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The end results of this work specifically apply to implementations of (monofki) operations
that are based aswitching networksa recent class of concurrent, low-contention data structures that
generalizecounting network$J. ACM 41(5) (1994) 1020-1048) (which implemented the traditional
Fetch&Increment operation). These results are negative; they are shown througfidhetone
Linearizability Lemmaln particular, thefirst lower bounds orsize(the number ofwitchesin the
network) for any (non-trivial) switching network implementing a monot&d\W operation are
derived. It is proven that if the network incurs low contention, then its size must be infinite, no
matter whether the number of states of each switch is finite or infinite. Feted& Increment is
implementable with counting networks fifite-size (J. ACM 41(5) (1994) 1020-1048), these lower
bounds imply a space complexity separation betwestah&Increment and any monotonBMW
operation in the model of switching networks.

The presented lower bounds provide a mathematical explanation for the observed inability of
researchers over the last thirteen years to extend counting networks, while keepirfigiteesize
high-concurrency and low-contention, in order to perform tasks more complekébar®.Increment
but yet as simple aSetch&Add.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Distributed computing; Synchronization; Linearizability; Monotone Linearizability Lemma;
Switching networks; Lower bounds

1. Introduction
1.1. Background, motivation and framework

A Read&Modify&Write shared variableor register[8,11], henceforth abbreviated as
RMW, is an abstract variable type that allows reading its old value, computing via some
specificoperatora new value as a function of the old one, and writing the new value back,
all in a single,atomic (indivisible) RMW operation. For example, Betch&Increment
register provides an operation that atomically adds one to its value and returns its prior
value; aFetch&Add register provides an operation that adds any arbitrary integer to its
value and returns its prior value, whileRetch&Multiply register does a corresponding
thing for multiplication.

Most RMW operations provide strong synchronization primitives that allow for the de-
sign of efficient and transparent algorithms in the asynchronous shared memory model of
distributed computation. So, it is desirable to devise suitdisigibuted data structurefor
the construction of highly concurrent, low-contention implementatior®M¥V registers.
Intuitively, the contentionof an implementation measures the extent to which concurrent
processesiccess the same memory location simultaneously; it has been argued that con-
tention is a critical factor for the overall efficiency of (asynchronous) shared memory algo-
rithms (see, e.g[4] and references therein).@unting network2] is a particular class of
finite-sizedistributed data structures used to construct high-concurrency and low-contention
implementations oRMW registers that simultaneously support Betch&Increment and
Fetch&Decrement operationg1].

The fundamental question that has motivated this work is the possibility or impos-
sibility, and the corresponding incurred costs, of devising distributed data structures to
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construct highly concurrent, low-contention implementationgaferalRMW registers.

In particular, is there, and at what costs, a generalization of counting networks to imple-
ment thegeneralRMW operation while still retaining the nice properties of finite-size and
low-contention?

We focus on a specific classRMW operations whose operators correspond to a certain
class of algebraic groups introduced and studied here, which wenoalbtone groupsA
monotone group hastatal orderand amonotone subdomaithe latter enjoys a signifi-
cant monotonicity property, which we céllonotonicity under Compositiomapplying the
operator on an element from the monotone subdomain results to another element in the
monotone subdomain that strictly dominates the first with respect to the total order. For
example, thé-etch&Add operation clearly falls into the context of monotone groups; so
also does thé&etch&Multiply operation, and so on. AionotoneRMW operation is one
that is associated with a monotone group.

We consider switching network6,7], a class of distributed data structures that may be
used for concurrent, low-contention implementationd)RMW registers; these are natu-
ral generalizations ofounting network$2]. Roughly speaking, awitching networks a
directed, acyclic graph made up of nodes caBledtchesandoutput registersand edges
calledwires. A process issuing RMW operation shepherdstakenthrough the network;
the token traverses a path of switches till it is eventually returned a value upon exiting the
network. Thesizeof a switching network is the total number of switches in it;dtscur-
rencyis the maximum number of concurrgmibcesseshat may simultaneously shepherd
a token through the network.

In order to model the low-contention property for switching networks, we introduce
register bottleneckand switch bottleneckroughly speaking, both measure thénimum
number of network elements (either output registers or switches) that are accessed by
processes in any infinite execution. Intuitively, if this number is small, some element will
become aottleneckin some infinite execution, and the network incurs high contention;
hence, a switching network Isw-contentionif register bottleneck and switch bottleneck
are sufficiently large.

1.2. Contribution and significance

Our chief combinatorial instrument is &aJonotone Linearizability Lemma
(Propositions.1). This establishes inherent ordering constraintnafarizability [10] for
a certain class of executions ay distributed system that implements a monot&héw
operation. Recall that an executiorlirgearizable[10] if the values returned to operations
respect their real-time ordering.

The end results of our study anegative they are shown through a modular use of the
Monotone Linearizability Lemmdahese results are thigst lower bounds on size for any
highly concurrent, low-contention switching network that implements a monddmie/
operation. For any such switching network (other than the trivial single-switch one), we
prove:

o If each switch has &inite number of states, then the network must containrndinite
number of switches, even if concurrency is restricted to refpaimded Theorem6.1).
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e If each switch has ainfinite number of states, then the network must still contain
an infinite number of switches if concurrency is now allowed to grow unbounded
(Theorem6.2).

Our impossibility results settle to the negative the general question about the possibility
of devising distibuted, low-contention data structureéimife-size, as suitable extensions
to counting networks, to support synchronization operations othefRb@h&Increment
(originally supported by counting networks). This question was already stated in the seminal
work of Aspnes et a[2] that introduced counting networks; however, it has remained tanta-
lizingly open, and progress on it has been so far limited to discovering that counting networks
themselves can also suppbBgtch&Decrement (simultaneously withretch&Increment)

[1]. Our results imply a space complexity separation betwasoh&Increment and any

monotoneRMW operation in the model of switching networks.

In summary, our lower bounds imply that vweannotconveniently generalize counting
networks, while still retaining their finite-size, high-concurrency and low-contention, in
order to perform tasks more complex than just incrementing a counter by one but yet
as simple as adding an arbitrary value to a counter. Thus, our lower bounds provide a
mathematical explanation for the observed inability of researchers in the last thirteen years
or so (since the original conference publication of counting netwj@jkisan STOC 199]to
achieve such generalizations.

Finally, we remark that linearizability has so far been studied s=gaired property
for a distributed system that best guarantees acceptable concurrent behavior. To the best
of our knowledge, our work is thirst to provide, through thélonotone Linearizability
Lemmaan (non-trivial) instance of a distributed system where linearizability intagrent

property.
1.3. Related work and comparison

A particular switching network, calleRead—Modify—Write networkis given in
[7, Section 4]that implements any general class of commutative functibeg;h&Add
andFetch&Multiply are two particular examples of such classes. This Read—Modify—Write
network contains amfinite number of switches, and it has the same topology as a corre-
sponding linearizable counting network presentd®JnThelatency(maximum number of
switches traversed by a token) of this network is shown to t® {7, Theorem 4.14)while
a corresponding lower boundQfn) is also shown iffi7, Theorem 3.2Jor any general class
of functions with certain functional properties; this family encompasseshetth&Add
andFetch&Multiply as special cases. In contrast, we deal, in this work, exclusively with
thesizeof switching networks.

A counting network idinearizable[9] if the values returned to tokens respect their real-
time orderings. Herlihy et a[9, Theorem 5.1khow that any non-trivial (non-blocking)
linearizable counting networkiust have infinite size. The structure of the proofs of our
impossibility results is inspired by that of the proof®f Theorem 5.1]The requirement that
all executions be linearizable allows that proof to pick any arbitrary execution of choice
and force it to violate linearizability. Since a switching network for a monotaiMdV
operation need not guarantee linearizability in all executions. The role dfitmtone
Linearizability Lemmas to contribute executions that anecessarilyinearizable.
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1.4. Road map

Section2 introduces monotone groups. Definitions for the model of a distributed sys-
tem appear in SectioB. Section4 provides a framework for switching networks. The
Monotone Linearizability Lemmia the subject of Sectiob. Lower bounds on the size of
switching networks implementing monotone groups are shown in Segtiva conclude in
Section?.

2. Monotone groups

In this section, we introduce and study monotone groups. We assume familiarity of the
reader with the very basic concepts from Group Theory, suchgasup (I[', ) and an
Abelian group Denotee theidentity elemenof the group(ll’, ®). An elementary property
of groups will be used in some of our later proofs is @encellation Lawlt states that for
any grougll’, ®), forany triple of elements, b, c € I',a®b = a®c (resp.pHa = cDHa)
impliesb = c.

