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Abstract
This paper identifies a fundamental runtime program property: Instruction–Isomorphism. An

instruction instance is said to be isomorphic if its component - information derived from the
instruction and its backward dynamic data dependence graph - is identical to the component of an
instruction executed earlier. By definition an isomorphic instruction will produce exactly the same
output with the earlier instruction.

This work introduces a taxonomy of isomorphic behavior, describes transformations that can
change the isomorphic behavior of an instruction, characterizes empirically various aspects of
instruction–isomorphism and suggests directions for improving predictors and performance.

The empirical analysis shows that there is very little instruction–isomorphism in the dynamic
dependence graph of a program. This is due to programming conventions and architectural semantics
that introduce a lot of “overhead” nodes and dependences. However, by transforming the dynamic
dependence graph closer to its dataflow form, instruction–isomorphism becomes prominent. The
data show that for SPEC benchmarks, depending on the benchmark and dataset, 65 to 99.9% of the
dynamic instructions are isomorphic.

1. Introduction

There is a plethora of work showing that dynamic program information exhibits predictable or
repetitive behavior. Specifically, (a) several basic types of information have been shown to be
predictable: branch directions [1], branch targets [2], memory data addresses [3], values [4, 5] and
dependences [6], (b) values produced by instructions were shown to repeat from a small set of
values [4], and (c) instructions were demonstrated to often repeat with the same input and output
value [7].

These phenomena may be caused by “inefficiencies” at various computational layers: algo-
rithmic, programming, compiler and architectural. The philosophy that prevails in the research
community is to exploit these phenomena with optimizations at computational levels below pro-
gramming.

The predictability or repetition of a particular information type is measured in terms of a
specific mechanism. The organization and policies of such a mechanism are aimed to detect
program behavior that results in predictable or repetitive computation. Therefore, for a mechanism
to be successful it is important to capture accurately typical program behavior. However, proposed
mechanisms are usually based on adhoc models of program behavior or are adaptations of existing
mechanisms from other areas.

Although successful mechanisms for identifying predictable [1, 3, 4, 6] or repetitive [7, 8]
computationare available, the lack of a theoretical basis for modelingprogram behavior may prevent
the development of better mechanisms. Consequently, a more basic research of program runtime
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behavior may be needed for an understanding of how execution manifests itself into predictable and
repetitive behavior.

This paper provides a step in this direction: it identifies instruction–isomorphism as an esoteric
runtime program property. An instruction instance is said to be isomorphic if its component -
information derived from the instruction and its backward dynamic data dependence graph - is
identical to the component of an instruction executed earlier. Therefore instruction–isomorphism
occurs when there is repetition in the dynamic structure of the program. By definition, an isomorphic
instruction will produce exactly the same output as the earlier instruction. Previous work [9, 7]
established that predictability and repetition is influenced more by the structure of the program and
immediate values and less by the input data. This work builds on this observation, because the
component of an instruction represents program structure that can influence the outcome of the
instruction. Provided that instruction–isomorphism is a dominant program execution phenomenon,
information derived from an instruction component may represent a useful source of information to
detect predictable or repetitive computation.
Contributions
What differentiates this paper from earlier work is the scope and methods used to investigate how
program structure influences instruction–isomorphism: the scope is more holistic because it can
consider the entire dynamic dependence graph leading to an instruction, and the methods are more
comprehensive since they include various transformations on the dependence graph to facilitate
isomorphism. The paper also includes an empirical characterization and analysis that illuminates
various aspects of instruction–isomorphismfor SPEC benchmarks. We believe that these differences
are sufficient to provide new insight and direction on how to deal with inefficiencies observed during
program execution.
Outline
Section 2 discusses related work. Section 3 introduces formal definitions for instruction–isomorphism.
Section 4 describes the simulation framework used in this work and results are presented in Section
5. We provide conclusions and direction for future research in Section 6.

2. Related Work

Instruction–Repetition, Reuse and Isomorphism: The most related concepts to instruction–
isomorphism are instruction–repetition and instruction–reuse [10, 7, 11]. Instruction–repetition [7]
considers repetition of input–outputvalues at instruction granularity. Instruction–reuse is a microar-
chitectural method motivated by repetition. The most general reuse scheme [10] learns for each
dynamic instruction (a) its backward dynamic dependence graph with respect to other instructions in
its fetch group, (b) livein values to this dependence graph, and (c) an output value. If the dependence
graph and livein values for an instruction repeat, the learned outcome can be reused without having
to execute the instructions in its dependence graph. It is expected that reuse can exploit only a
subset of instruction–repetition due to the stricter criteria for detecting reuse.

