A Graph-Theoretic Network Security Game

M. Mavronicolas*, V. Papadopoulou*, A. Philippou* and P. Spirakis§

University of Cyprus, Cyprus* University of Patras and RACTI, Greeces

A Network Security Problem

- Information network with
- nodes insecure and vulnerable to infection by attackers e.g., viruses, Trojan horses, eavesdroppers, and
- a system security software or a defender of limited power, e.g. able to clean a part of the network.
- In particular, we consider
- a graph G with
- v attackers each of them locating on a node of G and
- a defender, able to clean a single edge of the graph.

A Network Security Game: Edge Mode/

- We modeled the problem as a Game

$$
\Pi_{\mathrm{M}}(G)=\left\langle\mathcal{N},\left\{S_{i}\right\}_{i \in \mathcal{N}},\{I \mathrm{P}\}_{i \in \mathcal{N}}\right\rangle
$$

- on a graph $G(V, E)$ with two kinds of players (set \mathcal{N}):
- v attackers (set $\mathcal{N}_{v p}$) or vertex players (vps) $v p_{i}$, each of them with action set, $\mathrm{S}_{\mathrm{vp}}=\mathrm{V}$,
- a defender or the edge player ep, with action set, $\mathrm{S}_{\text {ep }}=\mathrm{E}$, and Individual Profits in a profile $\mathbf{s}=\left\langle s_{1}, \ldots, s_{\left|\mathcal{N}_{v p}\right|}, s_{e p}\right\rangle \in \mathcal{S}$
- vertex player $\mathrm{vp}_{\mathrm{i}}: \mathrm{IP}_{i}(\mathrm{~s})=0$ if $s_{i} \in s_{e p}$ or 1 otherwise i.e., 1 if it is not caught by the edge player, and 0 otherwise.
- Edge player ep: $I C_{e p}(\mathrm{~s})=\left|\left\{s_{i}: s_{i} \in s_{e p}\right\}\right|$, i.e. gains the number of vps incident to its selected edge $S_{e p}$.

Nash Equilibria in the Edge Model

- We consider pure and mixed strategy profiles.
- Study associated Nash equilibria (NE), where no player can unilaterally improve its Individual Cost by switching to another configuration.

Notation

- $P_{s}(e p, e)$: probability ep chooses edge e in s
- $P_{s}\left(v p_{i}, v\right)$): probability $v p_{i}$ chooses vertex v in s
- $P_{s}(v p, v)=\sum i 2 N_{v p} P_{s}\left(v p_{i}, v\right)$: \# vps located on vertex v in s
- $\mathrm{D}_{\mathrm{s}}(\mathrm{i})$: the support (actions assigned positive probability) of player $i 2 \mathcal{N}$ in s.
- $\operatorname{ENeigh}_{\mathrm{s}}(v)=\left\{(u, v) \in E:(u, v) \in D_{\mathrm{s}}(e p)\right\}$
- $P_{\mathrm{s}}(\operatorname{Hit}(v))=\sum_{e \in E N e i g h(v)} P_{\mathrm{s}}(e p, e)$: the hitting probability of v
- $m_{s}(v)=\sum_{i \in N_{v p}} P_{\mathrm{s}}\left(v p_{i}, v\right)$: expected $\#$ of vps choosing v
- $m_{s}(e)=m_{s}(u)+m_{s}(v)$
- $\operatorname{Neigh}_{G}(X)=\{u \notin X:(u, v) \in E(G)\}$

Expected Individual Costs

- vertex players $v p_{i}$:

$$
\begin{equation*}
\mathbb{I}_{i}(\mathbf{s})=\sum_{v \in V} P_{\mathbf{s}}\left(v p_{i}, v\right) \cdot\left(1-P_{\mathbf{s}}(H i t(v))\right. \tag{1}
\end{equation*}
$$

