
Theoretical Computer Science 333 (2005) 373–400
www.elsevier.com/locate/tcs

The cost of concurrent, low-contention
Read&Modify&Write �

Costas Buscha,1, Marios Mavronicolasb,∗,2, Paul Spirakisc,d

aDepartment of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
bDepartment of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus

cDepartment of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras, Greece
dResearch and Academic Computer Technology Institute, P.O. Box 1122, 261 10 Patras, Greece

Received 8 October 2003; received in revised form 25 March 2004; accepted 15 April 2004

Abstract

This work addresses the possibility or impossibility, and the corresponding costs, of devising
concurrent, low-contentionimplementations of atomicRead&Modify&Write (orRMW)operations
in a distributed system. A natural class ofmonotoneRMW operations associated withmonotone
groups, a certain class of algebraic groups introduced here, is considered. The popularFetch&Add
andFetch&Multiply operations are examples from the class.

A Monotone Linearizability Lemmais proved and employed as a chief combinatorial instrument in
this work; it establishes inherent ordering constraints oflinearizabilityfor a certain class of executions
of anydistributed system implementing a monotoneRMW operation.

�A preliminary version of this work appears in theProceedings of the 10th International Colloquium on
Structural Information and Communication Complexity(Umeå, Sweden, June 2003), J.F. Sibeyn ed., pp. 57–72,
Proceedings in Informatics 17, Carleton Scientific, 2003. This work has been partially supported by the IST
Program of the European Union under contract numbers IST-1999-14186 (ALCOM-FT) and IST-2001-33116
(FLAGS), by funds from the Joint Program of Scientific and Technological Collaboration between Greece and
Cyprus, by the Greek General Secretariat for Research and Technology, and by research funds from Rensselaer
Polytechnic Institute and University of Cyprus.

∗Corresponding author.
E-mail addresses:buschc@cs.rpi.edu(C. Busch),mavronic@ucy.ac.cy(M. Mavronicolas),spirakis@cti.gr

(P. Spirakis).
1Part of the work of this author was performed while visiting Department of Computer Science, University of

Cyprus.
2Part of the work of this author was performed while visiting Faculty of Computer Science, Electrical

Engineering and Mathematics, University of Paderborn.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.04.018

http://www.elsevier.com/locate/tcs
mailto:buschc@cs.rpi.edu
mailto:mavronic@ucy.ac.cy
mailto:spirakis@cti.gr

374 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

The end results of this work specifically apply to implementations of (monotone)RMW operations
that are based onswitching networks, a recent class of concurrent, low-contention data structures that
generalizecounting networks(J. ACM 41(5) (1994) 1020–1048) (which implemented the traditional
Fetch&Increment operation). These results are negative; they are shown through theMonotone
Linearizability Lemma. In particular, thefirst lower bounds onsize(the number ofswitchesin the
network) for any (non-trivial) switching network implementing a monotoneRMW operation are
derived. It is proven that if the network incurs low contention, then its size must be infinite, no
matter whether the number of states of each switch is finite or infinite. SinceFetch&Increment is
implementable with counting networks offinite-size (J. ACM 41(5) (1994) 1020–1048), these lower
bounds imply a space complexity separation betweenFetch&Increment and any monotoneRMW
operation in the model of switching networks.

The presented lower bounds provide a mathematical explanation for the observed inability of
researchers over the last thirteen years to extend counting networks, while keeping theirfinite-size,
high-concurrency and low-contention, in order to perform tasks more complex thanFetch&Increment
but yet as simple asFetch&Add.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Distributed computing; Synchronization; Linearizability; Monotone Linearizability Lemma;
Switching networks; Lower bounds

1. Introduction

1.1. Background, motivation and framework

A Read&Modify&Write shared variableor register [8,11], henceforth abbreviated as
RMW, is an abstract variable type that allows reading its old value, computing via some
specificoperatora new value as a function of the old one, and writing the new value back,
all in a single,atomic (indivisible) RMW operation. For example, aFetch&Increment
register provides an operation that atomically adds one to its value and returns its prior
value; aFetch&Add register provides an operation that adds any arbitrary integer to its
value and returns its prior value, while aFetch&Multiply register does a corresponding
thing for multiplication.

Most RMW operations provide strong synchronization primitives that allow for the de-
sign of efficient and transparent algorithms in the asynchronous shared memory model of
distributed computation. So, it is desirable to devise suitabledistributed data structuresfor
the construction of highly concurrent, low-contention implementations ofRMW registers.
Intuitively, thecontentionof an implementation measures the extent to which concurrent
processesaccess the same memory location simultaneously; it has been argued that con-
tention is a critical factor for the overall efficiency of (asynchronous) shared memory algo-
rithms (see, e.g.,[4] and references therein). Acounting network[2] is a particular class of
finite-sizedistributed data structures used to construct high-concurrency and low-contention
implementations ofRMW registers that simultaneously support theFetch&Increment and
Fetch&Decrement operations[1].

The fundamental question that has motivated this work is the possibility or impos-
sibility, and the corresponding incurred costs, of devising distributed data structures to

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 375

construct highly concurrent, low-contention implementations ofgeneralRMW registers.
In particular, is there, and at what costs, a generalization of counting networks to imple-
ment thegeneralRMW operation while still retaining the nice properties of finite-size and
low-contention?

We focus on a specific class ofRMW operations whose operators correspond to a certain
class of algebraic groups introduced and studied here, which we callmonotone groups. A
monotone group has atotal orderand amonotone subdomain; the latter enjoys a signifi-
cant monotonicity property, which we callMonotonicity under Composition: applying the
operator on an element from the monotone subdomain results to another element in the
monotone subdomain that strictly dominates the first with respect to the total order. For
example, theFetch&Add operation clearly falls into the context of monotone groups; so
also does theFetch&Multiply operation, and so on. AmonotoneRMW operation is one
that is associated with a monotone group.

We consider switching networks[6,7], a class of distributed data structures that may be
used for concurrent, low-contention implementations ofRMW registers; these are natu-
ral generalizations ofcounting networks[2]. Roughly speaking, aswitching networkis a
directed, acyclic graph made up of nodes calledswitchesandoutput registers, and edges
calledwires. A process issuing aRMW operation shepherds atokenthrough the network;
the token traverses a path of switches till it is eventually returned a value upon exiting the
network. Thesizeof a switching network is the total number of switches in it; itsconcur-
rencyis the maximum number of concurrentprocessesthat may simultaneously shepherd
a token through the network.

In order to model the low-contention property for switching networks, we introduce
register bottleneckandswitch bottleneck; roughly speaking, both measure theminimum
number of network elements (either output registers or switches) that are accessed by
processes in any infinite execution. Intuitively, if this number is small, some element will
become abottleneckin some infinite execution, and the network incurs high contention;
hence, a switching network islow-contentionif register bottleneck and switch bottleneck
are sufficiently large.

1.2. Contribution and significance

Our chief combinatorial instrument is aMonotone Linearizability Lemma
(Proposition5.1). This establishes inherent ordering constraints oflinearizability [10] for
a certain class of executions ofanydistributed system that implements a monotoneRMW
operation. Recall that an execution islinearizable[10] if the values returned to operations
respect their real-time ordering.

The end results of our study arenegative; they are shown through a modular use of the
Monotone Linearizability Lemma. These results are thefirst lower bounds on size for any
highly concurrent, low-contention switching network that implements a monotoneRMW
operation. For any such switching network (other than the trivial single-switch one), we
prove:
• If each switch has afinite number of states, then the network must contain aninfinite

number of switches, even if concurrency is restricted to remainbounded(Theorem6.1).

376 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

• If each switch has aninfinite number of states, then the network must still contain
an infinite number of switches if concurrency is now allowed to grow unbounded
(Theorem6.2).
Our impossibility results settle to the negative the general question about the possibility

of devising distibuted, low-contention data structures offinite-size, as suitable extensions
to counting networks, to support synchronization operations other thanFetch&Increment
(originally supported by counting networks). This question was already stated in the seminal
work ofAspnes et al.[2] that introduced counting networks; however, it has remained tanta-
lizingly open, and progress on it has been so far limited to discovering that counting networks
themselves can also supportFetch&Decrement (simultaneously withFetch&Increment)
[1]. Our results imply a space complexity separation betweenFetch&Increment and any
monotoneRMW operation in the model of switching networks.

In summary, our lower bounds imply that wecannotconveniently generalize counting
networks, while still retaining their finite-size, high-concurrency and low-contention, in
order to perform tasks more complex than just incrementing a counter by one but yet
as simple as adding an arbitrary value to a counter. Thus, our lower bounds provide a
mathematical explanation for the observed inability of researchers in the last thirteen years
or so (since the original conference publication of counting networks[2] in STOC 1991) to
achieve such generalizations.

Finally, we remark that linearizability has so far been studied as arequiredproperty
for a distributed system that best guarantees acceptable concurrent behavior. To the best
of our knowledge, our work is thefirst to provide, through theMonotone Linearizability
Lemma, an (non-trivial) instance of a distributed system where linearizability is aninherent
property.

1.3. Related work and comparison

A particular switching network, calledRead–Modify–Write network, is given in
[7, Section 4]that implements any general class of commutative functions;Fetch&Add
andFetch&Multiply are two particular examples of such classes. This Read–Modify–Write
network contains aninfinite number of switches, and it has the same topology as a corre-
sponding linearizable counting network presented in[9]. Thelatency(maximum number of
switches traversed by a token) of this network is shown to be O(n) [7, Theorem 4.14], while
a corresponding lower bound of�(n) is also shown in[7, Theorem 3.2]for any general class
of functions with certain functional properties; this family encompasses bothFetch&Add
andFetch&Multiply as special cases. In contrast, we deal, in this work, exclusively with
thesizeof switching networks.