Throughout this section (and in the rest of the paper), dendieahd Q the sets of inte-
gers, natural numbers (including zero), and rational numbers (excluding zero), respectively.
We will use+ and- to denote the common (binary) operators of addition and multiplication,
respectively, on these sets. Denatethe less-than-or-equalelation (total order) on these
sets.

Some composite operators are introduced in Se&@idnSection2.2 provides the basic
definitions for monotone groups. Sectipr3treatsn-wise independence.

2.1. Composite operators

We define two composite operators by applying the operatarnumber of times. For
any integeik, define the unary operatép, : I' — II" as follows:

a®ad®---da if k>0,
k times
@a: e ifk:O,
k aloale - -@al ifk<O
—k times

Call &b, thepower operator It follows that for any element € " and integek, P,a =
@_ka—l. We continue to state two elementary properties of the power operator that will
be used later; their proofs are omitted as straightforward.

Property 2.1 (Superposition of poweys For any Abelian groupIl’, @), fix any element
a € II'. Then for any sequence of integeks, ko, . . ., k,,

(@a)@(@a)@---@(@a): P a.
k k2 Fen Yiia ki
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Property 2.2 (Composition of powejs For any group(Il’, @), fix any element € II'.
Then for any integer k and natural numberd®, (B, a) = @y.,a.

For any integen, the operatolt),, : [ — I[" is n-ary.

e Forn =0, it assumes the constant valgg = e.

e Forn =1,4;{a} = afor all elements: € I'. Forn = —1,4_4{a} = a1

e For|n|>2. |4, takes as input an ordered multiset of elemdnisay, ..., aj,} € I,
and it yields the result

e 'f 22’
Lﬂ{al,az,...,an}z{al@az@ @ an if n
n

a'®a;t @ da), fn< -2

denoted also algJ]_; a;. Note that, by associativity, the result of applying the operator

is well defined.

Call @5 thesummation operatoOur definitions for the power and summation operators
immediately imply that for any elemeate [I" and for any integet # O,

W,3a.a,...,a if n >0,
———
n times
Da=
n
., atal . . . at if n <O.
—n times

So, roughly speaking, the power operator is some special case of the summation operator
where all inputs are identical. The resllt, {a1, a2, . .., a,} of the summation operator
will sometimes be called @omposite expression

2.2. Monotone groups

Assume now that the sdt Is totally ordered; thus, otal order < is defined onll. For
any pair of elements, b € [, writea < b (and, equivalentlyh > a) if axb anda # b.

A monotone subdomaiaf " is a subsetM C [ that satisfies the following three
properties:
1. Closure:For any two elements, b € M,a & b € M.
2. ldentity Lower BoundFor any element € M, ¢ < a.
3. Monotonicity under Compositioror any pair of elements, b € M, botha < a ® b

andb < a ® b.
Notice that thddentity Lower Boungbroperty implies that ¢ M, so thatM c [[". Notice
also that thélonotonicity under Compositigeroperty implies tha is necessarily infinite.
A monotone groufs a quadrupl€ll”’, M, &, <), where(ll", @) is an Abelian groupx is a
total order onll, andM is a monotone subdomain @f.1

We encourage the reader to verify that both quadru@le®\ {0}, +, <) (calledintegers
with Addition) and(Q, N\ {0, 1}, -, <) (calledRationals with Multiplicatioy are mono-
tone groups. They are associated with the monoteeteh&Add and Fetch&Multiply
operations, respectively. There follows an elementary, non-idempotency property of mono-
tone groups that will be used in some of our later proofs.
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Property 2.3 (No idempotent powgr For any arbitrary monotone grougl’, M, &, <),
fix any element € M. Then for any integer kP, a = e impliesk = 0.

The proof of Property.3is straightforward; it is left as an exercise for the reader. We
only remark that Propert2.3 doesnot necessarily hold for @eneralgroup; so, it is no
coincidence that its proof relies on using enotonicity under Compositigoroperty that
holds specifically for monotone groups.

2.3. n-Wise independence

Fix any integem >2. Consider anyn distinct elementsi, az, ..., a, € " with az,
as,...,a, # e. Say thatai, ap, ..., a, aren-wise independent ovell’, @) if for any
sequence of integersky, ko, . .., k,, where—1<k; <2 for 1<i <n, that arenot all si-
multaneouslyero,@le@ki a; # e. Say that the monotone groyp’, M, &, <) is n-wise
independenif there aren distinct elementas, az, ..., a, € M, with a1, a, ..., a, # e,
that aren-wise independent oveéll”, @).

From the definition oh-wise independence,integersas, az, ..., a, € Z, wheren >2,
are n-wise independent ovelZ, +) if for any sequence oh integersks, k2, ..., k, €
{—1, 0,1, 2}, which are not all simultaneously zerp;_; k; - a; # 0. We prove.

Lemma 2.4. For any integern>2, the monotone groupZ, N \ {0}, +, <) is nwise
independent

Proof. Fix any integer¢ >0. Consider then natural numbers22¢+2, . 2(+20-1) ¢
N \ {0}, which are powers of two; we will prove that thes@aatural numbers ane-wise
independent ovefZ, +). The proof is by induction on.

For the basis case where= 2, consider the natural number$ &nd 2+2. Fix any
pair of integersk1, k, € {—1,0,1, 2} that are not both simultaneously zero. Clearly,
k120 + kp2¢+2 = 28 (k1 + 4k2), which can be zero only if; = k> = 0. So, the natural num-
bers 2,242 ¢ N\ {0} are 2-wise independent ovéZ, +). Hence, the monotone group
(Z, N\ {0}, +, <) is 2-wise independent. This completes the proof of the basis case.

Assume inductively that the — 1 natural numbers 22(+2, . 2(+2(-D-1) —
2t+201-2) ¢ N\ {0} are(n — 1)-wise independent oveZ, +).

For the induction step, we will show that theatural numbers®2 2¢+2, | 2(+20:=D gre
n-wise independentitZ, +). Assume, by way of contradiction, that they are not. Thus, there
existn integersky, ko, ..., k, € {—1,0, 1, 2} which are not all simultaneously zero, such
thaty 7_; k;2¢+20—1 = 0. We proceed by case analysis on the valug,af {—1,0, 1, 2}.

o Assume first thak, = —1. Then,Y '_1k;20+20=D _ pt+20=1) — 0, or Y121k,
20+2-1) — pt+2mn=1) ory Tl 22(=1 — 220~ However, sincé; < 2 forallindices

i, 1<i<n — 1,

n—1 . n—1 ,
Z ki22(lfl) < 2 Z 22(171)
i=1 i=1
n—4
<2y 2
i=0
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=2 (22"—3 — 1) < 9212 _ 20-1),

a contradiction.

e Assume now that, = 0. Then,Z?:_ll k;2t+20=1 = 0. Since the intege¥s,, ko, . . ., ky
are not all simultaneously zero whitg = 0, it follows that the integerk, ko, . . ., k,—1
are not all simultaneously zero. This implies thatithel natural numbers22¢+2, |
2t+21=2) gre (n — 1)-wise independent oveZ, +), which contradicts the induction
hypothesis.

e Assume finally that, < {1, 2}. Then,Zf’:—ll kj20H20-D 4 g . 2t+20=D) — o o,
equivalently— Y '3 k; 20+20=D — f . pt+20=1) or _ ST g 0201 — g L p200-1)
However, sincé; > — 1 for all indicesi, 1<i<n — 1,

n—1 o1 n—1 o1
_Zkiz(l—)< 3 22(i-1)
i=1 i=1
2n—4
< Y 2
i=0
— 22n—3 1< 2211—2 — 22(11—1) <k71 . 22(11—1)’

a contradiction.
Since we obtained a contradiction in all possible cases, the proof is now comgléte.

We finally prove thaeverymonotone group is-wise independent.

Lemma 2.5(Every monotone group is n-wise indepenflefbr any integern>2, the
monotone groupll’, M, &, <) is nrwise independent

Proof. Since the monotone groud, N \ {0}, +, <) is n-wise independent (Lemnia4),
there exisin distinct natural numberg, Io, ..., 1, € N\ {0} that aren-wise independent
over(Z, +). Fix any element: € M and consider tha element@lla, @lza, e @lna
of M. Clearly, by theMonotonicity under Compositioproperty of the monotone group
(IC, M, &, <), thesen elements are distinct. We will prove that they are alswise inde-
pendent ovetll’, @).