- edge player ep:

$$
\begin{equation*}
\mathbb{P}_{e p}(\mathbf{s})=\sum_{e=(u, v) \in E} P_{\mathbf{s}}(e p, e) \cdot\left(m_{\mathbf{s}}(u)+m_{\mathbf{s}}(v)\right) \tag{2}
\end{equation*}
$$

Previous Work for the Edge Model

- No instance of the model contains a pure NE (ISAAC 05)
- A graph-theoretic characterization of mixed NE (ISAAC 05)

Summary of Results

- Polynomial time computable mixed NE on various graph instances:
- regular graphs,
- graphs with, polynomial time computable, r-regular factors
- graphs with perfect matchings.
- Define the Social Cost of the game to be
- the expected number of attackers catch by the protector
- The Price of Anarchy in any mixed NE is
- upper and lower bounded by a linear function of the number of vertices of the graph.
- Consider the generalized variation of the problem considered, the Path model
- The existence problem of a pure NE is NP-complete

Significance

- The first work (with an exception of ACY04) to model network security problems as strategic game and study its associated Nash equilibria.
- One of the few works highlighting a fruitful interaction between Game Theory and Graph Theory.
- Our results contribute towards answering the general question of Papadimitriou about the complexity of Nash equilibria for our special game.
- We believe Matching Nash equilibria (and/or extensions of them) will find further applications in other network games.

Pure and Mixed Nash Equilibria

- Theorem 1. [ISAAC05] If G contains more than one edges, then $\Pi(G)$ has no pure Nash Equilibrium.
- Theorem 2. [ISAAC05] (characterization of mixed NE)

A mixed configurations is a Nash equilibrium for any $\Pi(\mathrm{G})$ if and only if:

1. $D_{s}(e p)$ is an edge cover of G and
2. $D_{s}(v p)$ is a vertex cover of the graph obtained by $D_{s}(e p)$.
3. (a) $P\left(\right.$ Hit(v)) $=P_{s}(H i t(u))=\min _{v} P_{s}(H i t(v)), 8 u, v 2 D_{s}(v p)$, (b) $\sum_{e 2 D_{s}(e \rho)} P_{s}(e p, e)=1$
4. (a) $m_{s}\left(e_{1}\right)=m_{s}\left(e_{2}\right)=\max _{e} m_{s}(e), 8 e_{1}, e_{2} 2 D_{s}(e p)$ and (b) $\sum_{v} 2 v(D s(e p)) m_{s}(v)=v$.

Background

- Definition 1. A graph G is polynomially computable r-factor graph if its vertices can be partitioned, in polynomial time, into a sequence $G_{r 1}, \cdots, G_{r k}$ of $k r$-regular vertex disjoint subgraphs, for an integer k, $1 \cdot k \cdot n, G_{r}{ }^{\prime}=\left\{G r_{1} \cup \cdots \cup G r_{k}\right\}$ the graph obtained by the sequence.
- A two-factor graph is can be recognized and decomposed into a sequence $C_{1}, \cdots, C_{k}, 1 \cdot k \cdot n$, in polynomial time (via Tutte's reduction).

Polynomial time NE: Regular Graphs

Theorem 1. For any $\Pi(G)$ for which G is an r-regular graph, a mixed NE can be computed in constant time O(1).
Proof.
Construct profile s^{r} on $\Pi(G)$:

$$
\begin{aligned}
& \text { For any } i \in \mathcal{N}_{v p}, P_{\mathbf{s}^{\mathbf{r}}}\left(v p_{i}, v\right):=\frac{1}{n}, \forall v \in V(G) \text { and then set, } \mathbf{s}_{j}:=\mathbf{s}_{i}{ }_{i}, \\
& \forall j \neq i, j \in \mathcal{N}_{v p} . \operatorname{Set} P_{\mathbf{s}} \mathbf{r}(e p, e):=\frac{1}{m}, \forall e \in E \text {. }
\end{aligned}
$$