The backward dynamic dependence graph and livein values, as used in instruction–reuse,
define a component for an instruction instance. In this respect, when instruction–reuse occurs it
corresponds to a case of isomorphic behavior. In general, however, instruction-isomorphism and
instruction-reuse are not the same.

If we view the various proposed reuse techniques as transformations of the dependence graph
that expose isomorphism, then the following distinguish this paper. As far as we know this is the first
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study to consider entire backward dynamic dependence graphs for detecting repetition. In contrast,
all previous reuse work have considered only part of the dependence graph, constrained either by
microarchitectural parameters [10, 8] or compiler analysis [12, 13], and thus may had limited scope.
Furthermore, virtually no previous study consider restructuring and/or relabeling the dependence
graph to facilitate more isomorphism without introducing new values nodes (see Section 3.3.2).
Transformations that introduce arbitrary livein value nodes, such as in previous reuse work, may
not be desirable because they preserve less program structure and are more likely to depend on
microarchitectural parameters and events. For example, instruction–reuse may learn multiple reuse
scenarios for an instruction depending on its position in fetch groups, and may be hindered by the
unavailability of livein values. In contrast, instruction–isomorphism relies mainly on architectural
information.

Some previous work considered transforming the dependence graph [14, 15, 16] to enable reuse
of computation without a PC (program counter) match. In [14] two cases of reuse behavior are
distinguished quasi-invariant and quasi-common-subexpression. These are roughly analogous to
name and type labeling defined later in this work.

We note that the work in this paper is an extension of an earlier report [17].

Isomorphism: Graph isomorphism was used to detect redundancy in a program. Komondoor
and Horwitz [18] identify source code duplication by checking for isomorphism in program slices
extracted from the static program dependence graph. The motivation is to enable better software
development by replacing duplicated source code to a single macro or a call to a separate procedure.

Larus and Chandra [19] used isomorphism to identify redundant common subexpressions to tune
compilers. Their method maintains for each machine register, during the execution of a program, a
portion of the dynamic data dependence graph that lead to its most recent definition. Redundancies
are determined by checking if a graph for a new definition is isomorphic with any of the current
graphs in the registers. If isomorphism is detected, then computation that lead to the new definition
is redundant and available from another register.

The type and amounts of isomorphism reported in [19, 18] cannot be used in a systematic
way to assess instruction–isomorphism. The objective of our work is not to detect and/or eliminate
redundancy but to characterize repeating structural patterns during execution - which may not be
redundant. Nevertheless, the hypothesis and observations in these two studies provide a basis for
explaining possible causes of instruction–isomorphism.

Slicing: Slicing [20] is a method useful for determining the statements in a program that may
have an effect on another statement. Slicing can be applied backward or forward and to the static
or dynamic dependence graph of a program [20, 21, 22, 23]. Typically a slice, irrespective of its
direction and graph type, corresponds to a subgraph of the program dependence graph. A program
dependence graph [24] is a static program graph with control and data dependences. This means that
a slice, static or dynamic, will contain at most a single instance of an instruction. Few papers [19, 7]
departed from this canonical notion of a slice and refer to a subgraph of the dynamic dependence
graph [22] that leads to an instruction instance also as “dynamic slice”. Such a “dynamic slice” is
acyclic and may include multiple instances of an instruction. In this paper, we investigate backward
“dynamic slices”. To avoid any possible confusion, we refer to these slices as components.
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3. Instruction–Isomorphism

This section provides a definition for instruction–isomorphism and discusses isomorphism relevant
issues.

3.1 Definitions

A dynamic instance, i, of an instruction defines a component, Ci. The component of an instruction
instance includes the instruction and its dynamic backward dependence graph. In particular, the
component of an instruction instance is a directed acyclic graph that contains: (a) the instruction
itself as its root node, and (b) edges to all its direct predecessor components. The direction of edges
is from consumer to producer. Therefore the component of an instruction includes all instruction
instances (nodes) that the instruction has direct or indirect dependence on. Because a component is
derived from the dynamic dependence graph it may include multiple instances of an instruction.

A component, Ci, has a value, V(Ci), which is the value produced by the instruction instance i.
The set of nodes that are direct predecessors to another node, i, define an ordered set called

the predecessor set of i. This is the set of instruction instances an instruction directly depends on.
The ordering of predecessor sets is identical for nodes with same labels. This is required to avoid
detecting isomorphism when operators are not commutative and/or associative1.

Component edges are not labeled but nodes are. The labeling information is such so that it
uniquely identifies the computation to be performed by a node. The PC and opcode of an instruction
is sufficient.

Values read by instructions but not produced by program instructions are represented as nodes
with the PC set to the value and the opcode to a special opcode indicating a value node. These
nodes are needed to distinguish components that perform the same computation with different input
values.