A counting network islinearizable[9] if the values returned to tokens respect their real-
time orderings. Herlihy et al.[9, Theorem 5.1]show that any non-trivial (non-blocking)
linearizable counting networkmust have infinite size. The structure of the proofs of our
impossibility results is inspired by that of the proof of[9,Theorem 5.1].The requirement that
all executions be linearizable allows that proof to pick any arbitrary execution of choice
and force it to violate linearizability. Since a switching network for a monotoneRMW
operation need not guarantee linearizability in all executions. The role of theMonotone
Linearizability Lemmais to contribute executions that arenecessarilylinearizable.

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 377

1.4. Road map

Section2 introduces monotone groups. Definitions for the model of a distributed sys-
tem appear in Section3. Section4 provides a framework for switching networks. The
Monotone Linearizability Lemmais the subject of Section5. Lower bounds on the size of
switching networks implementing monotone groups are shown in Section6. We conclude in
Section7.

2. Monotone groups

In this section, we introduce and study monotone groups. We assume familiarity of the
reader with the very basic concepts from Group Theory, such as agroup 〈I�, ⊕〉 and an
Abelian group. Denotee the identity elementof the group〈I�, ⊕〉. An elementary property
of groups will be used in some of our later proofs is theCancellation Law. It states that for
any group〈I�, ⊕〉, for any triple of elementsa, b, c ∈ I�,a⊕b = a⊕c (resp.,b⊕a = c⊕a)
impliesb = c.

Throughout this section (and in the rest of the paper), denote Z,N and Q the sets of inte-
gers, natural numbers (including zero), and rational numbers (excluding zero), respectively.
We will use+ and· to denote the common (binary) operators of addition and multiplication,
respectively, on these sets. Denote� the less-than-or-equalrelation (total order) on these
sets.

Some composite operators are introduced in Section2.1. Section2.2provides the basic
definitions for monotone groups. Section2.3treatsn-wise independence.

2.1. Composite operators

We define two composite operators by applying the operator⊕ a number of times. For
any integerk, define the unary operator

⊕
k : I� → I� as follows:

⊕
k

a =




a ⊕ a ⊕ · · · ⊕ a︸ ︷︷ ︸
k times

if k > 0,

e if k = 0,

a−1 ⊕ a−1 ⊕ · · · ⊕ a−1︸ ︷︷ ︸
−k times

if k < 0.

Call
⊕

k thepower operator. It follows that for any elementa ∈ I� and integerk,
⊕

ka =⊕
−ka

−1. We continue to state two elementary properties of the power operator that will
be used later; their proofs are omitted as straightforward.

Property 2.1 (Superposition of powers). For any Abelian group〈I�, ⊕〉, fix any element
a ∈ I�. Then, for any sequence of integersk1, k2, . . . , kn,(⊕

k1

a

)
⊕
(⊕

k2

a

)
⊕ · · · ⊕

(⊕
kn

a

)
= ⊕∑n

i=1 ki

a.

378 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

Property 2.2 (Composition of powers). For any group〈I�, ⊕〉, fix any elementa ∈ I�.
Then, for any integer k and natural number l,

⊕
k

(⊕
l a
) = ⊕

k·la.

For any integern, the operator
⊎

n : I�n → I� is n-ary.
• Forn = 0, it assumes the constant value

⊎
0 = e.

• Forn = 1,
⊎

1{a} = a for all elementsa ∈ I�. Forn = −1,
⊎

−1{a} = a−1.
• For |n|�2.

⊎
n takes as input an ordered multiset of elements{a1, a2, . . . , a|n|} ∈ I�,

and it yields the result⊎
n

{a1, a2, . . . , an} =
{

a1 ⊕ a2 ⊕ · · · ⊕ a|n| if n�2,

a−1
1 ⊕ a−1

2 ⊕ · · · ⊕ a−1
|n| if n� − 2

denoted also as
⊎n

i=1 ai . Note that, by associativity, the result of applying the operator
is well defined.
Call

⊕
thesummation operator. Our definitions for the power and summation operators

immediately imply that for any elementa ∈ I� and for any integern �= 0,

⊕
n

a =




⊎
n


a, a, . . . , a︸ ︷︷ ︸

n times


 if n > 0,

⊎
n


a−1, a−1, . . . , a−1︸ ︷︷ ︸

−n times


 if n < 0.

So, roughly speaking, the power operator is some special case of the summation operator
where all inputs are identical. The result

⊎
n {a1, a2, . . . , an} of the summation operator

will sometimes be called acomposite expression.

2.2. Monotone groups

Assume now that the set I� is totally ordered; thus, atotal order� is defined on I�. For
any pair of elementsa, b ∈ I�, write a ≺ b (and, equivalently,b � a) if a�b anda �= b.

A monotone subdomainof I� is a subsetM ⊆ I� that satisfies the following three
properties:
1. Closure:For any two elementsa, b ∈ M, a ⊕ b ∈ M.
2. Identity Lower Bound:For any elementa ∈ M, e ≺ a.
3. Monotonicity under Composition:For any pair of elementsa, b ∈ M, botha ≺ a ⊕ b

andb ≺ a ⊕ b.
Notice that theIdentity Lower Boundproperty implies thate /∈ M, so thatM ⊂ I�. Notice
also that theMonotonicity underCompositionproperty implies thatM is necessarily infinite.
A monotone groupis a quadruple〈I�, M, ⊕,�〉, where〈I�, ⊕〉 is an Abelian group,� is a
total order on I�, andM is a monotone subdomain of I�.

We encourage the reader to verify that both quadruples〈Z, N\{0}, +, �〉 (calledIntegers
with Addition) and〈Q, N \ {0, 1}, ·, �〉 (calledRationals with Multiplication) are mono-
tone groups. They are associated with the monotoneFetch&Add and Fetch&Multiply
operations, respectively. There follows an elementary, non-idempotency property of mono-
tone groups that will be used in some of our later proofs.

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 379

Property 2.3 (No idempotent power). For any arbitrary monotone group〈I�, M, ⊕,�〉,
fix any elementa ∈ M. Then, for any integer k,

⊕
ka = e impliesk = 0.

The proof of Property2.3 is straightforward; it is left as an exercise for the reader. We
only remark that Property2.3 doesnot necessarily hold for ageneralgroup; so, it is no
coincidence that its proof relies on using theMonotonicity under Compositionproperty that
holds specifically for monotone groups.

2.3. n-Wise independence

Fix any integern�2. Consider anyn distinct elementsa1, a2, . . . , an ∈ I� with a1,

a2, . . . , an �= e. Say thata1, a2, . . . , an aren-wise independent over〈I�, ⊕〉 if for any
sequence ofn integersk1, k2, . . . , kn, where−1�ki �2 for 1� i�n, that arenot all si-
multaneouslyzero,

⊎n
i=1
⊕

ki
ai �= e. Say that the monotone group〈I�, M, ⊕,�〉 is n-wise

independentif there aren distinct elementsa1, a2, . . . , an ∈ M, with a1, a2, . . . , an �= e,
that aren-wise independent over〈I�, ⊕〉.

From the definition ofn-wise independence,n integersa1, a2, . . . , an ∈ Z, wheren�2,
are n-wise independent over〈Z, +〉 if for any sequence ofn integersk1, k2, . . . , kn ∈
{−1, 0, 1, 2}, which are not all simultaneously zero,

∑n
i=1 ki · ai �= 0. We prove.

Lemma 2.4. For any integern�2, the monotone group〈Z, N \ {0}, +, �〉 is n-wise
independent.

Proof. Fix any integer��0. Consider then natural numbers 2�, 2�+2, . . . , 2�+2(n−1) ∈
N \ {0}, which are powers of two; we will prove that thesen natural numbers aren-wise
independent over〈Z, +〉. The proof is by induction onn.

For the basis case wheren = 2, consider the natural numbers 2� and 2�+2. Fix any
pair of integersk1, k2 ∈ {−1, 0, 1, 2} that are not both simultaneously zero. Clearly,
k12� +k22�+2 = 2�(k1 +4k2), which can be zero only ifk1 = k2 = 0. So, the natural num-
bers 2�, 2�+2 ∈ N \ {0} are 2-wise independent over〈Z, +〉. Hence, the monotone group
〈Z, N \ {0}, +, �〉 is 2-wise independent. This completes the proof of the basis case.

Assume inductively that then − 1 natural numbers 2�, 2�+2, . . . , 2�+2((n−1)−1) =
2�+2(n−2) ∈ N \ {0} are(n − 1)-wise independent over〈Z, +〉.

For the induction step, we will show that thennatural numbers 2�, 2�+2, . . . , 2�+2(n−1) are
n-wise independent in〈Z, +〉.Assume, by way of contradiction, that they are not.Thus, there
existn integersk1, k2, . . . , kn ∈ {−1, 0, 1, 2} which are not all simultaneously zero, such
that

∑n
i=1 ki2�+2(i−1) = 0. We proceed by case analysis on the value ofkn ∈ {−1, 0, 1, 2}.

• Assume first thatkn = −1. Then,
∑n−1

i=1 ki2�+2(i−1) − 2�+2(n−1) = 0, or
∑n−1

i=1 ki

2�+2(i−1) = 2�+2(n−1), or
∑n−1

i=1 ki22(i−1) = 22(n−1). However, sinceki �2 for all indices
i, 1� i�n − 1,

n−1∑
i=1

ki2
2(i−1) � 2

n−1∑
i=1

22(i−1)

< 2 ·
2n−4∑
i=0

2i

380 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

= 2
(
22n−3 − 1

)
< 22n−2 = 22(n−1),

a contradiction.
• Assume now thatkn = 0. Then,

∑n−1
i=1 ki2�+2(i−1) = 0. Since the integersk1, k2, . . . , kn

are not all simultaneously zero whilekn = 0, it follows that the integersk1, k2, . . . , kn−1
are not all simultaneously zero. This implies that then−1 natural numbers 2�, 2�+2, . . . ,

2�+2(n−2) are (n − 1)-wise independent over〈Z, +〉, which contradicts the induction
hypothesis.

