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Abstract� A connection management protocol establishes and handles a connection between

two hosts across a wide�area network to allow reliable message delivery� We continue previous

work of Kleinberg et al� �Proceedings of the �rd Israel Symposium on the Theory of Computing

and Systems� pp� ������	� January �

�� to study the precise impact of the level of synchrony

provided by the processors� clocks on the performance of connection management protocols�

under common assumptions on the pattern of failures of the network and the host nodes�

Two basic timing models are assumed� clocks that exhibit certain kind of a drift from

the rate of real time� and clocks that display a pattern of synchronization to real time� We

consider networks that can duplicate and reorder messages� and nodes that can crash� We are

interested in simultaneously optimizing the following performance parameters� the message

delivery time� which is the time required to deliver a message� and the quiescence time� which

is the time that elapses between successive periods of quiescence� at which the receiving host

deletes all earlier connection records and returns to an initial state�

We establish natural trade�o�s between message delivery time and quiescence time� in the

form of tight lower and upper bounds� for each combination of the timing models and failure

types� Several of our trade�o� results signi�cantly improve upon or extend previous ones shown

by Kleinberg et al�

Key words� distributed computation� communication networks� connection management�

protocols� lower bounds� trade�o�s� message delivery time� quiescence time� synchrony�

�



Contents

� Introduction �

��� Motivation�Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Failure Types� Timing Models and Timing Parameters � � � � � � � � � � � � � � �

��� Detailed Description and Relation to Previous Work � � � � � � � � � � � � � � � �

����� Network Failures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Network and Node Failures � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Organization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� De�nitions and Preliminaries ��

��� Clock Types and Timing Models � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� System Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Connection Management Protocols � � � � � � � � � � � � � � � � � � � � � � � � � �


� Generic Protocols ��

��� A Protocol Based on Time Stamps � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Description and Preliminaries � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Correctness Proof � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� A Timer�Based Protocol � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Drifting Clocks ��

	 Approximately Synchronized Clocks �	

��� Lower Bound � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Upper Bounds � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 Drifting Clocks ��

� Approximately Synchronized Clocks 	�

� Discussion and Directions for Further Research 
	

�



� Introduction

��� Motivation�Overview

Transport layer protocols ��
� Chapter ��� such as the TCPIP Internet Suite �see� e�g� ����

or ��	� Chapter ���� provide a reliable connection between two remote hosts� a sender and

a receiver� across a wide�area network� The sender wishes to establish a connection to the

receiver� transmit information� and later release the connection� A connection management

protocol coordinates the establishment and release of the connection� In turn� protocols built

over the transport layer provide the ground for ftp� telnet� remote procedure calls� and a

number of other useful communication primitives that rely on reliable connections�

In a large network� each sender typically maintains a number of parallel sessions� Moreover�

there can be a su�cient number of di�erent incarnations of any session with a single receiver�

in each incarnation� the connection is opened� closed and opened again� In the presence of

network failures� even as benign as message reordering and duplication� it is necessary to

maintain records at each receiver keeping track of which packets have been received� acted on�

and so forth� Based on its own local records� the receiver must deliver each individual message

from the sender once and never twice� even if it receives multiple packets that are duplicates

of the message� the message delivery time is the time required to deliver a message� As the

number of parallel sessions increases� however� memory limitations do not allow processing

nodes to keep history records for very long� So� the receiver must periodically quiesce by

deleting past connection records and returning to an initial state� the quiescence time is the

time that elapses between periods of quiescence�

Message delivery time determines the latency of data transmission� thus� for applications

with short incarnations� such as remote procedure calls� it is particularly desirable to keep

message delivery time as small as possible� On the other hand� the amount of information

that needs to be stored at each node is proportional to quiescence time� so� for applications

involving steady stream�like tra�c with stringent requirements on transmission rate� it is

even necessary to keep quiescence time as small as possible� so that available bu�er space at

each processing node does not run over� Naturally� a large number of protocols have been

proposed in the practical literature to minimize either message delivery time or quiescence

time ��� ��� ��� ��� ��� ���� In short� all of these protocols rely on using some combination

of timers� synchronized clocks� packet delay bounds� and unique incarantion identi�ers� these

protocols have attracted much attention in the literature on the veri�cation of communication
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protocols�� On the one extreme� timer�based protocols �see� e�g�� ����� achieve small message

delivery time� on the other extreme� the three�packet handshake protocol �see� e�g�� ��� �� �� ����

guarantees small quiescence time�

Timer�based protocols require knowledge of the maximum packet lifetime �� roughly speak�

ing� � is the largest amount of time a duplicate of any message may survive in the network

before reaching the receiver�� The receiver can deliver immediately if it is prepared to maintain

a record for an amount of time equal to the maximum packet lifetime� in this way� the receiver

is certain that a duplicate will not arrive after the record is deleted� The catch� however� is that

� can� in general� be quite large� while duplicates may� in fact� survive for signi�cantly shorter

than � in �normal� executions� On the opposite extreme� the three�packet handshake protocol

imposes no overhead in terms of clocks or connection records� Instead� each processing host

uses a source of unique identi�ers� upon request from the host� the source yields an identi�er

that has not been generated before� Each message is handled in a �three�way handshake�

fashion� which� roughly speaking� has as follows� First� the sender sends a unique identi�er x

to the receiver� in response� the receiver generates a unique identi�er y and replies with hx� yi�

Finally� the sender sends the message together with y� and the receiver delivers the message�

being sure it is not delivering a duplicate�� Unfortunately� however� the three�packet hand�

shake protocol incurs a rather large message delivery time� since it requires three round�trips of

communication between the sender and the receiver� Indeed� it has been a natural belief among

practitioners that there are some sort of inherent trade�o�s between message delivery time and

quiescence time in connection management protocols� rendering these protocols ine�cient in

either one or the other of the two performance measures�

Kleinberg et al� �
� have been the �rst to establish mathematically precise trade�o�s between

message delivery time and quiescence time in a number of natural settings� More speci�cally�

Kleinberg et al� have studied the connection management problem from the perspective of the

amount of synchrony provided by the clocks of the sender and the receiver� their results indicate

that the trade�o�s between message delivery time and quiescence time depend in a critical and

subtle way on this amount of synchrony� The trade�o� results of Kleinberg et al� �
� have been

expressed as non�trivial� simultaneous lower bounds on message delivery time and quiescence

time under particular synchrony assumptions� these lower bounds have been accompanied by

�Such works attempt to verify known protocols for correctness� however� work on investigating the necessity

of the model assumptions on which such protocols rely has been much less voluminous�
�We assume that all such duplicates eventually reach the receiver� so that � is a �nite quantity�
�For a concise and more accurate description of the three�packet handshake protocol� we refer the reader

to ��� Section ���
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corresponding protocols whose performance guarantees nearly match the lower bounds�

In this paper� we continue the work of Kleinberg et al� �
� by further studying the e�ect of

the behavior of the sender and receiver�s clocks with respect to real time on the performance

of connection management protocols� we still adopt all assumptions from �
� on the timing

properties of the clocks� and on the pattern of failures of the network and the host nodes� We

establish new� natural trade�o�s between message delivery time and quiescence time� in the

form of tight lower and upper bounds� for each combination of timing assumptions and failure

types� Several of our trade�o� results signi�cantly improve upon or extend the ones shown by

Kleinberg et al� �
��

Our lower bounds use the technique of �shifting� executions� originally introduced by Lun�

delius and Lynch for showing lower bounds on the precision achievable by clock synchronization

algorithms ����� Roughly speaking� this technique amounts to simultaneously �retime� events

occurring at processes and �shift� their clocks by corresponding amounts� so that individual

processes behave mistakenly in the resulting execution due to their inability to tell the two

executions apart� We note that the �shifting� technique has been the one used for showing

lower bounds by Kleinberg et al� �
�� Furthermore� one of our upper bounds is based on a

substantial improvement of a speci�c �time�stamping� technique introduced by Kleinberg et

al� �
� Section ���

��� Failure Types� Timing Models and Timing Parameters

Throughout� we focus on network failures� which allow duplication and reordering of messages�

We also consider node failures� where the receiver� but not the sender� may fail by crashing��

Both network and node failures have been considered by Kleinberg et al� �
��

We consider two basic timing models� In the drifting clocks model� each of the sender and

receiver�s clocks runs at a rate that may vary with time but always remains within a factor of

��� and � to the rate of real time� for some �xed �and known� constant � � �� called drift�

In the approximately synchronized clocks model� each of the clocks is always within � of real

time� for some �xed �and known� constant � � �� called precision� Both the drifting clocks

and the approximately synchronized clocks models have been studied in the preceding work of

Kleinberg et al� �
��

�We assume� however� that the receiver may not maintain in stable storage the time of its last crash� since�

otherwise� if it is not required to deliver any message whose initial packet was sent before this time� there is a

general reduction to the case of message duplications 	cf� ��� Section 
�����
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We follow �
� to express our bounds on message delivery time and quiescence time in terms

of two main timing parameters describing packet delays� The �rst of these parameters refers

to a speci�c execution e of the system and is called the maximum packet delay in execution

e� denoted de� that is� de is the supremum of the times that elapse between the sending of

a message and the receipt of �a duplicate of� it in execution e� The second parameter of

interest is the maximum packet lifetime �� already introduced in Section ���� notice that � is

the maximum� over all executions e� among all de� While we may sometimes assume that �

is known� in contrast� neither the sender nor the receiver may know de a priori in execution

e� Kleinberg et al� �
� Section �� provide excellent motivation for the use of de in expressing

bounds on message delivery time and quiescence time��

�We wish to be able to prove time bounds that hold for every execution of a

protocol� not just in a worst�case sense� Thus� for instance� while it is correct to

say that the time required before delivery by the three�packet handshake is at most

��� one can make the stronger statement that the time required is at most �de

in execution e� In this way� one can consider whether a given protocol has the

following desirable property� in �good executions� �those with de � ��� the time

required is small relative to de��

Moreover� we introduce two additional timing parameters describing the behavior of the

clocks in any speci�c execution of the timing models we consider� much in the same way de

describes packet delays� For the drifting clocks model� we de�ne the worst drift in execution

e� denoted �e� to be the maximum rate observed on any of the sender and receiver�s clocks in

execution e� for the approximately synchronized clocks model� the worst precision in execution

e� denoted �e� is de�ned to be the maximum absolute deviation from real time observed on any

of the sender and receiver�s clocks in execution e� Clearly� ��� � �e � � and � � �e � �� It turns

out that the parameters �e and �e� together with the parameter de� determine the dependency

of time bounds on message delivery time and quiescence time achievable in execution e on

timing properties that are inherent to execution e in a more accurate way than �� � and ��

respectively� do�

�It appears that similar motivations have recently led several researchers to study a notion of optimality per

each particular execution for clock synchronization algorithms� this notion is stronger than the more common

notion of worst�case optimality ��� 
��

	



��� Detailed Description and Relation to Previous Work

Sections ����� and ����� describe our results for the cases of network failures� and combined

network and node failures� respectively�

����� Network Failures

We start with the case where there are network failures but not node failures� Our point

of departure is an ingenious connection management protocol designed by Kleinberg et al �
�

Section �� for the approximately synchronized clocks model in the presence of network failures�

Roughly speaking� this protocol relies on a conservative estimation� made by the receiver� of the

maximum delay in any speci�c execution� the estimates are obtained through a �time�slicing�

technique requiring both the sender and the receiver to use their �approximately synchronized�

clocks in order to send to each other one time�stamped packet per each �time�slice�� In turn�

these estimates enable the receiver to determine when to deliver or quiesce�

We observe that the safety condition satis�ed by this protocol� namely that it does not

deliver a message twice� holds independently of the particular timing assumptions made for

the approximately synchronized clocks model�� This observation makes this protocol a natural

candidate of a generic connection management protocol which guarantees at�most�once mes�

sage delivery in the presence of network failures for any model in which clocks are available to

the sender and the receiver� Such a generic protocol would enjoy nice portability properties

across models for which the available clocks satisfy di�erent timing assumptions� while it would

still run correctly for models in which the timing properties of the clocks are non�amenable to

a precise formalization� or even completely unknown�

There is� however� an additional� natural performance requirement on a generic connection

management protocol� Indeed� di�erent applications may present di�erent needs regarding

which one between message delivery time and quiescence time to minimize while still retaining

the other bounded� so� a connection management protocol is truly competitive in performance

only if it allows such appropriate trade�o�s between its message delivery time and quiescence

time� Unfortunately� as we explain below� the connection management protocol of Kleinberg

et al� �
� Section �� fails to do so�

�An inspection of the proof of ��� Theorem �� reveals that the timing assumptions in the approximately

synchronized clocks model are explicitly used in the analysis of the performance of this protocol� namely in

deriving upper bounds on the message delivery time and quiescence time it achieves� however� these timing

assumptions are not used in its correctness proof�
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For the approximately synchronized clocks model� the connection management protocol

of Kleinberg at al� �
� Section �� achieves upper bounds of �� � ����de � �� � ����� � c and

