A Cost Mechanism for Fair Pricing of Resource Usage

Paul G. Spirakis

Accepted to the 1st Workshop on Internet and Network Economics (WINE 2005) joint work with Marios Mavronicolas and Panagiota Panagopoulou

Talk Outline

The Pricing Model

- Agents and resources, strategies and assignments
- Resource Costs and Individual Costs
- Social Cost, Optimum and the Price of Anarchy
- The Diffuse Price of Anarchy
- Motivation

Results and Conclusions

- Inexistence of pure Nash equilibria
- Existence of fully mixed Nash equilibria
- The Price of Anarchy: upper and lower bounds
- The Diffuse Price of Anarchy
- Discussion and future directions

Agents and Resources

 $\succ M = \{ 1, 2, ..., m \}$ identical resources

$$\succ N = \{ 1, 2, ..., n \}$$
 agents

Each agent *i* has demand $w_i \in \mathbb{R}_+$ Denote **w** the corresponding $n \times 1$ demand vector.

Denote
$$W = \sum_{i=1}^{n} W_i$$
.

Strategies and Assignments

- A pure strategy for agent *i* is some specific resource.
 A mixed strategy for agent *i* is a probability distribution on the set of pure strategies.
- > A pure assignment $\mathbf{L} \in M^n$ is a collection of pure strategies, one per agent.

A mixed assignment $\mathbf{P} \in \mathbb{R}^{m \times n}$ is a collection of mixed strategies, one per agent.

- i.e. p_i^j is the probability that agent *i* selects resource *j*.
- The support of agent *i* is $S_i = \{ j \in M : p_i^j > 0 \}$.

Resource Cost

Fix a pure assignment $\mathbf{L} = \langle l_1, l_2, ..., l_n \rangle$.

 \succ The resource demand on resource j is

$$W^j = \sum_{k \in N: l_k = j} W_k \; .$$

 \succ The resource congestion on resource j is

$$n^j = \sum_{k \in N: l_k = j} 1.$$

> The Resource Cost on resource *j* is $\mathrm{RC}^{j} = \frac{W^{j}}{n^{j}}$.

Individual Cost

Fix a pure assignment $\mathbf{L} = \langle l_1, l_2, ..., l_n \rangle$.

The Individual Cost for agent i is the Resource Cost of the resource she chooses:

$$\mathrm{IC}_{i}=\frac{W^{l_{i}}}{n^{l_{i}}}.$$

Expected Individual Cost

Now fix a mixed assignment **P**.

> The Conditional Expected Individual Cost IC_i^j of agent *i* on resource *j* is the conditional expectation of the Individual Cost of agent *i* had she been assigned to resource *j*.

 \succ The Expected Individual Cost of agent *i* is

$$\mathrm{IC}_i = \sum_{j \in M} p_i^j \cdot \mathrm{IC}_i^j \ .$$

Pure Nash Equilibria

The pure assignment $\mathbf{L} = \langle l_1, l_2, ..., l_n \rangle$ is a pure Nash equilibrium if, for all agents *i*, the Individual Cost IC_{*i*} is minimized (given the pure strategies of the other agents).

Thus, in a pure Nash equilibrium, no agent can unilaterally improve her own Individual Cost.

Mixed Nash Equilibria

The mixed assignment **P** is a mixed Nash equilibrium if, for all agents *i*, the Expected Individual Cost IC_i is minimized (given the mixed strategies of the other agents), or equivalently, for all agents *i*,

$$IC_{i}^{j} = \min_{k \in M} IC_{i}^{k} \quad \forall j : p_{i}^{j} > 0$$
$$IC_{i}^{j} \ge \min_{k \in M} IC_{i}^{k} \quad \forall j : p_{i}^{j} = 0$$

P is a fully mixed Nash equilibrium if

$$p_i^j > 0 \quad \forall i \in N, \forall j \in M.$$

The Price of Anarchy

> Let w be a demand vector and P be a Nash equilibrium. The Social Cost is defined as

$$SC(\mathbf{w}, \mathbf{P}) = E_{\mathbf{P}}\left(\max_{j \in M} RC^{j}\right).$$

 \succ Let w be a demand vector. The Optimum is defined as

$$OPT(\mathbf{w}) = \min_{\mathbf{L}\in M^n} \max_{j\in M} \mathbf{R}\mathbf{C}^j$$
.