The depth of a component is the longest path from its root. Depth does not include value nodes.
Although the above definition is applicable to components that include both control and data

dependences, the remaining paper considers components with only data dependences. The rationale
for ignoring control dependences is discussed in Section 3.3.1.
Structure and Relation of Components
An instruction can be classified into one of the following four sets depending on the structure of a
component and its relation with components of other instructions:
maximal, if its component is not included in any other component,
source, if it does not depend on any other instruction and consequently its component depth is one,
source–maximal, if its both source and maximal. The previous two categories exclude the instruc-
tions from this set. The sum of source and source–maximal is the set of all instructions with depth
one, and
middle, if its none of the above, i.e. lies in the middle of at least one component.

3.2 Isomorphism Basics

Lets consider two dynamic instruction instances, i and j, and their corresponding components, Ci

and Cj . Two components are isomorphic if the labeling of the two root nodes, i and j, is the same,
and each ordered pair of nodes in their predecessor sets is isomorphic. Effectively, two components

1. this may be pessimistic for some instruction types
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are isomorphic if they have exactly the same shape and labeling. Therefore when comparing the
two components one of the following behaviors will be observed:

isomorphic equality: if the two components are isomorphic then the two components should
produce the same value, V(Ci)=V(Cj ),
otherwise they are non-isomorphic and either of the following will occur
non-isomorphic inequality: the values are unequal, V(Ci) ��V(Cj ), or
non-isomorphic equality: the values are equal, V(Ci)=V(Cj ).

Isomorphic Equality: occurs when two instructions are isomorphic. Therefore their compo-
nent sizes are equal and each instruction in the one component is isomorphic to an instruction in the
other component.
Non-isomorphic Inequality: is caused by instructions with dependence structure that has not been
observed before. Although, it is unclear how to convert components with this behavior to isomor-
phic, it may be possible to represent them “compactly”. This may be achieved by using functions,
that depending on the structural difference between two components can compute the difference in
their output values.
Non-isomorphic equality: represents an important case of isomorphic behavior because it may be
possible with transformations to convert components from non-isomorphic to isomorphic. There
are at least three classes of transformations to consider (a) restructuring components without intro-
ducing value nodes, (b) relabeling nodes, and (c) replacing portion of a component with a value
node. Transformations can be further classified into safe and unsafe depending on how they affect
components outputs. A transformation is safe if the execution of the original and transformed
component produce the same output value, otherwise it is unsafe. Unsafe transformations may lead
to components with incomplete information where the following isomorphic behavior can happen:

pseudo-isomorphic equality: occurs when two components are isomorphic but their output values
are not equal. Analysis of the sensitivity of isomorphism to unsafe transformations can reveal
whether exact component information is necessary to detect isomorphism,
false non-isomorphic equality: occurs when prior to the unsafe transformation the two compo-
nents exhibited non-isomorphic equality but with incomplete information become isomorphic equal.
This is analogous to constructive aliasing in predictors [25] and should be useful to characterize its
frequency.

The various cases of instruction–isomorphic behavior are presented pictorially in Fig. 1. For
each case two components are compared.

Non-isomorphic equality and transformations are discussed in more detail in the next subsection.
Safe transformations is the focus but unsafe transformations are also discussed. Non-isomorphic
inequality, is not examined and should be the subject of future work.

3.3 Non-Isomorphic Equality implies Isomorphic Computation is Suppressed?

If all program dependences - both control and data - were included in instruction components, very
likely each component would have had either unique pattern or size, and isomorphic–equalitywould
have been a rare phenomenon. Combining this assumption with the observation that instructions
produce very often the same values [4, 26, 7], suggests that the dominant program isomorphic be-
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Figure 1: Instruction–Isomorphic behavior that can occur when comparing two components
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havior would be non-isomorphic equality. However, some program dependences are manifestations
of architectural semantics that would not exist in a dataflow form of computation. For example,
data movement nodes and memory address calculations are unessential since they are used to move
data from one location to another. Therefore, isomorphic-equality may exist in program execution
but is suppressed, in the form of non-isomorphic equality, and to expose it requires transformations
on the dependence graph.
Objectives of Transformations: we believe that the main objectives of most transformations should
be to increase isomorphism by converting components into a more concise representation without
introducing value nodes. Conciseness is useful in making isomorphic-equality more likely to occur
- smaller components are more likely to match. By not introducing value nodes we rely more on the
structure of the program and less on microarchitectural parameters (see Section 2). Although this
study is not evaluating uses of isomorphism, we believe the former to be more robust basis to “build
on”. Changes in the isomorphic behavior of an instruction are feasible through transformation of its
component structure. Thus transformations may change a component’s size, depth, and its relation
with other components.

