is an alias for bar
EXPORT bar
EXPORT foo ; foo and bar have identical properties

; because foo was created using ALIAS
EXPORT baz ; baz and bar are not identical

; because the size field of baz is not set

10.9.4 Incorrect example

EXPORT bar
IMPORT car
ALIAS bar,foo ; ERROR - bar is not defined yet
ALIAS car,boo ; ERROR - car is external

bar PROC
BX lr
ENDP

10.9.5 See also

Reference
• Data definition directives on page 10-5.
• EXPORT or GLOBAL on page 10-37.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-11
ID031214 Non-Confidential

Directives Reference
10.10 ALIGN
The ALIGN directive aligns the current location to a specified boundary by padding with zeros or
NOP instructions.

10.10.1 Syntax

ALIGN {expr{,offset{,pad{,padsize}}}}

where:
expr is a numeric expression evaluating to any power of 2 from 20 to 231

offset can be any numeric expression
pad can be any numeric expression
padsize can be 1, 2 or 4.

10.10.2 Operation

The current location is aligned to the next lowest address of the form:

offset + n * expr

n is any integer which the assembler selects to minimise padding.

If expr is not specified, ALIGN sets the current location to the next word (four byte) boundary. The
unused space between the previous and the new current location are filled with:

• Copies of pad, if pad is specified.

• NOP instructions, if all the following conditions are satisfied:
— pad is not specified.
— The ALIGN directive follows A32 or T32 instructions.
— The current section has the CODEALIGN attribute set on the AREA directive.

• Zeros otherwise.

pad is treated as a byte, halfword, or word, according to the value of padsize. If padsize is not
specified, pad defaults to bytes in data sections, halfwords in T32 code, or words in A32 code.

10.10.3 Usage

Use ALIGN to ensure that your data and code is aligned to appropriate boundaries. This is
typically required in the following circumstances:

• The ADR T32 pseudo-instruction can only load addresses that are word aligned, but a label
within T32 code might not be word aligned. Use ALIGN 4 to ensure four-byte alignment of
an address within T32 code.

• Use ALIGN to take advantage of caches on some ARM processors. For example, the
ARM940T has a cache with 16-byte lines. Use ALIGN 16 to align function entries on
16-byte boundaries and maximize the efficiency of the cache.

• A label on a line by itself can be arbitrarily aligned. Following A32 code is word-aligned
(T32 code is halfword aligned). The label therefore does not address the code correctly.
Use ALIGN 4 (or ALIGN 2 for T32) before the label.

Alignment is relative to the start of the ELF section where the routine is located. The section
must be aligned to the same, or coarser, boundaries. The ALIGN attribute on the AREA directive is
specified differently.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-12
ID031214 Non-Confidential

Directives Reference
10.10.4 Examples

 AREA cacheable, CODE, ALIGN=3
rout1 ; code ; aligned on 8-byte boundary
 ; code
 MOV pc,lr ; aligned only on 4-byte boundary
 ALIGN 8 ; now aligned on 8-byte boundary
rout2 ; code

In the following example, the ALIGN directive tells the assembler that the next instruction is word
aligned and offset by 3 bytes. The 3 byte offset is counted from the previous word aligned
address, resulting in the second DCB placed in the last byte of the same word and 2 bytes of
padding are to be added.

AREA OffsetExample, CODE
 DCB 1 ; This example places the two bytes in the first
 ALIGN 4,3 ; and fourth bytes of the same word.
 DCB 1 ; The second DCB is offset by 3 bytes from the first DCB

In the following example, the ALIGN directive tells the assembler that the next instruction is word
aligned and offset by 2 bytes. Here, the 2 byte offset is counted from the next word aligned
address, so the value n is set to 1 (n=0 clashes with the third DCB). This time three bytes of
padding are to be added.

AREA OffsetExample1, CODE
DCB 1 ; In this example, n cannot be 0 because it clashes with
DCB 1 ; the 3rd DCB. The assembler sets n to 1.
DCB 1
ALIGN 4,2 ; The next instruction is word aligned and offset by 2.
DCB 2

In the following example, the DCB directive makes the PC misaligned. The ALIGN directive
ensures that the label subroutine1 and the following instruction are word aligned.

 AREA Example, CODE, READONLY
start LDR r6,=label1
 ; code
 MOV pc,lr
label1 DCB 1 ; PC now misaligned
 ALIGN ; ensures that subroutine1 addresses
subroutine1 ; the following instruction.
 MOV r5,#0x5

10.10.5 See also

Reference
• Data definition directives on page 10-5.
• AREA on page 10-14.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-13
ID031214 Non-Confidential

Directives Reference
10.11 AREA
The AREA directive instructs the assembler to assemble a new code or data section. Sections are
independent, named, indivisible chunks of code or data that are manipulated by the linker.

10.11.1 Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname is the name to give to the section.
You can choose any name for your sections. However, names starting with
a non-alphabetic character must be enclosed in bars or a missing section
name error is generated. For example, |1_DataArea|.
Certain names are conventional. For example, |.text| is used for code
sections produced by the C compiler, or for code sections otherwise
associated with the C library.

attr are one or more comma-delimited section attributes. Valid attributes are:
ALIGN=expression

By default, ELF sections are aligned on a four-byte boundary.
expression can have any integer value from 0 to 31. The section
is aligned on a 2expression-byte boundary. For example, if
expression is 10, the section is aligned on a 1KB boundary.
This is not the same as the way that the ALIGN directive is
specified.

Note
 • Do not use ALIGN=0 or ALIGN=1 for A32 code sections.

• Do not use ALIGN=0 for T32 code sections.

ASSOC=section

section specifies an associated ELF section. sectionname must
be included in any link that includes section

CODE Contains machine instructions. READONLY is the default.
CODEALIGN

Causes the assembler to insert NOP instructions when the ALIGN
directive is used after A32 or T32 instructions within the
section, unless the ALIGN directive specifies a different padding.

COMDEF Is a common section definition. This ELF section can contain
code or data. It must be identical to any other section of the
same name in other source files.
Identical ELF sections with the same name are overlaid in the
same section of memory by the linker. If any are different, the
linker generates a warning and does not overlay the sections.

COMGROUP=symbol_name

Is the signature that makes the AREA part of the named ELF
section group. See the GROUP=symbol_name for more information.
The COMGROUP attribute marks the ELF section group with the
GRP_COMDAT flag.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-14
ID031214 Non-Confidential

Directives Reference
COMMON Is a common data section. You must not define any code or data
in it. It is initialized to zeros by the linker. All common sections
with the same name are overlaid in the same section of memory
by the linker. They do not all have to be the same size. The
linker allocates as much space as is required by the largest
common section of each name.

DATA Contains data, not instructions. READWRITE is the default.
FINI_ARRAY

Sets the ELF type of the current area to SHT_FINI_ARRAY.
GROUP=symbol_name

Is the signature that makes the AREA part of the named ELF
section group. It must be defined by the source file, or a file
included by the source file. All AREAS with the same symbol_name
signature are part of the same group. Sections within a group
are kept or discarded together.

INIT_ARRAY

Sets the ELF type of the current area to SHT_INIT_ARRAY.
LINKORDER=section

Specifies a relative location for the current section in the image.
It ensures that the order of all the sections with the LINKORDER
attribute, with respect to each other, is the same as the order of
the corresponding named sections in the image.

MERGE=n Indicates that the linker can merge the current section with
other sections with the MERGE=n attribute. n is the size of the
elements in the section, for example n is 1 for characters. You
must not assume that the section is merged, because the
attribute does not force the linker to merge the sections.

NOALLOC Indicates that no memory on the target system is allocated to
this area.

NOINIT Indicates that the data section is uninitialized, or initialized to
zero. It contains only space reservation directives SPACE or DCB,
DCD, DCDU, DCQ, DCQU, DCO, DCOU, DCW, or DCWU with initialized values
of zero. You can decide at link time whether an area is
uninitialized or zero initialized.

PREINIT_ARRAY

Sets the ELF type of the current area to SHT_PREINIT_ARRAY.
READONLY Indicates that this section must not be written to. This is the

default for Code areas.
READWRITE Indicates that this section can be read from and written to. This

is the default for Data areas.
SECFLAGS=n

Adds one or more ELF flags, denoted by n, to the current
section.

SECTYPE=n

Sets the ELF type of the current section to n.
STRINGS Adds the SHF_STRINGS flag to the current section. To use the

STRINGS attribute, you must also use the MERGE=1 attribute. The
contents of the section must be strings that are nul-terminated
using the DCB directive.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-15
ID031214 Non-Confidential

Directives Reference
10.11.2 Usage

Use the AREA directive to subdivide your source file into ELF sections. You can use the same
name in more than one AREA directive. All areas with the same name are placed in the same ELF
section. Only the attributes of the first AREA directive of a particular name are applied.

In general, ARM recommends that you use separate ELF sections for code and data. However,
you can put data in code sections. Large programs can usually be conveniently divided into
several code sections. Large independent data sets are also usually best placed in separate
sections.

The scope of numeric local labels is defined by AREA directives, optionally subdivided by ROUT
directives.

There must be at least one AREA directive for an assembly.

Note
 The assembler emits R_ARM_TARGET1 relocations for the DCD and DCDU directives if the directive
uses PC-relative expressions and is in any of the PREINIT_ARRAY, FINI_ARRAY, or INIT_ARRAY ELF
sections. You can override the relocation using the RELOC directive after each DCD or DCDU
directive. If this relocation is used, read-write sections might become read-only sections at link
time if the platform ABI permits this.

10.11.3 Example

The following example defines a read-only code section named Example.

 AREA Example,CODE,READONLY ; An example code section.
 ; code

10.11.4 See also

Concepts
armasm User Guide:
• ELF sections and the AREA directive on page 6-5.

Concepts
armlink User Guide:
• Chapter 4 Image structure and generation.

Reference
• ALIGN on page 10-12.
• RELOC on page 10-77.
• DCD and DCDU on page 10-25.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-16
ID031214 Non-Confidential

Directives Reference
10.12 ARM, THUMB, CODE16 and CODE32
The ARM directive and the CODE32 directive are synonyms. They instruct the assembler to interpret
subsequent instructions as A32 instructions, using either the UAL or the pre-UAL ARM
assembler language syntax.

The THUMB directive instructs the assembler to interpret subsequent instructions as T32
instructions, using the UAL syntax.

The CODE16 directive instructs the assembler to interpret subsequent instructions as T32
instructions, using the pre-UAL assembly language syntax.

If necessary, these directives also insert up to three bytes of padding to align to the next word
boundary for A32, or up to one byte of padding to align to the next halfword boundary for T32.

Note
 These directives are not supported in AArch64 state.

10.12.1 Syntax

ARM
THUMB
CODE16
CODE32

10.12.2 Usage

In files that contain code using different instruction sets:
• ARM must precede any A32 code. CODE32 is a synonym for ARM.
• THUMB must precede T32 code written in UAL syntax.
• CODE16 must precede T32 code written in pre-UAL syntax.

These directives do not assemble to any instructions. They also do not change the state. They
only instruct the assembler to assemble A32 or T32 instructions as appropriate, and insert
padding if necessary.

10.12.3 Example

This example shows how you can use ARM and THUMB directives to switch state and assemble both
A32 and T32 instructions in a single area.

 AREA ToT32, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 ARM ; Subsequent instructions are A32
start
 ADR r0, into_t32 + 1 ; Processor starts in A32 state
 BX r0 ; Inline switch to T32 state
 THUMB ; Subsequent instructions are T32
into_t32
 MOVS r0, #10 ; New-style T32 instructions
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-17
ID031214 Non-Confidential

Directives Reference
10.13 ASSERT
The ASSERT directive generates an error message during assembly if a given assertion is false.

10.13.1 Syntax

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

10.13.2 Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

10.13.3 Example

 ASSERT label1 <= label2 ; Tests if the address
 ; represented by label1
 ; is <= the address
 ; represented by label2.

10.13.4 See also

Reference
• INFO on page 10-63.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-18
ID031214 Non-Confidential

Directives Reference
10.14 ATTR
The ATTR set directives set values for the ABI build attributes.

The ATTR scope directives specify the scope for which the set value applies to.

10.14.1 Syntax

ATTR FILESCOPE

ATTR SCOPE name

ATTR settype tagid, value

where:

name is a section name or symbol name.

settype can be any of:
• SETVALUE.
• SETSTRING.
• SETCOMPATIBLEWITHVALUE.
• SETCOMPATIBLEWITHSTRING.

tagid is an attribute tag name (or its numerical value) defined in the ABI for the ARM
Architecture.

value depends on settype:
• Is a 32-bit integer value when settype is SETVALUE or

SETCOMPATIBLEWITHVALUE.
• Is a nul-terminated string when settype is SETSTRING or

SETCOMPATIBLEWITHSTRING.

10.14.2 Usage

The ATTR set directives following the ATTR FILESCOPE directive apply to the entire object file. The
ATTR set directives following the ATTR SCOPE name directive apply only to the named section or
symbol.

For tags that expect an integer, you must use SETVALUE or SETCOMPATIBLEWITHVALUE. For tags that
expect a string, you must use SETSTRING or SETCOMPATIBLEWITHSTRING.

Use SETCOMPATIBLEWITHVALUE and SETCOMPATIBLEWITHSTRING to set tag values which the object file
is also compatible with.

10.14.3 Examples

ATTR SETSTRING Tag_CPU_raw_name, "Cortex-A8"
ATTR SETVALUE Tag_VFP_arch, 3 ; VFPv3 instructions were permitted.
ATTR SETVALUE 10, 3 ; 10 is the numerical value of

; Tag_VFP_arch.

10.14.4 See also

Reference
• Addenda to, and Errata in, the ABI for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045-/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-19
ID031214 Non-Confidential

Directives Reference
10.15 CN
The CN directive defines a name for a coprocessor register.

10.15.1 Syntax

name CN expr

where:

name is the name to be defined for the coprocessor register. name cannot be the same as
any of the predefined names.

expr evaluates to a coprocessor register number from 0 to 15.

10.15.2 Usage

Use CN to allocate convenient names to registers, to help you remember what you use each
register for.

Note
 Avoid conflicting uses of the same register under different names.

The names c0 to c15 are predefined.

10.15.3 Example

power CN 6 ; defines power as a symbol for
 ; coprocessor register 6

10.15.4 See also

Reference
armasm User Guide:
• Predeclared core register names in AArch32 state on page 4-8.
• Predeclared extension register names in AArch32 state on page 4-9.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-20
ID031214 Non-Confidential

Directives Reference
10.16 COMMON
The COMMON directive allocates a block of memory, of the defined size, at the specified symbol.
You specify how the memory is aligned. If alignment is omitted, the default alignment is 4. If
size is omitted, the default size is 0.

You can access this memory as you would any other memory, but no space is allocated in object
files.

10.16.1 Syntax

COMMON symbol{,size{,alignment}} {[attr]}

where:

symbol is the symbol name. The symbol name is case-sensitive.

size is the number of bytes to reserve.

alignment is the alignment.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

10.16.2 Usage

The linker allocates the required space as zero initialized memory during the link stage. You
cannot define, IMPORT or EXTERN a symbol that has already been created by the COMMON directive.
In the same way, if a symbol has already been defined or used with the IMPORT or EXTERN
directive, you cannot use the same symbol for the COMMON directive.

10.16.3 Example

LDR r0, =xyz
COMMON xyz,255,4 ; defines 255 bytes of ZI store, word-aligned

10.16.4 Incorrect examples

COMMON foo,4,4
COMMON bar,4,4

foo DCD 0 ; cannot define label with same name as COMMON
IMPORT bar ; cannot import label with same name as COMMON
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-21
ID031214 Non-Confidential

Directives Reference
10.17 CP
The CP directive defines a name for a specified coprocessor. The coprocessor number must be
within the range 0 to 15.

10.17.1 Syntax

name CP expr

where:

name is the name to be assigned to the coprocessor. name cannot be the same as any of
the predefined names.

expr evaluates to a coprocessor number from 0 to 15.

10.17.2 Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you use
each one for.

Note
 Avoid conflicting uses of the same coprocessor under different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

10.17.3 Example

dmu CP 6 ; defines dmu as a symbol for
 ; coprocessor 6

10.17.4 See also

Reference
armasm User Guide:
• Predeclared core register names in AArch32 state on page 4-8.
• Predeclared extension register names in AArch32 state on page 4-9.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-22
ID031214 Non-Confidential

Directives Reference
10.18 DATA
The DATA directive is no longer required. It is ignored by the assembler.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-23
ID031214 Non-Confidential

Directives Reference
10.19 DCB
The DCB directive allocates one or more bytes of memory, and defines the initial runtime contents
of the memory. = is a synonym for DCB.

10.19.1 Syntax

{label} DCB expr{,expr}...

where:

expr is either:
• A numeric expression that evaluates to an integer in the range –128 to 255.
• A quoted string. The characters of the string are loaded into consecutive

bytes of store.

10.19.2 Usage

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction is
aligned.

10.19.3 Example

Unlike C strings, armasm strings are not nul-terminated. You can construct a nul-terminated C
string using DCB as follows:

C_string DCB "C_string",0

10.19.4 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.

Reference
• DCD and DCDU on page 10-25.
• DCQ and DCQU on page 10-31.
• DCW and DCWU on page 10-32.
• SPACE or FILL on page 10-86.
• ALIGN on page 10-12.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-24
ID031214 Non-Confidential

Directives Reference
10.20 DCD and DCDU
The DCD directive allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory.

& is a synonym for DCD.

DCDU is the same, except that the memory alignment is arbitrary.

10.20.1 Syntax

{label} DCD{U} expr{,expr}

where:

expr is either:
• A numeric expression.
• A PC-relative expression.

10.20.2 Usage

DCD inserts up to three bytes of padding before the first defined word, if necessary, to achieve
four-byte alignment.

Use DCDU if you do not require alignment.

10.20.3 Examples

data1 DCD 1,5,20 ; Defines 3 words containing
 ; decimal values 1, 5, and 20
data2 DCD mem06 + 4 ; Defines 1 word containing 4 +
 ; the address of the label mem06
 AREA MyData, DATA, READWRITE
 DCB 255 ; Now misaligned ...
data3 DCDU 1,5,20 ; Defines 3 words containing
 ; 1, 5 and 20, not word aligned

10.20.4 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.

Reference
• DCB on page 10-24.
• DCI on page 10-29.
• DCW and DCWU on page 10-32.
• DCQ and DCQU on page 10-31.
• SPACE or FILL on page 10-86.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-25
ID031214 Non-Confidential

Directives Reference
10.21 DCDO
The DCDO directive allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory as an offset from the static base register, sb
(R9).

10.21.1 Syntax

{label} DCDO expr{,expr}...

where:

expr is a register-relative expression or label. The base register must be sb.

10.21.2 Usage

Use DCDO to allocate space in memory for static base register relative relocatable addresses.

10.21.3 Example

 IMPORT externsym
 DCDO externsym ; 32-bit word relocated by offset of
 ; externsym from base of SB section.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-26
ID031214 Non-Confidential

Directives Reference
10.22 DCFD and DCFDU
The DCFD directive allocates memory for word-aligned double-precision floating-point numbers,
and defines the initial runtime contents of the memory. Double-precision numbers occupy two
words and must be word aligned to be used in arithmetic operations.

DCFDU is the same, except that the memory alignment is arbitrary.

10.22.1 Syntax

{label} DCFD{U} fpliteral{,fpliteral}...

where:

fpliteral is a double-precision floating-point literal.

10.22.2 Usage

The assembler inserts up to three bytes of padding before the first defined number, if necessary,
to achieve four-byte alignment.

Use DCFDU if you do not require alignment.

The word order used when converting fpliteral to internal form is controlled by the
floating-point architecture selected. You cannot use DCFD or DCFDU if you select the --fpu none
option.

The range for double-precision numbers is:
• Maximum 1.79769313486231571e+308.
• Minimum 2.22507385850720138e–308.

10.22.3 Examples

 DCFD 1E308,-4E-100
 DCFDU 10000,-.1,3.1E26

10.22.4 See also

Concepts
armasm User Guide:
• Floating-point literals on page 10-18.

Reference
• DCFS and DCFSU on page 10-28.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-27
ID031214 Non-Confidential

Directives Reference
10.23 DCFS and DCFSU
The DCFS directive allocates memory for word-aligned single-precision floating-point numbers,
and defines the initial runtime contents of the memory. Single-precision numbers occupy one
word and must be word aligned to be used in arithmetic operations.

DCFSU is the same, except that the memory alignment is arbitrary.

10.23.1 Syntax

{label} DCFS{U} fpliteral{,fpliteral}...

where:

fpliteral is a single-precision floating-point literal.

10.23.2 Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary to achieve
four-byte alignment.

Use DCFSU if you do not require alignment.

The range for single-precision values is:
• Maximum 3.40282347e+38.
• Minimum 1.17549435e–38.

10.23.3 Examples

 DCFS 1E3,-4E-9
 DCFSU 1.0,-.1,3.1E6

10.23.4 See also

Concepts
armasm User Guide:
• Floating-point literals on page 10-18.

Reference
• DCFD and DCFDU on page 10-27.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-28
ID031214 Non-Confidential

Directives Reference
10.24 DCI
In A32 code, the DCI directive allocates one or more words of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

In T32 code, the DCI directive allocates one or more halfwords of memory, aligned on two-byte
boundaries, and defines the initial runtime contents of the memory.

10.24.1 Syntax

{label} DCI{.W} expr{,expr}

where:

expr is a numeric expression.

.W if present, indicates that four bytes must be inserted in T32 code.

10.24.2 Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as code instead
of data. Use DCI when writing macros for new instructions not supported by the version of the
assembler you are using.

In A32 code, DCI inserts up to three bytes of padding before the first defined word, if necessary,
to achieve four-byte alignment. In T32 code, DCI inserts an initial byte of padding, if necessary,
to achieve two-byte alignment.

You can use DCI to insert a bit pattern into the instruction stream. For example, use:

DCI 0x46c0

to insert the T32 operation MOV r8,r8.

10.24.3 Example macro

 MACRO ; this macro translates newinstr Rd,Rm
 ; to the appropriate machine code
 newinst $Rd,$Rm
 DCI 0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
 MEND

10.24.4 32-bit T32 example

 DCI.W 0xf3af8000 ; inserts 32-bit NOP, 2-byte aligned.

10.24.5 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.

Reference
• DCD and DCDU on page 10-25.
• DCW and DCWU on page 10-32.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-29
ID031214 Non-Confidential

Directives Reference
10.25 DCO and DCOU
The DCO directive allocates one or more sixteen-byte blocks of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

DCOU is the same, except that the memory alignment is arbitrary.

10.25.1 Syntax

{label} DCO{U} {-}literal{,{-}literal}...

where:

literal is a 128-bit numeric literal.

The range of numbers permitted is 0 to 2128–1.
In addition to the characters normally permitted in a numeric literal, you can
prefix literal with a minus sign. In this case, the range of numbers permitted is
–2127 to –1.

The result of specifying -n is the same as the result of specifying 2128–n.

10.25.2 Usage

DCO inserts up to three bytes of padding before the first defined eight-byte block, if necessary, to
achieve four-byte alignment.

Use DCOU if you do not require alignment.

10.25.3 See also

Concepts
armasm User Guide:
• Numeric literals on page 10-17.

Reference
• DCB on page 10-24.
• DCD and DCDU on page 10-25.
• DCW and DCWU on page 10-32.
• DCO and DCOU.
• SPACE or FILL on page 10-86.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-30
ID031214 Non-Confidential

Directives Reference
10.26 DCQ and DCQU
The DCQ directive allocates one or more eight-byte blocks of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

DCQU is the same, except that the memory alignment is arbitrary.

10.26.1 Syntax

{label} DCQ{U} {-}literal{,{-}literal}...

{label} DCQ{U} expression

where:

literal is a 64-bit numeric literal.

