
Performance and Stability Bounds for Dynamic Networks∗

Dimitrios Koukopoulos† Marios Mavronicolas‡ Paul Spirakis§

Abstract

In this work, we study the impact of dynamically
changing link capacities on the performance bounds
of LIS (Longest-In-System) and SIS (Shortest-In-
System) protocols on specific networks (that can
be modelled as Directed Acyclic Graphs-DAGs)
and stability bounds of greedy contention-resolution
protocols running on arbitrary networks under the
Adversarial Queueing Theory. Especially, we con-
sider the model of dynamic capacities, where each
link capacity may take on integer values from [1, C]
with C > 1, under a (w, ρ)-adversary. The stabil-
ity of a greedy protocol guarantees that the number
of packets in the network remains bounded at all
times. However, it does not guarantee the existence
of small bounds on the packet delay. We, therefore,
show:

• The packet delays on DAGs for LIS is upper
bounded by O(iwρC) where i is the length of
the longest path leading to a node when nodes
are ordered by the topological order induced by
the DAG.

• Complementary, the performance of LIS on
DAGs against a (w, ρ)-adversary is lower

∗This work has been partially supported by the IST Pro-
gram of the European Union under contract numbers IST-
1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS), and
by funds from the Joint Program of Scientific and Technolog-
ical Collaboration between Greece and Cyprus.

†Contact Author. Department of Computer Engineer-
ing and Informatics, University of Patras, Rion, 265 00 Pa-
tras, Greece, & RACTI, P. O. Box 1122, 261 10 Patras,
Greece. Email: Dimitrios.Koukopoulos@cti.gr

‡Departemnt of Computer Science, University of Cyprus,
1678 Nicosia, Cyprus. Email: mavronic@ucy.ac.cy

§Department of Computer Engineering and Informat-
ics, University of Patras, Rion, 265 00 Patras, Greece, &
RACTI, P. O. Box 1122, 261 10 Patras, Greece. Email:
spirakis@cti.gr

bounded by Ω(iwρC) through an involved com-
binatorial construction. Therefore, we show
tight performance bounds for LIS on DAGs. In
a similar way, we show that the performance of
SIS on DAGs is lower bounded by Ω(iwρC).

• Any arbitrary network G (possibly cyclic) run-
ning a greedy protocol is stable for a rate not
exceeding a particular stability threshold, de-
pending on C and the length d(G) of the longest
path in the network.

1 Introduction

Motivation-Framework. We are interested in the
behavior of packet-switched networks in which pack-
ets arrive dynamically at the nodes and they are
routed in discrete time steps across the links. Re-
cent years have witnessed a vast amount of work
on analyzing packet-switched networks under non-
probabilistic assumptions (rather than stochastic
ones); We work within a model of worst-case contin-
uous packet arrivals, originally proposed by Borodin
et al. [3] and termed Adversarial Queueing Theory
to reflect the assumption of an adversarial way of
packet generation and path determination.

A major issue that arises in such a setting is that
of stability– will the number of packets in the net-
work remain bounded at all times? Besides the ex-
istence or not of upper bounds on the packet de-
lays, a complementary question concerning stability
is whether stability guarantees that there are small
bounds on packet delays. The answer to these ques-
tions may depend on the rate of injecting packets
into the network, the capacity of the links, which is
the rate at which a link forwards outgoing packets,
and the protocol that is used to resolve the con-
flict when more than one packet wants to cross a
given link in a single time step. We study these
questions considering that packets are injected by

an adversary (rather than by an oblivious random-
ized process) and capacities are chosen by the same
adversary in a dynamic way.

Most studies of packet-switched networks assume
that one packet can cross a network link in a sin-
gle time step. This assumption is well motivated
when we assume that all network links are identi-
cal. However, a packet-switched network can con-
tain different types of links, which is common espe-
cially in large-scale networks like Internet. Then, it
is well motivated to assign a capacity to each link
that takes on values from the integer set [1, C] with
C > 1. If C is a large integer, we can consider ap-
proximately as a link failure the assigning of unit
capacity to a link and the assigning of capacity C
as the proper service rate. Therefore, the study of
protocol stability under this model of dynamically
changing capacities can be considered as an approx-
imation of the fault-tolerance of a network where
links can temporarily fail (zero capacity).