Restructuring, relabeling and replacing transformations, introduced in the previous section, are
discussed next. Note that this set of transformations may not be complete in that other transforma-
tions, to be determined, may uncover additional instruction–isomorphism.

3.3.1 RESTRUCTURING WITHOUT INTRODUCING VALUE NODES

This class of transformations rearranges edges without introducing new value nodes, to elimi-
nate edges and nodes that are nonessential. The following are examples of safe-restructuring-
transformations:
NoAddr: eliminate the edges for address operands of load and store instructions. Effectively store
and load nodes have one edge leaving them that corresponds to the value that will be written/read
from memory. This is safe because address operands are only useful to specify where data are
stored/read from, and do not affect the value that is transferred.
BypLdSt: bypass nodes that move data from/to memory (instances of loads and stores) so that
consumer nodes are linked directly to their producers. Without this transformation two components
can be classified as non-isomorphic-equal because of one more move of a value. Loads and stores
are not eliminated from the graph just the edges that emanate from them. Loads and stores are
preserved so that we can investigate their isomorphic behavior regarding the computation patterns
that lead to them.
BypMov: bypass a node that moves data between two registers. This transformation mainly can
eliminate dependences to overhead computation due to call/return convention.
BypComp: bypass two dependent nodes when the one adds(subtracts) an immediate value whereas
the other subtracts(adds) the same immediate value. Effectively, such a sequence corresponds to a
move since the input value of the first instruction is the same as the output of the second. This can
be determined by only checking the opcodes of dependent instructions. When using this transfor-
mation, an instruction that originally had a dependence on the second instruction will be linked to
the node producing the input of the first instruction.

Although this is a general transformation, it is mainly aimed to reduce the number of unique
components defining the stack pointer (SP). Each SP definition typically depends on a previous SP
definition. Thus SP updating instructions can form a very long chain of dependent instructions each

7



SAZEIDES

defining a unique component. What is more, the instructions that depend on SP computation will
also define unique components leading to more unique behavior and less isomorphism. However, SP
defining instructions typically appear in pairs at the prologue and epilogue of functionsdecrementing
and incrementing, respectively, the SP by the same amount. And therefore are amenable to this
transformation.
NoControl: control dependences are critical part of the program structure and highly influential for
the shaping of component graphs. They can provide precise information about how the component
of an instruction was formed and the ordering of component execution. However, once a component
is formed, is safe to remove control dependences because they do not influence the dataflow in the
component. Therefore, this work does not consider isomorphic behavior in the presence of control
dependences in components. A consequence of the elimination of control dependences is that all
components corresponding to instances of conditional transfer instructions have no data dependent
successors. The value for a conditional branch component is defined to be the branch direction.

Virtually each time any of the above transformations is applied it converts an instruction to
maximal or source-maximal. This is the case because the dependence to the output of an instruction
is eliminated which means the component of the instruction is not included in any other component.
Another ramification of the above transformations is a reduction in the size and depth of a component.

Fig. 2 illustrates how the different transformations change the structure of an example depen-
dence graph. After a number of transformations have been applied on the original dependence
graph, that eliminate or rearrange edges, the transformed graph is produced. The unique computa-
tional patterns (unique components) that remain after the transformations are shown in the unique
components graph. Note that all computations in the original graph can be mapped to a component
in the unique components graph.

All of the above safe transformations aimed to convert non-isomorphic equality to isomor-
phic equality. Unsafe transformations, arbitrary or systematic removal of nodes and edges from
components, can lead to pseudo-isomorphic and false-isomorphic equality. When applying unsafe
transformations, the amount of pseudo-isomorphism and false-isomorphism produced can be illu-
minating as to whether exact component information is necessary to detect isomorphism. Also it
may be useful for understanding the trade-off between safe and unsafe transformations.

A special case of unsafe transformation is to remove all value nodes and edges leading to them.
Analysis of isomorphism in this situation can provide insight as to how sensitive is computation
to input data. In Fig. 1, pseudo-isomorphism and false non-isomorphism occur as a result of the
transformation that removed the dependences to input data.

This work does not consider mechanisms for accomplishing the various transformations. It is
mainly concerned with their potential to increase instruction–isomorphism. Future work needs to
consider practical schemes for facilitating and detecting isomorphism. Several other restructuring
transformations, safe and unsafe, exist but are beyond the scope of this paper.

In Section 5, is established empirically how significant the various safe transformations are on
isomorphism and component structure.