�� � ��de � ��� � ���� c on message delivery time and quiescence time� respectively� for any

constant c � �� where � � � is a �trade�o�� parameter �cf� �
� Theorem ���� Increasing � lowers

the upper bound on message delivery time but raises the upper bound on quiescence time� on

the other hand� decreasing � raises the upper bound on message delivery time but lowers

the upper bound on quiescence time� Moreover� the upper bound on message delivery time

increases as � decreases down to �� while still remaining bounded above by a �nite quantity�

namely �de � �� � c� unfortunately� the same does not hold on the way the upper bound

on quiescence time increases with �� the limit of the upper bound on quiescence time� as �

becomes large� is in�nite� Thus� the connection management protocol of Kleinberg et al� �
�

Section �� may become non�competitive in performance for the approximately synchronized

clocks model� due to unbounded increase in the amount of connection records per node� for

applications requiring the latency of packet transmission to become arbitrarily small�

Call a connection management protocol bounded if the upper bounds it achieves on message

delivery time and quiescence time are both bounded functions of any involved trade�o� param�

eters� The work of Kleinberg et al� �
� leaves open the question of whether there exists or not a

connection management protocol that is both generic and bounded� We resolve this question

by a judicious adjustment of the timing conditions which the receiver uses to determine when

to deliver or quiesce in the generic protocol of Kleinberg et al �
�� the result is another generic

connection management protocol which is also bounded for the approximately synchronized

clocks model�

We also present another generic connection management protocol that is both simple and

natural� This protocol employs a timer and relies on knowledge of the maximum packet lifetime

�� The receiver delivers immediately each time it receives a new packet� it then counts o� some

time on its local clock before quiescing in order to make sure that the elapsed real time is no

less than ��

Drifting Clocks

We �rst consider the case of drifting clocks� for which we establish a trade�o� lower bound

result between message delivery time and quiescence time�

The three�packet handshake protocol ��� ��� still works for the drifting clocks model to






achieve upper bounds of �de on both message delivery time and quiescence time�� Kleinberg

et al� �
� Section ���� describe a natural timer�based protocol achieving upper bounds of de and

��� � de on message delivery time and quiescence time� respectively� This protocol requires

knowledge by the receiver of the maximum packet lifetime �� moreover� the upper bound on

quiescence time achieved by the protocol of Kleinberg et al� �
� is particularly large for systems

whose maximum packet lifetime is large� However� Kleinberg et al� establish almost optimality

of this protocol by presenting a nearly matching trade�o� between message delivery time and

quiescence rime that must hold for some execution of any connection management protocol�

More speci�cally� Kleinberg et al� �
� Theorem �� show that for any connection management

protocol there exists an execution e with de � ��� for which either a lower bound of �de on

message delivery time holds or a lower bound of ����� �de� on quiescence time holds�

We establish a more precise trade�o� between message delivery time and quiescence time

that must still hold for some execution of any connection management protocol� More specif�

ically� we show that for any �xed constant �� � � � � �� either a lower bound of ��� ���de on

message delivery time holds� or a lower bound of ���� � �� � ��de� on quiescence time holds

for some execution e of any arbitrary connection management protocol� Our result extends

and improves upon �
� Theorem �� in a signi�cant way� it is a substantial re�nement of �
�

Theorem �� that achieves to incorporate the trade�o� parameter �� note that �
� Theorem �� is

but the special case of our result with � � ��

Approximately Synchronized Clocks

We next turn to the case of approximately synchronized clocks� for which we present both

lower and upper bounds�

We start with lower bounds� Kleinberg et al� �
� Section �� consider the special case of

perfect clocks �i�e�� approximately synchronized clocks with � � ��� in particular� Kleinberg

et al� show that a certain trade�o� between message delivery time and quiescence time must

hold for some execution of any connection management protocol in the perfect clocks model�

In more detail� Kleinberg et al� �
� Theorem �� show� assuming � � �� that for any connection

management protocol� for any constant �� where � � �� � �� there exists some execution e for

which either a lower bound of �� � ���de on message delivery time holds� or a lower bound of

�Processors may read o� unique time stamps from their clocks� these time�stamps may be used to implement

unique identi�ers� required by the three�packet handshake protocol� in cases where unique identi�ers are not

separately available�
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minf�� �de��
�g on quiescence time holds� notice� however� that the latter lower bound never

exceeds �� Kleinberg et al� remark �
� Section ���

�For general � � �� we do not know how to obtain a correspondingly tight lower

bound� and leave this as an open question��

We resolve this open question of Kleinberg et al� by presenting a corresponding trade�o�

result for the case of general � � �� More speci�cally� we show that for any �xed constant

� � �� either a lower bound of �������de�� on message delivery time holds� or a lower bound

of ������ ���de� � on quiescence time holds for some execution e of any arbitrary connection

management protocol�

For purpose of direct comparison to the trade�o� result of Kleinberg et al� �
� Theorem ���

which holds just for the special case where � � �� set �� � ���� ���� where � � �� Under this

substitution� the lower bounds on message delivery time and quiescence time in their result can

be expressed as �������de and minf�� ���������deg� respectively� these expressions are almost

identical to those obtained by setting � � � in the corresponding lower bounds we have shown�

Our trade�o� result implies that the timing uncertainty � in the approximately synchronized

clocks model incurs an additive overhead proportional to � on each of the message delivery

time and the quiescence time�

Our trade�o� result improves upon the corresponding result of Kleinberg et al� �
� Theorem

�� in two signi�cant ways� First� it extends �
� Theorem �� to the case of general � � �� Second�

when specialized for the case where � � �� the lower bound of ������ ���de on quiescence time

improves in some cases upon the corresponding lower bound of minf�� ����� � ���deg� shown

in �
� Theorem ��� this is so because minf�� ����� � ���deg � �� while it can be veri�ed that

����� � ���de exceeds � in the case where de � � if � is chosen so that � � ���� � de��

We continue with upper bounds� We use the timing assumptions made for the approxi�

mately synchronized clocks model to carry out a careful timing analysis of our generic connec�

tion management protocol� This analysis reveals upper bounds on message delivery time and

quiescence time which not only still incorporate the trade�o� parameter �� but also improve

substantially upon the corresponding upper bounds achieved by the corresponding protocol

in �
� Theorem ��� More speci�cally� we show upper bounds of �������de�����������c and

�������de�����������c on message delivery time and quiescence time� respectively� for any

constant c � �� � � � is a �trade�o�� parameter� We remark that each of these upper bounds

converges to the �nite quantity �de����c as � approaches in�nity� this implies that our generic

connection management protocol is bounded for the case of the approximately synchronized
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clocks model� In contrast� the generic connection management protocol of Kleinberg et al� �
�

Section �� achieves upper bounds of �������de���������� c and �����de���������c on

message delivery time and quiescence time� respectively� these bounds imply that the �generic�

protocol of Kleinberg et al� is not bounded for the approximately synchronized clocks model�

We �nally argue that the timer�based protocol described before achieves upper bounds of

de and �� �	 on message delivery time and quiescence time� respectively� when specialized to

the approximately synchronized clocks model�

����� Network and Node Failures

We next turn to the case where there are both network and node failures�

Drifting Clocks

We �rst consider the case of drifting clocks� for which we show a lower bound on message

delivery time�

We establish a lower bound on message delivery time that must hold for some execution

of any connection management protocol� More speci�cally� we show that for any arbitrary

connection management protocol� there exists an execution e of it with de � ����� � �� for

which a lower bound of ��de holds on message delivery time� No corresponding lower bound

had been shown in the preceding work of Kleinberg et al� �
��

Approximately Synchronized Clocks

We next turn to the case of approximately synchronized clocks� for which we show two lower

bounds on message delivery time that trade�o� strength and generality�

First� we show that for any connection management protocol� there exists an execution e

of it such that � � de � ��� for which a lower bound of de � �� holds on message delivery

time� Second� we show that a stronger assumption on the execution e su�ces to allow a larger

lower bound on message delivery time� More speci�cally� we show that� under the assumption

� � de � ��� ������ a lower bound of �de � �� on message delivery time holds�

Our second result improves upon the corresponding result of Kleinberg et al� �
� Theorem

�� in two singi�cant ways� First� it extends �
� Theorem �� to the case of general � � �� Second�

when specialized for the case where � � �� the lower bound of �de on message delivery time
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holds for more executions� More speci�cally� we show that a lower bound �de on message

delivery time holds for some execution e with de � ���� while Kleinberg et al� show that a

lower bound �de on message delivery time holds for some execution e with de � ��
�

Figures � �a� and �b� provide a summary of the lower and upper bounds on message delivery

time and quiescence time known so far for each of the timing models we have considered� for

the cases of network failures� and combined network and node failures� respectively�

��� Organization

The rest of the paper is organized as follows� Section � contains formal de�nitions and some

preliminary facts� Part �� deals with network failures� it consists of Sections �� �� and ��

In Section �� two generic protocols are presented that solve connection management� for

a general model with clocks� The drifting clocks model and the approximately synchronized

clocks model are treated in Sections � and �� respectively� Part �� considers combined network

and node failures� it consists of Sections � and 	� which treat the drifting clocks model and

the approximately synchronized clocks model� respectively� We conclude� in Section �� with a

discussion of our results and some open problems�

� De�nitions and Preliminaries

Our de�nitions closely match corresponding ones in �
� Section ���

The system we model consists of two nodes S �sender� and R �receiver�� corresponding

users US and UR at the nodes� and a network connecting the two nodes� Thus� US and UR are

the two users at the opposite ends of a connection� while S and R are the network interfaces

for US and UR� respectively� The sender S wishes to transmit a single message to the receiver

R� the receiver is required to eventually deliver the message� but never to deliver it for a second

time� S and R communicate through packets sent along the network� Throughout� denote �

the domain of real time�

This section is organized as follows� Section ��� introduces clock types and corresponding

timing models� De�nitions for the formal system model appear in Section ���� while Section ���

de�nes the connection management problem�
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��� Clock Types and Timing Models

A clock is a strictly increasing �and unbounded�� piece�wise continuous function of real time


 � � � �� denote 
�� the inverse of 
� In the generic clocks model� clocks 
S and 
R are

associated with S and R� respectively�

We consider two main clock types� clocks that may �drift� away from the rate of real time�

and clocks that are approximately synchronized with respect to real time�

Drifting Clocks

Fix any constant � � �� called drift� A ��drifting clock� or drifting clock for short� is a clock


 � � � � such that for all real times t�� t� � � with t� � t��

�

�
�


�t��� 
�t��

t� � t�
� � �

Roughly speaking� a ��drifting clock runs at a rate between ��� and � times the rate of real

time� note that the rate of a ��drifting clock may itself vary with real time�

A non�drifting clock is a ��drifting clock 
 � � � � with � � �� Thus� for all real times

t�� t� � �� 
�t�� � 
�t�� � t� � t�� in other words� a non�drifting clock runs at the rate of real

time�

In the drifting clocks model �
�� each of 
S and 
R is a drifting clock�

Approximately Synchronized Clocks

Fix any constant � � �� called precision� An ��synchronized clock� or approximately syn�

chronized clock� is a clock 
 � � � � such that for each real time t � �� j
�t� � tj � ��

Roughly speaking� an ��synchronized clock remains always within � of real time� An immedi�

ate implication of the de�nition of a ��synchronized clock is that for any real times t�� t� � ��

j�
�t��� 
�t���� �t� � t��j � ���

A perfect clock is an ��synchronized clock 
 � � � � with � � �� Thus� for each real time

t � �� 
�t� � t� Note that a perfect clock is also a non�drifting clock� but not vice versa�

The approximately synchronized clocks model �
� is de�ned by assuming that each of 
S and