The range of numbers permitted is 0 to 264–1.
In addition to the characters normally permitted in a numeric literal, you can
prefix literal with a minus sign. In this case, the range of numbers permitted is
–263 to –1.

The result of specifying -n is the same as the result of specifying 264–n.

expression is a numeric expression that evaluates to a 64-bit integer.

10.26.2 Usage

DCQ inserts up to three bytes of padding before the first defined eight-byte block, if necessary, to
achieve four-byte alignment.

Use DCQU if you do not require alignment.

10.26.3 Example

 AREA MiscData, DATA, READWRITE
data DCQ -225,2_101 ; 2_101 means binary 101.

10.26.4 Incorrect example

number EQU 2
 DCQU number ; DCQ and DCQU only accept literals not expressions.

10.26.5 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.
• Numeric literals on page 10-17.

Reference
• DCB on page 10-24.
• DCD and DCDU on page 10-25.
• DCW and DCWU on page 10-32.
• DCO and DCOU on page 10-30.
• SPACE or FILL on page 10-86.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-31
ID031214 Non-Confidential

Directives Reference
10.27 DCW and DCWU
The DCW directive allocates one or more halfwords of memory, aligned on two-byte boundaries,
and defines the initial runtime contents of the memory.

DCWU is the same, except that the memory alignment is arbitrary.

10.27.1 Syntax

{label} DCW{U} expr{,expr}...

where:

expr is a numeric expression that evaluates to an integer in the range –32768 to 65535.

10.27.2 Usage

DCW inserts a byte of padding before the first defined halfword if necessary to achieve two-byte
alignment.

Use DCWU if you do not require alignment.

10.27.3 Examples

data DCW -225,2*number ; number must already be defined
 DCWU number+4

10.27.4 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.

Reference
• DCB on page 10-24.
• DCD and DCDU on page 10-25.
• DCQ and DCQU on page 10-31.
• SPACE or FILL on page 10-86.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-32
ID031214 Non-Confidential

Directives Reference
10.28 END
The END directive informs the assembler that it has reached the end of a source file.

10.28.1 Syntax

END

10.28.2 Usage

Every ARM assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler returns to
the parent file and continues assembly at the first line following the GET directive.

If END is reached in the top-level source file during the first pass without any errors, the second
pass begins.

If END is reached in the top-level source file during the second pass, the assembler finishes the
assembly and writes the appropriate output.

10.28.3 See also

Reference
• GET or INCLUDE on page 10-57.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-33
ID031214 Non-Confidential

Directives Reference
10.29 ENDFUNC or ENDP
The ENDFUNC directive marks the end of an AAPCS-conforming function. ENDP is a synonym for
ENDFUNC.

10.29.1 See also

Reference
• FUNCTION or PROC on page 10-53.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-34
ID031214 Non-Confidential

Directives Reference
10.30 ENTRY
The ENTRY directive declares an entry point to a program.

10.30.1 Syntax

ENTRY

10.30.2 Usage

A program must have an entry point. You can specify an entry point in the following ways:
• Using the ENTRY directive in assembly language source code.
• Providing a main() function in C or C++ source code.
• Using the armlink --entry command line option.

You can declare more than one entry point in a program, although a source file cannot contain
more than one ENTRY directive. For example, a program could contain multiple assembly
language source files, each with an ENTRY directive. Or it could contain a C or C++ file with a
main() function and one or more assembly source files with an ENTRY directive.

If the program contains multiple entry points, then you must select one of them. You do this by
exporting the symbol for the ENTRY directive that you want to use as the entry point, then using
the armlink --entry option to select the exported symbol.

10.30.3 Example

 AREA ARMex, CODE, READONLY
 ENTRY ; Entry point for the application

EXPORT ep1 ; Export the symbol so the linker can find it in the object file
ep1

; code

END

When you invoke armlink, if other entry points are declared in the program, then you must
specify --entry=ep1, to select ep1.

10.30.4 See also

Concepts
• Image entry points on page 4-16 in armlink User Guide.

Reference
• --entry on page 2-46 in armlink Reference Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-35
ID031214 Non-Confidential

Directives Reference
10.31 EQU
The EQU directive gives a symbolic name to a numeric constant, a register-relative value or a
PC-relative value. * is a synonym for EQU.

10.31.1 Syntax

name EQU expr{, type}

where:

name is the symbolic name to assign to the value.

expr is a register-relative address, a PC-relative address, an absolute address, or a
32-bit or 64-bit integer constant in A32/T32 or A64 code respectively.

type is optional. type can be any one of:
• ARM.
• THUMB.
• CODE32.
• CODE16.
• DATA.
You can use type only if expr is an absolute address. If name is exported, the name
entry in the symbol table in the object file is marked as ARM, THUMB, CODE32, CODE16,
or DATA, according to type. This can be used by the linker.

10.31.2 Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in C.

10.31.3 Examples

abc EQU 2 ; assigns the value 2 to the symbol abc.
xyz EQU label+8 ; assigns the address (label+8) to the
 ; symbol xyz.
fiq EQU 0x1C, CODE32 ; assigns the absolute address 0x1C to
 ; the symbol fiq, and marks it as code

10.31.4 See also

Reference
• KEEP on page 10-64.
• EXPORT or GLOBAL on page 10-37.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-36
ID031214 Non-Confidential

Directives Reference
10.32 EXPORT or GLOBAL
The EXPORT directive declares a symbol that can be used by the linker to resolve symbol
references in separate object and library files. GLOBAL is a synonym for EXPORT.

10.32.1 Syntax

EXPORT {[WEAK]}

EXPORT symbol {[SIZE=n]}

EXPORT symbol {[type{,set}]}

EXPORT symbol [attr{,type{,set}}{,SIZE=n}]

EXPORT symbol [WEAK{,attr}{,type{,set}}{,SIZE=n}]

where:

symbol is the symbol name to export. The symbol name is case-sensitive. If symbol is
omitted, all symbols are exported.

WEAK symbol is only imported into other sources if no other source exports an alternative
symbol. If [WEAK] is used without symbol, all exported symbols are weak.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

type specifies the symbol type:
DATA symbol is treated as data when the source is assembled and linked.
CODE symbol is treated as code when the source is assembled and linked.
ELFTYPE=n symbol is treated as a particular ELF symbol, as specified by the value

of n, where n can be any number from 0 to 15.
If unspecified, the assembler determines the most appropriate type. Usually the
assembler determines the correct type so there is no need to specify the type.

set specifies the instruction set:
ARM symbol is treated as an A32 symbol.
THUMB symbol is treated as a T32 symbol.
If unspecified, the assembler determines the most appropriate set.

n specifies the size and can be any 32-bit value. If the SIZE attribute is not specified,
the assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until

its ENDP or ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same

source line. If there is no instruction or data, the size is zero.

10.32.2 Usage

Use EXPORT to give code in other files access to symbols in the current file.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-37
ID031214 Non-Confidential

Directives Reference
Use the [WEAK] attribute to inform the linker that a different instance of symbol takes precedence
over this one, if a different one is available from another source. You can use the [WEAK] attribute
with any of the symbol visibility attributes.

10.32.3 Example

 AREA Example,CODE,READONLY
 EXPORT DoAdd ; Export the function name
 ; to be used by external
 ; modules.
DoAdd ADD r0,r0,r1

Symbol visibility can be overridden for duplicate exports. In the following example, the last
EXPORT takes precedence for both binding and visibility:

 EXPORT SymA[WEAK] ; Export as weak-hidden
 EXPORT SymA[DYNAMIC] ; SymA becomes non-weak dynamic.

The following examples show the use of the SIZE attribute:

EXPORT symA [SIZE=4]
EXPORT symA [DATA, SIZE=4]

10.32.4 See also

Reference
• IMPORT and EXTERN on page 10-58.
• ELF for the ARM Architecture ABI

http://infocenter/help/topic/com.arm.doc.ihi0044-/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-38
ID031214 Non-Confidential

Directives Reference
10.33 EXPORTAS
The EXPORTAS directive enables you to export a symbol to the object file, corresponding to a
different symbol in the source file.

10.33.1 Syntax

EXPORTAS symbol1, symbol2

where:

symbol1 is the symbol name in the source file. symbol1 must have been defined already. It
can be any symbol, including an area name, a label, or a constant.

symbol2 is the symbol name you want to appear in the object file.

The symbol names are case-sensitive.

10.33.2 Usage

Use EXPORTAS to change a symbol in the object file without having to change every instance in
the source file.

10.33.3 Examples

 AREA data1, DATA ; starts a new area data1
 AREA data2, DATA ; starts a new area data2
 EXPORTAS data2, data1 ; the section symbol referred to as data2

 ; appears in the object file string table as data1.
one EQU 2
 EXPORTAS one, two
 EXPORT one ; the symbol 'two' appears in the object

; file's symbol table with the value 2.

10.33.4 See also

Reference
• EXPORT or GLOBAL on page 10-37.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-39
ID031214 Non-Confidential

Directives Reference
10.34 FIELD
The FIELD directive describes space within a storage map that has been defined using the MAP
directive. # is a synonym for FIELD.

Note
 This directive is not supported in A64 code in this release.

10.34.1 Syntax

{label} FIELD expr

where:

label is an optional label. If specified, label is assigned the value of the storage location
counter, {VAR}. The storage location counter is then incremented by the value of
expr.

expr is an expression that evaluates to the number of bytes to increment the storage
counter.

10.34.2 Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register is implicit
in all labels defined by following FIELD directives, until the next MAP directive. These
register-relative labels can be quoted in load and store instructions.

10.34.3 Examples

The following example shows how register-relative labels are defined using the MAP and FIELD
directives.

 MAP 0,r9 ; set {VAR} to the address stored in R9
 FIELD 4 ; increment {VAR} by 4 bytes
Lab FIELD 4 ; set Lab to the address [R9 + 4]
 ; and then increment {VAR} by 4 bytes
 LDR r0,Lab ; equivalent to LDR r0,[r9,#4]

When using the MAP and FIELD directives, you must ensure that the values are consistent in both
passes. The following example shows a use of MAP and FIELD that cause inconsistent values for
the symbol x. In the first pass sym is not defined, so x is at 0x04+R9. In the second pass, sym is
defined, so x is at 0x00+R0. This example results in an assembly error.

MAP 0, r0
if :LNOT: :DEF: sym
MAP 0, r9
FIELD 4 ; x is at 0x04+R9 in first pass

ENDIF
x FIELD 4 ; x is at 0x00+R0 in second pass
sym LDR r0, x ; inconsistent values for x results in assembly error

10.34.4 See also

Concepts
• How the assembler works on page 2-4 in armasm User Guide.
• Directives that can be omitted in pass 2 of the assembler on page 2-6 in armasm User

Guide.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-40
ID031214 Non-Confidential

Directives Reference
Reference
• MAP on page 10-70.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-41
ID031214 Non-Confidential

Directives Reference
10.35 FRAME ADDRESS
The FRAME ADDRESS directive describes how to calculate the canonical frame address for
following instructions. You can only use it in functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

10.35.1 Syntax

FRAME ADDRESS reg[,offset]

where:

reg is the register on which the canonical frame address is to be based. This is SP
unless the function uses a separate frame pointer.

offset is the offset of the canonical frame address from reg. If offset is zero, you can
omit it.

10.35.2 Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is based on, or
if it changes the offset of the canonical frame address from the register. You must use FRAME
ADDRESS immediately after the instruction that changes the calculation of the canonical frame
address.

Note
 • If your code uses a single instruction to save registers and alter the stack pointer, you can

use FRAME PUSH instead of using both FRAME ADDRESS and FRAME SAVE.

• If your code uses a single instruction to load registers and alter the stack pointer, you can
use FRAME POP instead of using both FRAME ADDRESS and FRAME RESTORE.

10.35.3 Example

_fn FUNCTION ; CFA (Canonical Frame Address) is value
 ; of SP on entry to function
 PUSH {r4,fp,ip,lr,pc}
 FRAME PUSH {r4,fp,ip,lr,pc}
 SUB sp,sp,#4 ; CFA offset now changed
 FRAME ADDRESS sp,24 ; - so we correct it
 ADD fp,sp,#20
 FRAME ADDRESS fp,4 ; New base register
 ; code using fp to base call-frame on, instead of SP

10.35.4 See also

Reference
• FRAME POP on page 10-43.
• FRAME PUSH on page 10-44.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-42
ID031214 Non-Confidential

Directives Reference
10.36 FRAME POP
Use the FRAME POP directive to inform the assembler when the callee reloads registers. You can
only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

You do not have to do this after the last instruction in a function.

10.36.1 Syntax

There are the following alternative syntaxes for FRAME POP:

FRAME POP {reglist}

FRAME POP {reglist},n

FRAME POP n

where:

reglist is a list of registers restored to the values they had on entry to the function. There
must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

10.36.2 Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You can use it when a
single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame
address from {reglist}. It assumes that:

• Each ARM register popped occupies four bytes on the stack.

• Each floating-point single-precision register popped occupies four bytes on the stack, plus
an extra four-byte word for each list.

• Each floating-point double-precision register popped occupies eight bytes on the stack,
plus an extra four-byte word for each list.

10.36.3 See also

Reference
• FRAME ADDRESS on page 10-42.
• FRAME RESTORE on page 10-46.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-43
ID031214 Non-Confidential

Directives Reference
10.37 FRAME PUSH
Use the FRAME PUSH directive to inform the assembler when the callee saves registers, normally
at function entry. You can only use it within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

10.37.1 Syntax

There are two alternative syntaxes for FRAME PUSH:

FRAME PUSH {reglist}

FRAME PUSH {reglist},n

FRAME PUSH n

where:

reglist is a list of registers stored consecutively below the canonical frame address. There
must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

10.37.2 Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You can use it when a
single instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame
address from {reglist}. It assumes that:

• Each ARM register pushed occupies four bytes on the stack.

• Each floating-point single-precision register pushed occupies four bytes on the stack, plus
an extra four-byte word for each list.

• Each floating-point double-precision register popped occupies eight bytes on the stack,
plus an extra four-byte word for each list.

10.37.3 Example

p PROC ; Canonical frame address is SP + 0
 EXPORT p
 PUSH {r4-r6,lr}
 ; SP has moved relative to the canonical frame address,
 ; and registers R4, R5, R6 and LR are now on the stack
 FRAME PUSH {r4-r6,lr}
 ; Equivalent to:
 ; FRAME ADDRESS sp,16 ; 16 bytes in {R4-R6,LR}
 ; FRAME SAVE {r4-r6,lr},-16

10.37.4 See also

Reference
• FRAME ADDRESS on page 10-42.
• FRAME SAVE on page 10-48.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-44
ID031214 Non-Confidential

Directives Reference
10.38 FRAME REGISTER
Use the FRAME REGISTER directive to maintain a record of the locations of function arguments held
in registers. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP
directives.

10.38.1 Syntax

FRAME REGISTER reg1,
 reg2

where:

reg1 is the register that held the argument on entry to the function.

reg2 is the register in which the value is preserved.

10.38.2 Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument that was held
in a different register on entry to a function.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-45
ID031214 Non-Confidential

Directives Reference
10.39 FRAME RESTORE
Use the FRAME RESTORE directive to inform the assembler that the contents of specified registers
have been restored to the values they had on entry to the function. You can only use it within
functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

10.39.1 Syntax

FRAME RESTORE {reglist}

where:

reglist is a list of registers whose contents have been restored. There must be at least one
register in the list.

10.39.2 Usage

Use FRAME RESTORE immediately after the callee reloads registers from the stack. You do not have
to do this after the last instruction in a function.

reglist can contain integer registers or floating-point registers, but not both.

Note
 If your code uses a single instruction to load registers and alter the stack pointer, you can use
FRAME POP instead of using both FRAME RESTORE and FRAME ADDRESS.

10.39.3 See also

Reference
• FUNCTION or PROC on page 10-53.
• ENDFUNC or ENDP on page 10-34.
• FRAME POP on page 10-43.
• FRAME ADDRESS on page 10-42.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-46
ID031214 Non-Confidential

Directives Reference
10.40 FRAME RETURN ADDRESS
The FRAME RETURN ADDRESS directive provides for functions that use a register other than LR for
their return address. You can only use it within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

Note
 Any function that uses a register other than LR for its return address is not AAPCS compliant.
Such a function must not be exported.

10.40.1 Syntax

FRAME RETURN ADDRESS reg

where:

reg is the register used for the return address.

10.40.2 Usage

Use the FRAME RETURN ADDRESS directive in any function that does not use LR for its return
address. Otherwise, a debugger cannot backtrace through the function.

Use FRAME RETURN ADDRESS immediately after the FUNCTION or PROC directive that introduces the
function.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-47
ID031214 Non-Confidential

Directives Reference
10.41 FRAME SAVE
The FRAME SAVE directive describes the location of saved register contents relative to the
canonical frame address. You can only use it within functions with FUNCTION and ENDFUNC or PROC
and ENDP directives.

10.41.1 Syntax

FRAME SAVE {reglist}, offset

where:

reglist is a list of registers stored consecutively starting at offset from the canonical
frame address. There must be at least one register in the list.

10.41.2 Usage

Use FRAME SAVE immediately after the callee stores registers onto the stack.

reglist can include registers which are not required for backtracing. The assembler determines
which registers it requires to record in the DWARF call frame information.

Note
 If your code uses a single instruction to save registers and alter the stack pointer, you can use
FRAME PUSH instead of using both FRAME SAVE and FRAME ADDRESS.

10.41.3 See also

Reference
• FRAME PUSH on page 10-44.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-48
ID031214 Non-Confidential

Directives Reference
10.42 FRAME STATE REMEMBER
The FRAME STATE REMEMBER directive saves the current information on how to calculate the
canonical frame address and locations of saved register values. You can only use it within
functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

10.42.1 Syntax

FRAME STATE REMEMBER

10.42.2 Usage

During an inline exit sequence the information about calculation of canonical frame address and
locations of saved register values can change. After the exit sequence another branch can
continue using the same information as before. Use FRAME STATE REMEMBER to preserve this
information, and FRAME STATE RESTORE to restore it.

These directives can be nested. Each FRAME STATE RESTORE directive must have a corresponding
FRAME STATE REMEMBER directive.

10.42.3 Example

 ; function code
 FRAME STATE REMEMBER
 ; save frame state before in-line exit sequence
 POP {r4-r6,pc}
 ; do not have to FRAME POP here, as control has
 ; transferred out of the function
 FRAME STATE RESTORE
 ; end of exit sequence, so restore state
exitB ; code for exitB
 POP {r4-r6,pc}
 ENDP

10.42.4 See also

Reference
• FRAME STATE RESTORE on page 10-50.
• FUNCTION or PROC on page 10-53.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-49
ID031214 Non-Confidential

Directives Reference
10.43 FRAME STATE RESTORE
The FRAME STATE RESTORE directive restores information about how to calculate the canonical
frame address and locations of saved register values. You can only use it within functions with
FUNCTION and ENDFUNC or PROC and ENDP directives.

10.43.1 Syntax

FRAME STATE RESTORE

10.43.2 See also

Reference
• FRAME STATE REMEMBER on page 10-49.
• FUNCTION or PROC on page 10-53.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-50
ID031214 Non-Confidential

Directives Reference
10.44 FRAME UNWIND ON
The FRAME UNWIND ON directive instructs the assembler to produce unwind tables for this and
subsequent functions.

10.44.1 Syntax

FRAME UNWIND ON

10.44.2 Usage

You can use this directive outside functions. In this case, the assembler produces unwind tables
for all following functions until it reaches a FRAME UNWIND OFF directive.

Note
 A FRAME UNWIND directive is not sufficient to turn on exception table generation. Furthermore a
FRAME UNWIND directive, without other FRAME directives, is not sufficient information for the
assembler to generate the unwind information.

10.44.3 See also

Reference
• --exceptions on page 2-30.
• --exceptions_unwind on page 2-31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-51
ID031214 Non-Confidential

Directives Reference
10.45 FRAME UNWIND OFF
The FRAME UNWIND OFF directive instructs the assembler to produce nounwind tables for this and
subsequent functions.

10.45.1 Syntax

FRAME UNWIND OFF

10.45.2 Usage

You can use this directive outside functions. In this case, the assembler produces nounwind
tables for all following functions until it reaches a FRAME UNWIND ON directive.

10.45.3 See also

Reference
• --exceptions on page 2-30.
• --exceptions_unwind on page 2-31.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-52
ID031214 Non-Confidential

Directives Reference
10.46 FUNCTION or PROC
The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

10.46.1 Syntax

label FUNCTION [{reglist1} [, {reglist2}]]

where:

reglist1 is an optional list of callee-saved ARM registers. If reglist1 is not present, and
your debugger checks register usage, it assumes that the AAPCS is in use. If you
use empty brackets, this informs the debugger that all ARM registers are
caller-saved.

reglist2 is an optional list of callee-saved floating-point registers. If you use empty
brackets, this informs the debugger that all floating-point registers are
caller-saved.

10.46.2 Usage

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify the start of
a function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be R13 (SP), and the frame state stack to be empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest FUNCTION and
ENDFUNC pairs, and they must not contain PROC or ENDP directives.

You can use the optional reglist parameters to inform the debugger about an alternative
procedure call standard, if you are using your own. Not all debuggers support this feature. See
your debugger documentation for details.

If you specify an empty reglist, using {}, this indicates that all registers for the function are
caller-saved. Typically you do this when writing a reset vector where the values in all registers
are unknown on execution. This avoids problems in a debugger if it tries to construct a backtrace
from the values in the registers.

Note
 FUNCTION does not automatically cause alignment to a word boundary (or halfword boundary for
T32). Use ALIGN if necessary to ensure alignment, otherwise the call frame might not point to the
start of the function.

10.46.3 Examples

 ALIGN ; ensures alignment
dadd FUNCTION ; without the ALIGN directive, this might not be word-aligned
 EXPORT dadd
 PUSH {r4-r6,lr} ; this line automatically word-aligned
 FRAME PUSH {r4-r6,lr}
 ; subroutine body
 POP {r4-r6,pc}
 ENDFUNC
func6 PROC {r4-r8,r12},{D1-D3} ; non-AAPCS-conforming function
 ...
 ENDP
func7 FUNCTION {} ; another non-AAPCS-conforming function

...
ENDFUNC
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-53
ID031214 Non-Confidential

Directives Reference
10.46.4 See also

Reference
• FRAME ADDRESS on page 10-42.
• FRAME STATE RESTORE on page 10-50.
• ALIGN on page 10-12.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-54
ID031214 Non-Confidential

Directives Reference
10.47 GBLA, GBLL, and GBLS
The GBLA directive declares a global arithmetic variable, and initializes its value to 0.

The GBLL directive declares a global logical variable, and initializes its value to {FALSE}.

The GBLS directive declares a global string variable and initializes its value to a null string, "".

10.47.1 Syntax

<gblx> variable

where:

<gblx> is one of GBLA, GBLL, or GBLS.

variable is the name of the variable. variable must be unique among symbols within a
source file.

10.47.2 Usage

Using one of these directives for a variable that is already defined re-initializes the variable.

The scope of the variable is limited to the source file that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

Global variables can also be set with the --predefine assembler command-line option.

10.47.3 Examples

Example 10-1 declares a variable objectsize, sets the value of objectsize to 0xFF, and then uses
it later in a SPACE directive.

Example 10-1

 GBLA objectsize ; declare the variable name
objectsize SETA 0xFF ; set its value
 .
 . ; other code
 .
 SPACE objectsize ; quote the variable

Example 10-2 shows how to declare and set a variable when you invoke armasm. Use this when
you want to set the value of a variable at assembly time. --pd is a synonym for --predefine.

Example 10-2

armasm --predefine "objectsize SETA 0xFF" sourcefile -o objectfile
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-55
ID031214 Non-Confidential

Directives Reference
10.47.4 See also

Reference
• SETA, SETL, and SETS on page 10-84.
• LCLA, LCLL, and LCLS on page 10-65.
• armasm command-line options on page 2-3.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-56
ID031214 Non-Confidential

Directives Reference
10.48 GET or INCLUDE
The GET directive includes a file within the file being assembled. The included file is assembled
at the location of the GET directive. INCLUDE is a synonym for GET.