3.3.2 RELABELING NODES: NAME AND TYPE ISOMORPHISM

It is apparent from the discussion so far that the amount of isomorphism that can be observed is
influenced by the edges and nodes that are included in components. However, one other parameter
influences the amount of observed isomorphism: node labeling.
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Figure 2: Effects of Transformations

Two cases of safe labeling are presented: name and type. With name–labeling the node label
includes the PC and the opcode of an instruction. This information is sufficient for safe labeling
but may be conservative. An alternative labeling is one that includes the optype and immediate
value of an instruction. This is referred to as type–labeling. Value nodes with type–labeling are
indicated with a special optype and their value is assigned to the immediate field of the label. With
type-labeling one node may represent different PCs with the same instruction type and immediate
value, and therefore isomorphism detected with type–labeling will be a superset of the isomorphism
detected with name-labeling. Type-labeling can be viewed as another transformationof a component
graph towards a dataflow graph since the PC is an architectural side-effect not needed in dataflow
computation. Type–labeling can convert non-isomorphic equality to isomorphic equality when the
same computational pattern is produced in different paths of a program. Note that type-labeling
was used in all figures in the paper so far.

The potential benefit of type over name labeling is demonstrated with the aid of Fig. 3.
This figure shows two components for instructions eval � 4268 subu $21� $2� $3, and eval �

46d0 subu $21� $2� $3, from an execution of benchmark 256.perl. The two components have the
same structure but three nodes have different PC labels. Therefore with name-labeling the two
components would have been classified as non-isomorphic. However, the three nodes with different
PC, perform the same computation. Therefore with type-labeling the components would have been
isomorphic.
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Figure 3: Name vs Type Labeling

Relabeling can also be unsafe. An example of unsafe labeling is one where nodes do not contain
any label. In such a case is possible for nodes corresponding to different “computations” to be
indistinguishable and thus lead to pseudo-isomorphic or false non-isomorphic equality.

This work only examines safe relabeling and in Section 5 results for name and type labeling are
reported. Other types of safe and unsafe relabeling may exist and future work should investigate
them.

3.3.3 REPLACEMENT: CONVERTING PORTION OF A COMPONENT TO A VALUE NODE

Replacing part of a component with a value node can enable more isomorphism. This may be
desirable in cases where the number of unique components for the various instances of an instruction
are much greater than the number of unique values the instruction produces. For example, non-linear
instructions (and, or, xor) tend to have a smaller target than domain.

For a replacement to be safe, the definitions that emanate from nodes in a “replaced” subcom-
ponent should be replaced with value nodes. Taking component replacement to the extreme, each
component can be reduced to an instruction node with value nodes for each input. This represents
the case with the highest amount of isomorphism (this is what instruction repetition measured
in [7]), however it completely removes program dependence structure and this may be undesirable
(Section 3.3). Therefore, replacement methods are faced with the following trade-off: amount of
isomorphism they can achieve, and program structure they preserve. So far, no work has considered
applying replacement “selectively” (where is likely to have higher payoff) or unsafe replacement
(e.g. replace with a value node that may be unsafe times). Fig. 4 shows how replacement can be
used to safely transform one component with a value node.

Although an important subject, replacement is not examined in this paper.
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4. Simulation Framework

To characterize the isomorphism in program execution, a simulation study was performed for the
simplescalar PISA architecture [27]. Measurements were performed with train or reference inputs
for complete runs of SPEC95 benchmarks, and selected regions of SPEC2000 benchmarks. Table
1 shows the benchmarks, the number of instructions skipped before starting detailed simulations,
the number of dynamic instructions simulated and the number of static instructions executed.
The benchmarks were compiled using the simplescalar gcc compiler with -O3 optimization. We
emphasize that the observations are indicative of the behavior for specific datasets and simulated
regions.

Arithmetic mean was used for reporting averages. Results are reported in terms of dynamic
instructions or in terms of instructions that define unique components. The latter correspond to the
dynamic instructions that their components have not been observed before and are also referred to
as non–isomorphic instructions.

5. Results

5.1 Overall Isomorphism in Program Execution

Fig. 5 shows the degree of isomorphism for six cases for each benchmark. Each of the six bars
corresponds to a specific combination of transformations and labeling. The first five bars were
obtained using name–labeling and the sixth with type–labeling. The All–Name bar represents the
case where all data dependences are included and name–labeling is used. The degree of isomorphism
corresponds to the average number of times dynamic instructions occur with the same dependence
graph leading to them (degree of one represents the case where there is no isomorphism). The
inverse of the degree of isomorphism provides the fraction of dynamic instructions that define
unique components. For example, when the degree of isomorphism is 50 it means that 2% of the
dynamic instructions define unique components and that 98% of the instructions are isomorphic to
instructions in the other 2%.