• Assume finally thatkn ∈ {1, 2}. Then,
∑n−1

i=1 ki2�+2(i−1) + kn · 2�+2(n−1) = 0, or,
equivalently,−∑n−1

i=1 ki2�+2(i−1) = kn · 2�+2(n−1), or−∑n−1
i=1 ki22(i−1) = kn · 22(n−1).

However, sinceki � − 1 for all indicesi, 1� i�n − 1,

−
n−1∑
i=1

ki2
2(i−1) �

n−1∑
i=1

22(i−1)

<
2n−4∑
i=0

2i

= 22n−3 − 1 < 22n−2 = 22(n−1) �kn · 22(n−1),

a contradiction.
Since we obtained a contradiction in all possible cases, the proof is now complete.�

We finally prove thateverymonotone group isn-wise independent.

Lemma 2.5(Every monotone group is n-wise independent). For any integer n�2, the
monotone group〈I�, M, ⊕,�〉 is n-wise independent.

Proof. Since the monotone group〈Z, N \ {0}, +, �〉 is n-wise independent (Lemma2.4),
there existn distinct natural numbersl1, l2, . . . , ln ∈ N \ {0} that aren-wise independent
over〈Z, +〉. Fix any elementa ∈ M and consider then elements

⊕
l1
a,
⊕

l2
a, . . . ,

⊕
ln
a

of M. Clearly, by theMonotonicity under Compositionproperty of the monotone group
〈I�, M, ⊕,�〉, thesen elements are distinct. We will prove that they are alson-wise inde-
pendent over〈I�, ⊕〉.

Assume, by way of contradiction, that the elements
⊕

l1
a,
⊕

l2
a, . . . ,

⊕
ln
a arenot n-

wise independent over〈I�, ⊕〉. Thus, there existn integersk1, k2, . . . , kn ∈ {−1, 0, 1, 2},
which are not all simultaneously zero, such that

⊎n
i=1

(⊕
ki

(⊕
li
a
))

= e. By Property

2.2, it follows that
⊎n

i=1

(⊕
ki ·li a

)
= e which, by the definition of the summation operator,

may be written as
(⊕

k1·l1a
)⊕ (⊕

k2·l2a
)⊕· · ·⊕ (⊕

kn·ln
) = e. By Property2.1, it follows

that
⊕∑n

i=1 ki ·li a = e. Property2.3, now implies that
∑n

i=1 ki · li = 0. Since the integers
ki , 1� i�n, are from the set{−1, 0, 1, 2}, and they are not all simultaneously zero, this
implies that then natural numbersl1, l2, . . . , ln arenot n-wise independent over〈Z, +〉.
A contradiction. �

We remark that the proof of Lemma2.5employs then-wise independence of the monotone
group〈Z, N \ {0, }, +, �〉 (which was established in Lemma2.4) in order to conclude the

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 381

n-wise independence of the arbitrary monotone group〈I�, M, ⊕, �〉. So, this proof by
reduction indicates some kind of completeness of this group for the class of all monotone
groups.

3. System model

Section3.1provides basic definitions for a distributed system that implements a monotone
group. Definitions related to linearizability are given in Section3.2.

3.1. Distributed systems implementing monotone groups

Our model of a distributed system is patterned after the one in[10, Section 2]; however,
that one is adjusted in order to incorporate the issue of implementing a monotone group
〈I�, M, ⊕,�〉.

We consider a distributed systemP consisting of a collection of sequential threads of
control, calledprocesses. Processes are sequential, and each process applies a sequence of
operations to a distributed data structure, called theobject, alternately issuing an invocation
and then receiving the associated response. Eachinvocationat processpi has the form
Invokei (a) for some valuea ∈ M; eachresponseat processpi has the formResponsei (b)

for some valueb ∈ M ∪ {e}.
Formally, anexecutionof systemP is a (possibly infinite) sequence� of invocationand

responseevents. We assume that for each invocation at processpi in execution�, there is
a later response in� that matches it and no invocation atpi that precedes the matching
response in�. Prefixes and suffixes of an execution are defined in the natural way. Say that
an execution� extendsa prefix� of execution� if � is a prefix of� as well.

An operationat processpi in execution� is a matching pairopi = [Invokei (a),

Responsei (b)] of an invocation and response atpi ; we will sometimes say thatopi is
of type a. For such an operation, we will writea = In(opi) andb = Out(opi); thus,opi has
inputandoutput aandb, respectively. We will sometimes writeIn�(opi) andOut�(opi) in
order to emphasize reference to execution�.

An execution� induces a partial order
�−→ on the set of operations in� as follows. For

any two operationsopi1 = [Invokei1(a1), Responsei1
(b1)] andopi2 = [Invokei2(a2),

Responsei2
(b2)] at processespi1 and pi2, respectively, say thatopi1 precedes opi2 in

execution�, denotedopi1
�−→ opi2, if the responseResponsei1

(b1) precedes the invocation

Invokei2(a2). In particular, execution� induces, for each processpi a total order
�−→i on

the set of operations atpi in � as follows: For any two operationsop(1)
i andop(2)

i ,op(1)
i

�−→i

op(2)
i if and only if op(1)

i

�−→ op(2)
i .

If, in execution�, operationopi1 does not precede operationopi2, then we writeopi1 � �−→
opi2. If simultaneouslyopi1 � �−→ opi2 andopi2 � �−→ opi1, then we say thatopi1 andopi2 are
parallel in execution�, denoted asopi1 ‖� opi2.

For any execution� of systemP, a serializationS(�) [5] of execution� is a sequence
whose elements are the operations of�, and each operation of� appears exactly once in

382 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

S(�). Thus, a serializationS(�) is a total order
S(�)−→ on the set of operations in�. Notice that

there may be, in general, many possible serializations of the execution�. Say that a serial-
izationS(�) is valid for the monotone group〈I�, M, ⊕,�〉 if the following two conditions
hold:
1. Valid Start: If opi = [Invokei (a), Responsei (b)] is the first operation inS(�), then

b = e.
2. Valid Composition:For any pair of operationsop(1)

i1
= [Invokei1(a1), Responsei1

(b1)]
andop(2)

i2
= [Invokei2(a2), Responsei2

(b2)] that are consecutive inS(�),b2 = b1⊕a1.
Sometimes we shall simply refer to a valid serialization, and avoid explicit reference to the
monotone group when such is clear from context.

Say thatsystemP implements the monotone group〈I�, M, ⊕,�〉 if every execution
� of P has a serialization that is valid for the monotone group.MonotoneRMW oper-
ations are those associated in the natural way with monotone groups. Say that system
P implements a (monotone) operation whenever it implements the associated monotone
group.

We continue to state and prove theUnique Serialization Lemma.

Lemma 3.1(Unique Serialization Lemma). Assume that systemP implements the mono-
tone group 〈I�, M, ⊕,�〉. Then, for any execution� of P, there is a unique valid
serializationS(�).

Proof. Assume, by way of contradiction, that there are two distinct valid serializations
S(1)(�) = op(1.1),op(1.2),op(1.3), . . . andS(2)(�) = op(2.1),op(2.2),op(2.3), . . . of execu-
tion�. SinceS(1)(�) andS(2)(�) are distinct, there exists aleastindexk�1 such thatop(1.k)

is different fromop(2,k). Assume, without loss of generality, thatop(1.k) appears at position
l > k in the serializationS(2)(�); that is, op(1.k) = op(2.l), so that, in particular,
Out

(
op(1.k)

) = Out
(
op(2.l)

)
. Notice finally that for eachi < k,op(1.i) = op(2.i).

We proceed by case analysis on the possible values ofk.
1. Assume first thatk = 1. SinceS(1)(�) is a valid serialization of� andk = 1, theValid
Startcondition implies thatOut(op(1.k)) = e. SinceS(2)(�) is a valid serialization of�
andl > k = 1, theValid Compositioncondition implies that

Out(op(2.l)) = Out(op(2.l−1)) ⊕ In(op(2.l−1)).

TheMonotonicityunderCompositionproperty implies thatOut(op(2.l−1))⊕In(op(2.l−1))

� In(op(2.l−1)). SinceIn(op(2.l−1)) ∈ M, the Identity Lower Boundproperty implies
thatIn(op(2.l−1)) � e. It follows thatOut(op(2.l)) � e. A contradiction.

2. Assume now thatk > 1. SinceS(1)(�) is a valid serialization of� andk > 1, theValid
Compositionproperty implies that

Out(op(1.k)) = Out(op(1.k−1)) ⊕ In(op(1.k−1)).

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 383

SinceS(2)(�) is a valid serialization of� andl > k > 1, theValid Compositionproperty
implies that

Out(op(2.l)) = Out(op(2.k−1)) ⊕ In(op(2.k−1)) ⊕ · · · ⊕ In(op(2.l−2))

⊕ In(op(2.l−1)).

SinceOut(op(1.k)) = Out(op(2.l)), it follows that

Out(op(1.k−1)) ⊕ In(op(1.k−1))

= Out(op(2.k−1)) ⊕ In(op(2.k−1)) ⊕ · · · ⊕ In(op(2.l−2)) ⊕ In(op(2.l−1)).

SinceOut(op(1.k−1)) = Out(op(2.k−1)) and In(op(1.k−1)) = In(op(2.k−1)), it follows
that

Out(op(2.k−1)) ⊕ In(op(2.k−1))

= Out(op(2.k−1)) ⊕ In(op(2.k−1)) ⊕ · · · ⊕ In(op(2.l−2)) ⊕ In(op(2.l−1)).

By theCancellation Law, it follows that

e = In(op(2.k)) ⊕ · · · ⊕ In(op(2.l−2)) ⊕ In(op(2.l−1)).

TheMonotonicity under Compositionproperty implies that

In(op(2.k)) ⊕ · · · ⊕ In(op(2.l−2)) ⊕ In(op(2.l−1)) � In(op(2.k)).