10.48.1 Syntax

GET filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts
pathnames in either UNIX or MS-DOS format.

10.48.2 Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly. When
assembly of the included file is complete, assembly continues at the line following the GET
directive.

By default the assembler searches the current place for included files. The current place is the
directory where the calling file is located. Use the -i assembler command line option to add
directories to the search path. File names and directory names containing spaces must not be
enclosed in double quotes (" ").

The included file can contain additional GET directives to include other files.

If the included file is in a different directory from the current place, this becomes the current
place until the end of the included file. The previous current place is then restored.

You cannot use GET to include object files.

10.48.3 Examples

 AREA Example, CODE, READONLY
 GET file1.s ; includes file1 if it exists
 ; in the current place.
 GET c:\project\file2.s ; includes file2
 GET c:\Program files\file3.s ; space is permitted

10.48.4 See also

Reference
• INCBIN on page 10-60.
• Nesting directives on page 10-6.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-57
ID031214 Non-Confidential

Directives Reference
10.49 IMPORT and EXTERN
These directives provide the assembler with a name that is not defined in the current assembly.

10.49.1 Syntax

directive symbol {[SIZE=n]}

directive symbol {[type]}

directive symbol [attr{,type}{,SIZE=n}]

directive symbol [WEAK{,attr}{,type}{,SIZE=n}]

where:

directive can be either:
IMPORT imports the symbol unconditionally.
EXTERN imports the symbol only if it is referred to in the current assembly.

symbol is a symbol name defined in a separately assembled source file, object file, or
library. The symbol name is case-sensitive.

WEAK prevents the linker generating an error message if the symbol is not defined
elsewhere. It also prevents the linker searching libraries that are not already
included.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

type specifies the symbol type:
DATA symbol is treated as data when the source is assembled and linked.
CODE symbol is treated as code when the source is assembled and linked.
ELFTYPE=n symbol is treated as a particular ELF symbol, as specified by the value

of n, where n can be any number from 0 to 15.
If unspecified, the linker determines the most appropriate type.

n specifies the size and can be any 32-bit value. If the SIZE attribute is not specified,
the assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until

its ENDP or ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same

source line. If there is no instruction or data, the size is zero.

10.49.2 Usage

The name is resolved at link time to a symbol defined in a separate object file. The symbol is
treated as a program address. If [WEAK] is not specified, the linker generates an error if no
corresponding symbol is found at link time.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-58
ID031214 Non-Confidential

Directives Reference
If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol is taken
as the address of the following instruction. This makes the B or BL instruction effectively
a NOP.

• Otherwise, the value of the symbol is taken as zero.

10.49.3 Example

The example tests to see if the C++ library has been linked, and branches conditionally on the
result.

 AREA Example, CODE, READONLY
 EXTERN __CPP_INITIALIZE[WEAK] ; If C++ library linked, gets the address of
 ; __CPP_INITIALIZE function.
 LDR r0,=__CPP_INITIALIZE ; If not linked, address is zeroed.
 CMP r0,#0 ; Test if zero.
 BEQ nocplusplus ; Branch on the result.

The following examples show the use of the SIZE attribute:

EXTERN symA [SIZE=4]
EXTERN symA [DATA, SIZE=4]

10.49.4 See also

Reference
• ELF for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
• EXPORT or GLOBAL on page 10-37.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-59
ID031214 Non-Confidential

Directives Reference
10.50 INCBIN
The INCBIN directive includes a file within the file being assembled. The file is included as it is,
without being assembled.

10.50.1 Syntax

INCBIN filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts
pathnames in either UNIX or MS-DOS format.

10.50.2 Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The contents of the
file are added to the current ELF section, byte for byte, without being interpreted in any way.
Assembly continues at the line following the INCBIN directive.

By default, the assembler searches the current place for included files. The current place is the
directory where the calling file is located. Use the -i assembler command line option to add
directories to the search path. File names and directory names containing spaces must not be
enclosed in double quotes (" ").

10.50.3 Example

 AREA Example, CODE, READONLY
 INCBIN file1.dat ; includes file1 if it
 ; exists in the
 ; current place.
 INCBIN c:\project\file2.txt ; includes file2
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-60
ID031214 Non-Confidential

Directives Reference
10.51 IF, ELSE, ENDIF, and ELIF
The IF directive introduces a condition that controls whether to assemble a sequence of
instructions and directives. [is a synonym for IF.

The ELSE directive marks the beginning of a sequence of instructions or directives that you want
to be assembled if the preceding condition fails. | is a synonym for ELSE.

The ENDIF directive marks the end of a sequence of instructions or directives that you want to be
conditionally assembled.] is a synonym for ENDIF.

The ELIF directive creates a structure equivalent to ELSE IF, without the requirement for nesting
or repeating the condition.

10.51.1 Syntax

 IF logical-expression
… ; code

{ELSE
… ; code}

ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

10.51.2 Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions or directives that are
only to be assembled or acted on under a specified condition.

IF...ENDIF conditions can be nested.

10.51.3 Using ELIF

Without using ELIF, you can construct a nested set of conditional instructions like this:

 IF logical-expression
 instructions
 ELSE
 IF logical-expression2
 instructions
 ELSE
 IF logical-expression3
 instructions
 ENDIF
 ENDIF
 ENDIF

A nested structure like this can be nested up to 256 levels deep.

You can write the same structure more simply using ELIF:

 IF logical-expression
 instructions
 ELIF logical-expression2
 instructions
 ELIF logical-expression3
 instructions
 ENDIF
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-61
ID031214 Non-Confidential

Directives Reference
This structure only adds one to the current nesting depth, for the IF...ENDIF pair.

10.51.4 Examples

Example 10-3 assembles the first set of instructions if NEWVERSION is defined, or the alternative
set otherwise.

Example 10-3 Assembly conditional on a variable being defined

 IF :DEF:NEWVERSION
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows defines NEWVERSION, so the first set of instructions and directives are
assembled:

armasm --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows leaves NEWVERSION undefined, so the second set of instructions and
directives are assembled:

armasm test.s

Example 10-4 assembles the first set of instructions if NEWVERSION has the value {TRUE}, or the
alternative set otherwise.

Example 10-4 Assembly conditional on a variable value

 IF NEWVERSION = {TRUE}
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows causes the first set of instructions and directives to be assembled:

armasm --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows causes the second set of instructions and directives to be assembled:

armasm --predefine "NEWVERSION SETL {FALSE}" test.s

10.51.5 See also

Concepts
armasm User Guide:
• Relational operators on page 10-27.

Reference
• Using ELIF on page 10-61.
• Nesting directives on page 10-6.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-62
ID031214 Non-Confidential

Directives Reference
10.52 INFO
The INFO directive supports diagnostic generation on either pass of the assembly.

! is very similar to INFO, but has less detailed reporting.

10.52.1 Syntax

INFO numeric-expression, string-expression{, severity}

where:

numeric-expression

is a numeric expression that is evaluated during assembly. If the expression
evaluates to zero:
• No action is taken during pass one.
• string-expression is printed as a warning during pass two if severity is 1.
• string-expression is printed as a message during pass two if severity is 0

or not specified.
If the expression does not evaluate to zero:
• string-expression is printed as an error message and the assembly fails

irrespective of whether severity is specified or not (non-zero values for
severity are reserved in this case).

string-expression

is an expression that evaluates to a string.

severity

is an optional number that controls the severity of the message. Its value can be
either 0 or 1. All other values are reserved.

10.52.2 Usage

INFO provides a flexible means of creating custom error messages.

10.52.3 Examples

 INFO 0, "Version 1.0"
 IF endofdata <= label1
 INFO 4, "Data overrun at label1"
 ENDIF

10.52.4 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.
• String expressions on page 10-14.

Reference
• ASSERT on page 10-18.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-63
ID031214 Non-Confidential

Directives Reference
10.53 KEEP
The KEEP directive instructs the assembler to retain named local labels in the symbol table in the
ELF object file.

10.53.1 Syntax

KEEP {label}

where:

label is the name of the local label to keep. If label is not specified, all named local
labels are kept except register-relative labels.

10.53.2 Usage

By default, the only labels that the assembler describes in its output object file are:
• Exported labels.
• Labels that are relocated against.

Use KEEP to preserve local labels. This can help when debugging. Kept labels appear in the ARM
debuggers and in linker map files.

KEEP cannot preserve register-relative labels or numeric local labels.

10.53.3 Example

label ADC r2,r3,r4
 KEEP label ; makes label available to debuggers
 ADD r2,r2,r5

10.53.4 See also

Reference
• MAP on page 10-70.

Concepts
• Numeric local labels on page 10-12.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-64
ID031214 Non-Confidential

Directives Reference
10.54 LCLA, LCLL, and LCLS
The LCLA directive declares a local arithmetic variable, and initializes its value to 0.

The LCLL directive declares a local logical variable, and initializes its value to {FALSE}.

The LCLS directive declares a local string variable, and initializes its value to a null string, "".

10.54.1 Syntax

<lclx> variable

where:

<lclx> is one of LCLA, LCLL, or LCLS.

variable is the name of the variable. variable must be unique within the macro that
contains it.

10.54.2 Usage

Using one of these directives for a variable that is already defined re-initializes the variable.

The scope of the variable is limited to a particular instantiation of the macro that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

10.54.3 Example

 MACRO ; Declare a macro
$label message $a ; Macro prototype line
 LCLS err ; Declare local string
 ; variable err.
err SETS "error no: " ; Set value of err
$label ; code
 INFO 0, "err":CC::STR:$a ; Use string
 MEND

10.54.4 See also

Reference
• SETA, SETL, and SETS on page 10-84.
• MACRO and MEND on page 10-67.
• GBLA, GBLL, and GBLS on page 10-55.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-65
ID031214 Non-Confidential

Directives Reference
10.55 LTORG
The LTORG directive instructs the assembler to assemble the current literal pool immediately.

10.55.1 Syntax

LTORG

10.55.2 Usage

The assembler assembles the current literal pool at the end of every code section. The end of a
code section is determined by the AREA directive at the beginning of the following section, or the
end of the assembly.

These default literal pools can sometimes be out of range of some LDR, VLDR, and WLDR
pseudo-instructions. Use LTORG to ensure that a literal pool is assembled within range.

Large programs can require several literal pools. Place LTORG directives after unconditional
branches or subroutine return instructions so that the processor does not attempt to execute the
constants as instructions.

The assembler word-aligns data in literal pools.

10.55.3 Example

 AREA Example, CODE, READONLY
start BL func1
func1 ; function body
 ; code
 LDR r1,=0x55555555 ; => LDR R1, [pc, #offset to Literal Pool 1]
 ; code
 MOV pc,lr ; end function
 LTORG ; Literal Pool 1 contains literal &55555555.
data SPACE 4200 ; Clears 4200 bytes of memory,
 ; starting at current location.
 END ; Default literal pool is empty.

10.55.4 See also

Reference
• LDR pseudo-instruction on page 3-83.
• VLDR pseudo-instruction on page 4-61.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-66
ID031214 Non-Confidential

Directives Reference
10.56 MACRO and MEND
The MACRO directive marks the start of the definition of a macro. Macro expansion terminates at
the MEND directive.

10.56.1 Syntax

These two directives define a macro. The syntax is:

 MACRO
{$label} macroname{$cond} {$parameter{,$parameter}...}
 ; code
 MEND

where:

$label is a parameter that is substituted with a symbol given when the macro is invoked.
The symbol is usually a label.

macroname is the name of the macro. It must not begin with an instruction or directive name.

$cond is a special parameter designed to contain a condition code. Values other than
valid condition codes are permitted.

$parameter is a parameter that is substituted when the macro is invoked. A default value for
a parameter can be set using this format:
$parameter="default value"

Double quotes must be used if there are any spaces within, or at either end of, the
default value.

10.56.2 Usage

If you start any WHILE...WEND loops or IF...ENDIF conditions within a macro, they must be closed
before the MEND directive is reached. You can use MEXIT to enable an early exit from a macro, for
example, from within a loop.

Within the macro body, parameters such as $label, $parameter or $cond can be used in the same
way as other variables. They are given new values each time the macro is invoked. Parameters
must begin with $ to distinguish them from ordinary symbols. Any number of parameters can
be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a parameter to
the macro. It does not necessarily represent the first instruction in the macro expansion. The
macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used if the
argument is omitted.

In a macro that uses several internal labels, it is useful to define each internal label as the base
label with a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space is not
required in the expansion. Do not use a dot between preceding text and a parameter.

You can use the $cond parameter for condition codes. Use the unary operator :REVERSE_CC: to
find the inverse condition code, and :CC_ENCODING: to find the 4-bit encoding of the condition
code.

Macros define the scope of local variables.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-67
ID031214 Non-Confidential

Directives Reference
Macros can be nested.

10.56.3 Examples

 ; macro definition
 MACRO ; start macro definition
$label xmac $p1,$p2
 ; code
$label.loop1 ; code
 ; code
 BGE $label.loop1
$label.loop2 ; code
 BL $p1
 BGT $label.loop2
 ; code
 ADR $p2
 ; code
 MEND ; end macro definition
 ; macro invocation
abc xmac subr1,de ; invoke macro
 ; code ; this is what is
abcloop1 ; code ; is produced when
 ; code ; the xmac macro is
 BGE abcloop1 ; expanded
abcloop2 ; code
 BL subr1
 BGT abcloop2
 ; code
 ADR de
 ; code

Using a macro to produce assembly-time diagnostics:

 MACRO ; Macro definition
 diagnose $param1="default" ; This macro produces
 INFO 0,"$param1" ; assembly-time diagnostics
 MEND ; (on second assembly pass)
 ; macro expansion
 diagnose ; Prints blank line at assembly-time
 diagnose "hello" ; Prints "hello" at assembly-time
 diagnose | ; Prints "default" at assembly-time

Note
 When variables are also being passed in as arguments, use of | might leave some variables
unsubstituted. To workaround this, define the | in a LCLS or GBLS variable and pass this variable
as an argument instead of |. For example:

MACRO ; Macro definition
m2 $a,$b=r1,$c ; The default value for $b is r1
add $a,$b,$c ; The macro adds $b and $c and puts result in $a
MEND ; Macro end

MACRO ; Macro definition
m1 $a,$b ; This macro adds $b to r1 and puts result in $a
LCLS def ; Declare a local string variable for |

def SETS "|" ; Define |
m2 $a,$def,$b ; Invoke macro m2 with $def instead of |

; to use the default value for the second argument.
MEND ; Macro end
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-68
ID031214 Non-Confidential

Directives Reference
10.56.4 Conditional macro example

 AREA codx, CODE, READONLY

; macro definition

MACRO
Return$cond
[{ARCHITECTURE} <> "4"
BX$cond lr
|
MOV$cond pc,lr

]
MEND

; macro invocation

fun PROC
CMP r0,#0
MOVEQ r0,#1
ReturnEQ
 MOV r0,#0
Return
ENDP

END

10.56.5 See also

Concepts
armasm User Guide:
• Use of macros on page 7-31.
• Assembly time substitution of variables on page 10-6.

Reference
• MEXIT on page 10-71.
• Nesting directives on page 10-6.
• GBLA, GBLL, and GBLS on page 10-55.
• LCLA, LCLL, and LCLS on page 10-65.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-69
ID031214 Non-Confidential

Directives Reference
10.57 MAP
The MAP directive sets the origin of a storage map to a specified address. The storage-map
location counter, {VAR}, is set to the same address. ^ is a synonym for MAP.

Note
 This directive is not supported in A64 code in this release.

10.57.1 Syntax

MAP expr{,base-register}

where:

expr is a numeric or PC-relative expression:
• If base-register is not specified, expr evaluates to the address where the

storage map starts. The storage map location counter is set to this address.
• If expr is PC-relative, you must have defined the label before you use it in

the map. The map requires the definition of the label during the first pass of
the assembler.

base-register

specifies a register. If base-register is specified, the address where the storage
map starts is the sum of expr, and the value in base-register at runtime.

10.57.2 Usage

Use the MAP directive in combination with the FIELD directive to describe a storage map.

Specify base-register to define register-relative labels. The base register becomes implicit in
all labels defined by following FIELD directives, until the next MAP directive. The register-relative
labels can be used in load and store instructions.

The MAP directive can be used any number of times to define multiple storage maps.

The {VAR} counter is set to zero before the first MAP directive is used.

10.57.3 Examples

 MAP 0,r9
 MAP 0xff,r9

10.57.4 See also

Concepts
• How the assembler works on page 2-4 in armasm User Guide.
• Directives that can be omitted in pass 2 of the assembler on page 2-6 in armasm User

Guide.

Reference
• FIELD on page 10-40.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-70
ID031214 Non-Confidential

Directives Reference
10.58 MEXIT
The MEXIT directive exits a macro definition before the end.

10.58.1 Usage

Use MEXIT when you require an exit from within the body of a macro. Any unclosed
WHILE...WEND loops or IF...ENDIF conditions within the body of the macro are closed by the
assembler before the macro is exited.

10.58.2 Example

 MACRO
$abc example abc $param1,$param2
 ; code
 WHILE condition1
 ; code
 IF condition2
 ; code
 MEXIT
 ELSE
 ; code
 ENDIF
 WEND
 ; code
 MEND

10.58.3 See also

Reference
• MACRO and MEND on page 10-67.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-71
ID031214 Non-Confidential

Directives Reference
10.59 NOFP
The NOFP directive ensures that there are no floating-point instructions in an assembly language
source file.

10.59.1 Syntax

NOFP

10.59.2 Usage

Use NOFP to ensure that no floating-point instructions are used in situations where there is no
support for floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is generated
and the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the error:

Too late to ban floating point instructions

and the assembly fails.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-72
ID031214 Non-Confidential

Directives Reference
10.60 OPT
The OPT directive sets listing options from within the source code.

10.60.1 Syntax

OPT n

where:

n is the OPT directive setting. Table 10-2 lists valid settings.

10.60.2 Usage

Specify the --list= assembler option to turn on listing.

By default the --list= option produces a normal listing that includes variable declarations,
macro expansions, call-conditioned directives, and MEND directives. The listing is produced on
the second pass only. Use the OPT directive to modify the default listing options from within your
code.

You can use OPT to format code listings. For example, you can specify a new page before
functions and sections.

Table 10-2 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-73
ID031214 Non-Confidential

Directives Reference
10.60.3 Example

 AREA Example, CODE, READONLY
start ; code
 ; code
 BL func1
 ; code
 OPT 4 ; places a page break before func1
func1 ; code

10.60.4 See also

Reference
• --list on page 2-42.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-74
ID031214 Non-Confidential

Directives Reference
10.61 QN, DN, and SN
The QN directive defines a name for a specified 128-bit extension register.

The DN directive defines a name for a specified 64-bit extension register.

The SN directive defines a name for a specified single-precision floating-point register.

10.61.1 Syntax

name directive expr{.type}{[x]}

where:

directive is QN, DN, or SN.

name is the name to be assigned to the extension register. name cannot be the same as
any of the predefined names.

expr Can be:
• An expression that evaluates to a number in the range:

— 0-15 if you are using QN in A32/T32 Advanced SIMD code.
— 0-31 otherwise.

• A predefined register name, or a register name that has already been defined
in a previous directive.

type is any Advanced SIMD or floating-point datatype.

[x] is only available for Advanced SIMD code. [x] is a scalar index into a register.

type and [x] are Extended notation.

10.61.2 Usage

Use QN, DN, or SN to allocate convenient names to extension registers, to help you to remember
what you use each one for.

Note
 Avoid conflicting uses of the same register under different names.

You cannot specify a vector length in a DN or SN directive.

10.61.3 Examples

energy DN 6 ; defines energy as a symbol for
 ; floating-point double-precision register 6
mass SN 16 ; defines mass as a symbol for
 ; floating-point single-precision register 16

10.61.4 Extended notation examples

varA DN d1.U16
varB DN d2.U16
varC DN d3.U16

VADD varA,varB,varC ; VADD.U16 d1,d2,d3
index DN d4.U16[0]
result QN q5.I32

VMULL result,varA,index ; VMULL.U16 q5,d1,d3[2]
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-75
ID031214 Non-Confidential

Directives Reference
10.61.5 See also

Reference
armasm User Guide:
• Predeclared core register names in AArch32 state on page 4-8.
• Predeclared core register names in AArch64 state on page 5-6.
• Predeclared extension register names in AArch32 state on page 4-9.
• Predeclared extension register names in AArch64 state on page 5-7.
• Extended notation in A32/T32 code on page 11-25.
• Extended notation examples on page 10-75.
• Advanced SIMD and floating-point data types in A32/T32 instructions on page 11-17.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-76
ID031214 Non-Confidential

Directives Reference
10.62 RELOC
The RELOC directive explicitly encodes an ELF relocation in an object file.

10.62.1 Syntax

RELOC n, symbol

RELOC n

where:

n must be an integer in the range 0 to 255, or 0 to 232–1 in A32/T32 or A64 code
respectively. In A32/T32 code, you can alternatively specify one of the relocation
names defined in the Application Binary Interface for the ARM Architecture.

symbol can be any PC-relative label.

10.62.2 Usage

Use RELOC n, symbol to create a relocation with respect to the address labeled by symbol.

If used immediately after an instruction, RELOC results in a relocation at that instruction. If used
immediately after a DCB, DCW, or DCD, or any other data generating directive, RELOC results in a
relocation at the start of the data. Any addend to be applied must be encoded in the instruction
or in the data.

If the assembler has already emitted a relocation at that place, the relocation is updated with the
details in the RELOC directive, for example:

DCD sym2 ; R_ARM_ABS32 to sym32
RELOC 55 ; ... makes it R_ARM_ABS32_NOI

RELOC is faulted in all other cases, for example, after any non-data generating directive, LTORG,
ALIGN, or as the first thing in an AREA.

Use RELOC n to create a relocation with respect to the anonymous symbol, that is, symbol 0 of the
symbol table. If you use RELOC n without a preceding assembler generated relocation, the
relocation is with respect to the anonymous symbol.

10.62.3 Examples

IMPORT impsym
LDR r0,[pc,#-8]
RELOC 4, impsym
DCD 0
RELOC 2, sym
DCD 0,1,2,3,4 ; the final word is relocated
RELOC 38,sym2 ; R_ARM_TARGET1
DCD impsym
RELOC R_ARM_TARGET1 ; relocation code 38

10.62.4 See also

Reference
• Application Binary Interface for the ARM Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-77
ID031214 Non-Confidential

Directives Reference
10.63 REQUIRE
The REQUIRE directive specifies a dependency between sections.

10.63.1 Syntax

REQUIRE label

where:

label is the name of the required label.

10.63.2 Usage

Use REQUIRE to ensure that a related section is included, even if it is not directly called. If the
section containing the REQUIRE directive is included in a link, the linker also includes the section
containing the definition of the specified label.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-78
ID031214 Non-Confidential

Directives Reference
10.64 REQUIRE8 and PRESERVE8
The REQUIRE8 directive specifies that the current file requires eight-byte alignment of the stack.
It sets the REQ8 build attribute to inform the linker.

The PRESERVE8 directive specifies that the current file preserves eight-byte alignment of the
stack. It sets the PRES8 build attribute to inform the linker.

The linker checks that any code that requires eight-byte alignment of the stack is only called,
directly or indirectly, by code that preserves eight-byte alignment of the stack.

10.64.1 Syntax

REQUIRE8 {bool}

PRESERVE8 {bool}

where:

bool is an optional Boolean constant, either {TRUE} or {FALSE}.