R is an approximately synchronized clock� in the perfect clocks model �
�� each of 
S and 
R

is a perfect clock�
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An immediate implication of the de�nition of the approximately synchronized clocks model

is that j
S�t��
R�t�j � ��� The weakly synchronized clocks model is de�ned as a weaker variant

of the approximately synchronized clocks model in which we assume that this implication

holds� and also that for any real times t�� t� � �� both j�
S�t��� 
S�t���� �t� � t��j � ��� and

j�
R�t��� 
R�t���� �t� � t��j � ��� while we relax the assumption that each of the individual

clocks of S and R be ��synchronized� The following is an immediate implication of the three

timing conditions de�ning the weakly synchronized clocks model� which will be useful in our

later proofs�

Lemma ��� In the weakly synchronized clocks model� for any real times t�� t� � ��

j
S�t��� 
R�t��� �t� � t��j � �� �

Intuitively� Lemma ��� establishes how much the clocks of S and R at di�erent real times

may at most di�er from each other in the weakly synchronized clocks model �in particular� in

the approximately synchronized clocks model�� as a function of the di�erence between these

times�

��� System Model

Each of US � UR� S and R is modeled as an automaton with a �possibly in�nite� set of states�

and a transition function� In general� we shall not be concerned with the structure of US and

UR� US simply provides a message m to S� which must be delivered to UR by R� thus� it su�ces

to take each of US and UR to be an IO automaton ����� In contrast� more state structure

is needed for S and R� each state of S and R consists of an internal component� and a clock

component� thus� we take each of S and R to be a timed automaton ��� ��� ���� A protocol is

a pair of timed automata� one for each of S and R�

Initially� the internal components of the states of S and R are equal to initial values q��S

and q��R� respectively� no local action is enabled in an initial state� The clock components of

S and R� also called their local times� are their clocks 
S and 
R� repsectively� neither S nor

R can modify its clock� No access to real time is provided to S and R� instead� each of S and

R obtains its only information about time from its clock and from messages it exchanges� The

local times of S and R will be sometimes called S�time and R�time� respectively� An S�interval

�resp�� R�interval� is an interval of S�times �resp�� R�times��

We list the events that can occur at each of S and R� together with an informal explanation�
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�� Packet�send events� send��� S� and send���R�� for all packets �� S �resp�� R� sends packet

� to R �resp�� S��

�� Packet�receive events� receive��� S� and receive���R�� for all packets �� S �resp�� R� re�

ceives packet � from R �resp�� S��

�� Timer�set events� timerset��� S� and timerset��� R�� for all clock times � � S �resp�� R� sets

a timer to go o� when its clock reads � �

�� Timer�expire events� timerexpire��� S� and timerexpire��� R�� for all clock times � � a timer

that was set for time � on S�s clock �resp�� R�s clock� goes o��

�� Message�input event� input�m� R�� US provides m to S as input�

�� Message�deliver event� deliver�m� R�� R delivers m to UR�

�� Quiesce event� quiesce�R�� R quiesces�

�� Crash event� crash�R�� R crashes�

The packet�receive� timer�expire� message�input and crash events are interrupt events� the

packet�send� timer�set� message�deliver� and quiesce events are react events�

Each interrupt event at S or R causes an application of its transition function� which runs

from states and interrupt events to states� and sets of react events� Roughly speaking� the

transition function of S �resp�� R� takes as input its current state� clock time� and interrupt

event� and produces a new state� a �possibly empty� set of messages to be sent to R �resp�� to

S�� a �possibly empty� set of timers to be set for the future� and nothing else �resp�� possibly

a message�deliver event� or a quiesce event� or both�� Formally� a step of S or R is a tuple

hq� i� q�� Ri� where q and q� are states� i is an interrupt event� and R is a set of react events�

Thus� a step is taken on occurrence of an interrupt event� For any step hq� quiesce�R�� q�� Ri

or hq� crash�R�� q�� Ri of R� we assume that q� � q��R� thus� a quiesce or crash event causes a

transition to a state whose internal component gets its initial value� while the clock component

is not a�ected�

A history h of S or R is a mapping associating to each real time t � �� a �possibly empty�

�nite sequence of steps so that the following hold�

�� There is only a �nite number of times t� � t such that the corresponding sequence of

steps is nonempty �thus� the concatenation of all such sequences in real time order is also

a sequence��
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�� The interrupt event in the �rst step of a history of S is the message�input event� further�

more� there are no other message�input events in a history�

�� The old state of each subsequent step is the new state of the previous step�

�� There is at most one timer�set event in each sequence� and it is ordered after all other

events in the same sequence�

�� A timer expires at S �resp�� R� at clock time � if and only if S �resp�� R� has previously

set a timer for clock time � �

An execution is a pair of histories hhS � hRi for S and R� such that there exists a function

� which maps each packet�receive event receive�m�S� to a packet�send event send�m�R�� and

each packet�receive event receive�m�R� to a packet�send event send�m�R�� We model packet

duplication by assuming that  need not be one�to�one� that is� there may be di�erent packet�

receive events receive�m�S� �resp�� receive�m�R�� that are mapped by  to the same message�

send event send�m�R� �resp�� send�m�S��� However� we require that each single packet may

be duplicated only a �nite number of times� this is modeled by assuming that for each packet�

send event send��� S� �resp�� send���R��� there may exist only a �nite number of packet�receive

events receive���R� �resp�� receive��� S�� that are mapped by  to send��� S� �resp�� send���R���

We use the function  to de�ne the delay incurred by packet � in execution e as the

di�erence of the real times of occurrences of the events receive��� S� �resp�� receive���R�� and

�receive��� S�� �resp�� �receive��� S��� in the corresponding histories� De�ne de� themaximum

packet delay in execution e� to be the maximum delay over all packets� The maximum packet

lifetime � is the maximum de over all executions e� For an execution e� denote 

�e	
S and 


�e	
R

the clocks of S and R� respectively� in execution e� the superscript will be omitted when the

execution is clear from context�

A cornerstone of our lower bound proofs is the notion of equivalent executions with respect

to either S or R �or both�� Roughly speaking� two executions are equivalent with respect to

S �resp�� R� if they are indistinguishable to S �resp�� R�� however� an outside observer who

has access to the real time can tell them apart� To formalize this notion� de�ne the view of

S �resp�� R� in history hS �resp�� hR� to be the concatenation of the sequence of steps in hS

�resp�� hR� in real�time order� �Note that the view includes the clock times�� The real times

of occurrence of events are not represented in the view� The view of S in execution e �resp��

view of R in execution e�� denoted e j S �resp�� e j R� is the view of S �resp�� R� in hS �resp��

hR�� Two executions e and e� are equivalent with respect to S �resp�� equivalent with respect to

��



R� if e j S � e� j S �resp�� e j R � e� j R�� Two executions e and e� are equivalent if they are

both equivalent with respect to S and equivalent with respect to R�

De�ne the view of S �resp�� R� in history hS �resp�� hR� for some S�interval �resp�� R�

interval� to be the concatenation of the sequence of steps in hS �resp�� hR� in real�time order

for which the S�time �resp�� R�time� is in the S�interval �resp�� R�interval�� note that the view

of S �resp�� R� in history hS �resp�� hR� for some S�interval �resp�� R�interval� is a �possibly

empty� subsequence of the view of S �resp�� R� in history hS �resp�� hR�� The view of S in

execution e for some S�interval IS �resp�� view of R in execution e for some R�interval IR��

denoted e�IS� j S �resp�� e�IR� j R� is the view of S �resp�� R� in hS �resp�� hR� for the S�

interval IS �resp�� R�interval IR�� Two executions e and e� are equivalent with respect to S for

the S�interval IS �resp�� equivalent with respect to R for the R�interval IR�� denoted e
IS
� e�

�resp�� e
IS
� e�� if e�IS� j S � e��IS� j S �resp�� e�IR� j R � e��IR� j R��

��� Connection Management Protocols

A protocol P solves connection management if it satis�es the following condition� For every

execution e of P � there is exactly one deliver�m� R� event followed by exactly one quiesce�R�

event� Assume that these events occur at real times D�e� and Q�e�� respectively� A connection

management protocol is a protocol that solves connection management�

A trade�o� connection management protocol P is a connection management protocol for

which there exists a parameter � � � such that for any timed execution e of P both D�e� and

Q�e� are bounded above by �non�constant� functions of �� one of which is an ascending function

of � and the other is a descending function of �� A bounded connection management protocol is

a trade�o� connection management protocol for which the one of the functions bounding D�e�

and Q�e� that is an ascending function of � converges to a �nite upper bound as � approaches

in�nity�

In all of our lower bound proofs� we will construct sequences of executions in the last

of which a message is delivered twice� We will illustrate these executions using appropriate

execution diagrams� in these diagrams� events will be depicted using conventions summarized

in Figure ��

�




immediately followed 
by a crash event

 crash event message deliver event 

 message deliver event  quiesce event

Figure �� Conventions for events

� Generic Protocols

In this section� we present two �generic� protocols that solve connection management in the

generic clocks model�

��� A Protocol Based on Time Stamps

We present a generic protocol P� that employs time stamps� Section ����� describes P� and

shows certain preliminary properties of it� the correctness of P� is established in Section ������

����� Description and Preliminaries

Throughout� �x any constant c � �� and let � be any real parameter such that � � �� De�ne

c� to be a function of c and ��

c� �
�c

	� � �
�

Notice that c� converges to the �nite quantity c�	 as the parameter � becomes arbitrarily large�

For any real time t � �� say that 
S�t� �resp�� 
R�t�� is a discrete S�time �resp�� discrete

R�time�� if it is a positive integral multiple of c�� For each integer l � �� the lth discrete S�time

is the discrete S�time lc�� the lth discrete R�time is de�ned in a corresponding way�

The protocol P� is the �parallel composition� of a �sub�protocol� P ts
� that generates and

handles timestamps� and a �sub�protocol� Pdq
� that uses timestamps in order to infer when to

deliver and quiesce� The �sub�protocol� P ts
� is identical to the corresponding �sub�protocol� of

the generic protocol proposed by Kleinberg et al� �
� Section ��� however� for the sake of com�

pleteness� we repeat in this paper its description and proof of correctness at a somewhat higher

level of formalism� The �sub�protocol� Pdq
� builds upon the corresponding �sub�protocol� of

the generic protocol proposed by Kleinberg et al� �
� Section ���

��



The Protocol P ts
�

For each integer l � �� S sends a packet to R at the lth discrete S�time� Assume that r� is

the smallest integer such that R has received a packet from S by the r�th discrete R�time� for

each integer l � r�� R sends a packet to S at the lth discrete R�time�

De�ne threshold functions ThS � N � N � f	g and ThR � N � N � f	g as follows� For

each integer l � �� ThS�l� 
� 	 if and only if there exists some integer s � � such that�

� for each integer s� � s� S has received by discrete S�time lc� a packet sent by R at the

s�th discrete R�time�

� no packet sent by R at the �s� ��th discrete R�time has been received by S by discrete

S�time lc��

In this case� ThS�l� � s�

We proceed to de�ne the function ThR� For l � r� � �� ThR�r� � �� � �� For each integer

l � � such that l 
� r�� �� ThR�l� 
� 	 if and only if there exists some integer r � � such that�

� for each integer r� � r� R has received by discrete R�time lc� a packet sent by S at the

r�th discrete S�time�

� no packet sent by S at the �r � ��th discrete S�time has been received by R by discrete

R�time lc��

In this case� ThR�l� � r�

The content of each packet sent by S to R at the lth discrete S�time is a function of l� For

l � �� S sends h�� mi where the �rst component indicates that the packet is sent at the �th

discrete S�time� For l � �� S sends hl� ThS�l�i� Similarly� R sends hli to S at the lth discrete

R�time� where l � r��

R maintains three �nite sets S�� S� and S�� which are updated at each discrete R�time�

denote S
�l	
� � S

�l	
� and S

�l	
� the values attained by S�� S�� and S� at the lth discrete R�time�

Formally�

S
�l	
�

� fl� � ThR�l
�� j l� � l and ThR�l

�� 
� 	g �

��



S
�l	
�

� fl� ThS�l� j R has received hl�� ThS�l
�i by the l�th discrete R�time and ThS�l

�� 
� 	g �

and

S
�l	
�

� fl� � r� j R has received hl�� ThS�l��i by the l�th discrete R�time and ThS�l
�� � 	g �

R uses the sets S
�l	
� � S

�l	
� � and S

�l	
� to de�ne the maximum function MxR � N � N as follows�

For each integer l � ��

MxR�l� � maxS
�l	
� � S

�l	
� � S

�l	
� � c� �

For any execution e� denote

Mx
�
R�e� � max

lc��Q�e	
MxR�l� �

We have�

Lemma ��� Kleinberg� Attiya and Lynch ���� MxR�r�� � jr�j

Proof� By the �rst rule�

M �r��c�	 � r� � c� � s

� r� � c�

�since by Claim �� s � �� �

It follows that�

l�r�	 � M �r�	 � c�

� M �r�	

� M �r��c�	

�since M �t	 is an ascending function�

� r� �

so that

Claim ��� l�r�	 � r�

��



The �rst packet from S sent at S�time �� so each S�packet has time�stamp � �� By the

third rule�

M �r�	 � s� � r�

� �r� �

hence

l�r�	 � M �r�	 � c�

� M �r�	

� �r� �

which implies that l�r�	 � �r�� By Claim ���� this implies that l�r�	 �j r� j� as needed�

The Protocol Pdq
�

We are now ready to present the algorithm� R delivers at the �rst discrete R�time t� when

t� � ��� ����l�t
�	 and quiesces at the �rst discrete R�time t�� when t���	 � �� � ����l�t

��	 It then

sends a done message to S� S quiesces immediately upon receiving this done message� If at

any time S report a non trivial threshold that is less than r� �i�e� one can conclude that R is

hearing replays�� R aborts the connection without delivering and sends an error message to S�

For any time t� de�ne r�t� to be the discrete R�time at which the maximum value for l�t	

was attained� that is� r�t� is the largest r � t for which l�r	 � l�t	� We show�

Lemma ���

de � 
��
R �r�� 
��

S �r� l�t	� �c��

Proof� Assume� without loss of generality� that l�t	 was updated using the �rst rule �the

other cases are similar�� Consider the discrete R�time r at which the maximum value for l�t	

was attained �i�e� the �rst r � t for which l�t	 � l�r	� Let s to be the threshold of R at time r�

Since the lag was updated at time r using the �rst rule� we have that M �r	 � r� s� Also since

l�r	 �M �r	� c�� l�t	 � M �t	� c� and l�t	 � l�r	� we have that M �r	 � M �t	� Thus� M �t	 � r� s�

It implies that

s � r �M �t	

� r � �l�t	 � c��

� r � l�t	 � c� �

��



It immediately follows that the threshold of R at discrete time r is equal with r� l�t	� c�� By

de�nition of threshold� R has received all S�packet with time stamp � r � l�t	 � c�� thus� any

S�packet sent at discrete S�time r � l�t	 � �c� has not yet arrived� It follows�

de � 
��
R �r�� 
��

S �r � l�t	 � �c�� �

as needed�

����� Correctness Proof

We continue to show that P� is a connection management protocol� We need to prove that R

does not deliver any message for a second time� First we argue that R will not quiesce until it

has received an S�packet with non�trivial threshold� Let � denote the S�packet with minimal

time�stamp that reports a non�trivial threshold� and consider discrete R�time r at which R

has not yet received �� Let r � u� be the time�stamp of the most recent S�packets� and set

v � r � u� � r�� It follows that r � u� � r�� By the �rst rule�

l�r	 � M �r	 � c�

� r � �r � u��

� u� �

which implies l�r	 � u�� Also

l�r	 � M �r	 � c�

� M �r�	 � c�

�since M �t	 is an asceding function M �r	 �M �r�	�

� l�r�	

� r�

�by Lemma ���� �

which implies l�r	 � r�� Also

l�r	 � M �r	 � c�

� M �r�u�	 � c�

�M �t	 is an ascending function�

� M �r�u�	

� r � u� � r� �

��



by the third rule� M �r�u�	 � r � u� � r� �since at time �r � u��� R has not yet receive a non

trivial threshold�� It implies that l�r	 � u� Thus� r � r� � u� � u � �l�r	 � �� � ����l�r	� so R

will not yet quiesce�

Now let l� �resp� M�� denote the maximum value of l�t	 �resp� M �t	� over all discrete

R�times t up to quiescence� and s� denote the time�stamp of S�packet �� Indeed� the time�

stamped s� � c� reports a trivial threshold� so by the third rule for estimating the lag� M� �

s��c��r�� It follows l
� � s��r�� Since l

�t	 is an ascending function� l� � l�r�	� By Lemma ����

this implies that l� � r�� adding� we obtain�

Claim ��� s� � �l��

Finally� suppose T � t�� and a replay of the original message arives at time T� We will

show that if T� � T is some time at which R has not received a replay of S�packet �� it is not

required to deliver� Since � has not been received at T�� by the �rst rule for estimating the

lag we have

l�T
�	 � T� � s�

� T� � �l�

�by Claim ���� �

Since R quiesces at R�time T and l� denote the maximum value l�t	 over all discrete R�times

t up to quiescence� by protocol we have

�� �
�

�
� l� � T �

so that

l� �
�

�� � �
T �

Thus�

l�T
�	 � T� � �l�

� T� �
��

�� � �
T

� T� �
��

�� � �
T�

� ���
��

�� � �
�T�

�
� � �

�� � �
T� �

��



which implies that

T� �
�� � �

� � �
l�T

�	

�
��� � ��� �

� � �
l�T

�	

� ���
�

� � �
� l�T

�	

� ���
�

�
� l�T

�	 �

Thus� R does not deliver at time T�� Recall that T is the R�time which R receives a replay

of original message and T� � T is a R�times at which R has not receives a replay of �� It

implies that R before delivery it receives a replay of �� But � reports a threshold �� r��

smaller than T�which is the discrete R�time at which R �rst started sending packets to S

following quiescence� By the protocol� R will abort the connection in this case� Thus� R never

delivers the message a second time� It immediately follows�

Proposition ��	 P� is a connection management protocol�

��� A Timer�Based Protocol

In this section� we present a generic protocol P� that employs a timer and relies on knowledge

of the maximum packet lifetime ��

R delivers immediately each time it receives a new packet� It then counts o� on its clock

so that local time a elapses� in a way that real time at least � elapses� it then quiesces�

We show that P� is a connection management protocol� Consider any packet � send by S

to R at real time t� Thus� � arrives at R at real time D � t� Then� R delivers immediately�

After R counts o� its clock to pass local time a so that the real time which elapses is at least

�� then� R quiesces at time Q � � �D � � � t� Assume that a replay of � arrives at R at

time T� Since the maximum packet lifetime is equal to �� T � � � t� It follows that Q � T�

Thus� R never delivers twice� It immediatelly follows�

Proposition ��
 P� is a connection management protocol�

��



� Drifting Clocks

In this section� we present our lower bounds for the drifting clocks model in the presence of

network failures� We show�

Theorem ��� Consider the drifting clocks model in the presence of network failures� Then�

for any connection management protocol P� for any constant � such that � � � � �� there

exists an execution e of P such that either

D�e� � ��� ���de �

or

Q�e� � ����� ��� ��de� �

Proof� Assume� by way of contradiction� that there exists a connection management protocol

P for the drifting clocks model in the presence of network failures� and a constant �� � � � � ��

such that for every execution e of P � both D�e� � �� � ���de and Q�e� � ���� � ��� ��de��

We construct an execution of P containing two message�deliver events�

We start with an informal outline of our proof� We construct a sequence of executions

e� e�� f and f �� so that R delivers the message twice in f �� e is a slow execution� f � is the

�concatenation� of e� and f � In e and f � the clocks of R and S are �slow�� while in e�� the

clocks of R and S are �fast�� We start with e� which terminates immediately after R quiesces�

By modifying R�s clock� we �perturb� e to obtain f � which S cannot distinguish from e� in f �

only delivery� We continue to construct e�� which S cannot distinguish from e to S� while R

still delivers in e� and quiesces� Finally� we construct f � as the �concatenation� of e� and f �

in f �� R �rst delivers and quiescences� before it receives replays of all packets in a way that R

�sees� them arriving as in f � This leads R to deliver again� which contradicts the correctness

of P � We now present the details of the formal proof�

Consider an execution e of P for which 

�e	
S �t� � 


�e	
R �t� � t��� thus� both clocks run �slow�

in e and initially hold the value �� Furthermore� assume that each packet incurs a delay of de

in the execution e� Finally� assume that the last step in e is taken on occurrence of a quiesce

event at R�

By our assumption on P � the message�deliver and quiesce events occur in e at real times

D�e� � ��� ���de� and Q�e� � ����� ��� ��de�� respectively� thus� these events occur at R�s

�	



local times



�e	
R �D�e�� � 


�e	
R ���� ���de�

�since D�e� � ��� ���de and 

�e	
R is strictly increasing�

�
��� ��� de

�

�by de�nition of 

�e	
R �

� �
�

�
� �� de �

and



�e	
R �Q�e�� � 


�e	
R ������ ��� ��de��

�since Q�e� � ����� ��� ����de and 

�e	
R is strictly increasing�

�
���� � ��� ��de�

�

�by de�nition of 

�e	
R �

� � ��� ��� ��de� �

respectively�

Since all packet delays are equal to de in the execution e� R receives a packet from S no

earlier than time de� Since no local actions are enabled in the initial state of R� it follows that

R sends a packet to S no earlier than time de� Since all packet delays are equal to de in the

execution e� it follows that S receives a packet from R no earlier than time �de� By de�nition

of 

�e	
S � this immediately implies�

Lemma ��� In the execution e� S receives a packet from R no earlier than S�time �de���

We continue to construct an execution e� of P as follows�

� Each step occurring at real time t in e is scheduled to occur at real time t��� in the

sequence e�� in addition� e� preserves the ordering of steps in e�

� de�ne e� � e� thus� e
� preserves the correspondence between packet�receive and packet�

send events in e�

� �nally� set 

�e�	
S �t� � 


�e�	
R �t� � �t� thus� both clocks run �fast� in e� and initially hold the

value ��

��



Note that� by de�nition of e� our construction implies that the last step in e� is taken on

occurrence of a quiesce event at R� Moreover� we show�

Lemma ��� e� is an execution of P�

Proof� Since e is an execution of P � both e j S and e j R are histories of S and R� respectively�

Consider any step occurring at real times t and t��� in e and e�� respectively� The corresponding

local times at either S or R are t�� and � t��� � t��� respectively� Since these local times are

equal and e is an execution of P � it follows that both e� j S and e� j R are histories of S and

R� respectively�

It remains to show that de� � �� Take any packet�send and packet�receive events �� and ��

occurring at real times t� and t�� respectively� in e� By de�nition of e� the delay of the packet

in e is t� � t� � de� By construction of e�� these events occur at real times t���
� and t���

��

respectively� and their correspondence is preserved� Thus� the delay of the packet in e� is

t�
��
�

t�
��

�
t� � t�
��

� t� � t� �since � � ��

� de �by de�nition of e�

� � �since e is an execution of P� �

as needed�

By construction of e� and Lemma ���� it immediately follows�

Lemma ��� e� is an execution of P that is equivalent to e�

Lemma ��� implies that the message�deliver and quiesce events in e� occur at R�s local

times less than ����� ��de and ���� ��� ��de�� respectively� By de�nition of 

�e�	
R � it follows

that the message�deliver and quiesce events in e� occur at real times less than ����� ��de��

and � � ��� ��de� respectively�

Consider now an execution f of P for which 

�f	
S �t� � t��� and 


�f	
R �t� � t������������de��

thus� both clocks are �slow�� but the clock of S is initially �� while the clock of R is initially

���� ��� ��de�� Furthermore� assume that each packet incurs a delay of df in the execution

f � Assume that df � de� Finally� assume that the last step in f is taken on occurrence of a

message�deliver event at R�

�




Since all packet delays are equal to df in the execution f � R receives a packet from S no

earlier than time df � de� Since no local actions are enabled in the initial state of R� it follows

that R sends a packet to S no earlier than time de� Since all packet delays are equal to de

in the execution f � it follows that S receives a packet from R no earlier than time �de� By

de�nition of 

�f	
S � this immediately implies�

Lemma ��	 In the execution f � S receives a packet from R no earlier than S�time �de���

We continue to show that e and f are equivalent with respect to S in an initial interval of

its local time�

Lemma ��
 f j S

���

�f	
R

�D�f		���������	de	�de���
� e j S

Proof� By Lemmas ��� and ���� it su�ces to show that



�f	
R �D�f��� ���� ��� ��de��

de
�

�
�de
�

�

Clearly�



�f	
R �D�f��� ���� ��� ��de��

de
�

� 

�f	
R ���� ���de�� ���� ��� ��de��

de
�

�since D�f� � ��� ���de and 

�f	
R is strictly increasing�

�
��� ��� de

�
� ���� ��� ��de�� ���� ��� ��de��

de
�

�by de�nition of 

�f	
R �

�
��� ��� de

�
�

de
�

� �
�

�
� �� de �

de
�

�
�

�
de �

de
�

�since � � ��

�
�de
�

�

as needed�

��



By Lemma ���� Lemma ��� immediately implies�

Corollary ��� f j S

���

�f	
R

�D�f		���������	de	�de���
� e� j S

We continue to show a timing property of packet�send and packet�receive events in f �

Lemma ��� Consider any packet � sent from S to R at S�time

� � ��� 

�f	
R �D�f��� ���� ��� ��de��

de
�
� �

Then� � arrives at R at R�time de��� � � ���� ��� ��de��

Proof� By de�nition of 

�f	
S � � is sent at real time �� � By construction of f � � arrives at R

at real time �� � df � �� � de� By de�nition of 

�f	
R � it follows that � arrives at R at R�time

�de � ������ ���� ��� ��de� � de��� � � ���� ��� ��de�� as needed�

Finally� we construct the execution f �� Set 

�f �	
S �t� � 


�f �	
R �t� � �t� thus� both clocks run

�fast� in e� and initially hold the value �� Take f � � e�f�� where the sequence of steps f� is

de�ned as follows�

� Each step at R occurring at real time t in f is scheduled to occur at real time t������

��� ��de in f�� in addition� the ordering of steps in f is preserved�

� Consider any packet�send event at S occurring in e� at real time t � Q�e���de��
�� a step

on a corresponding packet�receive event is scheduled to occur at real time t � � in f��

In Figure �� we present the sequence f �� We show�

Lemma ��� f � is an execution of P�

Proof� We start by de�ning the function f � �

� The restriction of f � on packet�receive events in e� is equal to e� �

� Consider any packet�receive event � in f � mapped by f to some packet�send event in f �

Use the equivalence of e� and f established in Lemma ��	 to determine the corresponding

packet�send event in e� to which f � maps ��

��



� Any packet�send event at S occurring in e� at real time t � Q�e�� � de��
� is the image

under f � of the corresponding packet�receive event �scheduled to occur at real time t��

in f���

We show�

Claim ���� df � � �

Proof� We proceed by case analysis�

�� Since the restriction of f � on packet�receive events in e� is equal to e� � the delay of each

packet in e� is at most de� � �� by Lemma ����

�� Consider any packet�receive event � at R occurring at real time t��� � � � ��� ��de in

f�� By construction of f�� there is a corresponding packet�receive event at R occurring

at real time t in f � By construction of f � the corresponding packet�send event at S

occurs at real time t � df � t � de in f � By de�nition of 

�f	
S � this packet�send event

occurs at S�time �t � de��� in f � By Lemma ��	� an identical packet�send event at S

occurs at S�time �t � de��� in e�� by de�nition of f � � this is the packet�send event to

which � is mapped� By de�nition of 
e
�

S � this packet�send event at S occurs at real time

�t� de���� in e�� By construction of f �� this packet�send event event at S occurs at real

time �t� de���
� in f �� Hence� the delay of � in f � is

t

��
� �� ��� ��de �

t� de
��

� � � ��� ��de �
de
��

� � � de �
de
��

�since � � ��

� � � de � de �since � � ��

� � �

as needed�

�� By construction and de�nition of f � � the delay of any packet�receive event at R in f� in

correspondence to a packet�send event at S occurring in e� at real time t � Q�e���de��
�

is exactly ��

This completes our proof�

��



Since the last step in f is taken on occurrence of a message�deliver event at R� this step

is taken at real time D�f� in f � By construction of f�� this step is scheduled to occur at real

time D�f���� � �� ��� ��de in f�� Also� by construction of f�� any step on a packet�receive

event correspondent to a packet�sent event at S in e� is scheduled to occur at real time greater

than Q�e��� de��
� � �� Clearly�

Q�e���
de
��

� �� �
D�f�

��
� � � ��� ��de�

� Q�e���
de
��
�
D�f�

��
� ��� ��de

� �
D�f�

��
� ��� ��de �since Q�e�� � de� � de��

��

� �
��� ���de

��
� ��� ��de �since D�f� � ��� ���de�

� ����
�

��
�de � ����

�

�
�de

� ����
�

��
�de � ����

�

��
�de �since � � � and � � ��

� ���
�

��
�de

� � �since � � �� �

It follows that the last step in f scheduled to occur in f� precedes any step occurring on a

packet�receive event correspondent to a packet�sent event at S in e� that is also scheduled to

occur in f�� Consider now any of the latter steps� occurring at real time t in f � By de�nition

of 

�f	
R � this step occurs at R�time t��� ���� ��� ��de� in f � By construction of f�� this step

is scheduled to occur at real time t��� � � � �� � ��de in f�� By de�nition of 

�f �	
R � this step

occurs at R�time t��� ���� ��� ��de� in f�� Since the local times at which this step occurs

in f and f � are equal� and f is an execution of P � it follows that f� is equivalent to f in the

R�interval ����� ��� ��de�� 

�f	
R �D�f���� It follows that f � is an execution of P � as needed�

By Lemma ��
� f � is an execution of P containing two message�deliver events� A contra�

diction�

The lower bounds on message delivery time and quiescence time shown in Theorem ���

are simultaneously non�negative� and� hence� non�trivial� if �and only if� both �� �� � � and

�� ��� ��de � �� Eliminating � and assuming � � � yields

de �
�

�� �

�

�

��
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Figure �� The execution f �

��



as a necessary condition for any timed execution e for which the trade�o� lower bounds shown

in Theorem ��� are non�trivial� Kleinberg et al� �
� Theorem �� argue that de � ��� is a

corresponding necessary condition� Since

�

�� �

�

�
�

�

�

for � � �� this implies that the trade�o� lower bound shown in Theorem ��� is non�trivial for

a wider range of executions than the trade�o� lower bound shown in �
� Theorem ���

� Approximately Synchronized Clocks

In this section� we present our lower and upper bounds for the approximately synchronized

clocks model� in the presence of network failures�

��� Lower Bound

We show�

Theorem 	�� Consider the approximately synchronized clocks model� in the presence of net�

work failures� Then� for any connection management protocol P� for any constant � � �� there

exists an execution e of P with

� � de � ���
�

�
���� �� �

such that either

D�e� � ���
�

�
�de � � �

or

Q�e� �
�

� � �
de � � �

Proof� Assume� by way of contradiction� that there exists a connection management protocol

P for the approximately synchronized clocks model in the presence of network failures� and a

constant � � �� such that for every execution e of P with � � de � ��� ������� ��� both

D�e� � ���
�

�
� de � � �

��



and

Q�e� �
�

� � �
de � � �

We construct an execution of P containing two message�deliver events�

We start with an informal outline of our proof� We construct a sequence of executions

e� e�� f � f � such that R delivers a message twice in f �� We start with execution e which

terminates with R quiesces following its delivery� We �pertub� e to obtain e�� which S and

R cannot distinguish from e� while some message incur delay larger than corresponding in e�

We continue to construct f which is indistinquishable from e to S� while R only delivers� The

message incur larger corresponding one in e� Finally we construct f � as the �concatenation�

of e� and f �In f �� R �rst delivers and follows quiesces and next receives replay of all packets in

such a way that R �sees� all packets arriving as in f � By construction of f � R delivers again�

which constradicts the correctness of P � We now present the details of the formal proof�

We start with a simple property of any execution e of P with

� � de � ���
�

�
���� �� �

Lemma 	�� Fix any execution e of P with

� � de � ���
�

�
���� �� �

Then� D�e� � �de�

Proof� We proceed by case analysis on �� Assume �rst that � � �� so that ���� � �� � ��

Then�

D�e� � Q�e�

�
�

� � �
de � � �by assumption on P and ��

� �de � �

� �de �since � � de� �

as needed� Assume now that � � � � �� so that �� ��� � �� Then�

D�e� � ���
�

�
� de � � �by assumption on P and ��

� �de � �

� �de �since � � de� �

as needed�

��



Consider an execution e of P for which 

�e	
S �t� � t � � and 


�e	
R �t� � t� thus� the clock of

S initially holds the value ��� while the clock of R initially holds the value �� Furthermore�

assume that each packet incurs a delay of de� where � � de � ��� ������� ��� in the execution

e� Finally� assume that the last step in e is taken on occurrence of a quiesce event at R� By

our assumption on P and ��

D�e� � ���
�

�
�de � � �

and

Q�e� �
�

� � �
de � � �

Since all packet delays are equal to de in the execution e� R receives a packet from S no

earlier than time de� Since no local action are enabled in the initial state of R� it follows that

R sends a packet to S no earlier than time de� Since all packet delays are equal to de in the

execution e� it follows that S receives a packet from R no earlier than time �de� By de�nition

of 

�e	
S � this immediately implies�

Lemma 	�� In the execution e� S receives a packet from R no earlier than S�time �de � ��

Consider now an execution f of P for which 

�f	
S �t� � t � � and 


�f	
R �t� � t � �� thus� the

clock of S is initially ��� while the clock of R is initially �� Furthermore� assume that each

packet incurs a delay of df in the execution f � Assume that df � ���������de� Finally� assume

that the last step in f is taken on occurrence of a message�deliver event at R�

Since all packet delays are equal to df in the execution f � R may receive a packet from S no

earlier than time df � Since no local actions are enabled in the initial state of R� it follows that

R may send a packet to S no earlier than time df � Hence� since all packet delays are equal to

df in f � S may receive a packet from R no earlier than time �df � Also df � ���������de � de�

since � � � � �� It implies that in f � S may receive a packet from R no earlier than time

D�e�� de � �de� By de�nition of 

�f	
S � this immediately implies that�

Lemma 	�� In the execution f � S receives a packet from S no earlier than S�time �D�e� �

de � ��

By our assumption on P and �� the message�deliver event occurs in f at real time

D�f� � ���
�

�
� df � �

�	



� ���
�

�
�
�

��
de � �

�
�� � �

� � �
de � � �

thus� this event occurs at R�s local time



�f	
R �D�f��

� 

�f	
R �

�� � �

� � �
de � ��

�since D�f� � ����
��� de � � and 


�f	
R is strictly increasing�

�
�� � �

� � �
de � �� �

We continue to show a timing property of packet�send and packet�receive events in f �

Lemma 	�	 Consider any packet � sent from S to R at S�time � in f � Then� � arrives at R

at R�time � � ��� ����� � ���de�

Proof� By de�nition of 

�f	
S � � is sent at real time � � � in f � By construction of f � � arrives

at R at real time � � � � df � By de�nition of 

�f	
R � it follows that � arrives at R at R�time

� � �� df � � � � � ��� ����� � ���de� as needed�

By Lemma ���� Lemma ��� immediately implies�

Corollary 	�
 e j S � f j S in the S�interval ����D�e�� de � ���

Finally� we construct an execution f � in which R delivers the message twice� A pre�x of f �

will be equal to e�� The e� �nish with quiensce of R at time Q�e�� The remainder of f � is an

execution fragment f �� which begins at time Q�e�� In f ��� 

�f �

�	
S �t� � t � � and 


�f �

�	
R �t� � t� In

the Figure � we present the execution f � in which R delivers twice� We replay all packets sent

by S in the S�interval ����D�e�� de � �� so that they incurs a delay of

�

� � �
de � � � Q�e� �

We show�

Lemma 	��

�

� � �
de � � � � �

��



Proof� We have de � ��� ������� ��� It implies that

�

� � �
de � � � � �

� � ����� � ���de � �� as needed�

We continue to show certain timing properties of send�packet and receive�packet events in

f ���

Lemma 	�� Consider any replay packet � from S to R at S�time t � ����D�e�� de � ��� it

arrive at R at R�time
�

� � �
de � ��� t �

Proof� By de�nition of 

�e�	
�R	 � � sent by S at real time t� �� It follows that � arrives at R at

real time
�

� � �
de � ��� t �

Since 

�f �

�	
R �t� � t� � arrives at R at R�time

�

� � �
de � ��� t �

By constraction of e�� each packet sent by S in the interval ���Q�e� � de� it arrive at R

before R�time Q�e�� We show�

Lemma 	�� Consider any packet � sent from S to R at time t � Q�e�� de� Then� � arrive

at R after R�time
�� � �

� � �
de � �� �

Proof� By constraction of e�� � incur a delay � to arrive at R� It follows that � arrive at R

at R�time

� � t �
�

� � �
de � �� t

�de �
�

������ ���

�
�

� � �
de � �� �de � �

�
�� � �

� � �
de � �� �

�




By Lemma ���� we have f �� j R � f j R in the interval

�
�

� � �
de � ��

�� � �

� � �
de � ��� �

Also



�f	
R �D�f�� � ���

�

�
�

�

� � �
de � �	 �

Thus� R delivery in f �� at local time 

�f	
R �D�f��� Hence� R delivers the message twice in

execution f � � e�f ��� A contradiction�

Since the weakly synchronized clocks model is no stronger than the approximately synchro�

nized clocks model� Theorem ��� immediately implies�

Corollary 	��� Consider the weakly synchronized clocks model� in the presence of network

failures� Fix any parameter � � �� Then� for any connection management protocol P� there

exists an execution e of P with � � de � ��� ������� �� such that either

D�e� � ���
�

�
� de � � �

or

Q�e� �
�

� � �
de � � �

��� Upper Bounds

We show�

Theorem 	��� Consider the approximately synchronized clocks model in the presence of net�

work failures� Then� for any constants � � � and c � �� there exists a connection management

protocol P such that for every execution e of P�

D�e� � ���
�

�
� de � ���

�

�
� ��� c �

and

Q�e� � �� �
�

�
� de � �� �

�

�
� ��� c �

Proof� Let P� be the generic connection management protocol introduced in Section �� Fix

any execution e of P�� We start by showing a lower bound on de�

��
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Figure �� The execution f �

��



Lemma 	��� For any real time t � Q�e�� l�t	 � ��� �c� � de�

Proof� Since the clocks of R and S are approximately synchronized� it follows that j r �


��
R �r� j� � and j �r� l�t	� �c��� 
��

S �r� l�t	� �c�� j� �� this implies that 
��
R �r� � r� � and


��
S �r � l�t	 � �c�� � r � l�t	 � �c� � �� respectively� By Lemma ���� this implies that

de � �r� ��� �r � l�t	 � �c� � ��

� l�t	� �c� � �� �

as needed�

We continue to show an upper bound on D�e�� By Lemma ����� l�t	 � de � �� � �c�� At

the maximum discrete R�time not delivery�

t� � c� � ���
�

�
� l�t

�	

� ���
�

�
� �de � ��� �c�� �

which implies that�

t� � ���
�

�
� �de � ��� � �	�

�

�
� c�

� ���
�

�
� �de � ��� � �	�

�

�
� �	 �

�

�
��� c

� ���
�

�
� �de � ��� � �	 �

�

�
� �	 �

�

�
��� c

� ���
�

�
� �de � ��� � c �

Since the clocks are approximately synchronized� it follows that j
��
S ��� � �j � � and

j
��
R �t��� t�j � �� This implies that 
��

S ��� � �� and 
��
R �t�� � t� � �� respectively� The initial

send event was at real time 
��
S ��� and the time required for R to delivery is 
��

R �t��� Thus�

D�e� � 
��
R �t��� 
��

S ���

� t� � � � ����

� t� � ��

� ���
�

�
��de � ��� � c� ��

� ���
�

�
�de � ���

�

�
��� c

� ���
�

�
�de � ���

�

�
���� c �

��



as needed�

We continue to show an upper bound on Q�e�� By Lemma ����� l�t	 � de � ��� �c�� So at

the maximum discrete R�time not quiescence�

t�� � c� � �� �
�

�
� l�t

��	

� �� �
�

�
� �de � ��� �c��

� �� �
�

�
� �de � ��� � �� �

�

�
� c� �

which implies that

t�� � �� �
�

�
� �de � ��� � �	 �

�

�
� c�

� �� �
�

�
� �de � ��� � c �

Since the clocks are approximately synchronized� it follows that j� � 
��
S ���j � � and

jt���
��
R �t���j � �� these imply that 
��

S ��� � �� and 
��
R �t��� � t����� respectively� The initial

send event was at real time 
��
S ��� and the time required for R to quiensce is 
��

R �t���� Thus�

Q�e� � 
��
R �t���� 
��

S ���

� t�� � �� ����

� t�� � ��

� �� �
�

�
� �de � ��� � c� ��

� �� �
�

�
� de � �� �

�

�
� �� c

� �� �
�

�
� de � �� �

�

�
� ��� c �

as needed�

We next consider the weakly synchronized clocks model�

Theorem 	��� Consider the weakly synchronized clocks model� in the presence of network

failures� Then� for any constants � � � and c � �� there exists a connection management

protocol P such that for every execution e of P�

D�e� � ���
�

�
� de � ���

�

�
� ��� c �

and

Q�e� � �� �
�

�
� de � �� �

�

�
� ��� c �

��



Proof� Let P� be the generic connection management protocol introduced in Section �� Fix

any execution e of P�� We start by showing a lower bound on de�

Lemma 	��� For any real time t � Q�e�� de � l�t	 � ��� �c��

Proof� Since the clocks of R and S are weakly appoximately synchronized� it follows that

j 
R�t���
S�t����t�� t�� j � ��� It implies that j �r��r� l�t	��c�����
��
R �r��
��

S �r� l�t	�

�c��� j � ��� which implies that 
��
R �r�� 
��

S �r� l�t	� �c� � l�t	� �c� � ��� By Lemma ����

this implies that de � l�t	 � �c� � ��� as needed�

We continue to show an upper bound on D�e�� By Lemma ����� l�t	 � de � ��� �c�� At the

maximum discrete R�time not delivery�

t� � c� � ���
�

�
� l�t

�	

� ���
�

�
� �de � ��� �c�� �

which implies that

t� � ���
�

�
� �de � ��� � �	�

�

�
� c�

� ���
�

�
� �de � ��� � �	�

�

�
� �	 �

�

�
��� c

� ���
�

�
� �de � ��� � �	 �

�

�
� �	 �

�

�
��� c

� ���
�

�
� �de � ��� � c �

Since the clocks are weakly approximately synchronized� it follows that j �t������
��
R �t���


��
S ���� j � ��� It implies that 
��

R �t��� 
��
S ��� � t� � ��� The initial send event was at real

time 
��
S ��� and the time required for R to delivery is 
��

R �t���

Hence�

D�e� � 
��
R �t��� 
��

S ���

� t� � ��

� ���
�

�
��de � ��� � c� ��

� ���
�

�
�de � ���

�

�
���� c �

��



as needed� We continue to show an upper bound on Q�e�� By Lemma ����� l�t	 � de�����c��

So at the maximum discrete R�time not quiescence�

t�� � c� � �� �
�

�
� l�t

��	

� �� �
�

�
� �de � ��� �c��

� �� �
�

�
� �de � ��� � �� �

�

�
� c� �

which implies that

t�� � �� �
�

�
� �de � ��� � �	 �

�

�
� c�

� �� �
�

�
� �de � ��� � c �

Since the clocks are weakly approximately synchronized� it follows that j �t�� � ��� �
��
R �t����


��
S ��� j � ��� It imples that 
��

R �t���� 
��
S ��� � t�� � ��� The initial send event was at real

time 
��
S ��� and the time required for R to quiesce is 
��

R �t��� Thus�

Q�e� � 
��
R �t���� 
��

S ���

� t�� � ��

� �� �
�

�
� �de � ��� � c� ��

� �� �
�

�
� de � �� �

�

�
� ��� c

as needed�

We continue to show a second upper bound for the approximately and weakly approximately

syncronized clocks�

We slightly modify the algorithm which we present in Section ���� in order to take the

advatage of property j 
R�t���
S�t��� �t�� t�� j� ��� which approximately synchronized and

weakly approximately synchronized clock satisfy� Each packet which S sent to R contains both

the message and the current local time� When R receive a packet estimate the u � r�s� where

r is the local R�time at which arrive the packet at R� while s is the local time in the packet�

Then R delivers immediately� After counts o� � � u� �� in its clock and then quiensce�

We continue to show that P� for approximately synchronized and weakly approximately

synchronized clocks model is a connection management protocol� We needed to prove that R

will not delivery any message for a second time� Assume that a packet � send at real time t�

��



It follows that � arrive at R at real time d� t � where d is the delay incur the packet to arrive�

Then R estimate the u � 
R�d � t� � 
S�t�� Then R delivery immediatelly� Assume that a

replay of � arrives at R at time T � d� t� Since the maximum packet lifetime is equal to �� it

follows that T � �� t� We prove that R does not quiensce before time �� t� Let Q to be the

time at which R quiensce� By the protocol� we have that 
R�Q��
R�d�t� � ��u���� Since

the clocks are approximately synchronized or weakly approximately syncronized� it follows that

j 
R�Q�� 
S�t� � �Q� t� j � ��� It implies that

Q � 
R�Q�� 
S�t� � t � ��

� 
R�Q�� 
R�d� t� � 
R�d� t� � 
S�t� � t� ��

� �� u� �� � ��� u � t

�since u � 
R�d� t�� 
S�t� and


R�Q�� 
R�d� �� � � � u� ���

� �� t �

Since T � �� t� this implies that Q � T� It follows that R never delivers a message a second

time� Thus�

Theorem 	��	 For the approximately and weakly approximately synchronized clocks models�

P� is connection management protocol�

We show�

Theorem 	��
 Consider the weakly approximately synchronized clocks model in the presence

of network failures� Then � there exists a connection management protocol P such that for

every execution e of P�

D�e� � de �

and

Q�e� � �� �� �

Proof� Let P� be the connection management protocol introduced in the beging of this

Section� Fix any execution e of P��

Assume that S send the initial packet at local time �� The packet incur a delay of d �

de to arrive at R� Thus� the packet arrive at R at time d � 
��
S ���� By the protocol P��

when R receive the initial packet estimate the u � 
R�d � 
��
S ���� � �� After R delivery

��



immmediately at time d � 
��
S ���� It follows that R delivery at local time 
R�d � 
��

S �����

Since the packet sent at time 
��
S ��� and R delivery at time d�
��

S ���� it immediatelly follows

that D�e� � d� 
��
S ���� 
��

S ��� � de� By the protocol P�� after R wait to elapses local time

�� u� �� and then quiensce at local time T � 
R�d� 
��
S ���� � � � u� �� � �� ��� since

u � 
R�d� 
��
S ����� Since the clocks are weakly approximate syncronized by the Lemma ����

we have that jT� �� �
��
R �T�� 
��

S ����j � ��� It implies that 
��
R �T�� 
��

S ��� � �� ���

Since R quiensce at local R�time T� and the initial packet send at S�time �� we have that�

Q�e� � 
��
R �T�� 
��

S ���

� �� �� �

as needed�

Since the weakly approximately synchronized clocks model is no stronger than approxi�

mately synchronized clocks model� Theorem ���� implies�

Corollary 	��� Consider the approximately synchronized clocks model in the presence of net�

work failures� Then � there exists a connection management protocol P such that for every

execution e of P��

D�e� � de �

and

Q�e� � �� �� �

� Drifting Clocks

In this section� we present our lower bound for the drifting clocks model� under network and

node failures�

Theorem 
�� Consider the drifting clocks model in the presence of network and node failures�

Then� for any connection management protocol P� there exists an execution e of P with de �

������ �� such that

D�e� � ��de �

�	



Proof� Assume� by way of contradiction� that there exists a connection management protocol

P for the drifting clocks model in the presence of network and node failures such that for every

execution e of P with de � ���������D�e� � ��de� We construct an execution of P containing

two message�deliver events�

We start with an informal outline of our proof� We construct a sequence of executions e�

e�� f and f �� so that R delivers a message twice in f �� In e and f � the clocks of R and S

are �slow�� while in e�� the clocks of R and S are �fast�� We start with e� which terminates

immediately after R delivery�when R delivery crash immediately�� We continue to construct

e�� which S cannot distinguish from e to S� while R still delivers in e� and after crash� By

modifying R�s clock� we �perturb� e to obtain f � which S cannot distinguish from e� still� f

terminates immediately after R crash� Finally� we construct f � as the �concatenation� of e�

and f � in f �� R �rst delivers and then crashes� before it receives replays of all packets in a

way that R �sees� them arriving as in f � This leads R to deliver again� which contradicts the

correctness of P � We now present the details of the formal proof�

We construct an execution e of P in which



�e	
S �t� �

t

�
� ����

�

�
�de

and



�e	
R �t� �

t

�
�

Thus� the clock of S is initially ����� ����de� while the clock of R is initially �� Each packet

incurs a delay of de� We construct e so that S sends its intial packet at local time ���������de

and the second packet send at local time �� It implies that S send the initial packet at real

time � and the second packet at time ���� ��de� We construct e so that R crash immediately

when receive the initial packet from S� so that R cannot respond to S� Assume that up to