11



SAZEIDES

Benchmark Skip(mil) Dynamic Instr (mil) Static Instr
compress95 INT - 37 3446
gcc95 INT - 178 112301
go95 INT - 132 52347
ijpeg95 INT - 129 15051
li95 INT - 202 6441
perl95 INT - 40 15385
vortex95 INT - 101 59370

bzip00 INT 315 100 1734
gcc00 INT 700 100 1684
gzip00 INT 300 54 1529
mcf00 INT 2000 100 496
parser00 INT 400 100 1226
twolf00 INT 100 100 10686
vortex00 INT 100 100 13987

ammp00 FP 2000 100 1427
art00 FP 50 100 441
equake00FP 1300 100 838
mesa00 FP 350 40 3432

Table 1: Benchmark Characteristics

The results show that when all data dependences are considered, bar All-Name, very little
isomorphism is found across all benchmarks. However, the data show that isomorphism can be-
come prominent by employing various transformations. Specifically, when address dependences
are removed, bar NoAddr-Name, there is a dramatic increase in isomorphism for most benchmarks.
This indicates that although the dependence graph leading to address computation can be different
in two components, frequently the remaining component structure is isomorphic. When address
dependences are ignored and load-stores are bypassed, bar NoAddr+BypLdSt-Name, isomorphism
is increased further. This indicates that components, without address dependences, may appear
different due to operand movement through memory. The bypassing of register move operations,
in addition to the NoAddr and BypLdSt transformations (bar NoAddr+BypLdSt+BypMove-Name),
causes an additional increase in isomorphism. This suggests that components without address
dependences and memory bypassing, can appear different due to data movement through registers.
When the above transformations are coupled with bypassing of computation that corresponds to a
move, there is even more increase in isomorphism, bar NoAddr+BypLdSt+BypMove+BypComp-
Name. BypComp is important for benchmarks with a lot of call-return activity due to SP com-
putations. Finally, when all the previous transformations are combined with type–labeling, bar
NoAddr+BypLdSt+BypMove+BypComp-Type, there is yet more increase in isomorphism. This
indicates that programs can perform computation with the same structure on different paths.

With respect to individual benchmark behavior, it can be observed that isomorphic behavior
varies across benchmarks and that not all benchmarks exhibit similar sensitivity to the different
transformations. The two compression benchmarks, gzip00 and compress95, and mesa00 exhibit
low isomorphism and small sensitivity to the different transformations. The highest isomorphism is
achieved with li95, gcc00 and ammp00. These benchmarks are very sensitive to the transformations
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Figure 5: Isomorphism for various Combinations of Transformations

used. A subsequent section discusses program constructs and situations that influence isomorphic
behavior.

Overall, the above observations demonstrate that the proposed transformations are conducive
in increasing isomorphism. This also provides support to the claim that isomorphism is suppressed
due to architectural semantics and that the proposed transformations are effective in converting
non-isomorphic equality to isomorphic equality.

For the remaining paper we focus on the configuration NoAddr+ BypLdSt+ BypMove+ BypComp-
Type.

5.2 Isomorphism Run Time Behavior

Fig. 6 shows the run time behavior in terms of non–isomorphic instructions with increasing
instruction count. These instructions are shown as a fraction of the total dynamic instruction count
for each benchmark. The last point on each curve corresponds to the fraction of dynamic instructions
that defined unique components for a given benchmark run.

The difference between 100% and the value of the last point in Fig. 6, provides the fraction
of instructions that were isomorphic for each benchmark. The data show that, depending on the
benchmark, 65% (gzip00) to 99.9% (li95) of the dynamic instructions are isomorphic.

It is noteworthy that all programs produce throughout their execution new unique components.
This indicates that typically programs form new computational patterns all during their execution.
Virtually all benchmarks, at the beginning of their execution create a large number of unique
isomorphic components. Specifically, during the first million instructions the unique components
range from 29566 for gcc00 to 615378 for gzip00. After, this “warmup” phase, most programs
get into a steady state of reusing previously created components and producing roughly the same
amount of new unique components. Notable exceptions are ijpeg95 and bzip00. For ijpeg95 the
number of new components created fluctuates. Whereas for bzip00 the simulated region consists
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Figure 6: Run Time Behavior

of two distinct phases each with steady behavior. For three benchmarks, ammp00, gcc00 and li95
the number of non–isomorphic instructions increases at a small rate not visible in the scale of this
graph.

The isomorphic behavior was investigated for long simulations of a subset of SPEC2000 bench-
marks to confirm the above observations. These data (not shown here) revealed that for longer runs
more phase changes can be observed. However, for most benchmarks the isomorphism gets into a
steady state for long sequence of instructions. More importantly, the isomorphism of longer runs is
comparable or higher than shorter runs.