10.64.2 Usage

Where required, if your code preserves eight-byte alignment of the stack, use PRESERVE8 to set
the PRES8 build attribute on your file. If your code does not preserve eight-byte alignment of the
stack, use PRESERVE8 {FALSE} to ensure that the PRES8 build attribute is not set. If there are
multiple REQUIRE8 or PRESERVE8 directives in a file, the assembler uses the value of the last
directive.

Note
 If you omit both PRESERVE8 and PRESERVE8 {FALSE}, the assembler decides whether to set the
PRES8 build attribute or not, by examining instructions that modify the SP. ARM recommends
that you specify PRESERVE8 explicitly.

You can enable a warning with:

armasm --diag_warning 1546

This gives you warnings like:

"test.s", line 37: Warning: A1546W: Stack pointer update potentially
 breaks 8 byte stack alignment

 37 00000044 STMFD sp!,{r2,r3,lr}

10.64.3 Examples

REQUIRE8
REQUIRE8 {TRUE} ; equivalent to REQUIRE8
REQUIRE8 {FALSE} ; equivalent to absence of REQUIRE8
PRESERVE8 {TRUE} ; equivalent to PRESERVE8
PRESERVE8 {FALSE} ; NOT exactly equivalent to absence of PRESERVE8
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-79
ID031214 Non-Confidential

Directives Reference
10.64.4 See also

Concepts
• 8 Byte Stack Alignment

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4127.html.

Reference
• armasm command-line options on page 2-3.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-80
ID031214 Non-Confidential

Directives Reference
10.65 RLIST
The RLIST (register list) directive gives a name to a set of general-purpose registers in A32/T32
code.

10.65.1 Syntax

name RLIST {list-of-registers}

where:

name is the name to be given to the set of registers. name cannot be the same as any of
the predefined names.

list-of-registers

is a comma-delimited list of register names and register ranges. The register list
must be enclosed in braces.

10.65.2 Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in memory,
regardless of the order they are supplied to the LDM or STM instruction. If you have defined your
own symbolic register names it can be less apparent that a register list is not in increasing
register order.

Use the --diag_warning 1206 assembler option to ensure that the registers in a register list are
supplied in increasing register order. If registers are not supplied in increasing register order, a
warning is issued.

10.65.3 Example

Context RLIST {r0-r6,r8,r10-r12,pc}

10.65.4 See also

Reference
armasm User Guide:
• Predeclared core register names in AArch32 state on page 4-8.
• Predeclared extension register names in AArch32 state on page 4-9.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-81
ID031214 Non-Confidential

Directives Reference
10.66 RN
The RN directive defines a name for a specified register in A32/T32 code.

10.66.1 Syntax

name RN expr

where:

name is the name to be assigned to the register. name cannot be the same as any of the
predefined names.

expr evaluates to a register number from 0 to 15.

10.66.2 Usage

Use RN to allocate convenient names to registers, to help you to remember what you use each
register for. Be careful to avoid conflicting uses of the same register under different names. In
A64 code, use WN or XN instead.

10.66.3 Examples

regname RN 11 ; defines regname for register 11
sqr4 RN r6 ; defines sqr4 for register 6

10.66.4 See also

Reference
armasm User Guide:
• Predeclared core register names in AArch32 state on page 4-8.
• Predeclared extension register names in AArch32 state on page 4-9.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-82
ID031214 Non-Confidential

Directives Reference
10.67 ROUT
The ROUT directive marks the boundaries of the scope of numeric local labels.

10.67.1 Syntax

{name} ROUT

where:

name is the name to be assigned to the scope.

10.67.2 Usage

Use the ROUT directive to limit the scope of numeric local labels. This makes it easier for you to
avoid referring to a wrong label by accident. The scope of numeric local labels is the whole area
if there are no ROUT directives in it.

Use the name option to ensure that each reference is to the correct numeric local label. If the name
of a label or a reference to a label does not match the preceding ROUT directive, the assembler
generates an error message and the assembly fails.

10.67.3 Example

 ; code
routineA ROUT ; ROUT is not necessarily a routine
 ; code
3routineA ; code ; this label is checked
 ; code
 BEQ %4routineA ; this reference is checked
 ; code
 BGE %3 ; refers to 3 above, but not checked
 ; code
4routineA ; code ; this label is checked
 ; code
otherstuff ROUT ; start of next scope

10.67.4 See also

Concepts
armasm User Guide:
• Numeric local labels on page 10-12.

Reference
• AREA on page 10-14.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-83
ID031214 Non-Confidential

Directives Reference
10.68 SETA, SETL, and SETS
The SETA directive sets the value of a local or global arithmetic variable.

The SETL directive sets the value of a local or global logical variable.

The SETS directive sets the value of a local or global string variable.

10.68.1 Syntax

variable <setx> expr

where:

<setx> is one of SETA, SETL, or SETS.

variable is the name of a variable declared by a GBLA, GBLL, GBLS, LCLA, LCLL, or LCLS
directive.

expr is an expression that is:
• Numeric, for SETA.
• Logical, for SETL.
• String, for SETS.

10.68.2 Usage

You must declare variable using a global or local declaration directive before using one of these
directives.

You can also predefine variable names with the --predefine armasm command line option.

10.68.3 Restrictions

The value you can specify using a SETA directive is limited to 32 bits. If you exceed this limit,
the assembler reports an error. A possible workaround in A64 code is to use an EQU directive
instead of SETA, although EQU defines a constant, whereas GBLA and SETA define a variable.

For example, replace the following code:

GBLA MyAddress
MyAddress SETA 0x0000008000000000

with:

MyAddress EQU 0x0000008000000000

10.68.4 Examples

 GBLA VersionNumber
VersionNumber SETA 21
 GBLL Debug
Debug SETL {TRUE}
 GBLS VersionString
VersionString SETS "Version 1.0"
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-84
ID031214 Non-Confidential

Directives Reference
10.68.5 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.
• Logical expressions on page 10-19.
• String expressions on page 10-14.

Reference
• armasm command-line options on page 2-3.
• LCLA, LCLL, and LCLS on page 10-65.
• GBLA, GBLL, and GBLS on page 10-55.
• EQU on page 10-36.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-85
ID031214 Non-Confidential

Directives Reference
10.69 SPACE or FILL
The SPACE directive reserves a zeroed block of memory. % is a synonym for SPACE.

The FILL directive reserves a block of memory to fill with the given value.

10.69.1 Syntax

{label} SPACE expr

{label} FILL expr{,value{,valuesize}}

where:

label is an optional label.

expr evaluates to the number of bytes to fill or zero.

value evaluates to the value to fill the reserved bytes with. value is optional and if
omitted, it is 0. value must be 0 in a NOINIT area.

valuesize is the size, in bytes, of value. It can be any of 1, 2, or 4. valuesize is optional and
if omitted, it is 1.

10.69.2 Usage

Use the ALIGN directive to align any code following a SPACE or FILL directive.

10.69.3 Example

 AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed store
data2 FILL 50,0xAB,1 ; defines 50 bytes containing 0xAB

10.69.4 See also

Concepts
armasm User Guide:
• Numeric expressions on page 10-16.

Reference
• DCB on page 10-24.
• DCD and DCDU on page 10-25.
• DCDO on page 10-26.
• DCW and DCWU on page 10-32.
• ALIGN on page 10-12.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-86
ID031214 Non-Confidential

Directives Reference
10.70 TTL and SUBT
The TTL directive inserts a title at the start of each page of a listing file. The title is printed on
each page until a new TTL directive is issued.

The SUBT directive places a subtitle on the pages of a listing file. The subtitle is printed on each
page until a new SUBT directive is issued.

10.70.1 Syntax

TTL title

SUBT subtitle

where:

title is the title.

subtitle is the subtitle.

10.70.2 Usage

Use the TTL directive to place a title at the top of the pages of a listing file. If you want the title
to appear on the first page, the TTL directive must be on the first line of the source file.

Use additional TTL directives to change the title. Each new TTL directive takes effect from the top
of the next page.

Use SUBT to place a subtitle at the top of the pages of a listing file. Subtitles appear in the line
below the titles. If you want the subtitle to appear on the first page, the SUBT directive must be
on the first line of the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes effect from the
top of the next page.

10.70.3 Examples

 TTL First Title ; places a title on the first
 ; and subsequent pages of a
 ; listing file.
 SUBT First Subtitle ; places a subtitle on the
 ; second and subsequent pages
 ; of a listing file.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-87
ID031214 Non-Confidential

Directives Reference
10.71 WHILE and WEND
The WHILE directive starts a sequence of instructions or directives that are to be assembled
repeatedly. The sequence is terminated with a WEND directive.

10.71.1 Syntax

WHILE logical-expression

code

WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE}.

10.71.2 Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of instructions
a number of times. The number of repetitions can be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested.

10.71.3 Example

GBLA count ; declare local variable
count SETA 1 ; you are not restricted to
 WHILE count <= 4 ; such simple conditions
count SETA count+1 ; In this case,
 ; code ; this code is
 ; code ; repeated four times
 WEND

10.71.4 See also

Concepts
armasm User Guide:
• Logical expressions on page 10-19.

Reference
• Nesting directives on page 10-6.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-88
ID031214 Non-Confidential

Directives Reference
10.72 WN and XN
The WN directive defines a name for a specified 32-bit register in A64 code.

The XN directive defines a name for a specified 64-bit register in A64 code.

10.72.1 Syntax

name directive expr

where:

name is the name to be assigned to the register. name cannot be the same as any of the
predefined names.

directive is WN or XN.

expr evaluates to a register number from 0 to 30.

10.72.2 Usage

Use WN and XN to allocate convenient names to registers in A64 code, to help you to remember
what you use each register for. Be careful to avoid conflicting uses of the same register under
different names.

10.72.3 Examples

sqr4 WN w16 ; defines sqr4 for register w16
regname XN 21 ; defines regname for register x21

10.72.4 See also

Reference
armasm User Guide:
• Predeclared core register names in AArch64 state on page 5-6.
• Predeclared extension register names in AArch64 state on page 5-7.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. 10-89
ID031214 Non-Confidential

Appendix A
Via File Syntax

This appendix describes the syntax of via files accepted by all the ARM development tools:
• Overview of via files on page A-2
• Via file syntax on page A-3
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. A-1
ID031214 Non-Confidential

Via File Syntax
A.1 Overview of via files
Via files are plain text files that contain command-line arguments and options to ARM
development tools.

Typically, you can use a via file to overcome the command-line length limitations. However,
you might want to create multiple via files that:
• Group similar arguments and options together.
• Contain different sets of arguments and options to be used in different scenarios.

Note
 In general, you can use a via file to specify any command-line option to a tool, including --via.
This means that you can call multiple nested via files from within a via file.

A.1.1 Via file evaluation

When the assembler is invoked it:

1. Replaces the first specified --via via_file argument with the sequence of argument
words extracted from the via file, including recursively processing any nested --via
commands in the via file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed
completely including processing nested via files before processing the next via file.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. A-2
ID031214 Non-Confidential

Via File Syntax
A.2 Via file syntax
Via files must conform to the following syntax rules:

• A via file is a text file containing a sequence of words. Each word in the text file is
converted into an argument string and passed to the tool.

• Words are separated by whitespace, or the end of a line, except in delimited strings. For
example:
--bigend --reduce_paths (two words)
--bigend--reduce_paths (one word)

• The end of a line is treated as whitespace. For example:
--bigend
--reduce_paths

is equivalent to:
--bigend --reduce_paths

• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word.
Within a quoted word, an apostrophe is treated as an ordinary character. Within an
apostrophe delimited word, a quotation mark is treated as an ordinary character.
Use quotation marks to delimit filenames or path names that contain spaces. For example:
--errors C:\My Project\errors.txt (three words)
--errors "C:\My Project\errors.txt" (two words)
Use apostrophes to delimit words that contain quotes.

• Characters enclosed in parentheses are treated as a single word. For example:
--option(x, y, z) (one word)
--option (x, y, z) (two words)

• Within quoted or apostrophe delimited strings, you can use a backslash (\) character to
escape the quote, apostrophe, and backslash characters.

• A word that occurs immediately next to a delimited word is treated as a single word. For
example:
--errors"C:\Project\errors.txt"

is treated as the single word:
--errorsC:\Project\errors.txt

• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace
character are comment lines. If a semicolon or hash character appears anywhere else in a
line, it is not treated as the start of a comment. For example:
-o objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line
comments, and there are no part-line comments.
ARM DUI 0802A Copyright © 2014 ARM. All rights reserved. A-3
ID031214 Non-Confidential

	ARM Compiler armasm Reference Guide
	Contents
	1: Conventions and Feedback
	2: armasm Command-line Options
	2.1 armasm command-line syntax
	2.2 armasm command-line options
	2.3 --16
	2.3.1 See also

	2.4 --32
	2.4.1 See also

	2.5 --apcs
	2.5.1 Syntax
	2.5.2 Example
	2.5.3 See also

	2.6 --arm
	2.6.1 See also

	2.7 --arm_only
	2.7.1 See also

	2.8 --bi
	2.8.1 See also

	2.9 --bigend
	2.9.1 See also

	2.10 --brief_diagnostics
	2.10.1 See also

	2.11 --checkreglist
	2.11.1 See also

	2.12 --cpu
	2.12.1 Syntax
	2.12.2 Examples
	2.12.3 See also

	2.13 --debug
	2.13.1 See also

	2.14 --depend
	2.14.1 Syntax
	2.14.2 See also

	2.15 --depend_format
	2.15.1 Syntax
	2.15.2 See also

	2.16 --diag_error
	2.16.1 Syntax
	2.16.2 Usage
	2.16.3 See also

	2.17 --diag_remark
	2.17.1 Syntax
	2.17.2 Usage
	2.17.3 See also

	2.18 --diag_style
	2.18.1 Syntax
	2.18.2 Usage
	2.18.3 See also

	2.19 --diag_suppress
	2.19.1 Syntax
	2.19.2 Examples
	2.19.3 See also

	2.20 --diag_warning
	2.20.1 Syntax
	2.20.2 See also

	2.21 --dllexport_all
	2.21.1 See also

	2.22 --dwarf2
	2.22.1 See also

	2.23 --dwarf3
	2.23.1 See also

	2.24 --errors
	2.24.1 Syntax

	2.25 --execstack
	2.25.1 See also

	2.26 --exceptions
	2.26.1 See also

	2.27 --exceptions_unwind
	2.27.1 See also

	2.28 --fpmode
	2.28.1 Syntax
	2.28.2 Example
	2.28.3 See also

	2.29 --fpu
	2.29.1 Syntax
	2.29.2 Usage
	2.29.3 See also

	2.30 -g
	2.30.1 See also

	2.31 --help
	2.31.1 See also

	2.32 -i
	2.32.1 Syntax
	2.32.2 See also

	2.33 --keep
	2.33.1 See also

	2.34 --length
	2.34.1 Syntax
	2.34.2 See also

	2.35 --li
	2.35.1 See also

	2.36 --library_type
	2.36.1 Syntax
	2.36.2 See also

	2.37 --licretry
	2.37.1 See also

	2.38 --list
	2.38.1 Syntax
	2.38.2 Usage
	2.38.3 See also

	2.39 --littleend
	2.39.1 See also

	2.40 -m
	2.40.1 See also

	2.41 --maxcache
	2.41.1 Syntax

	2.42 --md
	2.42.1 See also

	2.43 --no_code_gen
	2.44 --no_esc
	2.45 --no_execstack
	2.45.1 See also

	2.46 --no_exceptions
	2.46.1 See also

	2.47 --no_exceptions_unwind
	2.47.1 See also

	2.48 --no_hide_all
	2.48.1 See also

	2.49 --no_reduce_paths
	2.49.1 See also

	2.50 --no_regs
	2.50.1 See also

	2.51 --no_terse
	2.51.1 See also

	2.52 --no_unaligned_access
	2.52.1 See also

	2.53 --no_warn
	2.53.1 See also

	2.54 -o
	2.54.1 Syntax

	2.55 --pd
	2.55.1 See also

	2.56 --predefine
	2.56.1 Syntax
	2.56.2 Usage
	2.56.3 See also

	2.57 --reduce_paths
	2.57.1 See also

	2.58 --regnames
	2.58.1 Syntax
	2.58.2 See also

	2.59 --report-if-not-wysiwyg
	2.60 --show_cmdline
	2.60.1 See also

	2.61 --thumb
	2.61.1 See also

	2.62 --unaligned_access
	2.62.1 See also

	2.63 --unsafe
	2.63.1 See also

	2.64 --untyped_local_labels
	2.64.1 Example
	2.64.2 See also

	2.65 --version_number
	2.65.1 See also

	2.66 --via
	2.66.1 Syntax
	2.66.2 See also

	2.67 --vsn
	2.67.1 See also

	2.68 --width
	2.68.1 Syntax
	2.68.2 See also

	2.69 --xref
	2.69.1 See also

	3: A32 and T32 Instructions
	3.1 A32 and T32 instruction summary
	3.2 Instruction width specifiers
	3.3 Memory access instructions
	3.3.1 See also

	3.4 General data processing instructions
	3.5 Flexible second operand (Operand2)
	3.5.1 See also

	3.6 Operand2 as a constant
	3.6.1 Instruction substitution
	3.6.2 See also

	3.7 Operand2 as a register with optional shift
	3.7.1 See also

	3.8 Shift operations
	3.8.1 ASR
	3.8.2 LSR
	3.8.3 LSL
	3.8.4 ROR
	3.8.5 RRX
	3.8.6 See also

	3.9 Multiply instructions
	3.10 Saturating instructions
	3.10.1 Saturating arithmetic
	3.10.2 See also

	3.11 Parallel instructions
	3.11.1 See also

	3.12 Packing and unpacking instructions
	3.13 Branch and control instructions
	3.14 Coprocessor instructions
	3.14.1 See also

	3.15 Miscellaneous instructions
	3.16 Pseudo-instructions
	3.17 Condition codes
	3.17.1 See also

	3.18 ADD, SUB, RSB, ADC, SBC, and RSC
	3.18.1 Syntax
	3.18.2 Usage
	3.18.3 Use of PC and SP in T32 instructions
	3.18.4 Use of PC and SP in A32 instructions
	3.18.5 Condition flags
	3.18.6 16-bit instructions
	3.18.7 Examples
	3.18.8 Incorrect example
	3.18.9 Multiword arithmetic examples
	3.18.10 See also

	3.19 ADR (PC-relative)
	3.19.1 Syntax
	3.19.2 Usage
	3.19.3 Offset range and architectures
	3.19.4 ADR in T32
	3.19.5 Restrictions
	3.19.6 See also

	3.20 ADR (register-relative)
	3.20.1 Syntax
	3.20.2 Usage
	3.20.3 Restrictions
	3.20.4 Offset range and architectures
	3.20.5 ADR in T32
	3.20.6 See also

	3.21 ADRL pseudo-instruction
	3.21.1 Syntax
	3.21.2 Usage
	3.21.3 Availability and range
	3.21.4 See also

	3.22 AND, ORR, EOR, BIC, and ORN
	3.22.1 Syntax
	3.22.2 Usage
	3.22.3 Use of PC in T32 instructions
	3.22.4 Use of PC and SP in A32 instructions
	3.22.5 Condition flags
	3.22.6 16-bit instructions
	3.22.7 Examples
	3.22.8 Incorrect example
	3.22.9 See also

	3.23 ASR, LSL, LSR, ROR, and RRX
	3.23.1 Syntax
	3.23.2 Usage
	3.23.3 Restrictions in T32 code
	3.23.4 Use of SP and PC in A32 ASR, LSL, LSR, ROR, and RRX instructions
	3.23.5 Condition flags
	3.23.6 16-bit instructions
	3.23.7 Availability
	3.23.8 Examples
	3.23.9 See also

	3.24 B, BL, BX, BLX, and BXJ
	3.24.1 Syntax
	3.24.2 Operation
	3.24.3 Instruction availability and branch ranges
	3.24.4 Extending branch ranges
	3.24.5 B in T32
	3.24.6 Register restrictions
	3.24.7 Condition flags
	3.24.8 Availability
	3.24.9 Examples
	3.24.10 See also

	3.25 BFC and BFI
	3.25.1 Syntax
	3.25.2 BFC
	3.25.3 BFI
	3.25.4 Register restrictions
	3.25.5 Condition flags
	3.25.6 Availability
	3.25.7 See also

	3.26 BKPT
	3.26.1 Syntax
	3.26.2 Usage
	3.26.3 Availability

	3.27 CBZ and CBNZ
	3.27.1 Syntax
	3.27.2 Usage
	3.27.3 Restrictions
	3.27.4 Condition flags
	3.27.5 Availability

	3.28 CLREX
	3.28.1 Syntax
	3.28.2 Usage
	3.28.3 Availability
	3.28.4 See also

	3.29 CLZ
	3.29.1 Syntax
	3.29.2 Usage
	3.29.3 Register restrictions
	3.29.4 Condition flags
	3.29.5 Availability
	3.29.6 Examples
	3.29.7 See also

	3.30 CMP and CMN
	3.30.1 Syntax
	3.30.2 Usage
	3.30.3 Use of PC in A32 and T32 instructions
	3.30.4 Use of SP in A32 and T32 instructions
	3.30.5 Condition flags
	3.30.6 16-bit instructions
	3.30.7 Examples
	3.30.8 Incorrect example
	3.30.9 See also

	3.31 CPS
	3.31.1 Syntax
	3.31.2 Condition flags
	3.31.3 16-bit instructions
	3.31.4 Availability
	3.31.5 Examples

	3.32 CPY pseudo-instruction
	3.32.1 Syntax
	3.32.2 Usage
	3.32.3 Availability
	3.32.4 Register restrictions
	3.32.5 Condition flags
	3.32.6 See also

	3.33 DBG
	3.33.1 Syntax
	3.33.2 Usage
	3.33.3 Availability
	3.33.4 See also

	3.34 DMB, DSB, and ISB
	3.34.1 Syntax
	3.34.2 DMB
	3.34.3 DSB
	3.34.4 ISB
	3.34.5 Aliases
	3.34.6 Availability
	3.34.7 See also

	3.35 ERET
	3.35.1 Syntax
	3.35.2 Usage
	3.35.3 Operation
	3.35.4 Notes
	3.35.5 Availability
	3.35.6 See also

	3.36 HLT
	3.36.1 Syntax
	3.36.2 Usage
	3.36.3 Availability

	3.37 HVC
	3.37.1 Syntax
	3.37.2 Usage
	3.37.3 Notes
	3.37.4 Availability
	3.37.5 See also

	3.38 IT
	3.38.1 Syntax
	3.38.2 Deprecated syntax
	3.38.3 Usage
	3.38.4 Restrictions
	3.38.5 Condition flags
	3.38.6 Exceptions
	3.38.7 Availability
	3.38.8 Examples
	3.38.9 Incorrect examples

	3.39 LDC and STC
	3.39.1 Syntax
	3.39.2 Usage
	3.39.3 Availability
	3.39.4 Register restrictions
	3.39.5 See also

	3.40 LDM and STM
	3.40.1 Syntax
	3.40.2 Restrictions on reglist in 32-bit T32 instructions
	3.40.3 Restrictions on reglist in A32 instructions
	3.40.4 16-bit instructions
	3.40.5 Loading to the PC
	3.40.6 Loading or storing the base register, with writeback
	3.40.7 Examples
	3.40.8 Incorrect examples
	3.40.9 See also

	3.41 LDR and STR (immediate offset)
	3.41.1 Syntax
	3.41.2 Offset ranges and availability
	3.41.3 Register restrictions
	3.41.4 Doubleword register restrictions
	3.41.5 Use of PC
	3.41.6 Use of SP
	3.41.7 Examples
	3.41.8 See also

	3.42 LDR and STR (register offset)
	3.42.1 Syntax
	3.42.2 Offset register and shift options
	3.42.3 Register restrictions
	3.42.4 Doubleword register restrictions
	3.42.5 Use of PC
	3.42.6 Use of SP
	3.42.7 See also