SinceIn(op(2.k)) ∈ M, theIdentity Lower Boundproperty implies thatIn(op(2.k)) � e.
It follows that

In(op(2.k)) ⊕ · · · ⊕ In(op(2.l−2)) ⊕ In(op(2.l−1)) � e.

A contradiction.
Since we obtained a contradiction in all possible cases, the proof is now complete.�

We remark that the proof of Lemma3.1 relied heavily on the required properties for a
monotone group, namely theMonotonicity under CompositionandIdentity Lower Bound
properties. Since these properties do not necessarily hold for ageneralgroup, the same
follows for theUnique Serialization Lemma. We conclude this section with an immediate
consequence of theValid StartandValid Compositionconditions assumed in the definition
of implementation of a monotone group.

Property 3.2. Assume that systemP implements themonotone group〈I�, M, ⊕,�〉.Then,
for any operation op in an execution� ofP,

Out� (op) = ⊎
|{op′ |op′S(�)−→op}|

{
In�

(
op′
) | op′ S(�)−→ op

}
.

3.2. Linearizability

Our definitions refer to a distributed systemP implementing a monotone group〈I�, M, ⊕,

�〉, and, in particular, to any arbitrary execution� of it and its (unique) valid serialization
S(�).

384 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

Say that execution� is linearizable[10] if the serializationS(�) extends
�−→; that is,

for any pair of operationsop(1) andop(2) such thatop(1) �−→ op(2), op(1) S(�)−→ op(2). The
Valid Compositioncondition implies that for any two operationsop(1) andop(2) such that

op(1) S(�)−→ op(2), Out�(op(1)) ≺ Out�(op(2)). Thus, it follows that for any pair of operations

op(1) andop(2) such thatop(1) �−→ op(2), Out�(op(1)) ≺ Out�(op(2)).
Say that operationop(1) in execution� isnon-linearizable in execution� if there is another

operationop(2) in execution� such thatop(2) �−→ op(1) while op(2) S(�)−→ op(1). Say that
operationop in execution� is linearizable in execution� if it is not non-linearizable in
execution�. It follows that execution� is linearizable if every operation in execution� is
linearizable in it. Finally, we say that systemP is linearizableif all its executions are.

4. Switching networks

In this section, we present a framework for switching networks. Some of our definitions
are common with some from[6, Section 2]and[7, Section 2], while most of them refine
and extend corresponding ones there. Some basic definitions are articulated in Section4.1.
Processes, tokens, switches and wires are described in Section4.2. Section4.3 defines
states, configurations and executions. The outputs of switching networks are described in
Section4.4. Section4.5 introduces some contention measures for switching networks.

4.1. Basic definitions

A switching network[6], like a counting network[2], is a directed (acyclic) graph in
which the nodes are simple computing elements calledswitches, and the edges are called
wires.

More specifically, an(fin, fout)-switch, or switchfor short, is a routing element withfin
inputwires,foutoutputwires, and aninternal state; fin andfout are called the switch’sfan-in
andfan-out, respectively. A switch’s internal state is a collection of variables, possibly with
initial values. In theinitial state of switch, all of its variables are set to their initial values.
The number of internal states of a switch may be either finite or infinite, giving rise to a
finite-stateor infinite-stateswitch, respectively. In either case, a switch changes its internal
state according to itstransition function.

A finite-state switchingnetworkis a switching network made up from finite-state switches;
an infinite-state switching networkis a switching network made up from infinite-state
switches.

A (win, wout)-switching networkN haswin input wiresandwout output wires, and it is
formed by connecting together switches; thus, we connect output wires of switches to input
wires of other switches. Some switches have input wires (resp., output wires) not connected
to other switches in the network, and these wires are thewin input wires (resp.,wout output
wires) of the switching networkN .

ThesizeS(N) of a switching networkN is the total number of its switches. A network
N is finite-sizeif s(N) < ∞; else, it isinfinite-size. Thedepthd(b) of a switchb in a
switching networkN is defined to be 0 if one of its input wires is an input wire of the

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 385

network, and maxj d(bj)+1, where the maximum is taken over all switchesbj with output
wires connected to input wires of switchb. Thedepthd(N) of the networkN is defined as
the maximum depth of any of its switches.The switching networkN can naturally be divided
into d(N) layers, so that layer� contains all switches of depth�, where 0���d(N). A
path in a switching network is a sequence of switches each (other than the last) connected
to the next.

4.2. Processes, tokens and switches

We assume a collection of asynchronous, non-failing processes that access a switching
network by shepherdingtokensthrough it. A switching network may be accessed by many
tokens simultaneously, which traverse the network asynchronously; however, each process
has at most one token sheperded through the network at each time. Theconcurrencyof a
switching network is the maximum number of processes (and, therefore, tokens as well)
allowed to access the network simultaneously.

Unlike counting networks[2], each token has astate(a collection of variables) which is
allowed to change as the token traverses the network according to itstransition function.
The state of a token includes itsinput value.

A token enters the switching network on one of the network’swin input wires. Then, the
token is instantaneously forwarded to the switch to which the wire belongs; the switch then
routes the token to one of its output wires from which the token enters the next switch in the
network, and so on. Both the switch’s and the token’s states change. The token continues
traversing the network in the same fashion until it reaches one of thewout output wires of
the network. At that point, the token exits the network and returns a value to the process
that owns it.

In more detail, when a token arrives on an input wire of a switch, the following events
occur in a single,atomic(indivisible) step:

The switch removes the token from the input wire and it changes state; the token
changes state and it is routed to an output wire of the switch.

For example, an(fin, fout)balanceris a finite-state switch with fan-infin and fan-outfout.
Thekth token to arrive on any of its input wires is routed to the output wirefout modk. Thus,
the state of an(fin, fout) balancer encapsulates the number of tokens that have traversed the
switch modulo its fan-outfout. The state of a token traversing an(fin, fout)-balancer is not
affected. Such balancers have been used to construct counting networks (see, e.g.,[2,9]).

4.3. States, configurations and executions

For each(fin, fout)-switch, denote byxi , 0� i�fin − 1, the number of tokens that have
entered the switch on input wirei; similarly, denote byyj the number of tokens that have
exited the switch on output wirej.

A switch’sstateincludes both its internal state and the collections of tokens on its input
and output wires. A switch is in aquiescentstate if there are no tokens currently traversing
the switch; thus, in a quiescent state, the number of tokens that arrived on the input wires
of the switch have exited the switch on its output wires, or

∑fin
i=1 xi = ∑fout

j=1 yj .

386 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

A switch satisfies the following two conditions:
1. Safety condition:In any state,

∑fin
i=1 xi �

∑fout
j=1 yj . thus, a switch never creates tokens

spontaneously.
2. Liveness condition:Starting from any state, a switch eventually reaches a quiescent state.

An internal configurationof a switching network is a collection of the internal states of
its switches. Consider a finite-state switching networkN with (finite) switches havingS
internal states each. Then, clearly, the number of internal configurations of the networkN is
finite and equal toSs(N). Note that the number of internal configurations of an infinite-state
switching network is no longer finite.

A configurationof a switching network is the collection of the states of its switches; thus,
the configuration of a switching network includes the states of all tokens currently traversing
the network as well.A configuration of a switching network isquiescentif all of its switches
are in a quiescent state. The safety and liveness properties for switches immediately imply
corresponding safety and liveness properties for a switching network.

For any tokent and switchs, we denote by� = 〈t, s〉 thestate transitionin which the
tokent passes (in a single atomic step) from an input wire to an output wire of switchs;
thus, in a state transition the state of a switch (including the states of tokens on its input and
output wires) changes according to the transition function of the switch (and the transition
functions of the tokens on its input and output wires). Although state transitions can occur
concurrently, it is convenient to treat them using a model of interleaving semantics.

An executionof a switching network is a finite or infinite sequence� = Q0, �1, Q1, �2,

Q2, . . ., of alternating configurations and switch transitions such that:
1. Q0 is theinitial configuration, in which there are no tokens on input wires of switches

except for at least one token on input wires of the network, and all switches are in their
initial internal states.

2. For each triple〈Qi, �i+1, Qi+1〉, wherei�0, the switch transition�i+1 carries the con-
figurationQi to the configurationQi+1.

A finite execution ends with a configuration. A finite execution iscompleteif it results to
a quiescent configuration. An execution� issequentialif for any two transitions�i = 〈t, si〉
and�j = 〈t, sj 〉 that involve the same tokent, all transitions (if any) between them also
involve that token. Lightly speaking, tokens traverse the network one completely after the
other in a sequential execution.

An execution suffixof a switching network is a suffix of some execution of the network
that starts with a configuration. The definition of sequential executions can be extended to
sequential execution suffixesin the natural way. So again, tokens traverse the network one
completely after the other in a sequential execution suffix.

An execution fragmentof a switching network is a finite (contiguous) subsequence of
some execution of the network that starts and ends with a configuration. Apumpof a
switching network is an execution fragment of it that starts and ends with the same quiescent
configuration. Theconcatenation�1 · �2 of two execution fragments�1 and�2 is defined
when�2 follows �1 in the same execution of the network; thus, the end configuration of
�1 is the start configuration of�2. The concatenation is also an execution fragment; thus, it
does not repeat the common configuration of the two original execution fragments.

For an execution of a switching network, we say that concurrency isboundedif the
number of concurrent processes accessing the network in the execution is bounded. In an

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 387

(infinite) execution, we say that concurrency isunboundedif the number of concurrent
processes accessing the network in the execution is unbounded (either finite or infinite).

4.4. Outputs

The input and output values of tokent in execution� will be denoted asIn�(t) and
Out�(t), respectively.

For finite-state switching networks, we include an additional component on the output
wires of the switching network, namely theoutput registers. More specifically, there is an
output register associated with each output wire of the switching network. However, unlike
finite switches, each output register has an infinite number of states. Denoteor(N) the
number of output registers in a finite-state switching networkN .