5.3 Structure of Components

Fig. 7 shows the distribution of dynamic instructions according to their component depth. For
almost all benchmarks the components depths are smaller than 16384 nodes. This indicates that
most programs do not contain constructs that produce long recurrences and that the transformations
employed are effective in reducing components size. However, this is not true for parser00, comp95,
art00 and gzip00. These benchmarks have significant number of instructionswith components larger
than a million nodes. And each node on such a chain defines a unique component. Therefore, one
might have expected a correlation between large depth and low isomorphism. Examination of the
results in Fig. 5 and 7 reveals that such correlation does not exist. For example, art00 with a lot
of large components has higher isomorphism than ijpeg95 that has shorter components. Additional
criteria about the structure of components may be needed to establish correlation of depth with the
observed degree of isomorphism.
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Figure 7: Distribution of Dynamic Instructions according to Component Depth

One other result from Fig. 7, is that some benchmarks have a large fraction of instructions with
small depths. Specifically, for three benchmarks - gcc00, ammp00, and mcf00 - more than 50%
of the instructions have components with one node the instruction itself (this corresponds to point
0 in the graph). This behavior may be caused by at least one or combination of the following:
transformations, program structure, and simulation methodology.

Program structure can produce short components if a program is reading frequently input data.
Also transformations can cause this behavior because they can convert a load-use dependence chain
into two independent smaller chains. For example, a load-use dependence can become parallel
when the address dependence is ignored and the load is bypassed. However, further investigation
revealed that simulation methodology is the main cause of this behavior. In particular the simulation
for SPEC2000 benchmarks started after a region was skipped. As a result the previous state was
represented with value nodes not the computation that produced it. This means that at each use of
previous state would lead to a component of depth one. Note that SPEC95 complete simulations
have small amounts of short components.

To gain more insight about the relation and structure of components, Fig. 8 shows the distribution
of dynamic instructions according to the classification in Section 3.1. The results show that SPEC95
and SPEC2000 benchmarks have similar fraction of source instructions, 1–10%, but SPEC2000
benchmarks have significant more source-maximal instructions. Recall, these are nodes that have
depth one and not used by any other instruction. Therefore, as argued above, this difference between
SPEC95 and SPEC2000 can be attributed to simulation methodology.

Another observation, is that the instructions in the middle of components are smaller than the
maximal. This is because for many components the middle computation is similar. This is supported
by analysis that revealed very few components to be extractable, i.e. usually maximal components
share middle nodes with other maximal components.
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Figure 8: Distribution of Dynamic Instructions according to Component Structure

Component Locality: To investigate whether components for a given benchmark exhibit locality,
Fig. 9 shows the minimum fraction of non-isomorphic instructions required to cover a fraction of
dynamic instructions. The 10–90 rule appears to hold for most benchmarks. It is noteworthy that
the first 1% is sufficient to cover in almost all cases more than 50% of execution. The data reveal
a strong correlation between component locality and degree of isomorphism of a benchmark. The
better the locality the higher the isomorphism. For example the benchmarks that are slower to reach
the 90% mark are the benchmarks with the lowest isomorphism: comp95, gzip00, mesa00, bzip00,
ijpeg00 and equake00. The exception to the above is ammp00 that requires a lot, 30%, of unique
components to cover 90% of the execution, however is the fastest to reach very close to 100%
coverage which explains its high degree of isomorphism.

5.4 Benchmark Analysis

Below we provide some analysis for the causes of isomorphic and non-isomorphic behavior exhibited
by some of the benchmarks.

The main reason for the low isomorphism exhibited by compress95 is a very long dependence
chain that is created for the construction of a random text file to be compressed. Specifically, the
leaf function ran2 contains a sequence of interdependent instructions and no loops. The function
is called 149999 times and each invocation carries a dependence from the previous call through a
global register. Each node in this long dependence chain, depth of 1.8 million, defines a unique
component. After this long dependence is created, 149999 of its nodes correspond to the data to
be compressed. Each of these nodes is read once (minimal fanout) and processed by computation
that forms a thin dependence chain. This naturally produces more unique components and no
isomorphism. It is unclear how such a program structure can be represented in a more concise form.
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Figure 9: Component Locality

One of the main causes for the low isomorphism of gzip00 is also a deep dependence chain
with minimal fanout. The dependence is created in the leaf function updcrc that produces a code to
check for errors during transmissions of the file to be compressed. This code is checked against a
code in the file. To create this code a running hash of all data in the file is computed. And this leads
to a deep dependence chain of depth larger than 1.2 million. Is unclear how such structure can be
represented more concisely.

Note the dependence chains of milliondepth are significant because the simulations are typically
no more than 100 million instructions long. In fact, for compress00 and gzip00 the simulation are
run only for 37 and 54 million instructions respectively.

The above observations may be interpreted as suggesting that deep dependence chains imply
low degree of isomorphism. However, benchmark art00 with dependence-chains-depth in excess
of a million shows high degree of isomorphism (see Fig. 5 and 7). Also the converse may not be
true, for benchmark ijpeg95 the deepest dependence chain was less than 16000 nodes, but ijpeg95
did not exhibit high isomorphism.