	3.43 LDR and STR, unprivileged
	3.43.1 Syntax
	3.43.2 Offset ranges and availability
	3.43.3 See also

	3.44 LDR (PC-relative)
	3.44.1 Syntax
	3.44.2 Offset ranges
	3.44.3 LDR (PC-relative) in T32
	3.44.4 Doubleword register restrictions
	3.44.5 Use of SP
	3.44.6 See also

	3.45 LDR (register-relative)
	3.45.1 Syntax
	3.45.2 Offset ranges
	3.45.3 LDR (register-relative) in T32
	3.45.4 Doubleword register restrictions
	3.45.5 Use of PC
	3.45.6 Use of SP
	3.45.7 See also

	3.46 LDR pseudo-instruction
	3.46.1 Syntax
	3.46.2 Usage
	3.46.3 LDR in T32 code
	3.46.4 Examples
	3.46.5 See also

	3.47 LDA and STL
	3.47.1 Syntax
	3.47.2 Operation
	3.47.3 Restrictions
	3.47.4 Availability
	3.47.5 See also

	3.48 LDAEX and STLEX
	3.48.1 Syntax
	3.48.2 LDAEX
	3.48.3 STLEX
	3.48.4 Restrictions
	3.48.5 Usage
	3.48.6 Availability
	3.48.7 See also

	3.49 LDREX and STREX
	3.49.1 Syntax
	3.49.2 LDREX
	3.49.3 STREX
	3.49.4 Restrictions
	3.49.5 Usage
	3.49.6 Availability
	3.49.7 Examples
	3.49.8 See also

	3.50 MCR and MCRR
	3.50.1 Syntax
	3.50.2 Usage
	3.50.3 Availability
	3.50.4 See also

	3.51 MOV and MVN
	3.51.1 Syntax
	3.51.2 Usage
	3.51.3 Use of PC and SP in 32-bit T32 instructions
	3.51.4 Use of PC and SP in 16-bit T32 instructions
	3.51.5 Use of PC and SP in A32 MOV and MVN
	3.51.6 Condition flags
	3.51.7 16-bit instructions
	3.51.8 Availability
	3.51.9 Example
	3.51.10 Incorrect example
	3.51.11 See also

	3.52 MOVT
	3.52.1 Syntax
	3.52.2 Usage
	3.52.3 Register restrictions
	3.52.4 Condition flags
	3.52.5 Availability
	3.52.6 See also

	3.53 MOV32 pseudo-instruction
	3.53.1 Syntax
	3.53.2 Usage
	3.53.3 Availability
	3.53.4 Examples
	3.53.5 See also

	3.54 MRC and MRRC
	3.54.1 Syntax
	3.54.2 Usage
	3.54.3 Availability
	3.54.4 See also

	3.55 MRS (system coprocessor register to ARM register)
	3.55.1 Syntax
	3.55.2 Usage
	3.55.3 Availability
	3.55.4 See also

	3.56 MRS (PSR to general-purpose register)
	3.56.1 Syntax
	3.56.2 Usage
	3.56.3 SPSR
	3.56.4 CPSR
	3.56.5 Register restrictions
	3.56.6 Condition flags
	3.56.7 Availability
	3.56.8 See also

	3.57 MSR (ARM register to system coprocessor register)
	3.57.1 Syntax
	3.57.2 Usage
	3.57.3 Availability
	3.57.4 See also

	3.58 MSR (general-purpose register to PSR)
	3.58.1 Syntax
	3.58.2 Usage
	3.58.3 Register restrictions
	3.58.4 Condition flags
	3.58.5 Availability
	3.58.6 See also

	3.59 MUL, MLA, and MLS
	3.59.1 Syntax
	3.59.2 Usage
	3.59.3 Register restrictions
	3.59.4 Condition flags
	3.59.5 16-bit instructions
	3.59.6 Availability
	3.59.7 Examples
	3.59.8 See also

	3.60 NEG pseudo-instruction
	3.60.1 Syntax
	3.60.2 Usage
	3.60.3 Availability
	3.60.4 Register restrictions
	3.60.5 Condition flags
	3.60.6 See also

	3.61 NOP
	3.61.1 Syntax
	3.61.2 Usage
	3.61.3 Availability
	3.61.4 See also

	3.62 Parallel add and subtract
	3.62.1 Syntax
	3.62.2 Operation
	3.62.3 Register restrictions
	3.62.4 GE flags
	3.62.5 Availability
	3.62.6 Examples
	3.62.7 Incorrect examples
	3.62.8 See also

	3.63 PKHBT and PKHTB
	3.63.1 Syntax
	3.63.2 Register restrictions
	3.63.3 Condition flags
	3.63.4 Availability
	3.63.5 Examples
	3.63.6 Incorrect examples
	3.63.7 See also

	3.64 PLD, PLDW, and PLI
	3.64.1 Syntax
	3.64.2 Range of offset
	3.64.3 Register or shifted register offset
	3.64.4 Address alignment for preloads
	3.64.5 Register restrictions
	3.64.6 Availability
	3.64.7 See also

	3.65 PUSH and POP
	3.65.1 Syntax
	3.65.2 Usage
	3.65.3 POP, with reglist including the PC
	3.65.4 T32 instructions
	3.65.5 Restrictions on reglist in A32 instructions
	3.65.6 Examples
	3.65.7 See also

	3.66 QADD, QSUB, QDADD, and QDSUB
	3.66.1 Syntax
	3.66.2 Usage
	3.66.3 Register restrictions
	3.66.4 Q flag
	3.66.5 Availability
	3.66.6 Examples
	3.66.7 See also

	3.67 REV, REV16, REVSH, and RBIT
	3.67.1 Syntax
	3.67.2 Usage
	3.67.3 Register restrictions
	3.67.4 Condition flags
	3.67.5 16-bit instructions
	3.67.6 Availability
	3.67.7 Examples
	3.67.8 See also

	3.68 RFE
	3.68.1 Syntax
	3.68.2 Usage
	3.68.3 Operation
	3.68.4 Notes
	3.68.5 Availability
	3.68.6 Example
	3.68.7 See also

	3.69 SBFX and UBFX
	3.69.1 Syntax
	3.69.2 Register restrictions
	3.69.3 Condition flags
	3.69.4 Availability
	3.69.5 See also

	3.70 SDIV and UDIV
	3.70.1 Syntax
	3.70.2 Register restrictions
	3.70.3 Availability
	3.70.4 See also

	3.71 SEL
	3.71.1 Syntax
	3.71.2 Operation
	3.71.3 Usage
	3.71.4 Register restrictions
	3.71.5 Condition flags
	3.71.6 Availability
	3.71.7 Examples
	3.71.8 See also

	3.72 SETEND
	3.72.1 Syntax
	3.72.2 Usage
	3.72.3 Availability
	3.72.4 Example

	3.73 SEV, SEVL, WFE, WFI, and YIELD
	3.73.1 Syntax
	3.73.2 Usage
	3.73.3 Availability
	3.73.4 See also

	3.74 SMC
	3.74.1 Syntax
	3.74.2 Note
	3.74.3 Availability
	3.74.4 See also

	3.75 SMLAD and SMLSD
	3.75.1 Syntax
	3.75.2 Operation
	3.75.3 Register restrictions
	3.75.4 Condition flags
	3.75.5 Availability
	3.75.6 Examples
	3.75.7 See also

	3.76 SMLALxy
	3.76.1 Syntax
	3.76.2 Usage
	3.76.3 Register restrictions
	3.76.4 Condition flags
	3.76.5 Availability
	3.76.6 Examples
	3.76.7 See also

	3.77 SMLALD and SMLSLD
	3.77.1 Syntax
	3.77.2 Operation
	3.77.3 Register restrictions
	3.77.4 Condition flags
	3.77.5 Availability
	3.77.6 Examples
	3.77.7 See also

	3.78 SMMUL, SMMLA, and SMMLS
	3.78.1 Syntax
	3.78.2 Operation
	3.78.3 Register restrictions
	3.78.4 Condition flags
	3.78.5 Availability
	3.78.6 Examples
	3.78.7 See also

	3.79 SMUAD{X} and SMUSD{X}
	3.79.1 Syntax
	3.79.2 Usage
	3.79.3 Register restrictions
	3.79.4 Q flag
	3.79.5 Availability
	3.79.6 Examples
	3.79.7 See also

	3.80 SMULWy and SMLAWy
	3.80.1 Syntax
	3.80.2 Usage
	3.80.3 Register restrictions
	3.80.4 Condition flags
	3.80.5 Availability
	3.80.6 See also

	3.81 SMULxy and SMLAxy
	3.81.1 Syntax
	3.81.2 Usage
	3.81.3 Register restrictions
	3.81.4 Condition flags
	3.81.5 Availability
	3.81.6 Examples
	3.81.7 See also

	3.82 SRS
	3.82.1 Syntax
	3.82.2 Operation
	3.82.3 Usage
	3.82.4 Notes
	3.82.5 Availability
	3.82.6 Example
	3.82.7 See also

	3.83 SSAT and USAT
	3.83.1 Syntax
	3.83.2 Operation
	3.83.3 Register restrictions
	3.83.4 Q flag
	3.83.5 Availability
	3.83.6 Examples
	3.83.7 See also

	3.84 SSAT16 and USAT16
	3.84.1 Syntax
	3.84.2 Operation
	3.84.3 Register restrictions
	3.84.4 Q flag
	3.84.5 Availability
	3.84.6 Examples
	3.84.7 Incorrect examples
	3.84.8 See also

	3.85 SUBS pc, lr
	3.85.1 Syntax
	3.85.2 Usage
	3.85.3 Notes
	3.85.4 Availability
	3.85.5 See also

	3.86 SVC
	3.86.1 Syntax
	3.86.2 Usage
	3.86.3 Condition flags
	3.86.4 Availability
	3.86.5 See also

	3.87 SXT, SXTA, UXT, and UXTA
	3.87.1 Syntax
	3.87.2 Operation
	3.87.3 Register restrictions
	3.87.4 Condition flags
	3.87.5 16-bit instructions
	3.87.6 Availability
	3.87.7 Examples
	3.87.8 Incorrect examples
	3.87.9 See also

	3.88 SYS
	3.88.1 Syntax
	3.88.2 Usage
	3.88.3 Availability
	3.88.4 See also

	3.89 TBB and TBH
	3.89.1 Syntax
	3.89.2 Operation
	3.89.3 Availability

	3.90 TST and TEQ
	3.90.1 Syntax
	3.90.2 Usage
	3.90.3 Register restrictions
	3.90.4 Condition flags
	3.90.5 Availability
	3.90.6 Examples
	3.90.7 Incorrect example
	3.90.8 See also

	3.91 UMAAL
	3.91.1 Syntax
	3.91.2 Operation
	3.91.3 Register restrictions
	3.91.4 Condition flags
	3.91.5 Availability
	3.91.6 Examples
	3.91.7 See also

	3.92 UMULL, UMLAL, SMULL, and SMLAL
	3.92.1 Syntax
	3.92.2 Usage
	3.92.3 Register restrictions
	3.92.4 Condition flags
	3.92.5 Availability
	3.92.6 Examples
	3.92.7 See also

	3.93 UND pseudo-instruction
	3.93.1 Syntax
	3.93.2 UND in T32 code
	3.93.3 Disassembly
	3.93.4 See also

	3.94 USAD8 and USADA8
	3.94.1 Syntax
	3.94.2 Operation
	3.94.3 Register restrictions
	3.94.4 Condition flags
	3.94.5 Availability
	3.94.6 Examples
	3.94.7 Incorrect examples
	3.94.8 See also

	4: Advanced SIMD and Floating-point Programming (32-bit)
	4.1 Advanced SIMD and floating-point instruction summary
	4.1.1 Advanced SIMD instructions
	4.1.2 Shared Advanced SIMD and floating-point instructions
	4.1.3 Floating-point instructions

	4.2 Shared Advanced SIMD and floating-point instructions
	4.3 Advanced SIMD logical and compare operations
	4.4 Advanced SIMD general data processing instructions
	4.5 Advanced SIMD shift instructions
	4.6 Advanced SIMD general arithmetic instructions
	4.7 Advanced SIMD multiply instructions
	4.8 Advanced SIMD load and store element and structure instructions
	4.9 Interleaving provided by load and store, element and structure instructions
	4.9.1 See also

	4.10 Alignment restrictions in load and store, element and structure instructions
	4.10.1 See also

	4.11 Advanced SIMD and floating-point pseudo-instructions
	4.12 Floating-point instructions
	4.13 Cryptographic instructions
	4.13.1 See also

	4.14 V{Q}{R}SHL (by signed variable)
	4.14.1 Syntax
	4.14.2 See also

	4.15 V{Q}ABS and V{Q}NEG
	4.15.1 Syntax
	4.15.2 See also

	4.16 V{Q}ADD, VADDL, VADDW, V{Q}SUB, VSUBL, and VSUBW
	4.16.1 Syntax
	4.16.2 See also

	4.17 V{R}ADDHN and V{R}SUBHN
	4.17.1 Syntax
	4.17.2 See also

	4.18 V{R}HADD and VHSUB
	4.18.1 Syntax
	4.18.2 See also

	4.19 V{R}SHR (by immediate)
	4.19.1 Syntax
	4.19.2 See also

	4.20 V{R}SHRN (by immediate)
	4.20.1 Syntax
	4.20.2 See also

	4.21 V{R}SRA (by immediate)
	4.21.1 Syntax
	4.21.2 See also

	4.22 VABA{L} and VABD{L}
	4.22.1 Syntax
	4.22.2 See also

	4.23 VABS, VNEG, and VSQRT
	4.23.1 Syntax
	4.23.2 Usage
	4.23.3 Floating-point exceptions
	4.23.4 See also

	4.24 VACGE and VACGT
	4.24.1 Syntax
	4.24.2 See also

	4.25 VACLE and VACLT
	4.25.1 Syntax
	4.25.2 See also

	4.26 VADD, VSUB, and VDIV
	4.26.1 Syntax
	4.26.2 Usage
	4.26.3 Floating-point exceptions
	4.26.4 See also

	4.27 VAND, VBIC, VEOR, VORN, and VORR (register)
	4.27.1 Syntax
	4.27.2 See also

	4.28 VAND and VORN (immediate)
	4.28.1 Syntax
	4.28.2 Immediate values
	4.28.3 See also

	4.29 VBIC and VORR (immediate)
	4.29.1 Syntax
	4.29.2 Immediate values
	4.29.3 See also

	4.30 VBIF, VBIT, and VBSL
	4.30.1 Syntax
	4.30.2 See also

	4.31 VCEQ, VCGE, VCGT, VCLE, and VCLT
	4.31.1 Syntax
	4.31.2 See also

	4.32 VCLE and VCLT
	4.32.1 Syntax
	4.32.2 See also

	4.33 VCLS, VCLZ, and VCNT
	4.33.1 Syntax
	4.33.2 See also

	4.34 VCMP, VCMPE
	4.34.1 Syntax
	4.34.2 Usage
	4.34.3 Floating-point exceptions
	4.34.4 See also

	4.35 VCVT (between fixed-point or integer, and floating-point)
	4.35.1 Syntax
	4.35.2 Rounding
	4.35.3 See also

	4.36 VCVT (from floating-point to integer with directed rounding modes)
	4.36.1 Syntax
	4.36.2 Notes

	4.37 VCVT (between half-precision and single-precision floating-point)
	4.37.1 Syntax
	4.37.2 See also

	4.38 VCVT (between single-precision and double-precision)
	4.38.1 Syntax
	4.38.2 Usage
	4.38.3 Floating-point exceptions
	4.38.4 See also

	4.39 VCVT (between floating-point and integer)
	4.39.1 Syntax
	4.39.2 Usage
	4.39.3 Floating-point exceptions
	4.39.4 See also

	4.40 VCVT (from floating-point to integer with directed rounding modes)
	4.40.1 Syntax
	4.40.2 Notes
	4.40.3 Floating-point exceptions

	4.41 VCVT (between floating-point and fixed-point)
	4.41.1 Syntax
	4.41.2 Usage
	4.41.3 Floating-point exceptions
	4.41.4 See also

	4.42 VCVTB, VCVTT (half-precision extension)
	4.42.1 Syntax
	4.42.2 Floating-point exceptions
	4.42.3 See also

	4.43 VCVTB, VCVTT (between half-precision and double-precision)
	4.43.1 Syntax
	4.43.2 Usage
	4.43.3 Floating-point exceptions
	4.43.4 See also

	4.44 VDUP
	4.44.1 Syntax
	4.44.2 See also

	4.45 VEXT
	4.45.1 Syntax
	4.45.2 VEXT pseudo-instruction
	4.45.3 See also

	4.46 VFMA, VFMS
	4.46.1 Syntax
	4.46.2 See also

	4.47 VFNMA, VFNMS
	4.47.1 Syntax
	4.47.2 Usage
	4.47.3 Floating-point exceptions
	4.47.4 See also

	4.48 VLDM, VSTM, VPOP, and VPUSH
	4.48.1 Syntax
	4.48.2 See also

	4.49 VLDR and VSTR
	4.49.1 Syntax
	4.49.2 Usage
	4.49.3 See also

	4.50 VLDn and VSTn (single n-element structure to one lane)
	4.50.1 Syntax
	4.50.2 See also

	4.51 VLDn (single n-element structure to all lanes)
	4.51.1 Syntax
	4.51.2 See also

	4.52 VLDn and VSTn (multiple n-element structures)
	4.52.1 Syntax
	4.52.2 See also

	4.53 VLDR pseudo-instruction
	4.53.1 Syntax
	4.53.2 Usage
	4.53.3 See also

	4.54 VLDR and VSTR (post-increment and pre-decrement)
	4.54.1 Syntax
	4.54.2 Usage
	4.54.3 See also

	4.55 VMAX, VMIN, VPMAX, and VPMIN
	4.55.1 Syntax
	4.55.2 Floating-point maximum and minimum
	4.55.3 See also

	4.56 VMAXNM, VMINNM (Advanced SIMD)
	4.56.1 Syntax
	4.56.2 Notes

	4.57 VMAXNM, VMINNM (floating-point)
	4.57.1 Syntax
	4.57.2 Notes
	4.57.3 Floating-point exceptions

	4.58 VMOV
	4.58.1 Syntax
	4.58.2 Immediate values
	4.58.3 See also

	4.59 VMOV, VMVN (immediate)
	4.59.1 Syntax
	4.59.2 See also

	4.60 VMOV, VMVN (register)
	4.60.1 Syntax
	4.60.2 See also

	4.61 VMOV (between two ARM registers and an extension register)
	4.61.1 Syntax
	4.61.2 Usage
	4.61.3 See also

	4.62 VMOV (between an ARM register and an Advanced SIMD scalar)
	4.62.1 Syntax
	4.62.2 Usage
	4.62.3 See also

	4.63 VMOV (between one ARM register and single precision floating-point register)
	4.63.1 Syntax
	4.63.2 Usage
	4.63.3 See also

	4.64 VMOV2
	4.64.1 Syntax
	4.64.2 Usage
	4.64.3 See also

	4.65 VMOVL, V{Q}MOVN, VQMOVUN
	4.65.1 Syntax
	4.65.2 See also

	4.66 VMRS and VMSR
	4.66.1 Syntax
	4.66.2 Usage
	4.66.3 Examples
	4.66.4 See also

	4.67 VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS
	4.67.1 Syntax
	4.67.2 Usage
	4.67.3 Floating-point exceptions
	4.67.4 See also

	4.68 VMUL{L}, VMLA{L}, and VMLS{L}
	4.68.1 Syntax
	4.68.2 See also

	4.69 VMUL{L}, VMLA{L}, and VMLS{L} (by scalar)
	4.69.1 Syntax
	4.69.2 See also

	4.70 VPADD{L}, VPADAL
	4.70.1 Syntax
	4.70.2 See also

	4.71 VQ{R}DMULH (by vector or by scalar)
	4.71.1 Syntax
	4.71.2 See also

	4.72 VQ{R}SHR{U}N (by immediate)
	4.72.1 Syntax
	4.72.2 See also

	4.73 VQDMULL, VQDMLAL, and VQDMLSL (by vector or by scalar)
	4.73.1 Syntax
	4.73.2 See also

	4.74 VRECPE and VRSQRTE
	4.74.1 Syntax
	4.74.2 Results for out-of-range inputs
	4.74.3 See also

	4.75 VRECPS and VRSQRTS
	4.75.1 Syntax
	4.75.2 Results for out-of-range inputs
	4.75.3 Usage
	4.75.4 See also

	4.76 VREV
	4.76.1 Syntax
	4.76.2 See also

	4.77 VRINT (Advanced SIMD)
	4.77.1 Syntax
	4.77.2 Notes

	4.78 VRINT (floating-point)
	4.78.1 Syntax
	4.78.2 Notes
	4.78.3 Floating-point exceptions
	4.78.4 See also

	4.79 VSEL
	4.79.1 Syntax
	4.79.2 Usage
	4.79.3 Floating-point exceptions
	4.79.4 See also

	4.80 VSHL, VQSHL, VQSHLU, and VSHLL (by immediate)
	4.80.1 Syntax
	4.80.2 See also

	4.81 VSLI and VSRI
	4.81.1 Syntax
	4.81.2 See also

	4.82 VSWP
	4.82.1 Syntax
	4.82.2 See also

	4.83 VTBL, VTBX
	4.83.1 Syntax
	4.83.2 See also

	4.84 VTRN
	4.84.1 Syntax
	4.84.2 See also

	4.85 VTST
	4.85.1 Syntax
	4.85.2 See also

	4.86 VUZP, VZIP
	4.86.1 Syntax
	4.86.2 See also

	5: A64 General Instructions
	5.1 A64 general instructions in alphabetical order
	5.2 Register restrictions for A64 instructions
	5.2.1 See also