���� ��de� when R receive a replay of initial packet crash immediately so it cannot respond

to S� Also assume that one replay of the initial packet arrive at R at the moment ���� ��de�

Note that the second packet sent from S to R arrive at R at time ���� ��de� It implies that

the replay of the initial packet and the second packet arrive at R at local time �� � ����de�

Thus� since no local actions are enabled in the intial state of R� R may sent a packet to S no

earlier than time ���� ��de� Hence� since all packet delays are equal to de in e� S may receive

a packet from R no earlier than time ���� ��de� It follows that�

Claim 
�� In the execution e� the inputs that S receives in the interval ��� ���� ��de� is the

initial input from US�

��



By our assumption on P � in e� R delivers at real time D�e� � ��de� thus� R delivers at

local time



�e	
R �D�e�� � 
R���de�

�since D�e� � ��de and 

�e	
R is strictly increasing�

� �de �

We have then R crash immediately�

We continue to construct an execution e� for which



�e�	
S �t� � �t� ����

�

�
�de

and



�e�	
R �t� � �t �

Thus� both clocks are �fast�� Also the clock of S is initially ���� � ����de� while the clock

of R is initially �� Futhermore� assume that each packet incurs a delay of de� � de��
�� We

construct e� so that S sends its intial packet at local time ���������de and the second packet

send at local time �� We construct e� so that R crashes immediately on receipt of the initial

packet from S� so that R cannot respond to S� Assume that up to R�time ��� ����de� when

R receive a replay of initial packet crash immediately so it cannot respond to S� Also assume

that one replay of the initial packet arrive at R at local time �������de� Note that the second

packet sent from S to R arrive at R at local time �������de� Also notice that� by construction

the ammount of local time that elapses between the send and the receipt of every packet is

the same in e and e�� By construction� e� j S � e j S and e� j R � e j R� So in e�� R delivers

before local time �de� It follows that R delivers before real time �de��� We have then R crash

immediately�

We continue to construct an execution f for which



�f	
S �t� �

t

�
� ����

�

�
�de

and



�f	
R �t� �

t

�
� �de �

Thus� both clock are �slow� and the clock of S is initially ����� ����de� while the clock

of R is initially �de� Futhermore� each packet incurs a delay of df � de� We construct f so

that S sends its intial packet at time � and the second packet at time ��� � ��de� Assume

�




that up to ���� ��de� when R receive a replay of initial packet crash immediately so it cannot

respond to S� Assume that R crashes immediately when receive the initial packet so from S�

that R cannot respond to S� Also assume that one replay of the initial packet arrive in R at

time ���� ��de� Note that the second packet sent from S to R arrive at R at time ���� ��de�

It implies that the replay of initial packet and the second replay arrive at R at local time

�� � ����de � �de� Since no local actions are enabled in the intial state of R� R may sent a

packet to S no earlier than time ��� � ��de� Hence� since all packet delays are equal to de

in the timed execution f � S may receive a packet from R no earlier than time ���� ��de� It

follows that�

Claim 
�� In f � the inputs that S receives in the interval ��� ���� ��de� is the initial input

from US �

By our assumption on protocol P � in f � R delivers at time

D�f� � ��df � ��de �

thus� R delivers at local time



�f	
R �D�f�� � 


�f	
R ���de�

�since D�f� � ��de and 

�f	
R is strictly increasing�

� �de �

Since all packet delays are equal to de in the execution f � the only input that R receives

before delivery are the packets sent by S in the interval ���D�f�� de�� It follows that�

Claim 
�� The inputs that R receives before delivery are the packets sent by S in the S�interval

������
�

�
�de� 


�f	
R �D�f�� �

de
�
� �de� �

We continue to show certain timing properties of send�packet and receive�packet events in

f �

Lemma 
�	 Consider any packet � sent from S to R at S�time

t � ������
�

�
�de� 


�f	
R �D�f��� �de �

de
�
� �

Then � arrives at R at R�time

�de �
de
�
� t �

��



Proof� By de�nition of 

�f	
S � � is sent at real time �t� By construction of f � � arrive at R at

real time �t� de� It follows that � arrives at R at R�time



�f	
R �de � �t� �

de � �t

�
� �de

� �de �
de
�
� t �

as needed�

We continue to show that e� and f are indistinguishable to S in an initial interval of its

local time�

Lemma 
�
 f j S � e� j S in the S�interval

������
�

�
�de� 


�f	
R �D�f�� �

de
�
� �de� �

Proof� By our assumption on protocol P � we have that D�f� � ��de� it follows that D�f��

de � ���� ��de� By Claim ���� this impies that� in f � the only input that S receives in the

interval ���D�f�� de� is the initial input from US � Also by Claim ���� in e� the inputs that S

receives in the interval ���D�f�� de� is the initial input from US � Thus� e j S � f j S in the

interval ���D�f�� de�� Also by construction e j S � e� j S� Thus� f j S � e� j S in the interval

���D�f�� de�� By de�nition of 

�f	
R and 


�f	
S � f j S � e� j S in the S�interval

������
�

�
�de� 


�f	
R �D�f�� �

de
�
� �de� �

Finally� we construct an execution f � in which R delivers the message twice� A pre�x of

f � is equal to e�� The remainder of f � is an execution fragment f ��� which begins at time D�e��

with R in its initial state� In f ��� 

�f �

�	
S �t� � 


�f �

�	
R �t� � �t� The execution f � is shown in

Figure �� We replay the initial packet so that incurs a delay of ���� � �����de � �de�� to

arrive� It follows that the replay of initial packet arrive at R at local time ��� ����de � �de�

We replay all packets sent by S in the interval ��� 

�f	
R �D�f���de��� �de�� so that each incurs

a delay of �de��� de��
� to arrive�

We continue to show certain timing properties of send�packet and receive�packet events in

f ���

��



Lemma 
�� Consider any replay of packet � sent by S to R at S�time

t � ������
�

�
�de� 


�f	
R �D�f���

de
�
� �de� �

Then � arrive at R at R�time

�de �
de
�
� t �

Proof� By de�nition of 

�f �

�	
R � � is sent at real time t��� By construction of f ��� � arrives at

R at real time t��� �de��� de��
�� It follows that � arrive at R at R�time



�f �

�	
R �

t

�
�
�de
�

�
de
��
� � �de �

de
�
� t �

as needed�

By Lemmas ��� and ��	� the replays arriving at R as they did in execution f � Any other

packets sent by S incur a delay of � to arrive at R�hence any other packets sent by S take ��

units of local time to arrive at R� Thus� any each packet sent by S after S�time 

�f	
R �D�f���

de��� �de� it will receive from R after R�time



�f	
R �D�f���

de
�
� �de � �� � 


�f	
R �D�f���

de
�
� �de � ��de

�de � ������ ���

� 

�f	
R �D�f�� � ��� ��

�

�
�de

� 

�f	
R �D�f�� �

since � � �� So we can ensure that any packet sent by S after S�time 

�f	
R �D�f�� �

de��� �de will not interfre with this part of the construction� By our construction� the only

inputs that R receives following delivery and up to time 

�f	
R �D�f�� are replays of packets

sent by S in the S�interval ����� � �
��de� 


�f	
R �D�f�� � �de �

de
� �� Also� by Claim ���� in f �

the inputs that R receives up to time 

�f	
R �D�f�� are replay of packets sent by S in the S�

interval ������ �
��de� 


�f	
R �D�f�� � �de �

de
� �� By Lemma ���� f j S � e� j S in the S�interval

����� � ����de� 

�f	
R �D�f�� � �de � de���� Thus� we can construct the fragment f �� so that

f j R � f �� j R in the R�interval ��de� 

�f	
R �D�f���� Thus� R delivers the message in f ��� Hence�

R delivers the message twice in the execution f � � e�f ��� A contradiction�

��
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	 Approximately Synchronized Clocks

In this section� we present two lower bounds for the approximately synchronized clocks model�

under both network and node failures� The �rst is more general but less strong�

Theorem ��� Consider the approximately synchronized clocks model� under both network and

node failures� Then� for any connection management protocol P� there exists an execution e

of P with � � de � ���� such that

D�e� � de � �� �

Proof� Assume� by way of contradiction� that there exists a connection management protocol

P such that for every execution e of P with � � de � ���� D�e� � de � ��� We construct an

execution of P containing two message�deliver events�

We start with an informal outline of our proof� We construct a sequence of executions e� e��

and f � so that R delivers a message twice in f � In all of these executions� the clock of R �lags�

by � that of S� We start with any execution e which terminate with R delivering a message

and immediately crashing� We �perturb� e to abtain e� which is indistinguishable from e to

either S � while all messages incur a delay larger than the corresponding one in e� Finnally we

continue to construct f as �concatenation� of e and e��in f � R �rst delivers and crashes and

next receives replays of all packets in such way that R �sees� all packets arriving as in f � By

construction of f � R delivers again � which cotradicts the correctness of P � We now present

the details of the formal proof�

Consider an execution e of P for which 

�e	
S �t� � t� and 


�e	
R �t� � t � �� thus� the clocks of

S and R hold the initial values � and �� respectively� Futhermore� assume that each packet

incurs a delay of de in the execution e� where � � de � ��
� Finally� assume that the last step

in e is taken on occurrence of a crash event at R� which immediately follows a message�deliver

event at R�

By assumption on P � in e� R delivers at real time D�e� � de � ��� Since all packet delays

are equal to de in the execution e� R may receive a packet no earlier than time de� Since no

local actions are enabled in the initial state of R � it immediately follows that R may send a

packet to S no earlier than time de� It follows in e� S does not receive a packet from R before

real time �de� Also �� � �de� since de � �� It follows that�

Claim ��� In e� the only input S receives in the interval ��� �	� is the initial input from US�

��



We construct an execution e� of P in 

�e�	
S �t� � t� and 


�e�	
R �t� � t � �� Thus� the clock

of S is initially � while the clock of R is initially � � Futhermore� each packet incurs a delay

of de� � de � �� in the execution e�� By assumption on P � in e�� R delivers at real time

D�e�� � de� � �� � de � ��� Thus� R delivers at R�time



�e�	
R �D�e��� � 


�e�	
R �de � ���

�since D�e�� � de � �� and 

�e�	
R is strictly increasing�

� de � ��

�by de�nition of 

�e�	
R � �

Since all packet delays are equal to de � �� in the execution e�� R may receive a packet no

earlier than real time de � ��� Since� no local actions are enabled in the initial state of R� it

immediately follows that R may send a packet to S no earlier than real time de���� It follows

that�

Claim ��� In e�� S does not receive a packet from R before real time �de � �� �

We continue to show certain timing properties of send�packet and receive�packet in e��

Lemma ��� Consider any replay packet � sent from S to R at S�time t � ��� ���� Then �

arrives at R at R�time t � de � ���

Proof� By de�nition of 

�e�	
S � � sent at real time t� By construction of e�� � arrives at R at

real time t� de���� By de�nition of 

�e�	
R � it follows that � arrives at R at R�time t� de����

as needed�

We continue to show�

Lemma ��	 e� j S � e j S in the S�interval ��� ����

Proof� Since de � �� �	 � �de � �de � �	� By Claim 	�� and Claim 	��� this implies that

e� j S � e j S in the interval ��� ���� By de�nitions of 

�e�	
S and 


�e	
S � it follows that e� j S � e j S

in the S�interval ��� ���� as needed�

��



Finally� we construct an execution f in which R delivers the message twice� A pre�x of f

is equal to e� The remainder of f is an execution fragment f� which begins at time D�e� with