Assume, by way of contradiction, that the eleme@ga. D,,a, . .., P, a arenot n-
wise independent ovefl’, ®). Thus, there exist integersks, k2, ..., k, € {—1,0,1, 2},

which are not all simultaneously zero, such tgt_; <®ki (EBI,—“)) = e. By Property

2.2 itfollows thatl+)!_; (@ki'lia) = e which, by the definition of the summation operator,
may be written a$@; ;@) ® (Br,.,a) ®- - & (B, ) = e. By Property2.1, it follows

that@ k., = e. Property2.3, now implies thad ', k; - [; = 0. Since the integers
ki, 1<z <n are from the set—1, 0, 1, 2}, and they are not aII simultaneously zero, this
implies that then natural numberg,, o, . .., I, arenot nwise independent oveZ, +).

A contradiction. O

We remark that the proof of Lemn2abemploys thar-wise independence of the monotone
group(Z, N\ {0, }, +, <) (which was established in Lemn2a4) in order to conclude the
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n-wise independence of the arbitrary monotone grdlipM, &, <). So, this proof by
reduction indicates some kind of completeness of this group for the class of all monotone
groups.

3. System model

Sectior3.1provides basic definitions for a distributed system thatimplements a monotone
group. Definitions related to linearizability are given in Sectioh

3.1. Distributed systems implementing monotone groups

Our model of a distributed system is patterned after the ofE0inSection 2] however,
that one is adjusted in order to incorporate the issue of implementing a monotone group
(I, M, &, <).

We consider a distributed systeétconsisting of a collection of sequential threads of
control, calledorocessesProcesses are sequential, and each process applies a sequence of
operations to a distributed data structure, callethject alternately issuing an invocation
and then receiving the associated response. Hatationat procesy; has the form
Invoke;(a) for some value € M; eachresponseat procesp; has the fornkesponse; (b)
for some valug € M U {e}.

Formally, anexecutiorof systemP is a (possibly infinite) sequenesof invocationand
responseevents. We assume that for each invocation at progessexecutiony, there is
a later response in that matches it and no invocation at that precedes the matching
response in. Prefixes and suffixes of an execution are defined in the natural way. Say that
an executiory extendsa prefix 5 of executionx if f is a prefix ofy as well.

An operationat processp; in executiono is a matching paiop, = [Invoke;(a),
Response;(b)] of an invocation and response gt we will sometimes say thaip; is
of type a For such an operation, we will write= In(op;) andb = Out(op;); thus,op; has
inputandoutput aandb, respectively. We will sometimes write, (op;) andOut,(op;) in
order to emphasize reference to execution

. . . o . .
An executionx induces a partial orde— on the set of operations mas follows. For
any two operationsp;, = [Invoke;, (a1), Response; (b1)] andop,, = [Invoke;,(az),
Response;, (b2)] at processep;; and p;,, respectively, say thatp, precedes op in

execution, denoteap;, BN op;,, ifthe responsiesponse;, (b1) precedes the invocation

Invoke;,(a2). In particular, execution induces, for each procegs a total order—“n on

the set of operations at in « as follows: For any two operation@fl) andop§2), opgl) Ny

opl@ if and only ifopl(l) BN opl(z).

If, in executionx, operatiorop;, does not precede operatiop,,, then we writeop;, /L
op,. If simultaneouslyop,, 2> op,, andop;, A op;,, then we say thaip,, andop;, are
parallelin executiory, denoted asp;, [« Op;,-

For any execution of systemP, a serializationS(x) [5] of executionx is a sequence
whose elements are the operationsipénd each operation of appears exactly once in
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S(). Thus, a serializatioS(«) is a total ordersﬁﬁ on the set of operations in Notice that

there may be, in general, many possible serializations of the execut®ay that a serial-

ization S () is valid for the monotone groufll”, M, &, <) if the following two conditions

hold:

1. Valid Start: If op; = [Invoke;(a), Response;(b)] is the first operation irf(«), then
b=e.

2. Valid CompositionFor any pair ofoperatiortmgll) = [Invoke;, (a1), Response; (b1)]

andopg) = [Invoke;,(a2), Response,, (b2)] thatare consecutive §1x), by = b1Dax.

Sometimes we shall simply refer to a valid serialization, and avoid explicit reference to the
monotone group when such is clear from context.

Say thatsystemP implements the monotone grouib’, M, &, <) if every execution
o of P has a serialization that is valid for the monotone gradpnotoneRMW oper-
ations are those associated in the natural way with monotone groups. Say that system
P implements a (monotone) operation whenever it implements the associated monotone
group.

We continue to state and prove tbaique Serialization Lemma

Lemma 3.1(Unigue Serialization LemmaAssume that systemimplements the mono-
tone group(Il', M, &, <). Then for any executionx of P, there is a unique valid
serializationS ().

Proof. Assume, by way of contradiction, that there are two distinct valid serializations
SO () = op®D, op1?, 0pd, ... andS@ () = op?D, 0p??, 0p23d, ... of execu-
tion .. SinceS™ () ands@ («) are distinct, there existd@astindexk > 1 such thabp1-©)
is different fromop®%). Assume, without loss of generality, thai1-©) appears at position
[ > k in the serializationS® (x); that is, op® = op@?!, so that, in particular,
Out (opt®) = Out (0p"). Notice finally that for each < k,0p*" = op@?).
We proceed by case analysis on the possible valuks of
1. Assume first that = 1. SinceSV () is a valid serialization of. andk = 1, theValid
Startcondition implies thaOut(op¥) = e. Sinces@ (x) is a valid serialization of:
and/ > k = 1, theValid Compositiorcondition implies that

Out(op?") = Out(op®'~Y) @ In(op'?!~V).

TheMonotonicity under Compositigroperty implies thadut(op@!~2)@In(op'?/~1)
> In(op®!=D). Sinceln(op®/~V) e M, theIdentity Lower Boungroperty implies
thatIn(op?/~D) = e. It follows thatOut(op@!)) > e. A contradiction.

2. Assume now that > 1. SinceS® (¢) is a valid serialization of, andk > 1, theValid
Compositiorproperty implies that

Out(op™®) = Out(op™ 1) @ In(opT+—D).
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SinceS®@ () is a valid serialization of and/ > k > 1, theValid Compositiorproperty
implies that
Out(op??) = Out(op?* V) @ In(op?* ) @ - - - @ In(op'?'—?)
® In(op?!~D).
SinceOut(op¥)) = Out(op@"), it follows that
Out(op*=Y) @ In(opt+=1))
SinceOut(op*—D) = Out(op@*—D) andIn(op®*—D) = In(op?4—D), it follows
that
Out(op® =1y @ In(op@*~—D)
= Out(op™ ) @ In(Ep** ) & - -- & In(0p®' ) & In(op>' 1),
By the Cancellation Lawit follows that
e=In©Ep*) @ @ In(0p*'~?) @ In(op>' ).
The Monotonicity under Compositioproperty implies that
In(op?®) @& - - @ In(0p?'=2) @ In(0p?' D) > In(op?»).
Sinceln(op?®) e M, theldentity Lower Boungbroperty implies thatn(op?%)) > e.
It follows that
In(op?®) @ - -- @ In(0p?'~2) @ In(0p?' V) > e.

A contradiction.
Since we obtained a contradiction in all possible cases, the proof is now comgléte.

We remark that the proof of Lemnfal relied heavily on the required properties for a
monotone group, namely thdonotonicity under Compositioand Identity Lower Bound
properties. Since these properties do not necessarily hold denaralgroup, the same
follows for theUnique Serialization Lemma&\Ve conclude this section with an immediate
consequence of théalid StartandValid Compositiorconditions assumed in the definition
of implementation of a monotone group.