In this work we consider the impact on perfor-
mance bounds and stability properties if the adver-
sary besides the packet injections in paths which it
determines, it also can set the capacities of network
edges in each time step. This subfield of study was
initiated by Borodin et al. in [4]. Note that we
continue to assume uniform packet sizes. Further-
more, we consider greedy contention-resolution pro-
tocols (all of which enjoy simple implementations)-
always advance a packet across a queue (but one
packet at each discrete time step) whenever there
resides at least one packet in the queue, such as LIS
(Longest-in-System) that gives priority to the pack-
ets that have been for the longest amount of time
in the network and SIS (Shortest-in-System) that
gives priority to the packets that have been for the
shortest amount of time in the network.

Roughly speaking a protocol P is stable [3] on a
network G against an adversary A of rate r if there
is an integer B (which may depend on G and A)
such that the number of packets in the system is
bounded at all times by B. Moreover, a a network
G is universally stable [3] if every greedy protocol
is stable against every adversary of rate less than
1 on G. Directed Acyclic Graphs (DAGs) are uni-
versally stable in the more powerful model of gen-
eral dynamic capacities– each is stable against every
adversary of rate less than 1 for every protocol [4,

Theorem 3].
Contribution. We use here the model of dynamic
capacities that has been initiated in [4] where link
capacities may take on integer values in the interval
[1, C] with C > 11 under a (w, ρ)-adversary that
injects packets at rate ρ with window size w. In
this framework, we show:

• The delay of packets on DAGs (where LIS is
running on top of them) is upper bounded by
O(iwCρ) where i is the level of a node in a DAG
(the length of the longest path leading to node
v when nodes are ordered by the topological
order induced by the graph). We use double-
induction on time and the node level to prove
it.

• We make this performance bound tight showing
a lower bound of Ω(iwCρ) on the packet delay
that is suffered by a packet targeted with a node
u of level i. The maximum queue size in this
case is (w + 1)C. The proof of this result is
based on an involved adversarial construction.
In a similar way, we prove that SIS has a lower
bound of Ω(iwCρ) on the packet delay when it
is running on top of DAGs.

• We show two simple results which provide some
upper bounds on the allowable rate of injec-
tions that still guarantees stability. Specifically,
we prove that any arbitrary network running
a greedy contention-resolution protocol is sta-
ble as long as the injection rate does not ex-
ceed 1

C(d(G)+1) , where d(G) is the length of the
longest path in the network that can be fol-
lowed by any packet. A slightly improved re-
sult is proved for the stability threshold in the
case of a special class of greedy protocols, the
time priority protocols. Such a protocol is sta-
ble on all networks as long as the injection rate
of the adversary does not exceed 1

Cd(G) .

Roughly speaking, the results that have been ob-
tained in this paper show that the linear perfor-
mance bounds that have been proved in the classical

1The classical Adversarial Queueing Theory corresponds
to the case where only one capacity value is available to the
adversary.

2

setting of Adversarial Queueing Theory remain lin-
ear when link capacities vary dynamically although
the adversary in such environments is more power-
ful. The only difference is that performance bounds
in the dynamic setting have as expense a multiplica-
tive factor of C. The same holds for the stability
thresholds that are obtained in this paper for dy-
namically varying link capacities.
Related Work. Adversarial Queueing Theory was
developed by Borodin et al. [3] as a more realistic
model that replaces traditional stochastic assump-
tions in Queueing Theory by more robust, worst-
case ones. Adversarial queueing theory received a
lot of interest in the study of stability and insta-
bility issues (see, e.g., [1, 6, 7, 10, 11]). The uni-
versal stability of various natural greedy protocols
(LIS, SIS, NTS (Nearest-to-Source), FTG (Furthest-
to-Go)) has been established by Andrews et al. [1].
Furthermore, the set of universally stable networks
has been well-characterized [1, 3] (DAGs, trees,
ring).
Stability Bounds for Greedy Protocols. The subfield
of proving stability thresholds for greedy protocols
on every network was first initiated by Diaz et al. [6]
showing an upper bound on injection rate for the
stability of FIFO in networks with a finite number
of queues that is based on network parameters. This
result was significantly improved for all networks by
Koukopoulos et al. [8] demonstrating a method for
estimating an upper bound for FIFO stability which
is, also, based on network parameters. In an al-
ternative interesting work, Lotker et al. [11] proved
that any greedy protocol can be stable in any net-
work if the injection rate of the adversary is upper
bounded by 1/(d+1), where d is the maximum path
length that can be followed by any packet. Also,
they proved that for a specific class of greedy proto-
cols, time-priority protocols the stability threshold
becomes 1/d.
Performance Bounds for Greedy Protocols. Sev-
eral universally stable protocols have exponential
lower bounds on queue sizes and packet delays (SIS,
NTS, FTG) [1]. In an interesting work, Adler and
Rosén [2] proved tight polynomial bounds for the
stability of LIS on DAGs. Especially, they have
shown that LIS on DAGs has linear (in the longest
path in the network that can be followed by any
packet) queue sizes and packet delays.