The Price of Anarchy is defined to be

$$PA = \max_{\mathbf{w},\mathbf{P}} \frac{SC(\mathbf{w},\mathbf{P})}{OPT(\mathbf{w})}.$$

Assume demands are chosen according to some joint probability distribution D, which comes from some (known) class Δ of possible distributions.

We define the Diffuse Price of Anarchy to be

$$DPA_{\Delta} = \max_{D \in \Delta} \left(E_D \left(\max_{\mathbf{P}} \frac{SC(\mathbf{w}, \mathbf{P})}{OPT(\mathbf{w})} \right) \right).$$

Motivation

> The proposed cost mechanism is used in real life by:

- Internet service providers
- Operators in telecommunication networks
- Restaurants offering an "all-you-can-eat" buffet
- The cost mechanism is fair since
 - No resource makes profit
 - Agents sharing the same resource are treated equally

The Optimum

Proposition. For any demand vector \mathbf{w} , $OPT(\mathbf{w}) = \frac{W}{n}$.

Proof

Fix w. The pure assignment where all agents are assigned to the same resource achieves Social Cost W/n. Hence

$$\operatorname{OPT}(\mathbf{w}) \leq \frac{W}{n}$$
.

The Optimum

Proof (continued)

Consider an arbitrary assignment \mathbf{L} and let k be such that

$$SC(\mathbf{w},\mathbf{L}) = \frac{W^k}{n^k}.$$

Then, by definition of the Social Cost,

$$\frac{W^{j}}{n^{j}} \leq \frac{W^{k}}{n^{k}} \iff \frac{n^{j}}{n^{k}} \geq \frac{W^{j}}{W^{k}} \quad \text{for any resource } j$$
such that $n^{j} > 0$.

The Optimum

Proof (continued)

Summing up over all such resources yields

$$\sum_{j:n^j>0}\frac{n^j}{n^k} \ge \sum_{j:n^j>0}\frac{W^j}{W^k} \Longrightarrow \frac{n}{n^k} \ge \frac{W}{W^k} \Longrightarrow \frac{W^k}{n^k} \ge \frac{W}{n^k}.$$

By choice of resource k, and since **L** was chosen arbitrarily, the above inequality implies that

$$SC(\mathbf{w},\mathbf{L}) \ge \frac{W}{n} \implies \min_{\mathbf{L}} SC(\mathbf{w},\mathbf{L}) \ge \frac{W}{n} \implies OPT(\mathbf{w}) \ge \frac{W}{n}.$$

Theorem [Inexistence of pure Nash equilibria] There is a pure Nash equilibrium if and only if all

demands are identical.

Proof (if)

Let
$$w_i = w \quad \forall i \in N$$
.

Then, in any pure assignment L,

$$\operatorname{RC}^{j} = w \quad \forall j \in M \quad \Rightarrow \quad \operatorname{IC}_{i} = w \quad \forall i \in N.$$

Hence any pure assignment is a pure Nash equilibrium.

Proof (only if)

Assume now that there is a pure Nash equilibrium L.

For each resource *j*, denote $W_1^j, W_2^j, \dots, W_{n^j}^j$ the demands assigned to resource *j*.

So, $\sum_{k=1}^{n^j} w_k^j = W^j$.

Proof (only if, continued)

Fix now a resource *j* with $n^j > 0$.

Since **L** is a Nash equilibrium, for each agent k assigned to resource j and for each resource $l \neq j$ it holds that

$$\operatorname{IC}_{k}^{j} \leq \operatorname{IC}_{k}^{l} \Longrightarrow \frac{W^{j}}{n^{j}} \leq \frac{W^{l} + w_{k}^{j}}{n^{l} + 1}.$$

Rearranging terms yields $n^l \cdot W^j \leq n^j \cdot W^l$

thus implying that
$$\frac{W^j}{n^j} = \frac{W^l}{n^l} \quad \forall j, l \in M : n^j, n^l > 0.$$

Proof (only if, continued)

Note that for each agent $k \in \{1, 2, ..., n^j\}$,

$$\frac{w_k^j}{n^l+1} \ge \frac{W^j}{n^j} - \frac{W^l}{n^l+1}.$$

> Assume that $n^l = 0$. Then

$$w_k^j \ge \frac{W^j}{n^j}.$$

Proof (only if, continued)