	5.3 ADC
	5.3.1 Syntax
	5.3.2 See also

	5.4 ADCS
	5.4.1 Syntax
	5.4.2 See also

	5.5 ADD (extended register)
	5.5.1 Syntax
	5.5.2 Usage
	5.5.3 See also

	5.6 ADD (immediate)
	5.6.1 Syntax
	5.6.2 See also

	5.7 ADD (shifted register)
	5.7.1 Syntax
	5.7.2 See also

	5.8 ADDS (extended register)
	5.8.1 Syntax
	5.8.2 Usage
	5.8.3 See also

	5.9 ADDS (immediate)
	5.9.1 Syntax
	5.9.2 See also

	5.10 ADDS (shifted register)
	5.10.1 Syntax
	5.10.2 See also

	5.11 ADR
	5.11.1 Syntax
	5.11.2 See also

	5.12 ADRL pseudo-instruction
	5.12.1 Syntax
	5.12.2 Usage
	5.12.3 Example
	5.12.4 See also

	5.13 ADRP
	5.13.1 Syntax
	5.13.2 See also

	5.14 AND (immediate)
	5.14.1 Syntax
	5.14.2 See also

	5.15 AND (shifted register)
	5.15.1 Syntax
	5.15.2 See also

	5.16 ANDS (immediate)
	5.16.1 Syntax
	5.16.2 See also

	5.17 ANDS (shifted register)
	5.17.1 Syntax
	5.17.2 See also

	5.18 ASR (register)
	5.18.1 Syntax
	5.18.2 See also

	5.19 ASR (immediate)
	5.19.1 Syntax
	5.19.2 See also

	5.20 ASRV
	5.20.1 Syntax
	5.20.2 See also

	5.21 AT
	5.21.1 Syntax
	5.21.2 See also

	5.22 B.cond
	5.22.1 Syntax
	5.22.2 See also

	5.23 B
	5.23.1 Syntax
	5.23.2 See also

	5.24 BFI
	5.24.1 Syntax
	5.24.2 See also

	5.25 BFM
	5.25.1 Syntax
	5.25.2 See also

	5.26 BFXIL
	5.26.1 Syntax
	5.26.2 See also

	5.27 BIC (shifted register)
	5.27.1 Syntax
	5.27.2 See also

	5.28 BICS (shifted register)
	5.28.1 Syntax
	5.28.2 See also

	5.29 BL
	5.29.1 Syntax
	5.29.2 See also

	5.30 BLR
	5.30.1 Syntax
	5.30.2 See also

	5.31 BR
	5.31.1 Syntax
	5.31.2 See also

	5.32 BRK
	5.32.1 Syntax
	5.32.2 See also

	5.33 CBNZ
	5.33.1 Syntax
	5.33.2 See also

	5.34 CBZ
	5.34.1 Syntax
	5.34.2 See also

	5.35 CCMN (immediate)
	5.35.1 Syntax
	5.35.2 See also

	5.36 CCMN (register)
	5.36.1 Syntax
	5.36.2 See also

	5.37 CCMP (immediate)
	5.37.1 Syntax
	5.37.2 See also

	5.38 CCMP (register)
	5.38.1 Syntax
	5.38.2 See also

	5.39 CINC
	5.39.1 Syntax
	5.39.2 See also

	5.40 CINV
	5.40.1 Syntax
	5.40.2 See also

	5.41 CLREX
	5.41.1 Syntax
	5.41.2 See also

	5.42 CLS
	5.42.1 Syntax
	5.42.2 See also

	5.43 CLZ
	5.43.1 Syntax
	5.43.2 See also

	5.44 CMN (extended register)
	5.44.1 Syntax
	5.44.2 Usage
	5.44.3 See also

	5.45 CMN (immediate)
	5.45.1 Syntax
	5.45.2 See also

	5.46 CMN (shifted register)
	5.46.1 Syntax
	5.46.2 See also

	5.47 CMP (extended register)
	5.47.1 Syntax
	5.47.2 Usage
	5.47.3 See also

	5.48 CMP (immediate)
	5.48.1 Syntax
	5.48.2 See also

	5.49 CMP (shifted register)
	5.49.1 Syntax
	5.49.2 See also

	5.50 CNEG
	5.50.1 Syntax
	5.50.2 See also

	5.51 CRC32B, CRC32H, CRC32W, CRC32X
	5.51.1 Syntax
	5.51.2 See also

	5.52 CRC32CB, CRC32CH, CRC32CW, CRC32CX
	5.52.1 Syntax
	5.52.2 See also

	5.53 CSEL
	5.53.1 Syntax
	5.53.2 See also

	5.54 CSET
	5.54.1 Syntax
	5.54.2 See also

	5.55 CSETM
	5.55.1 Syntax
	5.55.2 See also

	5.56 CSINC
	5.56.1 Syntax
	5.56.2 See also

	5.57 CSINV
	5.57.1 Syntax
	5.57.2 See also

	5.58 CSNEG
	5.58.1 Syntax
	5.58.2 See also

	5.59 DC
	5.59.1 Syntax
	5.59.2 See also

	5.60 DCPS1
	5.60.1 Syntax
	5.60.2 See also

	5.61 DCPS2
	5.61.1 Syntax
	5.61.2 See also

	5.62 DCPS3
	5.62.1 Syntax
	5.62.2 See also

	5.63 DMB
	5.63.1 Syntax
	5.63.2 See also

	5.64 DRPS
	5.64.1 Syntax
	5.64.2 See also

	5.65 DSB
	5.65.1 Syntax
	5.65.2 See also

	5.66 EON (shifted register)
	5.66.1 Syntax
	5.66.2 See also

	5.67 EOR (immediate)
	5.67.1 Syntax
	5.67.2 See also

	5.68 EOR (shifted register)
	5.68.1 Syntax
	5.68.2 See also

	5.69 ERET
	5.69.1 Syntax
	5.69.2 See also

	5.70 EXTR
	5.70.1 Syntax
	5.70.2 See also

	5.71 HINT
	5.71.1 Syntax
	5.71.2 See also

	5.72 HLT
	5.72.1 Syntax
	5.72.2 See also

	5.73 HVC
	5.73.1 Syntax
	5.73.2 See also

	5.74 IC
	5.74.1 Syntax
	5.74.2 See also

	5.75 ISB
	5.75.1 Syntax
	5.75.2 See also

	5.76 LSL (register)
	5.76.1 Syntax
	5.76.2 See also

	5.77 LSL (immediate)
	5.77.1 Syntax
	5.77.2 See also

	5.78 LSLV
	5.78.1 Syntax
	5.78.2 See also

	5.79 LSR (register)
	5.79.1 Syntax
	5.79.2 See also

	5.80 LSR (immediate)
	5.80.1 Syntax
	5.80.2 See also

	5.81 LSRV
	5.81.1 Syntax
	5.81.2 See also

	5.82 MADD
	5.82.1 Syntax
	5.82.2 See also

	5.83 MNEG
	5.83.1 Syntax
	5.83.2 See also

	5.84 MOV (to or from SP)
	5.84.1 Syntax
	5.84.2 See also

	5.85 MOV (inverted wide immediate)
	5.85.1 Syntax
	5.85.2 See also

	5.86 MOV (wide immediate)
	5.86.1 Syntax
	5.86.2 See also

	5.87 MOV (bitmask immediate)
	5.87.1 Syntax
	5.87.2 See also

	5.88 MOV (register)
	5.88.1 Syntax
	5.88.2 See also

	5.89 MOVK
	5.89.1 Syntax
	5.89.2 See also

	5.90 MOVL pseudo-instruction
	5.90.1 Syntax
	5.90.2 Usage
	5.90.3 Examples
	5.90.4 See also

	5.91 MOVN
	5.91.1 Syntax
	5.91.2 See also

	5.92 MOVZ
	5.92.1 Syntax
	5.92.2 See also

	5.93 MRS
	5.93.1 Syntax
	5.93.2 See also

	5.94 MSR (immediate)
	5.94.1 Syntax
	5.94.2 See also

	5.95 MSR (register)
	5.95.1 Syntax
	5.95.2 See also

	5.96 MSUB
	5.96.1 Syntax
	5.96.2 See also

	5.97 MUL
	5.97.1 Syntax
	5.97.2 See also

	5.98 MVN
	5.98.1 Syntax
	5.98.2 See also

	5.99 NEG
	5.99.1 Syntax
	5.99.2 See also

	5.100 NEGS
	5.100.1 Syntax
	5.100.2 See also

	5.101 NGC
	5.101.1 Syntax
	5.101.2 See also

	5.102 NGCS
	5.102.1 Syntax
	5.102.2 See also

	5.103 NOP
	5.103.1 See also

	5.104 ORN (shifted register)
	5.104.1 Syntax
	5.104.2 See also

	5.105 ORR (immediate)
	5.105.1 Syntax
	5.105.2 See also

	5.106 ORR (shifted register)
	5.106.1 Syntax
	5.106.2 See also

	5.107 RBIT
	5.107.1 Syntax
	5.107.2 See also

	5.108 RET
	5.108.1 Syntax
	5.108.2 See also

	5.109 REV
	5.109.1 Syntax
	5.109.2 See also

	5.110 REV16
	5.110.1 Syntax
	5.110.2 See also

	5.111 REV32
	5.111.1 Syntax
	5.111.2 See also

	5.112 ROR (immediate)
	5.112.1 Syntax
	5.112.2 See also

	5.113 ROR (register)
	5.113.1 Syntax
	5.113.2 See also

	5.114 RORV
	5.114.1 Syntax
	5.114.2 See also

	5.115 SBC
	5.115.1 Syntax
	5.115.2 See also

	5.116 SBCS
	5.116.1 Syntax
	5.116.2 See also

	5.117 SBFIZ
	5.117.1 Syntax
	5.117.2 See also

	5.118 SBFM
	5.118.1 Syntax
	5.118.2 See also

	5.119 SBFX
	5.119.1 Syntax
	5.119.2 See also

	5.120 SDIV
	5.120.1 Syntax
	5.120.2 See also

	5.121 SEV
	5.121.1 See also

	5.122 SEVL
	5.122.1 See also

	5.123 SMADDL
	5.123.1 Syntax
	5.123.2 See also

	5.124 SMC
	5.124.1 Syntax
	5.124.2 See also

	5.125 SMNEGL
	5.125.1 Syntax
	5.125.2 See also

	5.126 SMSUBL
	5.126.1 Syntax
	5.126.2 See also

	5.127 SMULH
	5.127.1 Syntax
	5.127.2 See also

	5.128 SMULL
	5.128.1 Syntax
	5.128.2 See also

	5.129 SUB (extended register)
	5.129.1 Syntax
	5.129.2 Usage
	5.129.3 See also

	5.130 SUB (immediate)
	5.130.1 Syntax
	5.130.2 See also

	5.131 SUB (shifted register)
	5.131.1 Syntax
	5.131.2 See also

	5.132 SUBS (extended register)
	5.132.1 Syntax
	5.132.2 Usage
	5.132.3 See also

	5.133 SUBS (immediate)
	5.133.1 Syntax
	5.133.2 See also

	5.134 SUBS (shifted register)
	5.134.1 Syntax
	5.134.2 See also

	5.135 SVC
	5.135.1 Syntax
	5.135.2 See also

	5.136 SXTB
	5.136.1 Syntax
	5.136.2 See also

	5.137 SXTH
	5.137.1 Syntax
	5.137.2 See also

	5.138 SXTW
	5.138.1 Syntax
	5.138.2 See also

	5.139 SYS
	5.139.1 Syntax
	5.139.2 See also

	5.140 SYSL
	5.140.1 Syntax
	5.140.2 See also

	5.141 TBNZ
	5.141.1 Syntax
	5.141.2 See also

	5.142 TBZ
	5.142.1 Syntax
	5.142.2 See also

	5.143 TLBI
	5.143.1 Syntax
	5.143.2 See also

	5.144 TST (immediate)
	5.144.1 Syntax
	5.144.2 See also

	5.145 TST (shifted register)
	5.145.1 Syntax
	5.145.2 See also

	5.146 UBFIZ
	5.146.1 Syntax
	5.146.2 See also

	5.147 UBFM
	5.147.1 Syntax
	5.147.2 See also

	5.148 UBFX
	5.148.1 Syntax
	5.148.2 See also

	5.149 UDIV
	5.149.1 Syntax
	5.149.2 See also

	5.150 UMADDL
	5.150.1 Syntax
	5.150.2 See also

	5.151 UMNEGL
	5.151.1 Syntax
	5.151.2 See also

	5.152 UMSUBL
	5.152.1 Syntax
	5.152.2 See also

	5.153 UMULH
	5.153.1 Syntax
	5.153.2 See also

	5.154 UMULL
	5.154.1 Syntax
	5.154.2 See also

	5.155 UXTB
	5.155.1 Syntax
	5.155.2 See also

	5.156 UXTH
	5.156.1 Syntax
	5.156.2 See also

	5.157 WFE
	5.157.1 See also

	5.158 WFI
	5.158.1 See also

	5.159 YIELD
	5.159.1 See also

	6: A64 Data Transfer Instructions
	6.1 A64 data transfer instructions in alphabetical order
	6.2 Register restrictions for A64 instructions
	6.2.1 See also

	6.3 LDAR
	6.3.1 Syntax
	6.3.2 See also

	6.4 LDARB
	6.4.1 Syntax
	6.4.2 See also

	6.5 LDARH
	6.5.1 Syntax
	6.5.2 See also

	6.6 LDAXP
	6.6.1 Syntax
	6.6.2 See also

	6.7 LDAXR
	6.7.1 Syntax
	6.7.2 See also

	6.8 LDAXRB
	6.8.1 Syntax
	6.8.2 See also

	6.9 LDAXRH
	6.9.1 Syntax
	6.9.2 See also

	6.10 LDNP (SIMD and FP)
	6.10.1 Syntax
	6.10.2 See also

	6.11 LDNP
	6.11.1 Syntax
	6.11.2 See also

	6.12 LDP (SIMD and FP)
	6.12.1 Syntax
	6.12.2 See also

	6.13 LDP
	6.13.1 Syntax
	6.13.2 See also

	6.14 LDPSW
	6.14.1 Syntax
	6.14.2 See also

	6.15 LDR (immediate, SIMD and FP)
	6.15.1 Syntax
	6.15.2 See also

	6.16 LDR (immediate)
	6.16.1 Syntax
	6.16.2 See also

	6.17 LDR (literal, SIMD and FP)
	6.17.1 Syntax
	6.17.2 See also

	6.18 LDR (literal)
	6.18.1 Syntax
	6.18.2 See also

	6.19 LDR pseudo-instruction
	6.19.1 Syntax
	6.19.2 Usage
	6.19.3 Examples
	6.19.4 See also

	6.20 LDR (register, SIMD and FP)
	6.20.1 Syntax
	6.20.2 Usage
	6.20.3 See also

	6.21 LDR (register)
	6.21.1 Syntax
	6.21.2 Usage
	6.21.3 See also

	6.22 LDRB (immediate)
	6.22.1 Syntax
	6.22.2 See also

	6.23 LDRB (register)
	6.23.1 Syntax
	6.23.2 Usage
	6.23.3 See also

	6.24 LDRH (immediate)
	6.24.1 Syntax
	6.24.2 See also

	6.25 LDRH (register)
	6.25.1 Syntax
	6.25.2 Usage
	6.25.3 See also

	6.26 LDRSB (immediate)
	6.26.1 Syntax
	6.26.2 See also

	6.27 LDRSB (register)
	6.27.1 Syntax
	6.27.2 Usage
	6.27.3 See also

	6.28 LDRSH (immediate)
	6.28.1 Syntax
	6.28.2 See also

	6.29 LDRSH (register)
	6.29.1 Syntax
	6.29.2 Usage
	6.29.3 See also

	6.30 LDRSW (immediate)
	6.30.1 Syntax
	6.30.2 See also

	6.31 LDRSW (literal)
	6.31.1 Syntax
	6.31.2 See also

	6.32 LDRSW (register)
	6.32.1 Syntax
	6.32.2 Usage
	6.32.3 See also

	6.33 LDTR
	6.33.1 Syntax
	6.33.2 See also

	6.34 LDTRB
	6.34.1 Syntax
	6.34.2 See also

	6.35 LDTRH
	6.35.1 Syntax
	6.35.2 See also

	6.36 LDTRSB
	6.36.1 Syntax
	6.36.2 See also

	6.37 LDTRSH
	6.37.1 Syntax
	6.37.2 See also

	6.38 LDTRSW
	6.38.1 Syntax
	6.38.2 See also

	6.39 LDUR (SIMD and FP)
	6.39.1 Syntax
	6.39.2 See also

	6.40 LDUR
	6.40.1 Syntax
	6.40.2 See also

	6.41 LDURB
	6.41.1 Syntax
	6.41.2 See also

	6.42 LDURH
	6.42.1 Syntax
	6.42.2 See also

	6.43 LDURSB
	6.43.1 Syntax
	6.43.2 See also

	6.44 LDURSH
	6.44.1 Syntax
	6.44.2 See also

	6.45 LDURSW
	6.45.1 Syntax
	6.45.2 See also

	6.46 LDXP
	6.46.1 Syntax
	6.46.2 See also

	6.47 LDXR
	6.47.1 Syntax
	6.47.2 See also

	6.48 LDXRB
	6.48.1 Syntax
	6.48.2 See also

	6.49 LDXRH
	6.49.1 Syntax
	6.49.2 See also

	6.50 PRFM (immediate)
	6.50.1 Syntax
	6.50.2 See also

	6.51 PRFM (literal)
	6.51.1 Syntax
	6.51.2 See also

	6.52 PRFM (register)
	6.52.1 Syntax
	6.52.2 Usage
	6.52.3 See also

	6.53 PRFUM
	6.53.1 Syntax
	6.53.2 See also

	6.54 STLR
	6.54.1 Syntax
	6.54.2 See also

	6.55 STLRB
	6.55.1 Syntax
	6.55.2 See also

	6.56 STLRH
	6.56.1 Syntax
	6.56.2 See also

	6.57 STLXP
	6.57.1 Syntax
	6.57.2 See also

	6.58 STLXR
	6.58.1 Syntax
	6.58.2 See also

	6.59 STLXRB
	6.59.1 Syntax
	6.59.2 See also

	6.60 STLXRH
	6.60.1 Syntax
	6.60.2 See also

	6.61 STNP (SIMD and FP)
	6.61.1 Syntax
	6.61.2 See also

	6.62 STNP
	6.62.1 Syntax
	6.62.2 See also

	6.63 STP (SIMD and FP)
	6.63.1 Syntax
	6.63.2 See also

	6.64 STP
	6.64.1 Syntax
	6.64.2 See also

	6.65 STR (immediate, SIMD and FP)
	6.65.1 Syntax
	6.65.2 See also

	6.66 STR (immediate)
	6.66.1 Syntax
	6.66.2 See also

	6.67 STR (register, SIMD and FP)
	6.67.1 Syntax
	6.67.2 Usage
	6.67.3 See also

	6.68 STR (register)
	6.68.1 Syntax
	6.68.2 Usage
	6.68.3 See also

	6.69 STRB (immediate)
	6.69.1 Syntax
	6.69.2 See also

	6.70 STRB (register)
	6.70.1 Syntax
	6.70.2 Usage
	6.70.3 See also

	6.71 STRH (immediate)
	6.71.1 Syntax
	6.71.2 See also

	6.72 STRH (register)
	6.72.1 Syntax
	6.72.2 Usage
	6.72.3 See also

	6.73 STTR
	6.73.1 Syntax
	6.73.2 See also

	6.74 STTRB
	6.74.1 Syntax
	6.74.2 See also

	6.75 STTRH
	6.75.1 Syntax
	6.75.2 See also

	6.76 STUR (SIMD and FP)
	6.76.1 Syntax
	6.76.2 See also

	6.77 STUR
	6.77.1 Syntax
	6.77.2 See also

	6.78 STURB
	6.78.1 Syntax
	6.78.2 See also

	6.79 STURH
	6.79.1 Syntax
	6.79.2 See also

	6.80 STXP
	6.80.1 Syntax
	6.80.2 See also

	6.81 STXR
	6.81.1 Syntax
	6.81.2 See also

	6.82 STXRB
	6.82.1 Syntax
	6.82.2 See also

	6.83 STXRH
	6.83.1 Syntax
	6.83.2 See also

	7: A64 Floating-point Instructions
	7.1 A64 floating-point instructions in alphabetical order
	7.2 FABS (scalar)
	7.2.1 Syntax
	7.2.2 See also

	7.3 FADD (scalar)
	7.3.1 Syntax
	7.3.2 See also

	7.4 FCCMP
	7.4.1 Syntax
	7.4.2 See also

	7.5 FCCMPE
	7.5.1 Syntax
	7.5.2 See also

	7.6 FCMP
	7.6.1 Syntax
	7.6.2 See also

	7.7 FCMPE
	7.7.1 Syntax
	7.7.2 See also

	7.8 FCSEL
	7.8.1 Syntax
	7.8.2 See also

	7.9 FCVT
	7.9.1 Syntax
	7.9.2 See also

	7.10 FCVTAS (scalar)
	7.10.1 Syntax
	7.10.2 See also

	7.11 FCVTAU (scalar)
	7.11.1 Syntax
	7.11.2 See also

	7.12 FCVTMS (scalar)
	7.12.1 Syntax
	7.12.2 See also

	7.13 FCVTMU (scalar)
	7.13.1 Syntax
	7.13.2 See also

	7.14 FCVTNS (scalar)
	7.14.1 Syntax
	7.14.2 See also

	7.15 FCVTNU (scalar)
	7.15.1 Syntax
	7.15.2 See also

	7.16 FCVTPS (scalar)
	7.16.1 Syntax
	7.16.2 See also

	7.17 FCVTPU (scalar)
	7.17.1 Syntax
	7.17.2 See also

	7.18 FCVTZS (scalar, fixed-point)
	7.18.1 Syntax
	7.18.2 See also

	7.19 FCVTZS (scalar, integer)
	7.19.1 Syntax
	7.19.2 See also

	7.20 FCVTZU (scalar, fixed-point)
	7.20.1 Syntax
	7.20.2 See also

	7.21 FCVTZU (scalar, integer)
	7.21.1 Syntax
	7.21.2 See also

	7.22 FDIV (scalar)
	7.22.1 Syntax
	7.22.2 See also

	7.23 FMADD
	7.23.1 Syntax
	7.23.2 See also

	7.24 FMAX (scalar)
	7.24.1 Syntax
	7.24.2 See also

	7.25 FMAXNM (scalar)
	7.25.1 Syntax
	7.25.2 See also

	7.26 FMIN (scalar)
	7.26.1 Syntax
	7.26.2 See also

	7.27 FMINNM (scalar)
	7.27.1 Syntax
	7.27.2 See also

	7.28 FMOV (register)
	7.28.1 Syntax
	7.28.2 See also

	7.29 FMOV (general)
	7.29.1 Syntax
	7.29.2 See also

	7.30 FMOV (scalar, immediate)
	7.30.1 Syntax
	7.30.2 See also

	7.31 FMSUB
	7.31.1 Syntax
	7.31.2 See also

	7.32 FMUL (scalar)
	7.32.1 Syntax
	7.32.2 See also

	7.33 FNEG (scalar)
	7.33.1 Syntax
	7.33.2 See also

	7.34 FNMADD
	7.34.1 Syntax
	7.34.2 See also

	7.35 FNMSUB
	7.35.1 Syntax
	7.35.2 See also

	7.36 FNMUL
	7.36.1 Syntax
	7.36.2 See also

	7.37 FRINTA (scalar)
	7.37.1 Syntax
	7.37.2 See also

	7.38 FRINTI (scalar)
	7.38.1 Syntax
	7.38.2 See also

	7.39 FRINTM (scalar)
	7.39.1 Syntax
	7.39.2 See also

	7.40 FRINTN (scalar)
	7.40.1 Syntax
	7.40.2 See also

	7.41 FRINTP (scalar)
	7.41.1 Syntax
	7.41.2 See also

	7.42 FRINTX (scalar)
	7.42.1 Syntax
	7.42.2 See also

	7.43 FRINTZ (scalar)
	7.43.1 Syntax
	7.43.2 See also

	7.44 FSQRT (scalar)
	7.44.1 Syntax
	7.44.2 See also

	7.45 FSUB (scalar)
	7.45.1 Syntax
	7.45.2 See also

	7.46 SCVTF (scalar, fixed-point)
	7.46.1 Syntax
	7.46.2 See also

	7.47 SCVTF (scalar, integer)
	7.47.1 Syntax
	7.47.2 See also

	7.48 UCVTF (scalar, fixed-point)
	7.48.1 Syntax
	7.48.2 See also

	7.49 UCVTF (scalar, integer)
	7.49.1 Syntax
	7.49.2 See also

	8: A64 Advanced SIMD Scalar Instructions
	8.1 A64 Advanced SIMD scalar instructions in alphabetical order
	8.2 ABS (scalar)
	8.2.1 Syntax
	8.2.2 See also