Theoutput valuefor a token in a finite-state switching network is computed on the output
register residing on the network’s output wire from which the token exits. When a token
arrives on an output register. the following events occur in a single,atomic (indivisible)
step:
1. The token computes its output value according to the output register’s state.
2. The state of the output register changes according to its previous state and the state of

the token (which includes its input value).
Note that the input value of a token does not affect its output value, but it may as well affect
the output values of tokens that will later access the same output register.

We remark that finite-state switching networks correspond more closely to traditional
counting networks[2], where a token fetching the counter’s value and incrementing the
counter by one obtains the value from the register attached to the output wire it will exit from.
We also remark that output registers arenecessaryfor this kind of switching networks, since
they provide an infinite number of different output values to tokens, while finite switches,
used only for routing, are unable to do so.

For infinite-state switching networks, there are no attached output registers and theoutput
valueof a token is determined according to the state of the token when it exits the network.

4.5. Contention measures

In a switching network, contention represents the extent to which concurrent processes
access the same switch or output register simultaneously. We use two complexity-theoretic
measures to model contention in switching networks, namelyregister bottleneckandswitch
bottleneck, which are introduced here for the first time.

The definition of register bottleneck applies only to finite-state switching networks.

Definition 4.1 (Register bottleneck). Theregister bottleneckof a finite-state switching net-
work N is theminimumnumber of output registers, where the minimum is taken over all
infinite executions of the network, that are accessed by tokens in some infinite suffix of an
infinite execution of the network.

On the account of register bottleneck, a switching network islow-contentionif its register
bottleneck is sufficiently large. A register bottleneck of 1 is theworst possible register

388 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

bottleneck, since it implies the existence of some execution of the network in which as
many tokens as processes participating in the execution will eventually accumulate in front
of the same output register, which thus becomes a “hot-spot”. Note that register bottleneck
is a trivial lower bound on the number of output registers of a finite-state switching network.
We prove:

Lemma 4.1. Assume that the register bottleneck ofN is at least2.Then, in any pump of
N , there exist at least two distinct tokens that access two different output registers.

Proof. Assume, by way of contradiction, that there is a pump� of N in which all tokens
access the same output register. Clearly, the infinite sequence� · � · . . . of pumps is an
infinite suffix of an infinite execution ofN in which all tokens access the same output
register. It follows that the register bottleneck ofN is 1. A contradiction. �

The definition of switch bottleneck will be useful for infinite-state switching networks.

Definition 4.2 (Switch bottleneck). Theswitch bottleneckof a switching networkN is the
minimumnumber of switches, where the minimum is taken over all infinite executions of
the network, that are accessed by an infinite sequence of tokens exiting a switch connected
to them that has been accessed by an infinite number of tokens itself.

On the account of switch bottleneck, a switching network islow-contentionif its switch
bottleneck is sufficiently large. A switch bottleneck of 1 is theworstpossible switch bottle-
neck since it implies the existence of some infinite execution of the network in which some
switch is accessed by an infinite number of tokens and it outputs a finite number of tokens
on all but one of its output wires. Intuitively, such a switch does not effectively “balance”
the infinite stream of tokens that access it, but it emits almost all of them (except for a
finite number) to the same switch in the next layer; this last switch will eventually become
a “hot-spot”.

Clearly, in the special case where switches are balancers which “balance” their input
tokens, the switch bottleneck is the least (over all balancers) number of output wires of a
balancer, which (usually) exceeds 1. Thus, the requirement that switch bottleneck be high
can also be seen as a generalization of the balancing property from balancers to general
switches.

Note that switch bottleneck is a trivial lower bound on the number of switches in any
layer (other than layer 1) of an infinite-switch network. In our later proofs, we will also
assume that this is also a lower bound for layer 1.

Consider a switching network with a certain switch bottleneck. Consider now what hap-
pens when some tokens have been permanently “halted” in front of some switches of the
network in some infinite sequence; this resulting sequence is not necessarily an execution
since it fails to guarantee liveness. Recall, however, that a switch operates locally: it changes
its state according to its state and the states of tokens that traverse it, and independently
of the operation of other tokens and switches in the network. This implies that the switch
bottleneck of the network is maintained also for such sequences. (This observation will be
used in the proof of Theorem6.2.)

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 389

4.6. Switching networks implementing monotone groups

A switching networkN can be used to implement a monotone group〈I�, M, ⊕,�〉 as
follows:
• Token t issued by processpi corresponds to an operationopi = [Invokei (a),

Responsei (b)] invoked by processpi , wherea ∈ M andb ∈ M ∪ {e}. We say that
a is the input valueor typeof the tokent, andb is theoutput valueof the tokent. The
input value of the token is part of the token’s (initial) state.

• For any execution�, the invocation of operationopi corresponds to the first transition
�i = 〈ti , si〉 in execution�, whereti = t and si is an input switch of the network;
this transition occurs when the token enters the network. The response of operationop
corresponds to the latest transition�j = 〈tj , sj 〉 in execution�, wheretj = t andsj is
an output switch of the network; this transition occurs when the token exits the network.

• When tokent exits the network, it carries encapsulated in its state the output valueb that
operationopi is returned.
It is now straightforward to formally define when theswitching networkN implements

the monotone group〈I�, M, ⊕,�〉.

4.7. The covering technique

In some of our impossibility proofs, we will use a variant of thevariable covering
technique originally introduced by Burns and Lynch[3] for proving lower bounds on the
number of read/write registers needed to solve (deadlock-free) mutual exclusion. Intuitively,
a token covers a switch if it is about to access the switch. We omit the formal definition
here, which can be immediately extended to tokens covering output registers as well.

5. The Monotone Linearizability Lemma

Throughout this section, we refer to a distributed systemP implementing a monotone
group〈I�, M, ⊕,�〉. The main contribution of the section is to state and prove theMono-
tone Linearizability Lemma,which establishes ordering constraints of linearizability on the
systemP. Recall that, by Lemma2.5, the monotone group〈I�, M, ⊕,�〉 is n-wise inde-
pendent for any integern�2. So, there aren distinct elementsa1, a2, . . . , an ∈ M, with
a1, a2, . . . , an �= e, which aren-wise independent over〈I�, ⊕〉. The proof of theMonotone
Linearizability Lemmaamounts to establishing a contradiction ton-wise independence for a
hypotheticalnon-linearizableexecution, in which the types of theRMW operations issued
by the processes area1, a2, . . . , an. We are now ready to state and prove theMonotone
Linearizability Lemma.

Proposition 5.1(Monotone Linearizability Lemma). Consider any execution� of system
P in which each processpi issues only operations of typeai , where1� i�n. Then, � is
linearizable.

Proof. We start with an informal outline of our proof. We will proceed by contradiction.
We will consider the earliest non-linearizable operationopk (at processpk) in � and the

390 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

latest operationopl that precedes it. We will use these two operations to construct two
executions�1 and�2 that are indistinguishable to processpl with respect to operationopl .
This indistinguishability implies thatopl receives the same output in these two executions.
The contradiction will follow from the comparison of the two identical outputs, where we
use simple algebraic properties of (monotone) groups in order to contradict the assumed
n-wise independence. We now continue with the details of the formal proof.

Assume, by way of contradiction, that� is not linearizable. So, there is at least one
operation that is non-linearizable in execution�. Consider theearliestsuch operationopk
(occurring at processpk), and letopl be thelatestoperation (occurring at processpl) that

precedesopk in �. So,opl
�−→ opk while opk

S(�)−→ opl , whereS(�) is the (unique) valid
serialization of�.

In our proof, we will use the operationsopk andopl in order to define and treat two finite
prefixes of execution�:
• the finite prefix�1 of execution� that ends with the response for operationopk, and
• the finite prefix�2 of execution� that ends with the response for operationopl .
Clearly,�2 is a prefix of�1 as well. We first treat separately each of the two prefixes�1 and
�2 and a corresponding extension of it; we then treat them together.

Properties of the prefix�1 and its extension�1: Consider a finite execution�1, which is
an extension of�1 that includes no additional invocations by processes; so,�1 is extended
to only include responses to invocations that are pending in�1.

Since�1 is a prefix of both� and�1, it follows that all operations whose responses are
included in�1 (or, in other words, they are not preceded in either� or �1 by the response
for opk) have identical outputs in� and�1. In particular,Out�

(
opl
) = Out�1

(
opl
)

and
Out�

(
opk

) = Out�1

(
opk

)
. Take now the (unique) valid serializationS(�1) of �1.

Sinceopk
S(�)−→ opl theValid Compositioncondition (forS(�)) implies thatOut�

(
opk

) ≺
Out�

(
opl
)
. SinceOut�

(
opk

) = Out�1

(
opk

)
andOut�

(
opl
) = Out�1

(
opl
)
, it follows that

Out�1

(
opk

) ≺ Out�1

(
opl
)
. TheValid Compositioncondition (forS(�1)) implies now that

opk
S(�1)−→ opl .

For each processpi , where 1� i�n, denote�(1)
i the number of operations atpi that

precedeopl in the serializationS(�1). Assume that:
• �(1)

i,a of those�(1)
i operations have their responses followed in�1 by that foropl ;

• the rest�(1)
i,b of them have their responses preceded in�1 by that foropl .

So,�(1)
i = �(1)

i,a + �(1)
i,b . We next prove a simple property.

Property 5.2. For each processpi , where1� i�n, �(1)
i,b �2.

Proof. Consider theearliest(if any) operationopat processpi such thatop
S(�1)−→ opl , while

the response forop follows the one foropl in �1. We proceed by case analysis on the order
of the responses foropandopk in �1.
1. Assume first that the response forop follows the one foropk in �1. Since�1 includes no

invocations following the response foropk, it follows that there is no other operation at
pi following op, so that�(1)

i,b �1 in this case.