Property 3.2. Assume that systeimplements the monotone gro(p, M, &, <). Then
for any operation op in an executienof P,

Out, (op) = + {Ina (op) | op Gy op}.
I{op | op XZop)|

3.2. Linearizability

Our definitions refer to a distributed syst&implementing a monotone groyib’, M, @,
<), and, in particular, to any arbitrary executiemf it and its (unique) valid serialization
S(a).
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Say that execution is linearizable[10] if the serializationS («) extends—; that is,

for any pair of operationsp® andop® such thapp® —% op?, op® 2% op@. The
Valid Compositiorcondition implies that for any two operationg™® andop® such that

opD 5@ op®@, Out,(op) < Out,(0p@). Thus, it follows that for any pair of operations

op® andop®@ such thabp® - op@, Out,(opY) < Out,(op@).
Say that operatioop™ in executiory is non-linearizable in executionif there is another

operationop@ in executiona such thaop® —> op® while op@ 5@ opV. Say that
operationop in executiona is linearizable in execution if it is not non-linearizable in
executionu. It follows that executionx is linearizable if every operation in executiaris
linearizable in it. Finally, we say that systdpris linearizableif all its executions are.

4. Switching networks

In this section, we present a framework for switching networks. Some of our definitions
are common with some froii, Section 2Jand[7, Section 2] while most of them refine
and extend corresponding ones there. Some basic definitions are articulated in &éction
Processes, tokens, switches and wires are described in SécioBection4.3 defines
states, configurations and executions. The outputs of switching networks are described in
Sectiond.4. Sectiond.5introduces some contention measures for switching networks.

4.1. Basic definitions

A switching networK6], like a counting networlf2], is a directed (acyclic) graph in
which the nodes are simple computing elements caleitthes and the edges are called
wires

More specifically, an{ fin, fout)-switch or switchfor short, is a routing element witfj,
inputwires fout OUtput wiresand arinternal state fin and foytare called the switch®n-in
andfan-out respectively. A switch’s internal state is a collection of variables, possibly with
initial values. In thenitial state of switch, all of its variables are set to their initial values.
The number of internal states of a switch may be either finite or infinite, giving rise to a
finite-stateor infinite-stateswitch, respectively. In either case, a switch changes its internal
state according to itsansition function

A finite-state switching netwoika switching network made up from finite-state switches;
an infinite-state switching networls a switching network made up from infinite-state
switches.

A (win, wout)-switching network\" haswi, input wiresandwey; output wires and it is
formed by connecting together switches; thus, we connect output wires of switches to input
wires of other switches. Some switches have input wires (resp., output wires) not connected
to other switches in the network, and these wires aresth@nput wires (resp.woyt Output
wires) of the switching network/.

ThesizeS(N) of a switching network\ is the total number of its switches. A network
N is finite-sizeif s(N) < oo; else, it isinfinite-size The depthd (b) of a switchb in a
switching networkV is defined to be 0 if one of its input wires is an input wire of the
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network, and maxd (b ;) + 1, where the maximum is taken over all switchesvith output

wires connected to input wires of switbhThedepthd (N) of the network\ is defined as

the maximum depth of any of its switches. The switching netwididan naturally be divided

into d(N\) layers so that layet contains all switches of depth where 0<¢<d(N). A

pathin a switching network is a sequence of switches each (other than the last) connected
to the next.

4.2. Processes, tokens and switches

We assume a collection of asynchronous, non-failing processes that access a switching
network by shepherdinkensthrough it. A switching network may be accessed by many
tokens simultaneously, which traverse the network asynchronously; however, each process
has at most one token sheperded through the network at each timeofi¢wrencyof a
switching network is the maximum number of processes (and, therefore, tokens as well)
allowed to access the network simultaneously.

Unlike counting network§?], each token hasstate(a collection of variables) which is
allowed to change as the token traverses the network accordingttarisstion function
The state of a token includes itgput value

A token enters the switching network on one of the netwouk;sinput wires. Then, the
token is instantaneously forwarded to the switch to which the wire belongs; the switch then
routes the token to one of its output wires from which the token enters the next switch in the
network, and so on. Both the switch’s and the token’s states change. The token continues
traversing the network in the same fashion until it reaches one abgtyeoutput wires of
the network. At that point, the token exits the network and returns a value to the process
that owns it.

In more detail, when a token arrives on an input wire of a switch, the following events
occur in a singleatomic(indivisible) step:

The switch removes the token from the input wire and it changes state; the token
changes state and it is routed to an output wire of the switch.

Forexample, affin, fout) balanceiis afinite-state switch with fan-ifi, and fan-outfoy.
Thekth token to arrive on any of its input wires is routed to the output viltggmodk. Thus,
the state of alifin, fout) balancer encapsulates the number of tokens that have traversed the
switch modulo its fan-ouf,t. The state of a token traversing éfy, fout)-balancer is not
affected. Such balancers have been used to construct counting networks (sgg98.9.,

4.3. States, configurations and executions

For each( fin, fout)-switch, denote by;, 0<i < fin — 1, the number of tokens that have
entered the switch on input wiigsimilarly, denote byy; the number of tokens that have
exited the switch on output wirje

A switch’s stateincludes both its internal state and the collections of tokens on its input
and output wires. A switch is inguiescenstate if there are no tokens currently traversing

the switch; thus, in a quiescent state, the number of tokens that arrived on the input wires

of the switch have exited the switch on its output WiresB@l‘?':”l Xi = Zfi‘tl ;-
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A switch satisfies the following two conditions:

1. Safety conditiontn any statezi.@l X = Zf":“tl ;. thus, a switch never creates tokens
spontaneously.

2. Liveness conditiorStarting from any state, a switch eventually reaches a quiescent state.

An internal configuratiorof a switching network is a collection of the internal states of
its switches. Consider a finite-state switching netwaflwith (finite) switches having
internal states each. Then, clearly, the number of internal configurations of the nafvimrk
finite and equal t&*“\). Note that the number of internal configurations of an infinite-state
switching network is no longer finite.

A configurationof a switching network is the collection of the states of its switches; thus,
the configuration of a switching network includes the states of all tokens currently traversing
the network as well. A configuration of a switching networkisescenif all of its switches
are in a quiescent state. The safety and liveness properties for switches immediately imply
corresponding safety and liveness properties for a switching network.

For any tokert and switchs, we denote byt = (z, s) the state transitionin which the
tokent passes (in a single atomic step) from an input wire to an output wire of sgitch
thus, in a state transition the state of a switch (including the states of tokens on its input and
output wires) changes according to the transition function of the switch (and the transition
functions of the tokens on its input and output wires). Although state transitions can occur
concurrently, it is convenient to treat them using a model of interleaving semantics.

An executiorof a switching network is a finite or infinite sequence- Qo, 71, 01, T2,

0o, ..., of alternating configurations and switch transitions such that:

1. Qg is theinitial configuration, in which there are no tokens on input wires of switches
except for at least one token on input wires of the network, and all switches are in their
initial internal states.

2. ForeachtripléQ;, 7,11, Q;+1), wherei >0, the switch transition; 1 carries the con-
figuration Q; to the configuratiorQ; ;1.

A finite execution ends with a configuration. A finite executionasnpletef it results to
a quiescent configuration. An executiois sequentialf for any two transitiong; = (z, s;)
andt; = (t,s;) that involve the same tokemnall transitions (if any) between them also
involve that token. Lightly speaking, tokens traverse the network one completely after the
other in a sequential execution.

An execution suffixf a switching network is a suffix of some execution of the network
that starts with a configuration. The definition of sequential executions can be extended to
sequential execution suffixesthe natural way. So again, tokens traverse the network one
completely after the other in a sequential execution suffix.

An execution fragmenf a switching network is a finite (contiguous) subsequence of
some execution of the network that starts and ends with a configuratigun#p of a
switching network is an execution fragment of it that starts and ends with the same quiescent
configuration. Theoncatenationi; - a2 of two execution fragments; andoay is defined
whenoy follows o1 in the same execution of the network; thus, the end configuration of
a1 is the start configuration of;. The concatenation is also an execution fragment; thus, it
does not repeat the common configuration of the two original execution fragments.

For an execution of a switching network, we say that concurrentoisidedif the
number of concurrent processes accessing the network in the execution is bounded. In an
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(infinite) execution, we say that concurrencyuisboundedf the number of concurrent
processes accessing the network in the execution is unbounded (either finite or infinite).

4.4. Outputs

The input and output values of tokenn executiona will be denoted adn,(r) and
Outy (1), respectively.

For finite-state switching networks, we include an additional component on the output
wires of the switching network, namely tloeitput registersMore specifically, there is an
output register associated with each output wire of the switching network. However, unlike
finite switches, each output register has an infinite number of states. Derdfe the
number of output registers in a finite-state switching netwidtk

Theoutput valudor a token in a finite-state switching network is computed on the output
register residing on the network’s output wire from which the token exits. When a token
arrives on an output register. the following events occur in a sirggéemic (indivisible)
step:

1. The token computes its output value according to the output register’s state.

2. The state of the output register changes according to its previous state and the state of
the token (which includes its input value).