 $\Rightarrow \text{ Assume that } n^{l} > 0. \text{ Then}$ $\frac{w_{k}^{j}}{n^{l}+1} \geq \frac{W^{j}}{n^{j}} - \frac{W^{l}}{n^{l}+1} = \frac{W^{l}}{n^{l}} - \frac{W^{l}}{n^{l}+1} \Rightarrow$ $w_{k}^{j} \geq \frac{W^{l}}{n^{l}} = \frac{W^{j}}{n^{j}}.$

Proof (only if, continued)

So, in all cases, $w_k^j \ge \frac{W^j}{n^j}$ for all $k \in \{1, ..., n^j\}$, implying $w_1^j = w_2^j = \cdots = w_{n^j}^j = \frac{W^j}{n^j} \quad \forall j \in M : n^j > 0.$ Since however $\frac{W^j}{n^j} = \frac{W^l}{n^l} \quad \forall j, l : n^j, n^l > 0,$

it follows that all demands are identical.

Fully Mixed Nash Equilibria: Existence

Theorem [Existence of fully mixed Nash equilibria]

There is always a fully mixed Nash equilibrium.

Proof

Consider the fully mixed assignment ${\boldsymbol{F}}$ with

$$f_i^{j} = \frac{1}{m} \quad \forall i \in N, \, \forall j \in M.$$

We will show that ${\boldsymbol{F}}$ is a Nash equilibrium.

Fully Mixed Nash Equilibria: Existence

Proof (continued)

In the mixed assignment **F**, $\forall i \in N, \forall j \in M$

$$IC_{i}^{j} = w_{i} \left(1 - \frac{1}{m}\right)^{n-1} + \sum_{k=2}^{n} \frac{1}{k} \left(\frac{1}{m}\right)^{k-1} \left(1 - \frac{1}{m}\right)^{n-k} \left(\binom{n-1}{k-1}w_{i} + \binom{n-2}{k-2}W_{-i}\right)$$

i.e. independent of j, so **F** is a fully mixed NE.

Theorem

The fully mixed Nash equilibrium ${f F}$ is the unique Nash equilibrium in the case of 2 agents with non-identical demands.

Proof

Consider an arbitrary Nash equilibrium P.

Let S_1 , S_2 be the support of agent 1, 2 respectively.

W.l.o.g., assume that $w_1 > w_2$.

Proof (continued)

▷ Suppose
$$S_1 \cap S_2 = \emptyset$$
. Then, for any $l \in S_2$,

$$IC_1 = w_1 > w_1(1 - p_2^l) + \frac{w_2 - w_1}{2} p_2^l = IC_1^l,$$

a contradiction to the Nash equilibrium.

> Let
$$j \in S_1 \cap S_2$$
. Then
 $IC_1 = w_1(1 - p_2^j) + \frac{w_1 + w_2}{2} p_2^j < w_1$ and
 $IC_2 = w_2(1 - p_1^j) + \frac{w_1 + w_2}{2} p_1^j > w_2$.

Proof (continued)

≻ Assume $\exists k \in S_1 \setminus S_2$. Then $IC_1^k = w_1 > IC_1$, a contradiction.

≻ Assume $\exists k \in S_2 \setminus S_1$. Then $IC_2^k = w_2 < IC_2$, a contradiction.

Hence $S_1 = S_2$.

≻ Assume $\exists k \notin S_1$. Then $IC_2^k = w_2 < IC_2$, a contradiction.

Hence $S_1 = S_2 = M$.

Proof (continued)

Now fix $j, k \in M$. Then

$$\operatorname{IC}_{1}^{j} = \operatorname{IC}_{1}^{k} \iff p_{2}^{j} = p_{2}^{k} \iff p_{2}^{j} = \frac{1}{m} \forall j \in M \text{ and}$$

$$\operatorname{IC}_{2}^{j} = \operatorname{IC}_{2}^{k} \iff p_{1}^{j} = p_{1}^{k} \iff p_{1}^{j} = \frac{1}{m} \forall j \in M.$$

Hence P=F.

The Price of Anarchy: Lower Bound

Theorem
$$PA \ge \frac{n}{2e}$$
.

Proof

First observe that
$$\operatorname{SC}(\mathbf{w},\mathbf{F}) \ge \left(\frac{1}{m}\right)^n \left(m(m-1)^{n-1}w_1\right).$$

Fix a demand vector \mathbf{w} with $w_1 = \Theta(2^n)$ and $w_i = 1 \quad \forall i \neq 1$. Then $\frac{w_1}{W} \ge \frac{1}{2}$.