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 391

2. Assume now that the response foropprecedes the one foropk in �1. Consider any other

operationop′ atpi that followsop in �1, while still op′
S(�1)−→ opl . We will prove that there

is at most one such additional operation.
• By construction of�1, the invocation forop′ precedes the response foropk in �1.
• Assume, by way of contradiction, that the response forop′ precedes the response for
opk in �1. Thus,op′ is included in the prefix�1. Since�1 is a prefix of�, it follows
that the response forop′ precedes the response foropk in � as well. This implies that

Out�1

(
op′
) = Out�

(
op′
)
. Sinceop′

S(�1)−→ opl , theValid Compositioncondition (for
S(�1)) implies thatOut�1

(
op′
) ≺ Out�1

(
opl
)
. SinceOut�1

(
opl
) = Out�

(
opl
)
, it

follows thatOut�
(
op′
) ≺ Out�

(
opl
)
. TheValid Compositioncondition (forS(�))

implies now thatop′ S(�)−→ opl .
Since the response forop follows the response foropl in �1, while op′ follows op

in �1, it follows thatopl
�1−→ op′. Sinceop′ is included in the prefix�1 of �1, which

is also a prefix of�, this implies thatopl
�−→ op′ as well. It follows thatop′ is a

non-linearizable operation in�. Since the response forop′ precedes the response for
opl in �, it follows thatop′ is an earlier thanopl , non-linearizable operation in�.
A contradiction.

It follows that the response forop′ follows the response foropk in �1.
Since�1 includes no invocations following the response foropk, it follows that there is
no other operation atpi following op′ in �1, so that�(1)

i,b �2 in this case.

Thus, in all cases,�(1)
i,b �2, as needed. �

Sinceopk
S(�1)−→ opl while the response foropl precedes the response foropk in �1, a slight

strengthening of Property5.2for the particular case of processpk is now immediate:

Property 5.3. 1��(1)
k,b �2

By Property3.2, Out�1

(
opl
)

is a composite expression involving for each processpi ,

1� i�n, �(1)
i contributions ofai . By theCommutativityproperty, thesen types of contri-

butions can be separated from each other in the composite expression, so that

Out�1

(
opl
)=

n⊎
i=1

⊕
�(1)

i

ai .

Properties of the prefix�2 and its extension�2: Consider a finite execution�2, which
is an extension of�2 that includes no additional invocations by processes; so,�2 is an
extension that only includes responses to invocations that are pending in�2 (in addition to
the responses included in�2).

Since�2 is a prefix of both� and�2, it follows that all operations whose responses are
included in�2 (hence, they are not preceded in either� or �2 by the response foropl)
have identical outputs in� and�2. In particular,Out�

(
opl
) = Out�2

(
opl
)
. Take now the

(unique) valid serializationS(�2) of �2.

392 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

For each processpi , where 1� i�n, denote�(2)
i the number of operations atpi that

precedeopl in the serializationS(�2). Assume that:
• �(2)

i,a of those�(2)
i operations have their responses not preceded by that foropl in �2;

• the rest�(2)
i,b of them have their responses preceded in�2 by that foropl .

So,�(2)
i = �(2)

i,a + �(2)
i,b . We continue to prove a simple property:

Property 5.4. For each processpi , where1� i�n, �(2)
i,b �1.

Proof. Consider theearliest(if any) operationopat processpi such thatop
S(�2)−→ opl , while

the response forop follows the one foropl in �2. Since�2 includes no invocations following
the response foropl , it follows that there is no other operation atpi following op in �2, so
that�′

i,b �1, as needed. �

By Property3.2, Out�2

(
opl
)

is a composite expression involving for each processpi ,

1� i�n, �(2)
i = �(2)

i,a + �(2)
i,b contributions ofai . By theCommutativityproperty, thesen

types of contributions can be separated from each other in the composite expression, so that

Out�2

(
opl
)=

n⊎
i=1

⊕
�(2)

i

ai .

Joint properties of the prefixes�1 and�2 and their extensions�1 and�2: SinceOut�
(
opl
)

= Out�1

(
opl
)

andOut�
(
opl
) = Out�2

(
opl
)
, it follows thatOut�1

(
opl
) = Out�2

(
opl
)
.

We continue to prove two simple properties of the prefixes�1 and�2, and their extensions
�1 and�2. The first property relates�(1)

i,a and�(2)
i,a , while the second one relates�(1)

i,b and�(2)
i,b .

We start with the first.

Property 5.5. For each processpi , where1� i�n, �(1)
i,a = �(2)

i,a .

Proof. We will prove that both�(1)
i,a ��(2)

i,a and�(2)
i,a ��(1)

i,a .

1. To prove that�(1)
i,a ��(2)

i,a , consider any operationopat processpi such thatop
S(�1)−→ opl ,

while the response forop precedes the response foropl in �1. So,op is included in
prefix�2.
• Since�2 is a prefix of�2, and it ends with the response for operationopl , it follows

that the response foropprecedes the response foropl in �2 as well.
• Since�2 is a prefix of both�1 and�2, it follows thatOut�1

(op) = Out�2
(op). Since

op
S(�1−→ opl , theValid Compositioncondition forS(�1) implies thatOut�1

(op) ≺
Out�1

(
opl
)
. SinceOut�1

(
opl
) = Out�2

(
opl
)
, it follows thatOut�2

(
opl
) = Out�2(

opl
)
. Thus, theValid Compositioncondition forS(�2) implies thatop

S(�2)−→ opl .

It follows that�(1)
i,a ��(2)

i,a .

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 393

2. To prove that,�(1)
i,a ��(2)

i,a , consider any operationopat processpi such thatop
S(�2)−→ opl ,

while the response forop precedes the response foropl in �2. So,op is included in
prefix�2.
• Since�2 is a prefix of�1, and it ends with the response for operationopl , it follows

that the response foropprecedes the response foropl in �1 as well.
• Since�2 is a prefix of both�1 and�2, it follows thatOut�1

(op) = Out�2
(op). Since

op
S(�2)−→ opl , theValid Compositioncondition forS(�2) implies thatOut�2

(op) ≺
Out�2

(
opl
)
. SinceOut�1

(
opl
) = Out�2

(
opl
)
, it follows thatOut�1

(
opl
) = Out�1(

opl
)
. Thus, theValid Compositioncondition forS(�1) implies thatop

S(�1)−→ opl .

It follows that�(1)
i,a ��(2)

i,a .

So, in total,�(1)
i,a = �(2)

i,a , as needed. �

We continue with the second property.

Property 5.6. �(1)
k,b − �(2)

k,b �1.

Proof. Recall from Property5.3that 1��(1)
k,b �2. We proceed by case analysis on�(1)

k,b.

1. Assume first that�(1)
k,b = 1. Sinceopk

S(�1)−→ opl and the response foropk follows the

response foropl in �1, it follows thatopk counts for�(1)
k,b. Since�(1)

k,b = 1, this implies

that no operation (in�1) other thanopk counts for�(1)
k,b; that is, there is no operationop′k

(other thanopk) at processpk in �1 such thatop′k
S(�1)−→ opl while the response forop′k

follows the response foropl in �1.
We will prove that�(2)

k,b = 0 in this case. Assume, by way of contradiction, that

�(2)
k,b �= 0. Thus, there is some operationop′k in �2 such thatop′k

S(�2)−→ opl while the
response forop′k follows the response foropl in �2. Since�2 includes no invocations
following the response foropl , it follows that the invocation forop′k precedes the response
for opl in �2. So, the invocation forop′k is included in the prefix�2 of �2. Since�2 is a
prefix of both� and�1 as well, it follows thatop′k is an operation in each of� and�1 as
well such that its invocation precedes the response foropl in each of� and�1.

Since the invocation forop′k precedes the response foropl in � (resp.,�1) andopl
�−→

opk (resp.,opl
�1−→ opk), it follows thatop′k

�−→ opk (resp.,op′k
�1−→ opk).

Since the response forop′k is not included in prefix�2, it follows that the response for

op′k follows the response foropl in each of�and�1 as well.This implies thatopl
S(�1)−→ op′k.

Sinceopl
S(�1)−→ op′k, theValid Compositioncondition for�1 implies thatOut�1

(
opl
) ≺

Out�1

(
op′k

)
. On the other hand, sinceop′k

�1−→ opk, the response forop′k is included
in prefix �1, which is a prefix of both� and �1, so thatOut�

(
op′k

) = Out�1

(
op′k

)
.

Since alsoOut�
(
opl
) = Out�1

(
opl
)
, while by assumption,Out�

(
opk

) ≺ Out�
(
opl
)
,

it follows thatOut�
(
opk

) ≺ Out�
(
op′k

)
.

394 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

Thus, in total,Out�
(
opk

) ≺ Out�
(
op′k

)
, op′k

�−→ opk, and the response foropk
follows the response foropl in �. So,opl is not the latest operation in� that precedes
opk in � and yetOut�

(
opk

) ≺ Out�
(
opl
)
. A contradiction.

The contradiction implies that�(2)
k,b = 0, so that�(1)

k,b − �(2)
k,b = 1 in this case.

2. Assume now that�(1)
k,b = 2. By Property5.4, �(2)

k,b �1, so that�(1)
k,b −�(2)

k,b �1 in this case.

Thus, in all cases,�(1)
k,b − �(2)

k,b �1, as needed. �

SinceOut�1

(
opl
) = Out�2

(
opl
)
, we have that

n⊎
i=1

⊕
�(1)

i

ai =
n⊎

i=1

⊕
�(2)

i

ai .

By Property2.1, it follows that for each processpi , where 1� i�n,⊕
�(1)

i

ai = ⊕
�(1)

i −�(2)
i

ai ⊕ ⊕
�(2)

i

ai .