Note that the input value of a token does not affect its output value, but it may as well affect

the output values of tokens that will later access the same output register.

We remark that finite-state switching networks correspond more closely to traditional
counting networkg2], where a token fetching the counter’s value and incrementing the
counter by one obtains the value from the register attached to the output wire it will exit from.
We also remark that output registers aegessaryor this kind of switching networks, since
they provide an infinite number of different output values to tokens, while finite switches,
used only for routing, are unable to do so.

For infinite-state switching networks, there are no attached output registers andiibe
valueof a token is determined according to the state of the token when it exits the network.

4.5. Contention measures

In a switching network, contention represents the extent to which concurrent processes
access the same switch or output register simultaneously. We use two complexity-theoretic
measures to model contention in switching networks, namegigter bottleneckndswitch
bottleneckwhich are introduced here for the first time.

The definition of register bottleneck applies only to finite-state switching networks.

Definition 4.1 (Register bottlenegk Theregister bottlenechf a finite-state switching net-
work NV is theminimumnumber of output registers, where the minimum is taken over all
infinite executions of the network, that are accessed by tokens in some infinite suffix of an
infinite execution of the network.

Onthe account of register bottleneck, a switching netwoldviscontentionif its register
bottleneck is sufficiently large. A register bottleneck of 1 is terst possible register
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bottleneck, since it implies the existence of some execution of the network in which as
many tokens as processes participating in the execution will eventually accumulate in front
of the same output register, which thus becomes a “hot-spot”. Note that register bottleneck
is a trivial lower bound on the number of output registers of a finite-state switching network.
We prove:

Lemma 4.1. Assume that the register bottleneckMfis at least2. Then in any pump of
N, there exist at least two distinct tokens that access two different output registers

Proof. Assume, by way of contradiction, that there is a pugmpf A in which all tokens
access the same output register. Clearly, the infinite sequgnae- ... of pumps is an
infinite suffix of an infinite execution af\" in which all tokens access the same output
register. It follows that the register bottleneck/dfis 1. A contradiction. [J

The definition of switch bottleneck will be useful for infinite-state switching networks.

Definition 4.2 (Switch bottlenedk Theswitch bottleneckf a switching network\ is the
minimumnumber of switches, where the minimum is taken over all infinite executions of
the network, that are accessed by an infinite sequence of tokens exiting a switch connected
to them that has been accessed by an infinite number of tokens itself.

On the account of switch bottleneck, a switching netwolilkve-contentiorif its switch
bottleneck is sufficiently large. A switch bottleneck of 1 is tierstpossible switch bottle-
neck since it implies the existence of some infinite execution of the network in which some
switch is accessed by an infinite number of tokens and it outputs a finite number of tokens
on all but one of its output wires. Intuitively, such a switch does not effectively “balance”
the infinite stream of tokens that access it, but it emits almost all of them (except for a
finite number) to the same switch in the next layer; this last switch will eventually become
a “hot-spot”.

Clearly, in the special case where switches are balancers which “balance” their input
tokens, the switch bottleneck is the least (over all balancers) number of output wires of a
balancer, which (usually) exceeds 1. Thus, the requirement that switch bottleneck be high
can also be seen as a generalization of the balancing property from balancers to general
switches.

Note that switch bottleneck is a trivial lower bound on the number of switches in any
layer (other than layer 1) of an infinite-switch network. In our later proofs, we will also
assume that this is also a lower bound for layer 1.

Consider a switching network with a certain switch bottleneck. Consider now what hap-
pens when some tokens have been permanently “halted” in front of some switches of the
network in some infinite sequence; this resulting sequence is not necessarily an execution
since it fails to guarantee liveness. Recall, however, that a switch operates locally: it changes
its state according to its state and the states of tokens that traverse it, and independently
of the operation of other tokens and switches in the network. This implies that the switch
bottleneck of the network is maintained also for such sequences. (This observation will be
used in the proof of Theoref2.)
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4.6. Switching networks implementing monotone groups

A switching network\ can be used to implement a monotone grolip M, @, <) as
follows:

e Tokent issued by procesp; corresponds to an operatiaop, = [Invoke;(a),
Response; (b)] invoked by procesg;, wherea € M andb € M U {e}. We say that
a is theinput valueor typeof the tokent, andb is the output valueof the tokent. The
input value of the token is part of the token’s (initial) state.

e For any execution, the invocation of operationp; corresponds to the first transition
T, = (t;,s;) in executiona, wherer; = ¢ ands; is an input switch of the network;
this transition occurs when the token enters the network. The response of opegation
corresponds to the latest transition= (z;, s;) in executiono, wherer; = ¢ ands; is
an output switch of the network; this transition occurs when the token exits the network.

e When tokert exits the network, it carries encapsulated in its state the output bahat
operationop; is returned.

It is now straightforward to formally define when thwitching network\" implements
the monotone groufl’, M, &, <).

4.7. The covering technique

In some of our impossibility proofs, we will use a variant of thariable covering
technique originally introduced by Burns and Lyrn@& for proving lower bounds on the
number of read/write registers needed to solve (deadlock-free) mutual exclusion. Intuitively,
a token covers a switch if it is about to access the switch. We omit the formal definition
here, which can be immediately extended to tokens covering output registers as well.

5. The Monotone Linearizability Lemma

Throughout this section, we refer to a distributed sysRimplementing a monotone
group(Il", M}, @, <). The main contribution of the section is to state and proveMbao-
tone Linearizability Lemmayhich establishes ordering constraints of linearizability on the
systemP. Recall that, by Lemma.5, the monotone grougl’, M, &, <) is n-wise inde-
pendent for any integer> 2. So, there are distinct elementas, az, ..., a, € M, with
ai, az, ..., a, # e, which aren-wise independent ovell”, ). The proof of theMonotone
Linearizability Lemmamounts to establishing a contradictiomtwise independence for a
hypotheticahon-linearizableexecution, in which the types of ti®MW operations issued
by the processes ara, ap, ..., a,. We are now ready to state and prove Menotone
Linearizability Lemma

Proposition 5.1(Monotone Linearizability Lemma Consider any executiom of system
P in which each procesg; issues only operations of typg, wherel<i<n. Then u« is
linearizable

Proof. We start with an informal outline of our proof. We will proceed by contradiction.
We will consider the earliest non-linearizable operatim (at procesyy) in o and the
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latest operatiorop, that precedes it. We will use these two operations to construct two
executiong; andy, that are indistinguishable to procegswith respect to operatioop,.
This indistinguishability implies thaip, receives the same output in these two executions.
The contradiction will follow from the comparison of the two identical outputs, where we
use simple algebraic properties of (monotone) groups in order to contradict the assumed
n-wise independence. We now continue with the details of the formal proof.

Assume, by way of contradiction, thatis not linearizable. So, there is at least one
operation that is non-linearizable in executmrConsider thesarliestsuch operatiomp,
(occurring at procesgy), and letop, be thelatestoperation (occurring at proceps) that

precedep, in «. So,0p N op, while op, 5@ op,, whereS(x) is the (unique) valid
serialization ofx.

In our proof, we will use the operatio®, andop, in order to define and treat two finite
prefixes of execution:
o the finite prefixf; of executionx that ends with the response for operatign, and
o the finite prefixf, of executionx that ends with the response for operatam.
Clearly, 3, is a prefix off3; as well. We first treat separately each of the two prefikesnd
p> and a corresponding extension of it; we then treat them together.

Properties of the prefiy; and its extension,: Consider a finite executiopy, which is
an extension of; that includes no additional invocations by processesysis, extended
to only include responses to invocations that are pendirfi.in

Sincef, is a prefix of bothx andy., it follows that all operations whose responses are
included inf; (or, in other words, they are not preceded in either y; by the response
for op,) have identical outputs in andy;. In particular,Out, (op;) = Out,, (op,) and
Out, (op;) = Out,, (op;). Take now the (unique) valid serializatisity;) of y;.