	8.3 ADD (scalar)
	8.3.1 Syntax
	8.3.2 See also

	8.4 ADDP (scalar)
	8.4.1 Syntax
	8.4.2 See also

	8.5 CMEQ (scalar, register)
	8.5.1 Syntax
	8.5.2 See also

	8.6 CMEQ (scalar, zero)
	8.6.1 Syntax
	8.6.2 See also

	8.7 CMGE (scalar, register)
	8.7.1 Syntax
	8.7.2 See also

	8.8 CMGE (scalar, zero)
	8.8.1 Syntax
	8.8.2 See also

	8.9 CMGT (scalar, register)
	8.9.1 Syntax
	8.9.2 See also

	8.10 CMGT (scalar, zero)
	8.10.1 Syntax
	8.10.2 See also

	8.11 CMHI (scalar, register)
	8.11.1 Syntax
	8.11.2 See also

	8.12 CMHS (scalar, register)
	8.12.1 Syntax
	8.12.2 See also

	8.13 CMLE (scalar, zero)
	8.13.1 Syntax
	8.13.2 See also

	8.14 CMLT (scalar, zero)
	8.14.1 Syntax
	8.14.2 See also

	8.15 CMTST (scalar)
	8.15.1 Syntax
	8.15.2 See also

	8.16 DUP (scalar, element)
	8.16.1 Syntax
	8.16.2 Usage
	8.16.3 See also

	8.17 FABD (scalar)
	8.17.1 Syntax
	8.17.2 See also

	8.18 FACGE (scalar)
	8.18.1 Syntax
	8.18.2 See also

	8.19 FACGT (scalar)
	8.19.1 Syntax
	8.19.2 See also

	8.20 FADDP (scalar)
	8.20.1 Syntax
	8.20.2 Usage
	8.20.3 See also

	8.21 FCMEQ (scalar, register)
	8.21.1 Syntax
	8.21.2 See also

	8.22 FCMEQ (scalar, zero)
	8.22.1 Syntax
	8.22.2 See also

	8.23 FCMGE (scalar, register)
	8.23.1 Syntax
	8.23.2 See also

	8.24 FCMGE (scalar, zero)
	8.24.1 Syntax
	8.24.2 See also

	8.25 FCMGT (scalar, register)
	8.25.1 Syntax
	8.25.2 See also

	8.26 FCMGT (scalar, zero)
	8.26.1 Syntax
	8.26.2 See also

	8.27 FCMLE (scalar, zero)
	8.27.1 Syntax
	8.27.2 See also

	8.28 FCMLT (scalar, zero)
	8.28.1 Syntax
	8.28.2 See also

	8.29 FCVTAS (scalar)
	8.29.1 Syntax
	8.29.2 See also

	8.30 FCVTAU (scalar)
	8.30.1 Syntax
	8.30.2 See also

	8.31 FCVTMS (scalar)
	8.31.1 Syntax
	8.31.2 See also

	8.32 FCVTMU (scalar)
	8.32.1 Syntax
	8.32.2 See also

	8.33 FCVTNS (scalar)
	8.33.1 Syntax
	8.33.2 See also

	8.34 FCVTNU (scalar)
	8.34.1 Syntax
	8.34.2 See also

	8.35 FCVTPS (scalar)
	8.35.1 Syntax
	8.35.2 See also

	8.36 FCVTPU (scalar)
	8.36.1 Syntax
	8.36.2 See also

	8.37 FCVTXN (scalar)
	8.37.1 Syntax
	8.37.2 See also

	8.38 FCVTZS (scalar, fixed-point)
	8.38.1 Syntax
	8.38.2 Usage
	8.38.3 See also

	8.39 FCVTZS (scalar, integer)
	8.39.1 Syntax
	8.39.2 See also

	8.40 FCVTZU (scalar, fixed-point)
	8.40.1 Syntax
	8.40.2 Usage
	8.40.3 See also

	8.41 FCVTZU (scalar, integer)
	8.41.1 Syntax
	8.41.2 See also

	8.42 FMAXNMP (scalar)
	8.42.1 Syntax
	8.42.2 Usage
	8.42.3 See also

	8.43 FMAXP (scalar)
	8.43.1 Syntax
	8.43.2 Usage
	8.43.3 See also

	8.44 FMINNMP (scalar)
	8.44.1 Syntax
	8.44.2 Usage
	8.44.3 See also

	8.45 FMINP (scalar)
	8.45.1 Syntax
	8.45.2 Usage
	8.45.3 See also

	8.46 FMLA (scalar, by element)
	8.46.1 Syntax
	8.46.2 Usage
	8.46.3 See also

	8.47 FMLS (scalar, by element)
	8.47.1 Syntax
	8.47.2 Usage
	8.47.3 See also

	8.48 FMUL (scalar, by element)
	8.48.1 Syntax
	8.48.2 Usage
	8.48.3 See also

	8.49 FMULX (scalar, by element)
	8.49.1 Syntax
	8.49.2 Usage
	8.49.3 See also

	8.50 FMULX (scalar)
	8.50.1 Syntax
	8.50.2 See also

	8.51 FRECPE (scalar)
	8.51.1 Syntax
	8.51.2 See also

	8.52 FRECPS (scalar)
	8.52.1 Syntax
	8.52.2 See also

	8.53 FRECPX (scalar)
	8.53.1 Syntax
	8.53.2 See also

	8.54 FRSQRTE (scalar)
	8.54.1 Syntax
	8.54.2 See also

	8.55 FRSQRTS (scalar)
	8.55.1 Syntax
	8.55.2 See also

	8.56 MOV (scalar)
	8.56.1 Syntax
	8.56.2 Usage
	8.56.3 See also

	8.57 NEG (scalar)
	8.57.1 Syntax
	8.57.2 See also

	8.58 SCVTF (scalar, fixed-point)
	8.58.1 Syntax
	8.58.2 Usage
	8.58.3 See also

	8.59 SCVTF (scalar, integer)
	8.59.1 Syntax
	8.59.2 See also

	8.60 SHL (scalar)
	8.60.1 Syntax
	8.60.2 See also

	8.61 SLI (scalar)
	8.61.1 Syntax
	8.61.2 See also

	8.62 SQABS (scalar)
	8.62.1 Syntax
	8.62.2 See also

	8.63 SQADD (scalar)
	8.63.1 Syntax
	8.63.2 See also

	8.64 SQDMLAL (scalar, by element)
	8.64.1 Syntax
	8.64.2 Usage
	8.64.3 See also

	8.65 SQDMLAL (scalar)
	8.65.1 Syntax
	8.65.2 Usage
	8.65.3 See also

	8.66 SQDMLSL (scalar, by element)
	8.66.1 Syntax
	8.66.2 Usage
	8.66.3 See also

	8.67 SQDMLSL (scalar)
	8.67.1 Syntax
	8.67.2 Usage
	8.67.3 See also

	8.68 SQDMULH (scalar, by element)
	8.68.1 Syntax
	8.68.2 Usage
	8.68.3 See also

	8.69 SQDMULH (scalar)
	8.69.1 Syntax
	8.69.2 See also

	8.70 SQDMULL (scalar, by element)
	8.70.1 Syntax
	8.70.2 Usage
	8.70.3 See also

	8.71 SQDMULL (scalar)
	8.71.1 Syntax
	8.71.2 Usage
	8.71.3 See also

	8.72 SQNEG (scalar)
	8.72.1 Syntax
	8.72.2 See also

	8.73 SQRDMULH (scalar, by element)
	8.73.1 Syntax
	8.73.2 Usage
	8.73.3 See also

	8.74 SQRDMULH (scalar)
	8.74.1 Syntax
	8.74.2 See also

	8.75 SQRSHL (scalar)
	8.75.1 Syntax
	8.75.2 See also

	8.76 SQRSHRN (scalar)
	8.76.1 Syntax
	8.76.2 Usage
	8.76.3 See also

	8.77 SQRSHRUN (scalar)
	8.77.1 Syntax
	8.77.2 Usage
	8.77.3 See also

	8.78 SQSHL (scalar, immediate)
	8.78.1 Syntax
	8.78.2 Usage
	8.78.3 See also

	8.79 SQSHL (scalar, register)
	8.79.1 Syntax
	8.79.2 See also

	8.80 SQSHLU (scalar)
	8.80.1 Syntax
	8.80.2 Usage
	8.80.3 See also

	8.81 SQSHRN (scalar)
	8.81.1 Syntax
	8.81.2 Usage
	8.81.3 See also

	8.82 SQSHRUN (scalar)
	8.82.1 Syntax
	8.82.2 Usage
	8.82.3 See also

	8.83 SQSUB (scalar)
	8.83.1 Syntax
	8.83.2 See also

	8.84 SQXTN (scalar)
	8.84.1 Syntax
	8.84.2 Usage
	8.84.3 See also

	8.85 SQXTUN (scalar)
	8.85.1 Syntax
	8.85.2 Usage
	8.85.3 See also

	8.86 SRI (scalar)
	8.86.1 Syntax
	8.86.2 See also

	8.87 SRSHL (scalar)
	8.87.1 Syntax
	8.87.2 See also

	8.88 SRSHR (scalar)
	8.88.1 Syntax
	8.88.2 See also

	8.89 SRSRA (scalar)
	8.89.1 Syntax
	8.89.2 See also

	8.90 SSHL (scalar)
	8.90.1 Syntax
	8.90.2 See also

	8.91 SSHR (scalar)
	8.91.1 Syntax
	8.91.2 See also

	8.92 SSRA (scalar)
	8.92.1 Syntax
	8.92.2 See also

	8.93 SUB (scalar)
	8.93.1 Syntax
	8.93.2 See also

	8.94 SUQADD (scalar)
	8.94.1 Syntax
	8.94.2 See also

	8.95 UCVTF (scalar, fixed-point)
	8.95.1 Syntax
	8.95.2 Usage
	8.95.3 See also

	8.96 UCVTF (scalar, integer)
	8.96.1 Syntax
	8.96.2 See also

	8.97 UQADD (scalar)
	8.97.1 Syntax
	8.97.2 See also

	8.98 UQRSHL (scalar)
	8.98.1 Syntax
	8.98.2 See also

	8.99 UQRSHRN (scalar)
	8.99.1 Syntax
	8.99.2 Usage
	8.99.3 See also

	8.100 UQSHL (scalar, immediate)
	8.100.1 Syntax
	8.100.2 Usage
	8.100.3 See also

	8.101 UQSHL (scalar, register)
	8.101.1 Syntax
	8.101.2 See also

	8.102 UQSHRN (scalar)
	8.102.1 Syntax
	8.102.2 Usage
	8.102.3 See also

	8.103 UQSUB (scalar)
	8.103.1 Syntax
	8.103.2 See also

	8.104 UQXTN (scalar)
	8.104.1 Syntax
	8.104.2 Usage
	8.104.3 See also

	8.105 URSHL (scalar)
	8.105.1 Syntax
	8.105.2 See also

	8.106 URSHR (scalar)
	8.106.1 Syntax
	8.106.2 See also

	8.107 URSRA (scalar)
	8.107.1 Syntax
	8.107.2 See also

	8.108 USHL (scalar)
	8.108.1 Syntax
	8.108.2 See also

	8.109 USHR (scalar)
	8.109.1 Syntax
	8.109.2 See also

	8.110 USQADD (scalar)
	8.110.1 Syntax
	8.110.2 See also

	8.111 USRA (scalar)
	8.111.1 Syntax
	8.111.2 See also

	9: A64 Advanced SIMD Vector Instructions
	9.1 A64 Advanced SIMD vector instructions in alphabetical order
	9.2 ABS (vector)
	9.2.1 Syntax
	9.2.2 See also