Stability Issues in Dynamic Networks. Borodin et
al. in [4] studied for the first time the impact on sta-
bility when the edges in a network can have capaci-
ties. They proved that many well-known universally
stable protocols (SIS, NTS, FTG) do maintain their
universal stability when the link capacity is chang-
ing dynamically, whereas the universal stability of
LIS is not preserved. Also, the universal stability
of networks is preserved under this varying context.
The study of stability when link capacities change
dynamically has been further extended in [9] pre-
senting involved combinatorial constructions of the
adversary that lead LIS and certain compositions
of universally stable protocols to instability for a
threshold of

√
2 − 1.

Road Map. The rest of this paper is organized as
follows. Section 2 presents our model definitions.
Bounds for the LIS protocol on DAGs are presented
in Section 3. A bound for the SIS protocol on DAGs
is presented in Section 4. Section 5 includes our
upper bounds on the stability threshold of any net-
work. We conclude, in Section 6, with a discussion
of our results and some open problems.

2 Model

The model definitions are patterned after those
in [3, Section 3], adjusted to reflect the fact that link
capacities may vary arbitrarily as in [4, Section 2]
(link capacities may take on integer values in the in-
terval [1, C] with C > 1). A routing network is mod-
elled as a directed graph G =(V, E) with |V | = n
nodes and |E| = m edges. Each node v ∈ V rep-
resents a communication switch and each directed
edge e ∈ E represents a link between two switches
that delivers packets only in the direction it is ori-
ented. Every switch has a buffer (queue) at the tail
of each out-going link and stores there the packets
to be sent on the corresponding link.

Time proceeds in discrete steps. New packets, re-
quiring to traverse predetermined paths, can be in-
jected into the network at any time step. A packet is
an atomic entity that resides at a node at the end of
any step. It must travel along paths in the network
from its source to its destination, both of which are
nodes in the network. When it reaches its destina-
tion, we say that it is absorbed. During each step,

3

a packet may be sent from its current node along
one of the outgoing edges from that node. Edges
can have different integer capacities, which may or
may not vary over time. Denote Ce(t) the capacity
of edge e at time step t. That is, we assume that
edge e is capable of simultaneously transmitting up
to Ce(t) packets at time t.

Any packets that wish to travel along an edge e
at a particular time step but are not sent wait in a
queue for edge e. The delay of a packet is the num-
ber of steps spent by the packet while waiting in
queues. At each step, an adversary generates a set
of requests. A request is a path specifying the route
followed by a packet.2 We say that the adversary
generates a set of packets when it generates a set of
requested paths. We restrict our study to the case
of non-adaptive routing, where the path traversed
by each packet is fixed at the time of injection, so
that we are able to focus on queueing rather than
routing aspects of the problem. There are no com-
putational restrictions on how the adversary chooses
its requests in any given time step.

Fix any arbitrary positive integer w ≥ 1.
Throughout, for any sequence of time steps T =
[t1, t2] and for any integer w ≥ 1, denote T ±w the
sequence of time steps [t1−w, t2+w]. For any edge e
of the network and any sequence Tw of w consecutive
time steps, define N(T , e) to be the number of paths
injected by the adversary during the time interval T
that traverse edge e. For any constant ρ, 0 < ρ ≤ 1,
a (w, ρ)-adversary Aw,ρ is an adversary that injects
packets subject to the following load condition: For
every edge e and for every sequence Tw of w consec-
utive time steps, N(Tw, e) ≤ ρ

∑
τ∈Tw

C(τ). We say
that a (w, ρ)-adversary Aw,ρ injects packets at rate
ρ with window size w.

Lemma 2.1 Fix any (w, ρ)-adversary Aw,ρ. Then,
for any time step t ≥ 1 and for any edge e,

N ([t], e) ≤ ρ max
max{1,t−w+1}≤δ≤t

∑
δ≤τ≤δ+w−1

C(τ) .

Lemma 2.1 immediately implies:

2In this work, it is assumed, as it is common in packet
routing, that all such paths are simple paths with no overlap-
ping edges.