Sinceop, 2@ op, theValid Compositiorcondition (forS(«)) implies thatOut, (op;) <
Out, (op;). SinceOut, (op,) = Out,, (op;) andOut, (op) = Out,, (op), it follows that
Out;,, (op,) < Out,, (op). TheValid Compositiorcondition (forS(y;)) implies now that

S(ry)
op, —> op,.
(N

For each procesp;, where 1<i <n, denotey;
precedeop, in the serializatior§(y,). Assume that:

° lll(ltf of thoseyfl) operations have their responses followeg iy that forop;

the number of operations af that

e the rest,uflb) of them have their responses precedeg iby that forop,.

So,ugl) = #1(13 + yflg We next prove a simple property.

Property 5.2. For each procesg;, wherel<i<n, ,U,(lb) <2.

Proof. Consider thearliest(if any) operatioropat procesg; such thabp S(—“>) op;, while

the response faop follows the one foiop, in y;. We proceed by case analysis on the order

of the responses fap andop, in y;.

1. Assume first that the response égrfollows the one foiop, in ;. Sincey; includes no
invocations following the response fop,, it follows that there is no other operation at

p; following op, so thal;u(l) <1in this case.

i,b ™
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2. Assume now that the response é@precedes the one foip, in y;. Consider any other

. . S 5 .
operatiorop at p; that followsopin y4, while still op/ (—/13 op,. We will prove that there

is at most one such additional operation.

e By construction ofy;, the invocation foop precedes the response fip, in y;.

e Assume, by way of contradiction, that the responsefdprecedes the response for
op; in y4. Thus,op is included in the prefiys;. Sincef; is a prefix ofx, it follows
that the response fap' precedes the response fip;, in « as well. This implies that

Out,, (op) = Out, (op). Sinceop 0y op,, theValid Compositiorcondition (for
S(y1)) implies thatOut,, (op’) < Out,, (op). SinceOut,, (op) = Outy (0p), it
follows thatOut, (op’) < Out, (op). TheValid Compositiorcondition (for S(«))

implies now thabp 5@ op,.

Since the response fop follows the response favp, in 74, while op’ follows op
in y4, it follows thatop, LN op. Sinceop is included in the prefiy; of y;, which

is also a prefix ofx, this implies thatop BN op as well. It follows thatop' is a
non-linearizable operation im Since the response fop’ precedes the response for
op, in a, it follows thatop' is an earlier tharop,, non-linearizable operation in.
A contradiction.
It follows that the response fap’ follows the response fayp, in 7.
Sincey, includes no invocations following the responsedgy, it follows that there is
no other operation g; following op’ in y4, so that,ufif <2 in this case.

Thus, in all casesul?lg <2, as needed.]

. S(y . . .
Sinceop, 10 op, while the response fap, precedes the response &g, in y4, a slight
strengthening of Proper§y.2for the particular case of procepg is now immediate:

Property 5.3. 1< #1(3, <2

By Property3.2, Out,, (op,) is a composite expression involving for each progess
1<i<n, ufl) contributions ofg;. By the Commutativityproperty, thesa types of contri-
butions can be separated from each other in the composite expression, so that

n

Out,, (op) = P ai.

i= 1
i 1!11()

Properties of the prefiys, and its extensior,: Consider a finite executiop,, which
is an extension off, that includes no additional invocations by processesysas an
extension that only includes responses to invocations that are pendiagimaddition to
the responses included f3).

Sincef, is a prefix of bothx andy,, it follows that all operations whose responses are
included inf, (hence, they are not preceded in eitheor y, by the response foop,)
have identical outputs in andy,. In particular,Out, (op,) = Out,, (op,). Take now the
(unique) valid serializatioly (y,) of ys.
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For each procesp;, where 1<i <n, denotey?

L
precedeop, in the serializatior§(y,). Assume that:
° ul(za) of those,ufz) operations have their responses not preceded by thapfam y,;
e the resl;ufzg of them have their responses precedegiby that forop,.

SO,,ulQ) = ufza) + ufzb) We continue to prove a simple property:

the number of operations a that

Property 5.4. For each procesg;, wherel<i <n, ﬂfz;,) <1.

Proof. Consider thearliest(if any) operatioropat procesg; such thabp X9 op,, while
the response favpfollows the one foop in y,. Sincey, includes no invocations following
the response faop, it follows that there is no other operationatfollowing opin y,, S0
thatu; , <1, as needed. ]

By Property3.2, Out,, (op;) is a composite expression involving for each process

1<i<n, MEZ) = ul(za) + ufb) contributions ofg;. By the Commutativityproperty, these
types of contributions can be separated from each other in the composite expression, so that

n

Out,, (op) = D a.

= 2
i l,ut()

Joint properties of the prefixedy and, and their extensiong andy,: SinceOut, (op)
= Out,, (op;) andOut, (op,) = Out,, (op), it follows thatOut,, (op) = Out,, (op).
We continue to prove two simple properties of the preffkeandf,, and their extensions

y1 andy,. The first property relateasf}a) andugi, while the second one relatpgb) andufb).

We start with the first.

Property 5.5. For each proces®;, wherel<i <n, ufla) = Hl(za)

Proof. We will prove that botmfla) < /,cfza) and uf’jj < ,ufl;

. . S(y
1. To prove thayf}; g,ulfif, consider any operatioop at procesg; such thabp 2y op,,

while the response foop precedes the response fop, in y;. So,op is included in

prefix f5.

e Sincef, is a prefix ofy,, and it ends with the response for operatigy, it follows
that the response fap precedes the response fuy; in y, as well.

e Sincef, is a prefix of bothy; andy,, it follows thatOut,, (op) = Outy, (op). Since

op % op,, the Valid Compositioncondition for S(y;) implies thatOut,, (op) <
Out,, (op). SinceOut,, (op) = Out,, (op), it follows thatOut,, (op,) = Out,,
(op). Thus, thevalid Compositiorcondition forS(y,) implies thatop 02 op.

It follows that (") < 1%
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2. To prove thatulfif < ufza) consider any operatiavp at procesy; such thabp (—}2>) op;,

while the response foop precedes the response fop, in y,. So,op is included in

prefix f5.

e Sincef, is a prefix ofy,, and it ends with the response for operati, it follows
that the response fap precedes the response fup; in y; as well.

e Sincep, is a prefix of bothy; andy,, it follows thatOut,, (op) = Out,, (op). Since

op (—/2>) op;, theValid Compositioncondition for S(y,) implies thatOut;, (op) <

Out,, (op). SinceOut,, (op,) = Out,, (op), it follows thatOut,, (op) = Out,,

(op). Thus, thevalid Compositiorcondition forS(y,) implies thatop Y op;.
It follows that (") < 2.

L,a

So, in total,ufla) = ufzz as needed. [J

We continue with the second property.

Property 5.6. ("), — i) >1.

Proof. Recall from Propert.3that 1< ,u(l) < 2. We proceed by case analysis;éf%.

1. Assume first thap,(clz = 1. Sinceop, 0y op, and the response fap, follows the

response foop, in y,, it follows thatop, counts for,u(l) Sinceulill), = 1, this implies
that no operation (if,) other tharop, counts foruk ,» that is, there is no operatiap,

(other thanop,) at procesgy in y; such thaop, L% op, while the response fasp,
% 1 % P %

follows the response fayp in y;.
We will prove thatu(z) 0 in this case. Assume, by way of contradiction, that

/‘1(<21)7 # 0. Thus, there is some operatiog_ in y, such thatop, (—'2> op, while the

response foop follows the response faop, in y,. Sincey, includes no invocations
following the response faip, it follows that the invocation fopp, precedes the response
for op in y,. So, the invocation foop, is included in the prefix, of y,. Sincef, is a
prefix of botho andy, as well, it follows thabp, is an operation in each afandy; as
well such that its invocation precedes the responseffpin each ofx andy;.

Since the invocation fopp, precedes the response i in « (resp.,y;) andopy N
op, (resp.,op —> opy), it follows thatop, —> op, (resp.,0p, —> opy).

Since the response fop, is not included in prefiy,, it follows that the response for

(1)
i dk

Sinceop, 30y op,., theValid Compositiorcondition fory, implies thatOut,, (op,) <

op, foIIows the response fap, in each obxandy; as well. Thisimplies thaitp, —

Out,, (0p,). On the other hand, sinagy, > op,, the response foop, is included
in prefix f5;, which is a prefix of bothz andy;, so thatOut, (op,) = Out,, (op;).
Since alsdut, (op;) = Out,, (op), while by assumptiorQut, (op,) < Out, (op),
it follows thatOut,, (op,) < Out, (op,).
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Thus, in total,Out, (op,) < Out, (0p,), o, — op, and the response fam,
follows the response fawp, in «. So,0p, is not the latest operation in that precedes
opy in o and yetOut, (op;) < Out, (op;). A contradiction.