$\Rightarrow 8 v 2 \mathrm{~V}, \mathrm{P}_{\mathrm{s}}(H i t(\mathrm{v}))=|\operatorname{ENeigh}(\mathrm{v})| / m$
$\Rightarrow 8 \mathrm{v} 2 \mathrm{~V}$ and $v p_{i}, \quad I C_{i}\left(\mathrm{~s}_{-i},[\mathrm{~V}]\right)=1-\mathrm{r} / \mathrm{m}$

- Also, 8 e $2 E, \quad m(v)=v \mathbb{(}(1 / n)$. Thus, 8 e $2 E, I C_{e p}\left(s^{r}\right.$-ep, $\left.[e]\right)=2 \Phi v / n$
$\Rightarrow S^{r}$ is a NE.

Polynomial time NE : r-factor Graphs

- Corollary 1. For any $\Pi(G)$, such that G is a polynomial time computable r-factor graph, a mixed NE can be computed in polynomial time $O(T(G))$, where $O(T(G))$ is the time needed for the computation of $G_{r}{ }^{\prime}$ from G.

Polynomial time NE :
 Graphs with Perfect Matchings

Theorem 2. For any $\Pi(G)$ for which G has a perfect matching, a mixed NE can be computed in polynomial time, $O\left(n^{1 / 2} \subset m\right)$.
Proof.

- Compute a perfect matching of G, M using time $O\left(\mathrm{n}^{1 / 2} \mathrm{t} \mathrm{m}\right)$.
- Construct the following profile s^{f} on $\Pi(G)$:

$$
\begin{aligned}
& \text { For any } i \in \mathcal{N}_{v p}, P_{\mathrm{s}^{\mathrm{f}}}\left(v p_{i}, v\right):=\frac{1}{n}, \forall v \in V(G) \text { and } \operatorname{set} \mathrm{s}_{j}:=\mathbf{s}_{i}, \\
& \forall j \neq i, j \in \mathcal{N}_{v p} . \operatorname{Set} P_{\mathrm{s}^{\mathrm{f}}}(c p, e):=\frac{1}{|M|}, \forall e \in E .
\end{aligned}
$$

- $8 \mathrm{v} 2 \mathrm{~V}, \mathrm{P}_{\mathrm{s}}(\operatorname{Hit}(\mathrm{v}))=1 /|M|$
$\Rightarrow 8 \mathrm{v} 2 \mathrm{~V}$ and $v p_{i}, \quad I C_{i}\left(S_{-i}^{r},[v]\right)=1-1 /|M|=1-2 / n$
- Also, 8 e $2 E, \quad m(v)=\downarrow \mathscr{(}(1 / n)$. Thus, 8 e $2 E, I C_{e p}\left(S^{r}\right.$ ep, $\left.[e]\right)=$ $2 \phi \mathrm{v} / \mathrm{n}$
$\Rightarrow S^{T}$ Visne, NE. 2005

Polynomial time NE:Trees

Algorithm Trees($\Pi(T))$
Input: $\Pi(T)$
Output: a NE on $\Pi(T)$

1. Initialization: VC:=;, EC:=;, r:=1, $\mathrm{T}_{\mathrm{r}}:=\mathrm{T}$.
2. Repeat until $T_{r}==$;
a) Find the leaves of the tree T_{r}, leaves $\left(T_{r}\right)$ and add leaves $\left(T_{r}\right)$ in VC.
b) For each $v 2$ leaves $\left(T_{r}\right)$, add (v, parent $_{T r}(v)$ in EC
c) Update tree: $T_{r}=T_{r} \backslash$ leaves $\left(T_{r}\right) \backslash$ parents(leaves $\left(T_{r}\right)$)
3. Set \boldsymbol{s}^{t} : For any $i \in \mathcal{N}_{V P}$, set $D_{\mathrm{s}^{\mathrm{t}}}\left(v p_{i}\right):=V C$ and $D_{\mathrm{s}^{\mathrm{t}}}(e p):=E C$. Then set $D_{\mathrm{s}^{\mathrm{t}}}\left(v p_{j}\right):=D_{\mathrm{s}^{\mathrm{t}}}\left(v p_{i}\right)$, $\forall j \neq i, j \in \mathcal{N}_{V P}$.
and apply the uniform distribution on support of each player.