Corollary 2.2 Fix any (w, ρ)-adversary Aw,ρ.
Then, for any edge e,

N ([1], e) ≤ ρ
∑

1≤τ≤w C(τ).

Lemma 2.3 Fix any (w, ρ)-adversary Aw,ρ. Then,
for any time interval T and for any edge e,
N (T , e) ≤ ρ

∑
τ∈T ±w C(τ).

The assumption that ρ ≤ 1 ensures that it is not
necessary a priori that some edge of the network is
congested (which would surely happen when ρ > 1).

A contention-resolution protocol specifies, for
each pair of an edge e and a time step, which packet
among those waiting at the tail of edge e will be
moved along edge e. A greedy contention-resolution
protocol always specifies some packet to move along
edge e if there are packets waiting to use edge e. All
these contention-resolution protocols require some
tie-breaking rule in order to be unambiguously de-
fined. In this work, whenever we are proving a posi-
tive result, we assume that the adversary can break
the tie arbitrarily; for proving a negative result, we
can assume any well-determined tie breaking rule
for the adversary. For simplicity, and in a way sim-
ilar to that in [1] and in works following it, we omit
floors and ceilings from our analysis, and we some-
times count time steps and packets only roughly.
This may only result to loosing small additive con-
stants, while it implies a gain in clarity.

3 LIS on Directed Acyclic Graphs

Upper and lower bounds on the performance of LIS
on DAGs appear in Sections 3.1 and 3.2, respec-
tively. Throughout this section, we will consider
DAGs, in which nodes are ordered by the topologi-
cal order induced by the graph. This order assigns
to each node v level i ≥ 0, denoted level(v), such
that the longest path leading to node v has length
i.

3.1 Upper Bound

In this section, we present our upper bound on the
performance of LIS on directed acyclic graphs. We
start by proving:

Proposition 3.1 Consider any packet p injected at
time t, and let v be any node of level i ≥ 0 on its

4

path other than its destination node. Then, packet p
clears node v by time t + δ(t), where δ(t) > 0 is the
least integer such that

∑
t≤τ≤t+δ(t) C(τ) ≥ ρ(i + 1)∑

max{1,t−ρ(2w−1)C(i+1)−(i+1)+1−w+1}≤τ≤t+w−1 C(τ).

Proof: By double induction on i and on t; the
outer induction is on i. The basis case and the in-
duction step of the outer induction are shown by an
inner induction on t. Throughout, denote e = 〈v, u〉
the edge over which p has to leave v.

For the basis case of the outer induction, assume
that i = 0. Note that in this case any packet that
has node v on its path must be injected into node
v, since node v has level 0. In particular, packet
p is injected into node v. By definition of the LIS
protocol, it follows that packet p can be delayed
at node v only by packets injected into v at times
t′ ≤ t.

We prove the claim for the case i = 0 by an inner
induction on t.

For the basis case of the inner induction, assume
that t = 1. Since w ≥ 1 while, in this case,
max{1, t−w + 1} = max{1, 2−w} = 1, we need to
show that packet p clears node v by time 1 + δ(1),
where δ(1) > 0 is the least integer such that

∑
1≤τ≤1+δ(1)

C(τ) ≥ ρ
∑

1≤τ≤w

C(τ) .

Note that since t = 1, packet p can be delayed
only by packets injected into v at time step 1 that
have edge e on their path. By Corollary 2.2, there
are at most ρ

∑
1≤τ≤w C(τ) such packets (including

p itself). It follows that p will clear v by time 1+δ(1)
where δ(1) is the least integer such that

∑
1≤τ≤1+δ(1)

C(τ) ≥ ρ
∑

1≤τ≤w

C(τ) .

For the induction step, consider any time step
t > 1. Consider any packet p′ injected into v at
time t′ ≤ t − (2w − 1)Cρ. Since t′ < t, induction
hypothesis implies that p′ clears node v by time t′+
δ(t′), where δ(t′) is the least integer such that

∑
t′≤τ≤t′+δ(t′)

C(τ) ≥ ρ
∑

max{1,t′−w}≤τ≤t′+w−1

C(τ) .

We continue to prove:

Lemma 3.2 δ(t′) ≤ (2w − 1)Cρ − 1

Proof: By definition of δ(t
′
), it suffices to show

that
∑

t′≤τ≤t′+(2w−1)Cρ−1 C(τ) ≥
ρ

∑
max{1,t′−w+1}≤τ≤t′+w−1 C(τ) .