The contradiction implies that,(f}, =0,so0 thaw,(ji - u,(fz = linthis case.

2. Assume now that,(:; = 2. By Propertys.4, M;(czl), <1,so thaqu,ill)) — H;(f; >1inthis case.

Thus, in all cases,u,((l,)] - /,c,(f,l >1, as needed. ]

SinceOut,, (op) = Out,, (op,), we have that

n n
W Da=4 D a.
=1, i=1,@

1

By Property2.1, it follows that for each procegs, where 1<i <n,

@aiz 69 a; P @ai.
1 1 2 2
s uP - 12

It follows that

n n
W lDa|=W| @& aeda
= 1 | — 1 2 2
i=1 '“1(') i=1 M,(')*N‘(') Hl()
= @& aoPau|d 0| O GODaw
1 2 2 1 2 2
u —p? uf? 1P —p? 12

(by definition of the summation operator)

a® P @ a, | & @Cll@"'GBEBan

(2)

ui?—f? = ue? I
(by CommutativityandAssociativity
n n
= |+ ai | @ L-Ij @ a;
= 2 = 2
i=1 Iul(l)_’ul{ ) i=1 ki( )

(by definition of the summation operator)

n
aglol | P a
1 2 | — 1
1\, @ i=1 \ ¢

I
F =

4

Hence, theCancellation Lawimplies that

n

1+ P a|=e
i=1\ O,

Consider any indek where 1<i <n. By Property5.5, u{" — 1 = %) — 1'% Now,
Properties5.2 and 5.4 immediately imply that—lguglg - ufzb) <2, On the other hand,
Property5.6 implies thatu,(jl), — u,fi)l, so that not all diﬁerenceﬁg}; — ,ufzb) where
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1<i<n, are simultaneously zero. It follows that theelementsas, ay, ..., a, arenot
n-wise independent ovéll’, @). A contradiction. [J

6. The impossibility of finite-size switching networks

Finite-state and infinite-state networks are considered in Sectfohsand 6.2,
respectively.

6.1. Finite-state networks
We show:

Theorem 6.1(Impossibility result for finite-state netwgrkThere is no non-trivial finite-
state switching networly/ with concurrency(or(N) + 1) - (SS'ZG(N) + 1) that has finite
size incurs register bottleneck at leagtand implements a monotone gro(p, M, &, <).

Proof. Assume, by way of contradiction, that there is such a switching networRecall
that the number of internal configurations/gfis $*™\), whereSis the number of internal
states of each switch.

Consider a sequential executioof network\ involving (or(N) + 1) - (SSize(N) +1)
tokens, whose types ater(\) + 1) - (§52¢V) 4 1)-wise independent ovefl”, ®, ). By
the Monotone Linearizability Lemmaexecutione is linearizable. Writex = a1 - oo -
... or(\)+1/2], Where each execution fragment 1<i < [or(\V) + %] includes the
traversals of§528\) 4 1 tokens.

Take now any execution fragmemt, where 1<i < (or(N) + 1). Since each token tra-
verses at least one switch), contains at leas§siz8\) + 1 configurations; so, it contains at
leastssiz&\) 4 1 internal configurations. Since the total number of internal configurations
of NV is §52¢N) | the Pigeonhole Principlémplies that some internal configuration Af
is repeated in;, so thaty; contains at least one pump. Lemehd implies that there are at
least two distinct tokens that access two different output registers in any such pump.

It follows that executionx contains at leastr(N) + 1 pumps, and the total number of
output registers (allowing repetitions) accessed in these pumps is ati¢ast®?) + 1) >
2or (). ThePigeonhole Principlémplies that there is at least one output register accessed
by tokens in at least three different pumps.

So there are tokens, 7> andzs, With 11 —> 1, —> t3, and pumpsp;, ¢, and ¢ of
o such that tokem; accesses the same output register pump¢; of «, where 1<i <3.
Consider also output registeraccessed by tokefin pumpg, of o. Sincex is a sequential
executions; —> 1y —> t3.

We use now execution to construct another finite (but not sequential) sequé¢hoé
alternating configurations and switch transitions, which involves the same tokensigs
the same types and in the same order, except for the following changes:

All switch transitions that involve output register starting with the one involving
tokent; (andr) and preceding the one involving tokesn(andr) are scheduled to
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occur immediately after the switch transition involving toker(andr), and in the
same order (as in).

So, roughly speaking, all tokens starting withand not followingrs that access are
“halted” once they get to coverand till immediately after tokery accesses.
Clearly, the sequencg is an execution of\/, in which each token accesses the same

output register as in.

. . N . o o . S(o) S(o)
Since execution is linearizable andy — 1, — 13, it follows thatr; — 1, — 3.

Thus, theMonotonicity under Compositioproperty implies thaOut,,(11) < Out,(15) <
Outy/(r3).

Since f uses tokens with the same types asit follows that the types of the
tokens inf are also[or(\) + 3] - (SS'ZGW) + 1)-wise independent ove(ll’, &, ). By

the Monotone Linearizability Lemmaxecutionf is linearizable. By constructiom, —ﬁ>

13. It follows thatz;, &3 t3. Thus, theMonotonicity under Compositioproperty implies
that Outg(t;) < Outp(3). However, by construction g, Outg(t;) = Outy(15), while
Outp(3) = Outy(71). It follows thatOut,(r;) < Out,(t1). A contradiction. [J

We remark that the assumption of non-triviality is essential for The@dnSince each
token can atomically invoke a computation on an output register, we can implement a
monotoneRMW operation by drivial switching network consisting of a single switch that
outputs tokens along one output wire, which has an associated register that maintains the
state of theRMW variable to be implemented. The switch serializes the operations (that
correspond to the tokens) so that they can be atomically invoked (by the tokens) on the
register.

Recall thelntegers with Additiormonotone groupZ, N \ {0}, 4+, <) and theRationals
with Multiplication monotone grougZ, N \ {0}, +, <), which are associated with the
monotoneFetch&Add andFetch&Multiply operations, respectively. So, Theorértim-
mediately implies corresponding impossibility results for switching networks implementing
the Fetch&Add andFetch&Multiply operations.

6.2. Infinite-state networks

Clearly, the proof of Theoreri.1is not applicable to infinite-state networks since the
number of their possible internal configurations is no longer finite. Thus, we need to develop
new techniques in order to handle such networks. We show:

Theorem 6.2(Impossibility result for infinite-state netwgrkThere is no non-trivial
infinite-state switching network with unbounded concurrency that has finiteisaes
switch bottleneck at leagand implements a monotone gro(p, M, &, <).

Proof. Assume, by way of contradiction that there is such a switching netWworRartition
N into layers 12, ..., d(N) in the natural way. Assume, without loss of generality, that
any switchb at layer¢, where 2 ¢ < d(N), has its input wires connected to switches of
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layer¢ — 1 and its output wires connected to switches of lag/er 1.3 Since the switch
bottleneck of\ is 2, there are at least two switches in each of its layers.

We first construct an infinite non-sequential sequentm network . We prepare the
reader that is nearly an execution of netwoyk since it only fails the liveness condition.
However, as we discussed in SectiBb, o« maintains the switch bottleneck af, and this
is all we will need of it. For clarity of exposition, we will abuse terminology and still call
o (and several sequences we will derive from it as well) an execution.

Construction of execution: The execution: involves an infinite sequence of tokens
t1, t2, . .. With associated types, ap, . . . that are issued by distinct processes. The types
are chosen so that for each (finite) prefix . ., ¢, of tokens, the associated typas. . ., a,
aren-wise independent ovéll, @).

To construct the executian we first define through a simultaneous induction two finite
sequences each of lengtlV):

e asequence of pairs of disjoint, infinite subsequences of the type sequeneg ao, . . .,
denoteday ;, a;), where 1<i <d(N);
e a sequence of pairs of distinct switches from the same layer in the network, denoted

(b1, b2;), where I<i <d(N).

The properties of the two sequences will be used inductively along the way. Specifically,
the induction proceeds as follows:

Basis caseAssume that = 1.

e Fix a1 anday 1 to be the odd and even (infinite) subsequences oéspectively.

e Fix b11 andbz 1 to be any arbitrary switches in layer 1 of the network.

Call tokens in sequences 1 anday 1 theoddandeventokens, respectively.