It follows that

n⊎
i=1


⊕

�(1)
i

ai


=

n⊎
i=1


 ⊕

�(1)
i −�(2)

i

ai ⊕ ⊕
�(2)

i

ai




=

 ⊕

�(1)
1 −�(2)

1

a1 ⊕ ⊕
�(2)

1

a1


⊕ · · · ⊕


 ⊕

�(1)
n −�(2)

n

an ⊕ ⊕
�(2)

n

an




(by definition of the summation operator)

=

 ⊕

�(1)
1 −�(2)

1

a1 ⊕ · · · ⊕ ⊕
�(1)

n −�(2)
n

an


⊕


⊕

�(2)
1

a1 ⊕ · · · ⊕ ⊕
�(2)

n

an




(byCommutativityandAssociativity)

=
n⊎

i=1


 ⊕

�(1)
i −�(2)

i

ai


⊕

n⊎
i=1


⊕

k
(2)
i

ai




(by definition of the summation operator)

=
n⊎

i=1


 ⊕

�(1)
i −�(2)

i

ai


⊕

n⊎
i=1


⊕

k
(1)
i

ai


 .

Hence, theCancellation Lawimplies that

n⊎
i=1


 ⊕

�(1)
i −�(2)

i

ai


= e.

Consider any indexi, where 1� i�n. By Property5.5, �(1)
i − �(2)

i = �(1)
i,b − �(2)

i,b . Now,

Properties5.2 and5.4 immediately imply that−1��(1)
i,b − �(2)

i,b �2, On the other hand,

Property5.6 implies that�(1)
k,b − �(2)

k,b �1, so that not all differences�(1)
i,b − �(2)

i,b , where

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 395

1� i�n, are simultaneously zero. It follows that then elementsa1, a2, . . . , an arenot
n-wise independent over〈I�, ⊕〉. A contradiction. �

6. The impossibility of finite-size switching networks

Finite-state and infinite-state networks are considered in Sections6.1 and 6.2,
respectively.

6.1. Finite-state networks

We show:

Theorem 6.1(Impossibility result for finite-state network). There is no non-trivial finite-
state switching networkN with concurrency(or(N) + 1) · (Ssize(N) + 1

)
that has finite

size, incurs register bottleneck at least2 and implements a monotone group〈I�, M, ⊕,�〉.

Proof. Assume, by way of contradiction, that there is such a switching networkN . Recall
that the number of internal configurations ofN is Ss(N), whereS is the number of internal
states of each switch.

Consider a sequential execution� of networkN involving (or(N) + 1) · (Ssize(N) + 1
)

tokens, whose types are(or(N) + 1) · (Ssize(N) + 1
)
-wise independent over〈I�, ⊕, 〉. By

theMonotone Linearizability Lemma, execution� is linearizable. Write� = �1 · �2 ·
. . . · ��or(N)+1/2�, where each execution fragment�i , 1� i�

⌈
or(N) + 1

2

⌉
, includes the

traversals ofSsize(N) + 1 tokens.
Take now any execution fragment�i , where 1� i� (or(N) + 1). Since each token tra-

verses at least one switch,�i contains at leastSsize(N) + 1 configurations; so, it contains at
leastSsize(N) + 1 internal configurations. Since the total number of internal configurations
of N is Ssize(N), thePigeonhole Principleimplies that some internal configuration ofN
is repeated in�i , so that�i contains at least one pump. Lemma4.1implies that there are at
least two distinct tokens that access two different output registers in any such pump.

It follows that execution� contains at leastor(N) + 1 pumps, and the total number of
output registers (allowing repetitions) accessed in these pumps is at least 2· (or(N) + 1) >

2or(N). ThePigeonhole Principleimplies that there is at least one output register accessed
by tokens in at least three different pumps.

So there are tokenst1, t2 and t3, with t1
�−→ t2

�−→ t3, and pumps�1, �2 and�3 of
� such that tokenti accesses the same output registerr in pump�i of �, where 1� i�3.
Consider also output registerr ′ accessed by tokent ′2 in pump�2 of �. Since� is a sequential

execution,t1
�−→ t ′2

�−→ t3.
We use now execution� to construct another finite (but not sequential) sequence� of

alternating configurations and switch transitions, which involves the same tokens as�, with
the same types and in the same order, except for the following changes:

All switch transitions that involve output registerr, starting with the one involving
token t1 (and r) and preceding the one involving tokent3 (and r) are scheduled to

396 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

occur immediately after the switch transition involving tokent3 (and r), and in the
same order (as in�).

So, roughly speaking, all tokens starting witht1 and not followingt3 that accessr are
“halted” once they get to coverr and till immediately after tokent3 accessesr.

Clearly, the sequence� is an execution ofN , in which each token accesses the same
output register as in�.

Since execution� is linearizable andt1
�−→ t ′2

�−→ t3, it follows that t1
S(�)−→ t ′2

S(�)−→ t3.
Thus, theMonotonicity under Compositionproperty implies thatOut�(t1) ≺ Out�(t ′2) ≺
Out�(t3).

Since � uses tokens with the same types as�, it follows that the types of the
tokens in� are also

⌈
or(N) + 1

2

⌉ · (Ssize(N) + 1
)
-wise independent over〈I�, ⊕, 〉. By

theMonotone Linearizability Lemma, execution� is linearizable. By construction,t ′2
�−→

t3. It follows that t ′2
S(�)−→ t3. Thus, theMonotonicity under Compositionproperty implies

that Out�(t ′2) ≺ Out�(t3). However, by construction of�, Out�(t ′2) = Out�(t ′2), while
Out�(t3) = Out�(t1). It follows thatOut�(t ′2) ≺ Out�(t1). A contradiction. �

We remark that the assumption of non-triviality is essential for Theorem6.1. Since each
token can atomically invoke a computation on an output register, we can implement a
monotoneRMW operation by atrivial switching network consisting of a single switch that
outputs tokens along one output wire, which has an associated register that maintains the
state of theRMW variable to be implemented. The switch serializes the operations (that
correspond to the tokens) so that they can be atomically invoked (by the tokens) on the
register.

Recall theIntegers with Additionmonotone group〈Z, N \ {0}, +, �〉 and theRationals
with Multiplication monotone group〈Z, N \ {0}, +, �〉, which are associated with the
monotoneFetch&Add andFetch&Multiply operations, respectively. So, Theorem6.1im-
mediately implies corresponding impossibility results for switching networks implementing
theFetch&Add andFetch&Multiply operations.

6.2. Infinite-state networks

Clearly, the proof of Theorem6.1 is not applicable to infinite-state networks since the
number of their possible internal configurations is no longer finite. Thus, we need to develop
new techniques in order to handle such networks. We show:

Theorem 6.2(Impossibility result for infinite-state network). There is no non-trivial
infinite-state switching network with unbounded concurrency that has finite size, incurs
switch bottleneck at least2 and implements a monotone group〈I�, M, ⊕,�〉.

Proof. Assume, by way of contradiction that there is such a switching networkN . Partition
N into layers 1, 2, . . . , d(N) in the natural way. Assume, without loss of generality, that
any switchb at layer�, where 2�� < d(N), has its input wires connected to switches of

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 397

layer� − 1 and its output wires connected to switches of layer� + 1.3 Since the switch
bottleneck ofN is 2, there are at least two switches in each of its layers.

We first construct an infinite non-sequential sequence� for networkN . We prepare the
reader that� is nearly an execution of networkN since it only fails the liveness condition.
However, as we discussed in Section4.5, � maintains the switch bottleneck ofN , and this
is all we will need of it. For clarity of exposition, we will abuse terminology and still call
� (and several sequences we will derive from it as well) an execution.
Construction of execution�: The execution� involves an infinite sequence of tokens

t1, t2, . . . with associated typesa1, a2, . . . that are issued by distinct processes. The types
are chosen so that for each (finite) prefixt1, . . . , tn of tokens, the associated typesa1, . . . , an

aren-wise independent over〈I�, ⊕〉.
To construct the execution�, we first define through a simultaneous induction two finite

sequences each of lengthd(N):
• a sequence of pairs of disjoint, infinite subsequences of the type sequencea = a1, a2, . . .,

denoted〈a1.i ,a2.i〉, where 1� i�d(N);
• a sequence of pairs of distinct switches from the same layer in the network, denoted

〈b1.i , b2.i〉, where 1� i�d(N).
The properties of the two sequences will be used inductively along the way. Specifically,
the induction proceeds as follows:
Basis case:Assume thati = 1.
• Fix a1.1 anda2.1 to be the odd and even (infinite) subsequences ofa, respectively.
• Fix b1.1 andb2.1 to be any arbitrary switches in layer 1 of the network.
Call tokens in sequencesa1.1 anda2.1 theoddandeventokens, respectively.
Induction hypothesis:Assume that we have defined all pairs〈a1.i ,a2.i〉 and〈b1.i , b2.i〉 for
all indicesi, 1� i�k.
Induction step:We now define〈a1.k+1,a2.k+1〉 and〈b1.k+1, b2.k+1〉.
Since the balancer bottleneck is at least two, the switchb1.k and the infinite sequence
a1.k determine two distinct switchesb1.k+1 andb′

1.k+1 and two disjoint infinite sequences
a1.k+1 anda′

1.k+1 (that are subsequences ofa1.k). Correspondingly, the switchb2.k and the
infinite sequencea2.k determine two distinct switchesb2.k+1 andb′

2.k+1 and two disjoint
infinite sequencesa2.k+1 anda′

2.k+1 (that are subsequences ofa1.k). Assume, without loss
of generality, that the switchesb1.k+1 andb2.k+1 are distinct. Note also that the sequences
a1.k+1 anda2.k+1 are necessarily disjoint since they are subsequences ofa1.k anda2.k,
respectively, which are disjoint by induction hypothesis.
So, fori = k + 1, define the pairs〈a1.k+1,a2.k+1〉 and〈b1.k+1, b2.k+1〉, respectively.

Note that our inductive definition guarantees that for each indexi, where 1� i�d(N),
the sequencesa1.i anda2.i contain only odd and even tokens, respectively.

We now continue with the construction of sequence�. Write � = �1 · �2 · . . . as the
concatenation of an infinite number of execution fragments, where each execution fragment
�i is finite and includes switch transitions involving tokenti , as follows:

3 Note that this assumption is indeed with no loss of generality, since for wires that connect non-consecutive
layers, we can intercept dummy switches in the missing layers, with input and output width 1, which simply
forward tokens (without routing them).