	9.3 ADD (vector)
	9.3.1 Syntax
	9.3.2 See also

	9.4 ADDHN, ADDHN2 (vector)
	9.4.1 Syntax
	9.4.2 Usage
	9.4.3 See also

	9.5 ADDP (vector)
	9.5.1 Syntax
	9.5.2 See also

	9.6 ADDV (vector)
	9.6.1 Syntax
	9.6.2 Usage
	9.6.3 See also

	9.7 AND (vector)
	9.7.1 Syntax
	9.7.2 See also

	9.8 BIC (vector, immediate)
	9.8.1 Syntax
	9.8.2 See also

	9.9 BIC (vector, register)
	9.9.1 Syntax
	9.9.2 See also

	9.10 BIF (vector)
	9.10.1 Syntax
	9.10.2 See also

	9.11 BIT (vector)
	9.11.1 Syntax
	9.11.2 See also

	9.12 BSL (vector)
	9.12.1 Syntax
	9.12.2 See also

	9.13 CLS (vector)
	9.13.1 Syntax
	9.13.2 See also

	9.14 CLZ (vector)
	9.14.1 Syntax
	9.14.2 See also

	9.15 CMEQ (vector, register)
	9.15.1 Syntax
	9.15.2 See also

	9.16 CMEQ (vector, zero)
	9.16.1 Syntax
	9.16.2 See also

	9.17 CMGE (vector, register)
	9.17.1 Syntax
	9.17.2 See also

	9.18 CMGE (vector, zero)
	9.18.1 Syntax
	9.18.2 See also

	9.19 CMGT (vector, register)
	9.19.1 Syntax
	9.19.2 See also

	9.20 CMGT (vector, zero)
	9.20.1 Syntax
	9.20.2 See also

	9.21 CMHI (vector, register)
	9.21.1 Syntax
	9.21.2 See also

	9.22 CMHS (vector, register)
	9.22.1 Syntax
	9.22.2 See also

	9.23 CMLE (vector, zero)
	9.23.1 Syntax
	9.23.2 See also

	9.24 CMLT (vector, zero)
	9.24.1 Syntax
	9.24.2 See also

	9.25 CMTST (vector)
	9.25.1 Syntax
	9.25.2 See also

	9.26 CNT (vector)
	9.26.1 Syntax
	9.26.2 See also

	9.27 DUP (vector, element)
	9.27.1 Syntax
	9.27.2 Usage
	9.27.3 See also

	9.28 DUP (vector) (general)
	9.28.1 Syntax
	9.28.2 Usage
	9.28.3 See also

	9.29 EOR (vector)
	9.29.1 Syntax
	9.29.2 See also

	9.30 EXT (vector)
	9.30.1 Syntax
	9.30.2 Usage
	9.30.3 See also

	9.31 FABD (vector)
	9.31.1 Syntax
	9.31.2 See also

	9.32 FABS (vector)
	9.32.1 Syntax
	9.32.2 See also

	9.33 FACGE (vector)
	9.33.1 Syntax
	9.33.2 See also

	9.34 FACGT (vector)
	9.34.1 Syntax
	9.34.2 See also

	9.35 FADD (vector)
	9.35.1 Syntax
	9.35.2 See also

	9.36 FADDP (vector)
	9.36.1 Syntax
	9.36.2 See also

	9.37 FCMEQ (vector, register)
	9.37.1 Syntax
	9.37.2 See also

	9.38 FCMEQ (vector, zero)
	9.38.1 Syntax
	9.38.2 See also

	9.39 FCMGE (vector, register)
	9.39.1 Syntax
	9.39.2 See also

	9.40 FCMGE (vector, zero)
	9.40.1 Syntax
	9.40.2 See also

	9.41 FCMGT (vector, register)
	9.41.1 Syntax
	9.41.2 See also

	9.42 FCMGT (vector, zero)
	9.42.1 Syntax
	9.42.2 See also

	9.43 FCMLE (vector, zero)
	9.43.1 Syntax
	9.43.2 See also

	9.44 FCMLT (vector, zero)
	9.44.1 Syntax
	9.44.2 See also

	9.45 FCVTAS (vector)
	9.45.1 Syntax
	9.45.2 See also

	9.46 FCVTAU (vector)
	9.46.1 Syntax
	9.46.2 See also

	9.47 FCVTL, FCVTL2 (vector)
	9.47.1 Syntax
	9.47.2 Usage
	9.47.3 See also

	9.48 FCVTMS (vector)
	9.48.1 Syntax
	9.48.2 See also

	9.49 FCVTMU (vector)
	9.49.1 Syntax
	9.49.2 See also

	9.50 FCVTN, FCVTN2 (vector)
	9.50.1 Syntax
	9.50.2 Usage
	9.50.3 See also

	9.51 FCVTNS (vector)
	9.51.1 Syntax
	9.51.2 See also

	9.52 FCVTNU (vector)
	9.52.1 Syntax
	9.52.2 See also

	9.53 FCVTPS (vector)
	9.53.1 Syntax
	9.53.2 See also

	9.54 FCVTPU (vector)
	9.54.1 Syntax
	9.54.2 See also

	9.55 FCVTXN, FCVTXN2 (vector)
	9.55.1 Syntax
	9.55.2 Usage
	9.55.3 See also

	9.56 FCVTZS (vector, fixed-point)
	9.56.1 Syntax
	9.56.2 Usage
	9.56.3 See also

	9.57 FCVTZS (vector, integer)
	9.57.1 Syntax
	9.57.2 See also

	9.58 FCVTZU (vector, fixed-point)
	9.58.1 Syntax
	9.58.2 Usage
	9.58.3 See also

	9.59 FCVTZU (vector, integer)
	9.59.1 Syntax
	9.59.2 See also

	9.60 FDIV (vector)
	9.60.1 Syntax
	9.60.2 See also

	9.61 FMAX (vector)
	9.61.1 Syntax
	9.61.2 See also

	9.62 FMAXNM (vector)
	9.62.1 Syntax
	9.62.2 See also

	9.63 FMAXNMP (vector)
	9.63.1 Syntax
	9.63.2 See also

	9.64 FMAXNMV (vector)
	9.64.1 Syntax
	9.64.2 See also

	9.65 FMAXP (vector)
	9.65.1 Syntax
	9.65.2 See also

	9.66 FMAXV (vector)
	9.66.1 Syntax
	9.66.2 See also

	9.67 FMIN (vector)
	9.67.1 Syntax
	9.67.2 See also

	9.68 FMINNM (vector)
	9.68.1 Syntax
	9.68.2 See also

	9.69 FMINNMP (vector)
	9.69.1 Syntax
	9.69.2 See also

	9.70 FMINNMV (vector)
	9.70.1 Syntax
	9.70.2 See also

	9.71 FMINP (vector)
	9.71.1 Syntax
	9.71.2 See also

	9.72 FMINV (vector)
	9.72.1 Syntax
	9.72.2 See also

	9.73 FMLA (vector, by element)
	9.73.1 Syntax
	9.73.2 Usage
	9.73.3 See also

	9.74 FMLA (vector)
	9.74.1 Syntax
	9.74.2 See also

	9.75 FMLS (vector, by element)
	9.75.1 Syntax
	9.75.2 Usage
	9.75.3 See also

	9.76 FMLS (vector)
	9.76.1 Syntax
	9.76.2 See also

	9.77 FMOV (vector, immediate)
	9.77.1 Syntax
	9.77.2 See also

	9.78 FMUL (vector, by element)
	9.78.1 Syntax
	9.78.2 Usage
	9.78.3 See also

	9.79 FMUL (vector)
	9.79.1 Syntax
	9.79.2 See also

	9.80 FMULX (vector, by element)
	9.80.1 Syntax
	9.80.2 Usage
	9.80.3 See also

	9.81 FMULX (vector)
	9.81.1 Syntax
	9.81.2 See also

	9.82 FNEG (vector)
	9.82.1 Syntax
	9.82.2 See also

	9.83 FRECPE (vector)
	9.83.1 Syntax
	9.83.2 See also

	9.84 FRECPS (vector)
	9.84.1 Syntax
	9.84.2 See also

	9.85 FRINTA (vector)
	9.85.1 Syntax
	9.85.2 See also

	9.86 FRINTI (vector)
	9.86.1 Syntax
	9.86.2 See also

	9.87 FRINTM (vector)
	9.87.1 Syntax
	9.87.2 See also

	9.88 FRINTN (vector)
	9.88.1 Syntax
	9.88.2 See also

	9.89 FRINTP (vector)
	9.89.1 Syntax
	9.89.2 See also

	9.90 FRINTX (vector)
	9.90.1 Syntax
	9.90.2 See also

	9.91 FRINTZ (vector)
	9.91.1 Syntax
	9.91.2 See also

	9.92 FRSQRTE (vector)
	9.92.1 Syntax
	9.92.2 See also

	9.93 FRSQRTS (vector)
	9.93.1 Syntax
	9.93.2 See also

	9.94 FSQRT (vector)
	9.94.1 Syntax
	9.94.2 See also

	9.95 FSUB (vector)
	9.95.1 Syntax
	9.95.2 See also

	9.96 INS (vector, element)
	9.96.1 Syntax
	9.96.2 Usage
	9.96.3 See also

	9.97 INS (vector) (general)
	9.97.1 Syntax
	9.97.2 Usage
	9.97.3 See also

	9.98 LD1 (vector, multiple structures)
	9.98.1 Syntax
	9.98.2 Usage
	9.98.3 See also

	9.99 LD1 (vector, single structure)
	9.99.1 Syntax
	9.99.2 See also

	9.100 LD1R (vector)
	9.100.1 Syntax
	9.100.2 Usage
	9.100.3 See also

	9.101 LD2 (vector, multiple structures)
	9.101.1 Syntax
	9.101.2 See also

	9.102 LD2 (vector, single structure)
	9.102.1 Syntax
	9.102.2 See also

	9.103 LD2R (vector)
	9.103.1 Syntax
	9.103.2 Usage
	9.103.3 See also

	9.104 LD3 (vector, multiple structures)
	9.104.1 Syntax
	9.104.2 See also

	9.105 LD3 (vector, single structure)
	9.105.1 Syntax
	9.105.2 See also

	9.106 LD3R (vector)
	9.106.1 Syntax
	9.106.2 Usage
	9.106.3 See also

	9.107 LD4 (vector, multiple structures)
	9.107.1 Syntax
	9.107.2 See also

	9.108 LD4 (vector, single structure)
	9.108.1 Syntax
	9.108.2 See also

	9.109 LD4R (vector)
	9.109.1 Syntax
	9.109.2 Usage
	9.109.3 See also

	9.110 MLA (vector, by element)
	9.110.1 Syntax
	9.110.2 Usage
	9.110.3 See also

	9.111 MLA (vector)
	9.111.1 Syntax
	9.111.2 See also

	9.112 MLS (vector, by element)
	9.112.1 Syntax
	9.112.2 Usage
	9.112.3 See also

	9.113 MLS (vector)
	9.113.1 Syntax
	9.113.2 See also

	9.114 MOV (vector, element)
	9.114.1 Syntax
	9.114.2 Usage
	9.114.3 See also

	9.115 MOV (vector, from general)
	9.115.1 Syntax
	9.115.2 Usage
	9.115.3 See also

	9.116 MOV (vector)
	9.116.1 Syntax
	9.116.2 See also

	9.117 MOV (vector, to general)
	9.117.1 Syntax
	9.117.2 See also

	9.118 MOVI (vector)
	9.118.1 Syntax
	9.118.2 See also

	9.119 MUL (vector, by element)
	9.119.1 Syntax
	9.119.2 Usage
	9.119.3 See also

	9.120 MUL (vector)
	9.120.1 Syntax
	9.120.2 See also

	9.121 MVN (vector)
	9.121.1 Syntax
	9.121.2 See also

	9.122 MVNI (vector)
	9.122.1 Syntax
	9.122.2 See also

	9.123 NEG (vector)
	9.123.1 Syntax
	9.123.2 See also

	9.124 NOT (vector)
	9.124.1 Syntax
	9.124.2 See also

	9.125 ORN (vector)
	9.125.1 Syntax
	9.125.2 See also

	9.126 ORR (vector, immediate)
	9.126.1 Syntax
	9.126.2 See also

	9.127 ORR (vector, register)
	9.127.1 Syntax
	9.127.2 See also

	9.128 PMUL (vector)
	9.128.1 Syntax
	9.128.2 See also

	9.129 PMULL, PMULL2 (vector)
	9.129.1 Syntax
	9.129.2 Usage
	9.129.3 See also

	9.130 RADDHN, RADDHN2 (vector)
	9.130.1 Syntax
	9.130.2 Usage
	9.130.3 See also

	9.131 RBIT (vector)
	9.131.1 Syntax
	9.131.2 See also

	9.132 REV16 (vector)
	9.132.1 Syntax
	9.132.2 See also

	9.133 REV32 (vector)
	9.133.1 Syntax
	9.133.2 See also

	9.134 REV64 (vector)
	9.134.1 Syntax
	9.134.2 See also

	9.135 RSHRN, RSHRN2 (vector)
	9.135.1 Syntax
	9.135.2 Usage
	9.135.3 See also

	9.136 RSUBHN, RSUBHN2 (vector)
	9.136.1 Syntax
	9.136.2 Usage
	9.136.3 See also

	9.137 SABA (vector)
	9.137.1 Syntax
	9.137.2 See also

	9.138 SABAL, SABAL2 (vector)
	9.138.1 Syntax
	9.138.2 Usage
	9.138.3 See also

	9.139 SABD (vector)
	9.139.1 Syntax
	9.139.2 See also

	9.140 SABDL, SABDL2 (vector)
	9.140.1 Syntax
	9.140.2 Usage
	9.140.3 See also

	9.141 SADALP (vector)
	9.141.1 Syntax
	9.141.2 Usage
	9.141.3 See also

	9.142 SADDL, SADDL2 (vector)
	9.142.1 Syntax
	9.142.2 Usage
	9.142.3 See also

	9.143 SADDLP (vector)
	9.143.1 Syntax
	9.143.2 Usage
	9.143.3 See also

	9.144 SADDLV (vector)
	9.144.1 Syntax
	9.144.2 Usage
	9.144.3 See also

	9.145 SADDW, SADDW2 (vector)
	9.145.1 Syntax
	9.145.2 Usage
	9.145.3 See also

	9.146 SCVTF (vector, fixed-point)
	9.146.1 Syntax
	9.146.2 Usage
	9.146.3 See also

	9.147 SCVTF (vector, integer)
	9.147.1 Syntax
	9.147.2 See also

	9.148 SHADD (vector)
	9.148.1 Syntax
	9.148.2 See also

	9.149 SHL (vector)
	9.149.1 Syntax
	9.149.2 Usage
	9.149.3 See also

	9.150 SHLL, SHLL2 (vector)
	9.150.1 Syntax
	9.150.2 Usage
	9.150.3 See also

	9.151 SHRN, SHRN2 (vector)
	9.151.1 Syntax
	9.151.2 Usage
	9.151.3 See also

	9.152 SHSUB (vector)
	9.152.1 Syntax
	9.152.2 See also

	9.153 SLI (vector)
	9.153.1 Syntax
	9.153.2 Usage
	9.153.3 See also

	9.154 SMAX (vector)
	9.154.1 Syntax
	9.154.2 See also

	9.155 SMAXP (vector)
	9.155.1 Syntax
	9.155.2 See also

	9.156 SMAXV (vector)
	9.156.1 Syntax
	9.156.2 Usage
	9.156.3 See also

	9.157 SMIN (vector)
	9.157.1 Syntax
	9.157.2 See also

	9.158 SMINP (vector)
	9.158.1 Syntax
	9.158.2 See also

	9.159 SMINV (vector)
	9.159.1 Syntax
	9.159.2 Usage
	9.159.3 See also

	9.160 SMLAL, SMLAL2 (vector, by element)
	9.160.1 Syntax
	9.160.2 Usage
	9.160.3 See also

	9.161 SMLAL, SMLAL2 (vector)
	9.161.1 Syntax
	9.161.2 Usage
	9.161.3 See also

	9.162 SMLSL, SMLSL2 (vector, by element)
	9.162.1 Syntax
	9.162.2 Usage
	9.162.3 See also

	9.163 SMLSL, SMLSL2 (vector)
	9.163.1 Syntax
	9.163.2 Usage
	9.163.3 See also

	9.164 SMOV (vector)
	9.164.1 Syntax
	9.164.2 Usage
	9.164.3 See also

	9.165 SMULL, SMULL2 (vector, by element)
	9.165.1 Syntax
	9.165.2 Usage
	9.165.3 See also

	9.166 SMULL, SMULL2 (vector)
	9.166.1 Syntax
	9.166.2 Usage
	9.166.3 See also

	9.167 SQABS (vector)
	9.167.1 Syntax
	9.167.2 See also

	9.168 SQADD (vector)
	9.168.1 Syntax
	9.168.2 See also

	9.169 SQDMLAL, SQDMLAL2 (vector, by element)
	9.169.1 Syntax
	9.169.2 Usage
	9.169.3 See also

	9.170 SQDMLAL, SQDMLAL2 (vector)
	9.170.1 Syntax
	9.170.2 Usage
	9.170.3 See also

	9.171 SQDMLSL, SQDMLSL2 (vector, by element)
	9.171.1 Syntax
	9.171.2 Usage
	9.171.3 See also

	9.172 SQDMLSL, SQDMLSL2 (vector)
	9.172.1 Syntax
	9.172.2 Usage
	9.172.3 See also

	9.173 SQDMULH (vector, by element)
	9.173.1 Syntax
	9.173.2 Usage
	9.173.3 See also

	9.174 SQDMULH (vector)
	9.174.1 Syntax
	9.174.2 See also

	9.175 SQDMULL, SQDMULL2 (vector, by element)
	9.175.1 Syntax
	9.175.2 Usage
	9.175.3 See also

	9.176 SQDMULL, SQDMULL2 (vector)
	9.176.1 Syntax
	9.176.2 Usage
	9.176.3 See also

	9.177 SQNEG (vector)
	9.177.1 Syntax
	9.177.2 See also

	9.178 SQRDMULH (vector, by element)
	9.178.1 Syntax
	9.178.2 Usage
	9.178.3 See also

	9.179 SQRDMULH (vector)
	9.179.1 Syntax
	9.179.2 See also

	9.180 SQRSHL (vector)
	9.180.1 Syntax
	9.180.2 See also

	9.181 SQRSHRN, SQRSHRN2 (vector)
	9.181.1 Syntax
	9.181.2 Usage
	9.181.3 See also

	9.182 SQRSHRUN, SQRSHRUN2 (vector)
	9.182.1 Syntax
	9.182.2 Usage
	9.182.3 See also

	9.183 SQSHL (vector, immediate)
	9.183.1 Syntax
	9.183.2 Usage
	9.183.3 See also

	9.184 SQSHL (vector, register)
	9.184.1 Syntax
	9.184.2 See also

	9.185 SQSHLU (vector)
	9.185.1 Syntax
	9.185.2 Usage
	9.185.3 See also

	9.186 SQSHRN, SQSHRN2 (vector)
	9.186.1 Syntax
	9.186.2 Usage
	9.186.3 See also

	9.187 SQSHRUN, SQSHRUN2 (vector)
	9.187.1 Syntax
	9.187.2 Usage
	9.187.3 See also

	9.188 SQSUB (vector)
	9.188.1 Syntax
	9.188.2 See also

	9.189 SQXTN, SQXTN2 (vector)
	9.189.1 Syntax
	9.189.2 Usage
	9.189.3 See also

	9.190 SQXTUN, SQXTUN2 (vector)
	9.190.1 Syntax
	9.190.2 Usage
	9.190.3 See also

	9.191 SRHADD (vector)
	9.191.1 Syntax
	9.191.2 See also

	9.192 SRI (vector)
	9.192.1 Syntax
	9.192.2 Usage
	9.192.3 See also

	9.193 SRSHL (vector)
	9.193.1 Syntax
	9.193.2 See also

	9.194 SRSHR (vector)
	9.194.1 Syntax
	9.194.2 Usage
	9.194.3 See also

	9.195 SRSRA (vector)
	9.195.1 Syntax
	9.195.2 Usage
	9.195.3 See also

	9.196 SSHL (vector)
	9.196.1 Syntax
	9.196.2 See also

	9.197 SSHLL, SSHLL2 (vector)
	9.197.1 Syntax
	9.197.2 Usage
	9.197.3 See also

	9.198 SSHR (vector)
	9.198.1 Syntax
	9.198.2 Usage
	9.198.3 See also

	9.199 SSRA (vector)
	9.199.1 Syntax
	9.199.2 Usage
	9.199.3 See also

	9.200 SSUBL, SSUBL2 (vector)
	9.200.1 Syntax
	9.200.2 Usage
	9.200.3 See also

	9.201 SSUBW, SSUBW2 (vector)
	9.201.1 Syntax
	9.201.2 Usage
	9.201.3 See also

	9.202 ST1 (vector, multiple structures)
	9.202.1 Syntax
	9.202.2 Usage
	9.202.3 See also

	9.203 ST1 (vector, single structure)
	9.203.1 Syntax
	9.203.2 See also

	9.204 ST2 (vector, multiple structures)
	9.204.1 Syntax
	9.204.2 See also

	9.205 ST2 (vector, single structure)
	9.205.1 Syntax
	9.205.2 See also

	9.206 ST3 (vector, multiple structures)
	9.206.1 Syntax
	9.206.2 See also

	9.207 ST3 (vector, single structure)
	9.207.1 Syntax
	9.207.2 See also

	9.208 ST4 (vector, multiple structures)
	9.208.1 Syntax
	9.208.2 See also

	9.209 ST4 (vector, single structure)
	9.209.1 Syntax
	9.209.2 See also

	9.210 SUB (vector)
	9.210.1 Syntax
	9.210.2 See also

	9.211 SUBHN, SUBHN2 (vector)
	9.211.1 Syntax
	9.211.2 Usage
	9.211.3 See also

	9.212 SUQADD (vector)
	9.212.1 Syntax
	9.212.2 See also

	9.213 SXTL, SXTL2 (vector)
	9.213.1 Syntax
	9.213.2 Usage
	9.213.3 See also

	9.214 TBL (vector)
	9.214.1 Syntax
	9.214.2 See also

	9.215 TBX (vector)
	9.215.1 Syntax
	9.215.2 See also

	9.216 TRN1 (vector)
	9.216.1 Syntax
	9.216.2 See also

	9.217 TRN2 (vector)
	9.217.1 Syntax
	9.217.2 See also

	9.218 UABA (vector)
	9.218.1 Syntax
	9.218.2 See also

	9.219 UABAL, UABAL2 (vector)
	9.219.1 Syntax
	9.219.2 Usage
	9.219.3 See also

	9.220 UABD (vector)
	9.220.1 Syntax
	9.220.2 See also

	9.221 UABDL, UABDL2 (vector)
	9.221.1 Syntax
	9.221.2 Usage
	9.221.3 See also

	9.222 UADALP (vector)
	9.222.1 Syntax
	9.222.2 Usage
	9.222.3 See also

	9.223 UADDL, UADDL2 (vector)
	9.223.1 Syntax
	9.223.2 Usage
	9.223.3 See also

	9.224 UADDLP (vector)
	9.224.1 Syntax
	9.224.2 Usage
	9.224.3 See also

	9.225 UADDLV (vector)
	9.225.1 Syntax
	9.225.2 Usage
	9.225.3 See also

	9.226 UADDW, UADDW2 (vector)
	9.226.1 Syntax
	9.226.2 Usage
	9.226.3 See also

	9.227 UCVTF (vector, fixed-point)
	9.227.1 Syntax
	9.227.2 Usage
	9.227.3 See also

	9.228 UCVTF (vector, integer)
	9.228.1 Syntax
	9.228.2 See also

	9.229 UHADD (vector)
	9.229.1 Syntax
	9.229.2 See also

	9.230 UHSUB (vector)
	9.230.1 Syntax
	9.230.2 See also

	9.231 UMAX (vector)
	9.231.1 Syntax
	9.231.2 See also

	9.232 UMAXP (vector)
	9.232.1 Syntax
	9.232.2 See also

	9.233 UMAXV (vector)
	9.233.1 Syntax
	9.233.2 Usage
	9.233.3 See also

	9.234 UMIN (vector)
	9.234.1 Syntax
	9.234.2 See also

	9.235 UMINP (vector)
	9.235.1 Syntax
	9.235.2 See also

	9.236 UMINV (vector)
	9.236.1 Syntax
	9.236.2 Usage
	9.236.3 See also

	9.237 UMLAL, UMLAL2 (vector, by element)
	9.237.1 Syntax
	9.237.2 Usage
	9.237.3 See also

	9.238 UMLAL, UMLAL2 (vector)
	9.238.1 Syntax
	9.238.2 Usage
	9.238.3 See also

	9.239 UMLSL, UMLSL2 (vector, by element)
	9.239.1 Syntax
	9.239.2 Usage
	9.239.3 See also

	9.240 UMLSL, UMLSL2 (vector)
	9.240.1 Syntax
	9.240.2 Usage
	9.240.3 See also

	9.241 UMOV (vector)
	9.241.1 Syntax
	9.241.2 Usage
	9.241.3 See also

	9.242 UMULL, UMULL2 (vector, by element)
	9.242.1 Syntax
	9.242.2 Usage
	9.242.3 See also

	9.243 UMULL, UMULL2 (vector)
	9.243.1 Syntax
	9.243.2 Usage
	9.243.3 See also

	9.244 UQADD (vector)
	9.244.1 Syntax
	9.244.2 See also

	9.245 UQRSHL (vector)
	9.245.1 Syntax
	9.245.2 See also

	9.246 UQRSHRN, UQRSHRN2 (vector)
	9.246.1 Syntax
	9.246.2 Usage
	9.246.3 See also

	9.247 UQSHL (vector, immediate)
	9.247.1 Syntax
	9.247.2 Usage
	9.247.3 See also

	9.248 UQSHL (vector, register)
	9.248.1 Syntax
	9.248.2 See also

	9.249 UQSHRN, UQSHRN2 (vector)
	9.249.1 Syntax
	9.249.2 Usage
	9.249.3 See also

	9.250 UQSUB (vector)
	9.250.1 Syntax
	9.250.2 See also

	9.251 UQXTN, UQXTN2 (vector)
	9.251.1 Syntax
	9.251.2 Usage
	9.251.3 See also

	9.252 URECPE (vector)
	9.252.1 Syntax
	9.252.2 See also

	9.253 URHADD (vector)
	9.253.1 Syntax
	9.253.2 See also

	9.254 URSHL (vector)
	9.254.1 Syntax
	9.254.2 See also

	9.255 URSHR (vector)
	9.255.1 Syntax
	9.255.2 Usage
	9.255.3 See also

	9.256 URSQRTE (vector)
	9.256.1 Syntax
	9.256.2 See also

	9.257 URSRA (vector)
	9.257.1 Syntax
	9.257.2 Usage
	9.257.3 See also

	9.258 USHL (vector)
	9.258.1 Syntax
	9.258.2 See also

	9.259 USHLL, USHLL2 (vector)
	9.259.1 Syntax
	9.259.2 Usage
	9.259.3 See also

	9.260 USHR (vector)
	9.260.1 Syntax
	9.260.2 Usage
	9.260.3 See also

	9.261 USQADD (vector)
	9.261.1 Syntax
	9.261.2 See also

	9.262 USRA (vector)
	9.262.1 Syntax
	9.262.2 Usage
	9.262.3 See also

	9.263 USUBL, USUBL2 (vector)
	9.263.1 Syntax
	9.263.2 Usage
	9.263.3 See also

	9.264 USUBW, USUBW2 (vector)
	9.264.1 Syntax
	9.264.2 Usage
	9.264.3 See also

	9.265 UXTL, UXTL2 (vector)
	9.265.1 Syntax
	9.265.2 Usage
	9.265.3 See also

	9.266 UZP1 (vector)
	9.266.1 Syntax
	9.266.2 See also

	9.267 UZP2 (vector)
	9.267.1 Syntax
	9.267.2 See also

	9.268 XTN, XTN2 (vector)
	9.268.1 Syntax
	9.268.2 Usage
	9.268.3 See also

	9.269 ZIP1 (vector)
	9.269.1 Syntax
	9.269.2 See also

	9.270 ZIP2 (vector)
	9.270.1 Syntax
	9.270.2 See also

	10: Directives Reference
	10.1 Alphabetical list of directives
	10.2 Symbol definition directives
	10.3 Data definition directives
	10.4 About assembly control directives
	10.4.1 Nesting directives
	10.4.2 See also

	10.5 About frame directives
	10.5.1 See also

	10.6 Reporting directives
	10.7 Instruction set and syntax selection directives
	10.8 Miscellaneous directives
	10.9 ALIAS
	10.9.1 Syntax
	10.9.2 Usage
	10.9.3 Example
	10.9.4 Incorrect example
	10.9.5 See also

	10.10 ALIGN
	10.10.1 Syntax
	10.10.2 Operation
	10.10.3 Usage
	10.10.4 Examples
	10.10.5 See also

	10.11 AREA
	10.11.1 Syntax
	10.11.2 Usage
	10.11.3 Example
	10.11.4 See also

	10.12 ARM, THUMB, CODE16 and CODE32
	10.12.1 Syntax
	10.12.2 Usage
	10.12.3 Example

	10.13 ASSERT
	10.13.1 Syntax
	10.13.2 Usage
	10.13.3 Example
	10.13.4 See also

	10.14 ATTR
	10.14.1 Syntax
	10.14.2 Usage
	10.14.3 Examples
	10.14.4 See also

	10.15 CN
	10.15.1 Syntax
	10.15.2 Usage
	10.15.3 Example
	10.15.4 See also

	10.16 COMMON
	10.16.1 Syntax
	10.16.2 Usage
	10.16.3 Example
	10.16.4 Incorrect examples

	10.17 CP
	10.17.1 Syntax
	10.17.2 Usage
	10.17.3 Example
	10.17.4 See also

	10.18 DATA
	10.19 DCB
	10.19.1 Syntax
	10.19.2 Usage
	10.19.3 Example
	10.19.4 See also

	10.20 DCD and DCDU
	10.20.1 Syntax
	10.20.2 Usage
	10.20.3 Examples
	10.20.4 See also

	10.21 DCDO
	10.21.1 Syntax
	10.21.2 Usage
	10.21.3 Example

	10.22 DCFD and DCFDU
	10.22.1 Syntax
	10.22.2 Usage
	10.22.3 Examples
	10.22.4 See also

	10.23 DCFS and DCFSU
	10.23.1 Syntax
	10.23.2 Usage
	10.23.3 Examples
	10.23.4 See also

	10.24 DCI
	10.24.1 Syntax
	10.24.2 Usage
	10.24.3 Example macro
	10.24.4 32-bit T32 example
	10.24.5 See also

	10.25 DCO and DCOU
	10.25.1 Syntax
	10.25.2 Usage
	10.25.3 See also

	10.26 DCQ and DCQU
	10.26.1 Syntax
	10.26.2 Usage
	10.26.3 Example
	10.26.4 Incorrect example
	10.26.5 See also

	10.27 DCW and DCWU
	10.27.1 Syntax
	10.27.2 Usage
	10.27.3 Examples
	10.27.4 See also

	10.28 END
	10.28.1 Syntax
	10.28.2 Usage
	10.28.3 See also

	10.29 ENDFUNC or ENDP
	10.29.1 See also

	10.30 ENTRY
	10.30.1 Syntax
	10.30.2 Usage
	10.30.3 Example
	10.30.4 See also

	10.31 EQU
	10.31.1 Syntax
	10.31.2 Usage
	10.31.3 Examples
	10.31.4 See also

	10.32 EXPORT or GLOBAL
	10.32.1 Syntax
	10.32.2 Usage
	10.32.3 Example
	10.32.4 See also

	10.33 EXPORTAS
	10.33.1 Syntax
	10.33.2 Usage
	10.33.3 Examples
	10.33.4 See also

	10.34 FIELD
	10.34.1 Syntax
	10.34.2 Usage
	10.34.3 Examples
	10.34.4 See also

	10.35 FRAME ADDRESS
	10.35.1 Syntax
	10.35.2 Usage
	10.35.3 Example
	10.35.4 See also

	10.36 FRAME POP
	10.36.1 Syntax
	10.36.2 Usage
	10.36.3 See also

	10.37 FRAME PUSH
	10.37.1 Syntax
	10.37.2 Usage
	10.37.3 Example
	10.37.4 See also

	10.38 FRAME REGISTER
	10.38.1 Syntax
	10.38.2 Usage

	10.39 FRAME RESTORE
	10.39.1 Syntax
	10.39.2 Usage
	10.39.3 See also

	10.40 FRAME RETURN ADDRESS
	10.40.1 Syntax
	10.40.2 Usage

	10.41 FRAME SAVE
	10.41.1 Syntax
	10.41.2 Usage
	10.41.3 See also

	10.42 FRAME STATE REMEMBER
	10.42.1 Syntax
	10.42.2 Usage
	10.42.3 Example
	10.42.4 See also

	10.43 FRAME STATE RESTORE
	10.43.1 Syntax
	10.43.2 See also

	10.44 FRAME UNWIND ON
	10.44.1 Syntax
	10.44.2 Usage
	10.44.3 See also

	10.45 FRAME UNWIND OFF
	10.45.1 Syntax
	10.45.2 Usage
	10.45.3 See also

	10.46 FUNCTION or PROC
	10.46.1 Syntax
	10.46.2 Usage
	10.46.3 Examples
	10.46.4 See also

	10.47 GBLA, GBLL, and GBLS
	10.47.1 Syntax
	10.47.2 Usage
	10.47.3 Examples
	10.47.4 See also

	10.48 GET or INCLUDE
	10.48.1 Syntax
	10.48.2 Usage
	10.48.3 Examples
	10.48.4 See also

	10.49 IMPORT and EXTERN
	10.49.1 Syntax
	10.49.2 Usage
	10.49.3 Example
	10.49.4 See also

	10.50 INCBIN
	10.50.1 Syntax
	10.50.2 Usage
	10.50.3 Example

	10.51 IF, ELSE, ENDIF, and ELIF
	10.51.1 Syntax
	10.51.2 Usage
	10.51.3 Using ELIF
	10.51.4 Examples
	10.51.5 See also

	10.52 INFO
	10.52.1 Syntax
	10.52.2 Usage
	10.52.3 Examples
	10.52.4 See also

	10.53 KEEP
	10.53.1 Syntax
	10.53.2 Usage
	10.53.3 Example
	10.53.4 See also

	10.54 LCLA, LCLL, and LCLS
	10.54.1 Syntax
	10.54.2 Usage
	10.54.3 Example
	10.54.4 See also

	10.55 LTORG
	10.55.1 Syntax
	10.55.2 Usage
	10.55.3 Example
	10.55.4 See also

	10.56 MACRO and MEND
	10.56.1 Syntax
	10.56.2 Usage
	10.56.3 Examples
	10.56.4 Conditional macro example
	10.56.5 See also

	10.57 MAP
	10.57.1 Syntax
	10.57.2 Usage
	10.57.3 Examples
	10.57.4 See also

	10.58 MEXIT
	10.58.1 Usage
	10.58.2 Example
	10.58.3 See also

	10.59 NOFP
	10.59.1 Syntax
	10.59.2 Usage

	10.60 OPT
	10.60.1 Syntax
	10.60.2 Usage
	10.60.3 Example
	10.60.4 See also

	10.61 QN, DN, and SN
	10.61.1 Syntax
	10.61.2 Usage
	10.61.3 Examples
	10.61.4 Extended notation examples
	10.61.5 See also

	10.62 RELOC
	10.62.1 Syntax
	10.62.2 Usage
	10.62.3 Examples
	10.62.4 See also

	10.63 REQUIRE
	10.63.1 Syntax
	10.63.2 Usage

	10.64 REQUIRE8 and PRESERVE8
	10.64.1 Syntax
	10.64.2 Usage
	10.64.3 Examples
	10.64.4 See also

	10.65 RLIST
	10.65.1 Syntax
	10.65.2 Usage
	10.65.3 Example
	10.65.4 See also

	10.66 RN
	10.66.1 Syntax
	10.66.2 Usage
	10.66.3 Examples
	10.66.4 See also

	10.67 ROUT
	10.67.1 Syntax
	10.67.2 Usage
	10.67.3 Example
	10.67.4 See also

	10.68 SETA, SETL, and SETS
	10.68.1 Syntax
	10.68.2 Usage
	10.68.3 Restrictions
	10.68.4 Examples
	10.68.5 See also

	10.69 SPACE or FILL
	10.69.1 Syntax
	10.69.2 Usage
	10.69.3 Example
	10.69.4 See also

	10.70 TTL and SUBT
	10.70.1 Syntax
	10.70.2 Usage
	10.70.3 Examples

	10.71 WHILE and WEND
	10.71.1 Syntax
	10.71.2 Usage
	10.71.3 Example
	10.71.4 See also

	10.72 WN and XN
	10.72.1 Syntax
	10.72.2 Usage
	10.72.3 Examples
	10.72.4 See also

	A: Via File Syntax
	A.1 Overview of via files
	A.1.1 Via file evaluation

	A.2 Via file syntax