Induction hypothesisAssume that we have defined all pafes ;, a;) and(b1;, bo;) for

all indicesi, 1<i <k.

Induction stepWe now defingas x11, a2.x+1) and(b1 x+1, b2.x+1)-

Since the balancer bottleneck is at least two, the switch and the infinite sequence
ayx determine two distinct switchesg ;1 andb/l_kJrl and two disjoint infinite sequences
a1 +1 anday ;4 (that are subsequencesaafi). Correspondingly, the switabp . and the
infinite sequencey; determine two distinct switchds ;1 andb’zvk+l and two disjoint
infinite sequenceay ;41 anda’z.k+1 (that are subsequencesaf;). Assume, without loss
of generality, that the switches ;1 andb 1 are distinct. Note also that the sequences
a1r+1 andag 41 are necessarily disjoint since they are subsequences;oénd az,
respectively, which are disjoint by induction hypothesis.

So, fori = k + 1, define the pairgay x+1, azx+1) and(b1.r+1, b2.x+1), respectively.

Note that our inductive definition guarantees that for each indekere 1<i <d(N),
the sequences ; anday; contain only odd and even tokens, respectively.

We now continue with the construction of sequenc&Vrite « = a1 - a2 - ... as the
concatenation of an infinite number of execution fragments, where each execution fragment
o; is finite and includes switch transitions involving tokenas follows:

3 Note that this assumption is indeed with no loss of generality, since for wires that connect non-consecutive
layers, we can intercept dummy switches in the missing layers, with input and output width 1, which simply
forward tokens (without routing them).
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For each tokem;, denotelast(z;) the largest integek, 1<k < d(N), such that token
t; in eitheray; or agy, but in neitherag ;1 noraz 41, or d(N) if no such integer
exists. Then, the execution fragmemtincludes only the switch transitions involving
the tokery; and a switch from each layér where 1< ¢ <last(#;).

Intuitively, each tokem enters the network from either switdh, or switchbo 1; ittraverses
the network till either it exits the network or it is “halted” once it gets to cover the switch
immediately following the switch it has halted in laylest(;) (in casélast(;) < d(N)).

Note that the construction of executiarguarantees, in particular, that both sequences
ap gy anday gn are infinite. Thus, it follows that an infinite number of odd tokens
traverses switchy 4(n, and an infinite number of even tokens traverses svlischy, .

The construction of executianinduces amddpathny = b11, ..., b1 4\ @and aneven
pathmy = bo1, ..., ba4n)- The odd and even paths are traversed by odd and even tokens,
respectively. Since the switchés; andb,; are distinct for all layers, 1<i <d(N), it
follows that the odd and even paths are disjoint. We prepare the reader that the rest of our
proof will use the two possible ways of ordering these two disjoint paths in order to create
two corresponding executions. We will use the fact that the two resulting executions are
both still indistinguishable fronx and linearizable; this will lead to a contradiction. We
now continue with the details of the formal proof.

We proceed to use executiarin order to construct a finite executign

Construction of executiofi: Fix § to be the shortest prefix of that includes a switch
transition involving an odd token at a switch from lay&g\V') and a switch transition
involving an even token at a switch from lay&\); thus,f is a (not necessarily complete)
finite execution. Sincgis finite, it only involves a finite numberof tokens. By construction
of executiony, the types of these tokens are-wise independent ovell”, ®). Moreover,
for each tokert involved in executiorB, Outg(t) = Out, ().

Denoter; andz, the latest odd and even tokens, respectively, in execytigve will use
t1 andrz in order to construct fronf two distinct finite executiong; andp,.

Construction of execution$; and f5,: We permute switch transitions in executiftin
order to obtain executionf$; andf, as follows:

e In executionsy, all switch transitions involving odd tokens precede the switch transitions
involving even tokens.

e Inexecutionfy, all switch transitions involving even tokens precede the switch transitions
involving odd tokens.

In both executiong}; and 55, the relative order of odd tokens (resp., even tokens) is the

same as the relative order of odd tokens (resp., even tokens) in exegution

Since odd tokens (resp., even tokens) follow the odd patfresp., even pathy) in
both executiong; andf,, the pathst; andry are disjoint, and the relative order of odd
and even tokens, respectively, is maintained in all execuioifs andf3,, it follows that
Outﬁ(tl) = Outﬂl(t]_) = Outﬁz(tl) andOutﬁ(tg) = Outﬁl(tz) = Outﬁz(tz).

We finally use executiong; andf, in order to construct executiong andy,.

Construction of executiong andy,: We extend; andf5, to complete executiong
andy,, respectively.

Sincey, extendsfi; and the traversals of tokemsandr, are both completed ifi,, it
follows thatOut,, (1) = Outﬁl(tl) andOuty, (t2) = Outﬁl(tz). Sincey, extendsfi, and



C. Busch et al. / Theoretical Computer Science 333 (2005) 373-400 399

the traversals of tokeng andr, are both completed i, it follows thatOut,,(11) =
Outﬁz(tl) andOut,, (t2) = Outﬁz(tz). It follows thatOut,, (11) = Out,,(t1) = Outy(r1)
andOuty, (2) = Outy, (t2) = Outy(t2).

Sincey, is a complete execution in which the types of operationsavese independent,
theMonotone Linearizability Lemmimplies thaty, is linearizable. Recall that, by construc-

. 7 S@y - .

tion,r; —> 5. Itfollows thatry (—'l>) t2. Thus, theMonotonicity under Compositigeroperty
implies thatOut,, (1) < Out,, (r2). Similarly, sincey, is a complete execution in which the
types of operations amewise independent, thilonotone Linearizability Lemmianplies

. . . . ‘w/' S .
thaty, is linearizable. Recall that, by construction—> 1. It follows thatt, i%) 1. Thus,
the Monotonicity under Compositigoroperty implies thaOut,, (r2) < Out,, (r1).
So, intotal,Outy, (1) < Outy, (12) = Outy, (12) < Outy,(#1) = Outy, (11). A contradic-
tion. [

We remark that the assumption ofren-trivial switching network is essential for
Theorem6.2to hold: A switching network consisting of a single infinite-state switch with
n input wires anch output wires (whera is the number of concurrent processes) can im-
plement anfRMW register as follows. The state of the variable is encoded by the state of
the switch. To invoke an operation on the variable, a process issues a token with a state
encoding the type of the operation. Such a token, when atomically processed by the switch,
will cause the natural changes to its state and to the state of the switch, so that the new state
of the switch is the new state of the variable, and the new state of the token is the response
of the variable to the operation invoked by the token.

Recall thelntegers with Additioormonotone groupZ, N\ {0}, 4+, <) and theRationals
with Multiplication monotone grougZ, N \ {0}, +, <), which are associated with the
monotoneFetch&Add andFetch&Multiply operations, respectively. So, Theorériim-
mediately implies corresponding impossibility results for switching networks implementing
the Fetch&Add andFetch&Multiply operations.

7. Conclusion

We have studied the possibility or impossibility, and the corresponding costs, of devising
distributed implementations of any monotoR& W operation that achieve high concur-
rency and low contention. Through odionotone Linearizability Lemmayhich may be of
independent interest, we identified inherent ordering constraints of linearizability for any
such implementation; we proposed exploiting this inherent linearizability in order to devise
impossibility proofs. We succeeded in doing so within the specific context of a switching
network implementing a monotorRMW operation, for which we derived tHest lower
bounds on size. These negative end results establifhrghgpace complexity separations
betweerFetch&Increment and any monotonBMW operation in the model of switching
networks.

We remark that the proof of the impossibility result for infinite-state networks has required
unbounded concurrency. This is not the case for finite-state switching networks, even though
we have made similar assumptions on register bottleneck and switch bottleneck for the two
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classes of switching networks, respectively, in our corresponding proofs. Thus, the two
impossibility results represent a trade-off between the strength of the switches (finite or
infinite number of states) and the concurrency of the network (bounded or unbounded), and
neither of them is implied by the other.

Finally, we mention that we are able to use ddonotone Linearizability Lemmto
prove a lower bound on latency for switching networks that implement monotone groups.
Specifically, we prove that any switching network (whether made up of switches with a
finite or infinite number of states) that implements a monoteMdV operation induces
executions with latenc@(n), wheren is the number of concurrent processes participating
in the execution. This lower bound complements the corresponding lower bound on latency
shown in[7, Theorem 3.2]
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