398 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

For each tokenti , denotelast(ti) the largest integerk, 1�k < d(N), such that token
ti in eithera1.k or a2.k, but in neithera1.k+1 nor a2.k+1, or d(N) if no such integer
exists. Then, the execution fragment�i includes only the switch transitions involving
the tokenti and a switch from each layer�, where 1��� last(ti).

Intuitively, each tokenti enters the network from either switchb1.1 or switchb2.1; it traverses
the network till either it exits the network or it is “halted” once it gets to cover the switch
immediately following the switch it has halted in layerlast(ti) (in caselast(ti) < d(N)).

Note that the construction of execution� guarantees, in particular, that both sequences
a1.d(N) anda2.d(N) are infinite. Thus, it follows that an infinite number of odd tokens
traverses switchb1.d(N), and an infinite number of even tokens traverses switchb2.d(N).

The construction of execution� induces anoddpath�1 = b1.1, . . . , b1.d(N) and aneven
path�2 = b2.1, . . . , b2.d(N). The odd and even paths are traversed by odd and even tokens,
respectively. Since the switchesb1.i andb2.i are distinct for all layersi, 1� i�d(N), it
follows that the odd and even paths are disjoint. We prepare the reader that the rest of our
proof will use the two possible ways of ordering these two disjoint paths in order to create
two corresponding executions. We will use the fact that the two resulting executions are
both still indistinguishable from� and linearizable; this will lead to a contradiction. We
now continue with the details of the formal proof.

We proceed to use execution� in order to construct a finite execution�.
Construction of execution�: Fix � to be the shortest prefix of� that includes a switch

transition involving an odd token at a switch from layerd(N) and a switch transition
involving an even token at a switch from layerd(N); thus,� is a (not necessarily complete)
finite execution. Since� is finite, it only involves a finite numbernof tokens. By construction
of execution�, the types of thesen tokens aren-wise independent over〈I�, ⊕〉. Moreover,
for each tokent involved in execution�, Out�(t) = Out�(t).

Denotet1 andt2 the latest odd and even tokens, respectively, in execution�. We will use
t1 andt2 in order to construct from� two distinct finite executions�1 and�2.
Construction of executions�1 and�2: We permute switch transitions in execution� in

order to obtain executions�1 and�2 as follows:
• In execution�1, all switch transitions involving odd tokens precede the switch transitions

involving even tokens.
• In execution�1, all switch transitions involving even tokens precede the switch transitions

involving odd tokens.
In both executions�1 and�2, the relative order of odd tokens (resp., even tokens) is the
same as the relative order of odd tokens (resp., even tokens) in execution�.

Since odd tokens (resp., even tokens) follow the odd path�1 (resp., even path�2) in
both executions�1 and�2, the paths�1 and�2 are disjoint, and the relative order of odd
and even tokens, respectively, is maintained in all executions�, �1 and�2, it follows that
Out�(t1) = Out�1

(t1) = Out�2
(t1) andOut�(t2) = Out�1

(t2) = Out�2
(t2).

We finally use executions�1 and�2 in order to construct executions�1 and�2.
Construction of executions�1 and �2: We extend�1 and�2 to complete executions�1

and�2, respectively.
Since�1 extends�1 and the traversals of tokenst1 and t2 are both completed in�1, it

follows thatOut�1
(t1) = Out�1

(t1) andOut�1
(t2) = Out�1

(t2). Since�2 extends�2 and

C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400 399

the traversals of tokenst1 and t2 are both completed in�2, it follows that Out�2
(t1) =

Out�2
(t1) andOut�2

(t2) = Out�2
(t2). It follows thatOut�1

(t1) = Out�2
(t1) = Out�(t1)

andOut�1
(t2) = Out�2

(t2) = Out�(t2).
Since�1 is a complete execution in which the types of operations aren-wise independent,

theMonotoneLinearizability Lemmaimplies that�1 is linearizable. Recall that, by construc-

tion,t1
�1−→ t2. It follows thatt1

S(�1)−→ t2. Thus, theMonotonicity underCompositionproperty
implies thatOut�1

(t1) ≺ Out�1
(t2). Similarly, since�2 is a complete execution in which the

types of operations aren-wise independent, theMonotone Linearizability Lemmaimplies

that�2 is linearizable. Recall that, by construction,t2
�2−→ t1. It follows thatt2

S(�2)−→ t1. Thus,
theMonotonicity under Compositionproperty implies thatOut�2

(t2) ≺ Out�2
(t1).

So, in total,Out�1
(t1) ≺ Out�1

(t2) = Out�2
(t2) ≺ Out�2

(t1) = Out�1
(t1). A contradic-

tion. �

We remark that the assumption of anon-trivial switching network is essential for
Theorem6.2 to hold: A switching network consisting of a single infinite-state switch with
n input wires andn output wires (wheren is the number of concurrent processes) can im-
plement anyRMW register as follows. The state of the variable is encoded by the state of
the switch. To invoke an operation on the variable, a process issues a token with a state
encoding the type of the operation. Such a token, when atomically processed by the switch,
will cause the natural changes to its state and to the state of the switch, so that the new state
of the switch is the new state of the variable, and the new state of the token is the response
of the variable to the operation invoked by the token.

Recall theIntegers with Additionmonotone group〈Z, N \ {0}, +, �〉 and theRationals
with Multiplication monotone group〈Z, N \ {0}, +, �〉, which are associated with the
monotoneFetch&Add andFetch&Multiply operations, respectively. So, Theorem6.1im-
mediately implies corresponding impossibility results for switching networks implementing
theFetch&Add andFetch&Multiply operations.

7. Conclusion

We have studied the possibility or impossibility, and the corresponding costs, of devising
distributed implementations of any monotoneRMW operation that achieve high concur-
rency and low contention. Through ourMonotone Linearizability Lemma,which may be of
independent interest, we identified inherent ordering constraints of linearizability for any
such implementation; we proposed exploiting this inherent linearizability in order to devise
impossibility proofs. We succeeded in doing so within the specific context of a switching
network implementing a monotoneRMW operation, for which we derived thefirst lower
bounds on size. These negative end results establish thefirst space complexity separations
betweenFetch&Increment and any monotoneRMW operation in the model of switching
networks.

We remark that the proof of the impossibility result for infinite-state networks has required
unbounded concurrency. This is not the case for finite-state switching networks, even though
we have made similar assumptions on register bottleneck and switch bottleneck for the two

400 C. Busch et al. / Theoretical Computer Science 333 (2005) 373–400

classes of switching networks, respectively, in our corresponding proofs. Thus, the two
impossibility results represent a trade-off between the strength of the switches (finite or
infinite number of states) and the concurrency of the network (bounded or unbounded), and
neither of them is implied by the other.

Finally, we mention that we are able to use ourMonotone Linearizability Lemmato
prove a lower bound on latency for switching networks that implement monotone groups.
Specifically, we prove that any switching network (whether made up of switches with a
finite or infinite number of states) that implements a monotoneRMW operation induces
executions with latency�(n), wheren is the number of concurrent processes participating
in the execution. This lower bound complements the corresponding lower bound on latency
shown in[7, Theorem 3.2].

Acknowledgements

We would like to thank the anonymousTheoretical Computer ScienceandSIROCCO
2003reviewers for their helpful comments.

References

[1] W. Aiello, C. Busch, M. Herlihy, M. Mavronicolas, N. Shavit, D. Touitou, Supporting increment and
decrement operations in balancing networks, Chicago J. Theoretical Comput. Sci. 2000-4, December 14,
2000 (electronic).

[2] J. Aspnes, M. Herlihy, N. Shavit, Counting networks, J. ACM 41 (5) (1994) 1020–1048.
[3] J.E. Burns, N.A. Lynch, Bounds on shared memory for mutual exclusion, Inform. and Comput. 107 (2) (1993)

171–184.
[4] C. Dwork, M. Herlihy, O. Waarts, Contention in shared memory algorithms, J. ACM 44 (6) (1997) 779–805.
[5] K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger, The notions of consistency and predicate locks in a database

system, Commun. ACM 19 (11) (1976) 624–633.
[6] P. Fatourou, M. Herlihy, Adding networks, Proc. 15th Internat. Symp. on DIStributed Computing, J.L. Welch

(Ed.), Lecture Notes in Computer Science,Vol. 2180, Springer, Lisbon, Portugal, October 2001, pp. 330–342.
[7] P. Fatourou, M. Herlihy, Read–Modify–Write networks, Distributed Comput. 17 (2004) 33–46.
[8] J. Goodman, M. Vernon, P. Woest, Efficient synchronization primitives for large-scale, cache-coherent

multiprocessors, Proc. 3rd Internat. Conf. on Architectural Support for Programming Languages and
Operating Systems, April 1989, pp. 64–75.

[9] M. Herlihy, N. Shavit, O. Waarts, Linearizable counting networks, Distributed Comput. 9 (4) (1996)
193–203.

[10] M. Herlihy, J.Wing, Linearizability: a correctness condition for concurrent objects,ACMTrans. Programming
Languages and Systems 12 (3) (1990) 463–492.

[11] C.P. Kruskal, L. Rudolph, M. Snir, Efficient synchronization on multiprocessors with shared memory, Proc.
5th Annu. ACM Symp. on Principles of Distributed Computing, August 1986, pp. 218–228.

	The cost of concurrent, low-contention Read&Modify&Write 62626262
	Introduction
	Background, motivation and framework
	Contribution and significance
	Related work and comparison
	Road map

	Monotone groups
	Composite operators
	Monotone groups
	=n-Wise independence

	System model
	Distributed systems implementing monotone groups
	Linearizability

	Switching networks
	Basic definitions
	Processes, tokens and switches
	States, configurations and executions
	Outputs
	Contention measures
	Switching networks implementing monotone groups
	The covering technique

	The Monotone Linearizability Lemma
	The impossibility of finite-size switching networks
	Finite-state networks
	Infinite-state networks

	Conclusion
	Acknowledgements
	References