Analysis of the Tree Algorithm

- Lemma 1. Set VC, computed by Algorithm Trees(I(G), is an independent set of T.
- Lemma 2. Set EC is an edge cover of T and VC is a vertex cover of the graph obtained by EC.
- Lemma 3. For all v2 $\operatorname{Ds}(v p), m s(v)=v /\left|D_{s}(v p)\right|$. Also, for all v^{\prime} not in $D_{s}(v p), m_{s}\left(v^{\prime}\right)=0$.
- Lemma 4. Each vertex of IS is incident to exactly one edge of EC.

Analysis of the Algorithm (Cont.)

By Lemmas 2 and 4, we get,

- Lemma 5. For all $v \in D_{\mathrm{s}^{\mathrm{t}}}(v p), P_{\mathrm{s}}(\operatorname{Hit}(v))=\frac{1}{\left|D_{\mathrm{s}^{\mathrm{t}}}(e p)\right|}$.

Also, for all $v^{\prime} \notin D_{\mathrm{s}^{\mathrm{t}}}(v p), P_{\mathrm{s}}\left(\operatorname{Hit}\left(v^{\prime}\right)\right) \geq \frac{1}{\left|D_{\mathrm{s}^{\mathrm{t}}}(e p)\right|}$.

Thus,
Theorem 3. For any $\Pi(T)$, where T is a tree graph, algorithm Trees $(\Pi(T))$ computes a mixed NE in polynomial time $O(n)$.

Price of Anarchy

Lemma 7. For any $\Pi(G)$ and an associated mixed NE s*, the social cost SC $\left(\Pi(G), s^{*}\right)$ is upper and lower bounded as follows:

$$
\max \left\{\frac{\nu}{\left|D_{\mathrm{s}^{*}}(e p)\right|}, \frac{\nu}{\left|V\left(D_{\mathrm{s}^{*}}(v p)\right)\right|}\right\} \leq \operatorname{SC}\left(\Pi(G), \mathrm{s}^{*}\right) \leq \frac{\Delta\left(D_{\mathrm{s}^{*}}(e p)\right) \cdot \nu}{\left|D_{\mathrm{s}^{*}}(e p)\right|}
$$

These bounds are tight.

Thus, we can show,

- Theorem 4. The Price of Anarchy $r(\Pi)$ for the Edge model is $\frac{n}{2} \leq r(\Pi) \leq n$.

Path Model

- If we let the protector to be able to select a single path of G instead of an edge, called the path player ($p p$) \Rightarrow The Path Model
- Theorem. For any graph $G, \Pi(G)$ has a pure NE if and only if G contains a hamiltonian path.
Proof.
- Assume in contrary: $\Pi(\mathrm{G})$ contains a pure NE s but G is not hamiltonian.
- There exists a set of nodes U of G not contained in pp's action, $s_{p p}$.
\Rightarrow for all players vp_{i}, i $2 \mathrm{~N}_{\mathrm{vp}}$, it holds $\mathrm{s}_{\mathrm{i}} 2 \mathrm{U}$
\Rightarrow Path player gains nothing, while he could gain more.
$\Rightarrow s$ is NOT a pure NE of $\Pi(G)$, contradiction.

Path Model

- Corollary. The existence problem of pure NE for the Path model is NP-complete.

Current and Future Work

- Develop other structured Polynomial time NE
- for specific graph families,
- exploiting their special properties
- Existence and Complexity of Matching equilibria for general graphs
- Generalizations of the Edge model

Thank you

for your Attention!