R in its initial state� In f�� 

�f�	
S �t� � t and 


�f�	
R �t� � t � �� In the Figure � we present the

execution f in which R delivers twice� We replay all packets sent by S so that each incurs a

delay of de � �	 to arrive� We continue to show certain timing properties of send�packet and

receive�packet in e��

Lemma ��
 Consider any replay packet � sent from S to R at S�time t � ��� ���� Then �

arrives at R at R�time t � de � ���

Proof� By de�nition of 

�e	
S � � sent at real time t� By construction of f � � arrives at R at

real time t�de ���� By de�nition of 

�f�	
R � it follows that � arrives at R at R�time t�de ����

as needed�

We show�

Lemma ��� Consider any replay packet � sent from S to R at S�time t � ��� Then � arrives

at R after R�time de � ���

Proof� By construction of f � � incur a delay de��� to arrives at R� It follows that � arrives

at R at real time t� de � �� � de � ��� By de�nition of 

�f�	
R � it follows that � arrives at R at

R�time



�f�	
R �t� de � ��� � 


�f�	
R �de � ���

�since t� de � �� � de � �� and 

�f�	
R is strictly increasing�

� de � ��

�by de�nitions of 

�f�	
R � �

as needed�

By Lemma 	��� 	��� 	�	 and 	��� we have that f� j R � e� j R� in the R interval

�de���� de����� Since 

�e�	
R �D�e��� � de� ��� it follows that� in f�� R delivers at R�time 


�e�	
R

Thus� R delivers twice in the execution f � ef�� A contradiction�

��
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Since the weakly synchronized clocks model is no stronger than the approximately synchro�

nized clocks model� Theorem 	�� immediately implies�

Corollary ��� Consider the weakly synchronized clocks model� under both network and node

failures� Then� for any connection management protocol P� there exists an execution e of P

with � � de � ���� for which

D�e� � de � �� �

We continue to show a stronger but less general lower bound�

Theorem ��� Consider the approximately synchronized clocks model� under both network and

node failures� Then� for any connection management protocol P� there exists an execution e

of P with � � de � ��� ������ such that

D�e� � �de � �� �

Proof� Assume� by way of contradiction� that there exists a connection management protocol

P for the approximately synchronized clocks model in the presence of both network and node

failures such that for every execution e of P with � � de � �� � ������ D�e� � �de � ��� We

construct an execution of P containing two message�deliver events�

We start with an informal outline of our proof� Our proof constructs a sequence of exe�

cutions e� e�� f� f � so that R delivers a message twice in f �� We start with execution e which

terminates with R delivering a message and immediately crashing� We �perturb� e to obtain

e� which is indistinguishable from e to either S or R� while all messages from R to S take

time � in e�� so� R still delivers and immediately crashes by the end of e�� We continue to

construct f which is indistinguishable from e� to S� while R only delivers in f but does not

crash� the construction uses the fact that communication from R to S is slow in e�� Finally�

we construct f � as the �concatenation� of e� and f � in f �� R �rst delivers and crashes and next

receives replays of all packets in such a way that R �sees� all packets arriving as in f � By the

construction of f � R delivers again� which contradicts the correctness of P � We now present

the details of the formal proof�

Consider an execution e of P for which 

�e	
S �t� � t � �� and 


�e	
R �t� � t� Thus� the clocks

of S and R initially hold the values �� and �� respectively� Furthermore� assume that each

packet incurs a delay of de in the execution e� We construct e so that S sends its initial packet

at time �� It implies that S sends its initial packet at S�time �	� By the Theorem 	��� we

��



have that R delivers at time D�e� � de � ��� We construct e so that R crash immediately

when receive a packet so that R cannot respond to S� The last crash happen just before the

moment de���� Notice that the moment just before de� �� R is in initial state� Also assume

that one replay of each packet has received by R before the moment de � �� arrive at R at

time de � ��� Thus� since no local actions are enabled in the initial state of R� R may sent a

packet to S no earlier than time de � ��� Hence� since all packet delays are equal to de in e� S

may receive a packet from R no earlier than time �de � ��� It implies that�

Claim ���� In e � the only input that S receives in the interval ��� �de���� is the initial input

from US �

By our assumption on P � in e� R delivers at real time D�e� � �de � ��� By de�nition of



�e	
R R delivery at R�time 


�e	
R �D�e�� � D�e�� We have then R crash immediately�

We continue to show certain timing properties of send�packet and receive�packet events in

e�

Lemma ���� Consider any packet � sent from S to R at S�time t � ���� ��� Then � arrives

at R at R�time de���� Consider any packet �� sent from S to R at S�time t � ���D�e��de����

Then �� arrives at R at R�time t � de � ��

Proof� By construction of e� one replay of � arrives at R at R�time de � ��� By de�nition

of 

�e	
S � �� is sent at real time t � �� By de�nition of 


�e	
S � �� is sent at real time t � �� By

construction of e� �� arrives at R at real time t� de � �� By de�nition of 

�e	
R � �� arrives at R

at R�time t � de � ��

We construct an execution e� in which 

�e�	
S �t� � t � � and 


�e�	
R �t� � t� Thus� the clock of

S is initially �� while the clock of R is initially �� Assume that each packet sent from S to

R in the interval ��� ��� arrives at R at real time de � ��� Also assume that any other packet

sent from S to R incurs a delay of de� Each packet from R to S incurs a delay of �� Since all

packets which sent from S to R in the interval ��� ��� arrives at R at real time de � �� and all

other packet delays from S to R are equal to de in the execution e�� R may receive a packet

from S no earlier than time de � ��� Since no local actions are enabled initial state of R� it

follows that R may send a packet to S no earlier than time de � ��� Hence� since all packet

delays from R to S are equal to � in e�� S may receive a packet from R no earlier than time

�� de � �de � de � ��

�




�since de � ��� ������

� �de � �� �

It follows that�

Claim ���� In e�� the input that S receives in the interval ��� �de � ��� is the initial input

from US �

We continue to show certain timing properties of send�packet and receive�packet events in

e��

Lemma ���� Consider any packet � sent from S to R at S�time t � ���� ��� Then � arrives

at R at R�time de���� Consider any packet �� sent from S to R at S�time t � ���D�e��de����

Then �� arrives at R at R�time t � de � ��

Proof� By construction of e�� one replay of � arrives at R at R�time de � ��� By de�nition

of 

�e�	
S � �� is sent at real time t � �� By de�nition of 


�e�	
S � �� is sent at real time t � �� By

construction of e�� �� arrives at R at real time t � de � �� By de�nition of 

�e�	
R � �� arrives at

R at R�time t � de � ��

We show�

Lemma ���� e j S � e� j S in the interval ���D�e�� de� and e j R � e� j R in the interval

���D�e���

Proof� We have that

�de � �� � �de � ��

� D�e�� de

�since D�e� � �de � ��� �

By Claim 	��� and Claim 	���� this implies that e j S � e� j S in the interval ���D�e��de�� By

de�nitions of 

�e�	
S and 


�e	
S � it implies that e j S � e� j S in the S�interval ����D�e�� de � ���

By Lemma 	���� 	��� it implies that e j R � e� j R in the R�interval ��� 

�e	
R �D�e���� By

de�nitions of 

�e�	
R � it implies that e j R � e� j R in interval ���D�e���

��



By Lemma 	��� follows that in e� R delivery at time D�e�� We have then R crash imme�

diately�

We now construct an execution f for which 

�f	
S �t� � t� � and 


�f	
R �t� � t� Thus� the clock

of S is initially ��� while the clock of R is initially �� Each packet incurs a delay of df � D�e��

We construct f so that S sends its initial packet at time �� By the Theorem 	��� we have

that R delivers at time D�f� � D�e� � ��� We construct f so that R crash immediately when

receive a packet so that R cannot respond to S� The last crash happen just before the moment

D�e� � ��� Also assume that one replay of each packets has received by R before the moment

D�e�� �� arrive at R at time D�e�� ��� Thus� since no local actions are enabled in the initial

state of R� R may sent a packet to S no earlier than time D�e� � ��� Hence� since all packet

delays are equal to D�e� in f � S may receive a packet from R no earlier than time �D�e�� ���

It follows that�

Claim ���	 In f � the input that S receives in the interval ��� �D�e� � ��� is the initial input

from US �

By our assumption� in f � R delivers at time

D�f� � �df � ��

� �D�e� � �� �

We then have R crash immediately� Also

D�f��D�e� � �D�e� � ��

�since D�f� � �D�e� � ���

� �de � ��

�since D�e� � �de � ��� �

By Claim 	��� and Claim 	���� this implies that e� j S � f j S in the interval ���D�f��D�e���

By de�nition of 

�f	
S � it implies that�

Lemma ���
 e� j S � f j S in the S�interval ����D�f��D�e�� ���

Since all packet delays are equal to D�e� in the execution f � we have that in f the input

that R receives before delivery are the packets sent by S in the interval ���D�f��D�e��� By

de�nition of 

�f	
S � it implies that�

��



Lemma ���� In f the input that R receives before delivery are the packets sent by S in the

S�interval ����D�f��D�e�� ���

We continue to show certain timing properties of send�packet and receive�packet events in

f �

Lemma ���� Consider any packet � sent from S to R at S�time t � ���� ��� Then � arrives

at R at R�time D�e� � ��� Consider any packet �� sent from S to R at S�time t � ���D�f��

D�e�� ��� Then �� arrives at R at R�time t �D�e� � ��

Proof� By construction of f � one replay of � arrives at R at R�time D�e����� By de�nition

of 

�f	
S � �� is sent at real time t��� By construction of f � �� arrives atR at real time t�D�e����

By de�nition of 

�f	
R � �� arrives at R at R�time t�D�e� � ��

Finally� we construct an execution f � in which R delivers the message twice� A pre�x of

f � is equal to e�� By construction� in e� R do delivery at D�e� and immediately crash� The

remainder of f � is an execution fragment f �� which begins at D�e� with R in its initial state

�R do crash at time D�e��� In f ��� 

�f �

�	
S �t� � t � � and 


�f �

�	
R �t� � t� In the Figure 	 we present

the execution f � in which R delivers twice� We replay all packets sent by S in the S�interval

���� �� so that each replay arrive at R at time D�e� � ��� Also we replay all packets sent by S

in the S�interval ���D�f��D�e�� �� so that each incurs a delay of D�e� to arrive� We have

all other packets incurs a delay of �� We show�

Lemma ���� Consider any replay packet � sent by S at S�time t � ����D�f��D�e�� ��� it

arrive at R before R�time 

�f	
R �D�f���

Proof� By de�nition of 

�e�	
S � � sent at real time t� �� By construction of f �� � arrives at R

at rela time

t �D�e� � D�f��D�e� �D�e�

� D�f� �

By de�nitions of 

�f �

�	
R � 


�f	
R and 


�e�	
S � it follows that in f ��� each replay packet sent by S at

S�time t � ����D�f��D�e�� ��� arrives at R before R�time 

�f	
R �D�f���

��



We show�

Lemma ���� Consider any replay packet � sent by S after S�time D�f��D�e�� �� Then �

at R sfter R�time 

�f	
R �D�f���

Proof� By de�nition of 

�e�	
S � � is sent after real time D�f��D�e�� By construction of f �� �

arrives at R after real time

D�f��D�e� � � � D�f��D�e� � �de � ��

�since de � ��� ������

� D�f�� �de � �� �de � ��

�since D�e� � �de � ��

� D�f� � �de � �

� D�f� �

By de�nition of 

�f �

�	
R � � arrives at R after R�time 


�f	
R �D�f���

We continue to show certain timing properties of send�packet and receive�packet events in

f ���

Lemma ���� Consider any replay packet � sent from S to R at S�time t � ���� ��� Then �

arrives at R at R�time D�e� � ��� Consider any replay packet �� sent from S to R at S�time

t � ���D�f��D�e�� ��� Then �� arrives at R at R�time t �D�e� � ��

Proof� By construction of f ��� one replay of � arrives at R at R�time D�e����� By de�nition

of 

�e�	
S � �� is sent at real time t � �� By construction of f ��� �� arrives at R at real time

t �D�e� � �� By de�nition of 

�f �

�	
R � �� arrives at R at R�time t �D�e� � ��

By Lemma 	���� 	��	� 	���� 	��
� 	��� and 	���� we have that f �� j R � f j R in the

interval �D�e� � �	�D�f��� It implies that R delivery in f ��� Thus� R delivers twice in the

execution f � � e�f ��� A contradiction�

Since the weakly synchronized clocks model is no stronger than the approximately synchro�

nized clocks model� Theorem 	�
 immediately implies�

��
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Corollary ���� Consider the weakly synchronized clocks model� where messages can be du�

plicated and reordered� and R can crash but does not remember the time of its last crash�

Then� for any connection management protocol P� there exists an execution e of P with

� � de � ��� ����� for which

D�e� � �de � �� �


 Discussion and Directions for Further Research

We have presented a collection of trade�o�s between message delivery time and quiescence

time� in the form of tight lower and upper bounds� for connection management protocols� over

a number of natural settings
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