The reason for the behavior of ijpeg95 is programming constructs that can produce more unique
components than the deepest dependence chain of the construct. In ijpeg95 this is caused by a
doubly nested loop with roughly the following structure:

for(i=x;i<x+524288;i+=64){ ...
for(j=i;j<i+64;j+=2){ ...
} ...

}

The depth of the dependence chain that updates the value of the outer induction variable i is
524288/64, i.e. 8192. The largest depth of the dependence to update the inner induction variable j
is 8192+32, i.e. 8224. However, the above loop structure will produce 262144 unique components
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 Program constructs producing this
shape of dependence graph may exhibit
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Figure 10: Program Structure and Isomorphism

one for each dynamic definition of j. The inner loop is contained in function encode one block and
the outer loop in function encode mcu huff. This demonstrates that is possible to have large number
of unique components while they are short and have same depth.

Art00, on the other hand, produces deep dependence chains but exhibits high isomorphism.
Investigation of its structure revealed that most of the instructions are due to function train match.
This functions contains double, triple and quadruple nested loops. The nesting structure leads to
very deep dependence chains for the computation of some variables. However, only a small subset
of the nodes in this deep dependence chain are used to compute other values. And each time a node
is used, is read several times and leads to isomorphism.

The above suggest that programs exhibit low isomorphism when there is a combination of a
construct that produces a lot of unique components with small fanout that is thin. Conversely,
programs that have nodes with high fanout are more likely to exhibit isomorphism. This two
scenarios are shown pictorially in Fig. 10.

The behavior of gcc00 was also investigated due to the very high amount of isomorphism it
exhibited. It was determined that most of execution was spend in function wordcopy fwd aligned.
This function was called 837 times and each time a loop that iterates 5147 times was executed.
This loop was unrolled 8 times and its body consisted of 20 instructions. Further investigation
revealed that wordcopy fwd aligned was used by the function thread jumps for initializing a table
with virtual registers. This function is used to adjust two branches when the second depends on
the first and the two branches test the same condition. A web search revealed that others have
observed that for some architectures the function thread jumps is a nop and this may be caused by
a performance bug. This may indicate that doing isomorphic analysis may be useful for detecting
algorithmic or logical errors in programs. The above also suggests an execution approach where
expensive initialization is not performed until is required.
Other benchmarks were analyzed and the following were found to be typical causes of (non)isomorphism:
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� repeated traversals of identical or slightly modified link lists (isomorphism, in li95 and
ammp00),

� event counters that produce long dependence chains but with no fanout (non-isomorphism),
� repeated loading of a global variable due to register pressure (isomorphism), and
� repeated save and restoring in non-leaf functions when the function is effectively a leaf

(isomorphism).

6. Conclusions and Future Work

This work identifies a new program runtime property: instruction–isomorphism. The paper pro-
vides a basic classification of different types of isomorphic behavior and introduces a number of
transformation for converting non-isomorphism to isomorphism.

Instruction–Isomorphism is investigated empirically using SPEC benchmarks. The data show
that program isomorphism is infrequent when considering all dependences. However, when using
a combination of transformations the data show that, depending on the benchmark and dataset, 65
to 99.9% of the dynamic instructions are isomorphic. This suggests that instruction–isomorphism
is suppressed due to architectural semantics and programming conventions that introduce a lot of
“overhead” instructions and dependences. The proposed transformations lead to concise dependence
graphs that rarely have depth greater than 16384 instructions. The results show that a small fraction,
about 10%, of the computational patterns that occur during execution are needed to cover 90% of
the dynamic instructions.

Individual benchmark analysis reveals: (a) the existence of program constructs necessary for
execution that produce non-isomorphism, (b) program constructs that produce short dependence
chains and can create more new components than their maximum dependence chain depth, and (c)
that the higher the fanout from dynamic instructions the higher the isomorphism.

The presence of instruction–isomorphism in programs represents a call for several directions fu-
ture work. One such direction is to establish methods so that current and next generation processors
can benefit from isomorphic behavior: (a) performing “early” computation by detecting isomor-
phism in the dynamic dependence structure, (b) prediction schemes that consider information from
the component of an instruction. Value prediction and branch prediction schemes that effectively
rely on component information have already been proposed [28, 29, 30], and (c) establish how much
of the history information used by current predictors influence the construction of a component and
what is the significance of this relation.

Other directions of research are: (a) develop practical methods for (approximate) detection
of isomorphism in programs, (b) use isomorphism as a criterion for deciding on the similar-
ity/differences across programs to select benchmarks, and (c) measure isomorphism to assess the
quality or detect errors in compiled code.
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