The Price of Anarchy: Lower Bound

Proof (continued)
Now
$$PA = \max_{\mathbf{w}, \mathbf{P}} \left(\frac{n}{W} \cdot SC(\mathbf{w}, \mathbf{P}) \right)$$

 $\geq \max_{\mathbf{w}} \left(\frac{n}{W} \cdot SC(\mathbf{w}, \mathbf{F}) \right)$
 $\geq \max_{\mathbf{w}} \left(\frac{nw_1}{W} \cdot \left(\frac{m-1}{m} \right)^{n-1} \right)$

 $\geq \frac{n}{2e}$ for m=n, as needed.

The Price of Anarchy: Upper Bounds

Theorem
Assume that
$$n=2$$
. Then $PA < 2 - \frac{1}{m}$.

Proof

> If
$$w_1 = w_2 = w$$
 then

- any assignment has Social Cost w,
- Optimum equals to *w*,
- hence PA = 1.

The Price of Anarchy: Upper Bounds

Proof (continued)

 \succ Else, w.l.o.g., assume that $w_1 > w_2$.

In that case, \mathbf{F} is the unique Nash equilibrium.

Observe that
$$SC(\mathbf{w}, \mathbf{F}) = \left(\frac{1}{m}\right)^2 \left(m(m-1)w_1 + m\frac{w_1 + w_2}{2}\right)$$
.

Since $OPT(\mathbf{w}) = \frac{w_1 + w_2}{2}$, we can easily derive

$$PA < 2 - \frac{1}{m}$$
, as needed.

The Price of Anarchy: Upper Bounds

Theorem
$$PA \le \frac{n \cdot w_1}{W}.$$

Proof

Fix any w. For any pure assignment,

$$\frac{W^j}{n^j} \le w_1 \quad \forall j \in M : n^j > 0.$$

Hence, for any Nash equilibrium P,

$$\operatorname{SC}(\mathbf{w}, \mathbf{P}) = \operatorname{E}_{\mathbf{P}}\left(\max_{j} \frac{W^{j}}{n^{j}}\right) \leq w_{1} \implies \operatorname{PA} \leq \frac{n \cdot w_{1}}{W}.$$

Definition [Bounded, Independent Probability Distributions] The class of bounded, independent probability distributions Δ includes all probability distributions D for which the demands w_i are i.i.d. random variables such that:

- ► There is some parameter $\delta_D(n) < \infty$ such that $w_i \in [0, \delta_D(n)] \quad \forall i \in N.$
- > There is some (universal) constant $\ell_{\Delta} > 0$ such that

$$\frac{\delta_D(n)}{\mathcal{E}_D(w_i)} \leq \ell_\Delta \qquad \forall i \in N \,.$$

Theorem

Consider the class Δ of bounded, independent probability distributions. Then:

1.
$$DPA_{\Delta} \le \frac{\ell_{\Delta}}{1 - \ell_{\Delta}\sqrt{\frac{1}{2}\ln n}} + n \exp\left(-\frac{n}{\ln n}\right)$$

2.
$$\lim_{n\to\infty} \mathrm{DPA}_{\Delta} \leq \ell_{\Delta} \ .$$

Proof

Follows from the subsequent version of *Hoeffding bound* :

Corollary Let w_1, \ldots, w_n be i.i.d. with $0 \le w_i \le \delta_D(n)$. Denote $\overline{W} = \frac{1}{n} \sum_{i=1}^{n} w_i$ and $\overline{\mu} = E(\overline{W})$. Then, for any $\varepsilon > 0$, $\Pr\left\{\overline{W} \le (1-\varepsilon)\overline{\mu}\right\} \le \exp\left(\frac{-2n\varepsilon^2\overline{\mu}^2}{\delta_D^2(n)}\right).$

Consider the class $\Delta_{sym} \subseteq \Delta$ of bounded, independent, expectation-symmetric probability distributions:

 $\forall D \in \Delta_{sym}$, each w_i is distributed symmetrically around its expectation.

Hence $\ell_{\Delta_{sym}} = 2$ so the previous theorem implies:

Discussion and Future Directions

Summary

Intuitive, pragmatic and fair cost mechanism for pricing the competitive usage of resources by selfish agents

Future Research

- More general pricing functions
- Heterogeneous cases of selfish agents
- The proposed Diffuse Price of Anarchy could be of general applicability (e.g. in congestion games)

Thank you