Since C(t) ≥ 1 for all time steps t, it follows that∑
t′≤τ≤t′+(2w−1)Cρ−1 C(τ) ≥ (2w − 1)Cρ − 1 + 1 =

(2w − 1)Cρ .

Since C(t) ≤ C for all time steps t, it follows that
ρ

∑
max{1,t′−w+1}≤τ≤t′+w−1 C(τ) ≤

ρ(2(w − 1) + 1)C = ρ(2w − 1)C .

Hence,
∑

t′≤τ≤t′+(2w−1)Cρ−1 C(τ) ≥
ρ

∑
max{1,t′−w+1}≤τ≤t′+w−1 C(τ) ,

It follows that t′ + δ(t′) ≤ t′ + ρ(2w − 1)C − 1
by Lemma 3.2. But, t′ + ρ(2w − 1)C − 1 ≤
t − 1 since t′ ≤ t − ρ(2w − 1)C and t − 1 <
t. Thus, packet p can be delayed in node v
only by packets injected in the time interval [t −
(2w − 1)Cρ + 1, t]. By Lemma 2.3, there are
at most ρ

∑
max{1,t−(2w−1)Cρ+1−w+1}≤τ≤t+w−1 C(τ)

such packets. It follows that packet p clears
node v by time t + δ(t), where δ(t) > 0 is
the least integer such that

∑
t≤τ≤t+δ(t) C(τ) ≥

ρ
∑

max{1,t−(2w−1)Cρ+1−w+1}≤τ≤t+w−1 C(τ) . This
completes the proof of the inner induction (on t).

The basis case of the outer induction (on i) is now
complete. We now proceed to the induction step of
the outer induction. We prove the claim for the case
i > 0 by an inner induction on t ≥ 1. By definition
of the LIS protocol, it follows that packet p can be
delayed at node v only by packets injected either
into v or into other nodes that are predecessors of v
in the network G at times t′ ≤ t.

For the basis case of the inner induction, assume
that t = 1. Note that since t = 1, packet p can be
delayed at node v only by packets injected at time
t = 1 that have edge e on their path. We distinguish
between two cases:

• Assume first that packet p is injected into node
v. Note that since t = 1, packet p can be de-
layed only by packets injected at time step 1
that have e on their path. By Corollary 2.2,
there are at most ρ

∑
1≤τ≤w C(τ) such packets

(including p itself). It follows that p will clear v
by time 1+ δ(1) where δ(1) is the least integer,
such that

∑
1≤τ≤1+δ(1) C(τ) ≥ ρ

∑
1≤τ≤w C(τ)

as needed.

5

• Assume now that packet p is injected into some
node different than v. Thus, p arrives at node v
over an edge (w, v) for some node w such that
level(w) < level(v) = i. Denote k = level(w).
By the induction hypothesis (on i), packet p
clears node w by time 1 + δ̃(1), where δ̃(1) is
the least integer, such that

∑
1≤τ≤1+δ̃(1)

C(τ) ≥
ρ(k + 1)

∑
max{1,1−w+1}≤τ≤1+w−1 C(τ) = ρ(k +

1)
∑

1≤τ≤w C(τ).

Thus, packet p arrives at node v by time
1 + δ̃(1). Note that packet p can be de-
layed (at node v) only by packets that are
injected at time t = 1 that have e on their
path. By Corollary 2.2, there are at most
ρ

∑
1≤τ≤w C(τ) such packets. It follows that

p will clear v by time 1 + δ̃(1) + δ̃(1 +
δ̃(1)), where δ̃(1 + δ̃(1)) is the least integer,
such that

∑
1+δ̃(1)≤τ≤1+δ̃(1)+δ̃(1+δ̃(1))

C(τ) ≥
ρ

∑
1≤τ≤w C(τ).

Define now δ(1) to be the least integer, such
that

∑
1≤τ≤1+δ(1) C(τ) ≥ ρ(i+1)

∑
1≤τ≤w C(τ).

It remains to prove that packet p clears
node v by time δ(1). But, ρ(i +
1)

∑
1≤τ≤w C(τ) ≥ ρ(k+2)

∑
1≤τ≤w C(τ). How-

ever,
∑

1≤τ≤1+δ̃(1)+δ̃(1+δ̃(1))
C(τ)

=
∑

1≤τ≤1+δ̃(1)
C(τ)

+
∑

1+δ̃(1)≤τ≤1+δ̃(1)+δ̃(1+δ̃(1))
C(τ)

≥ ρ
∑

1≤τ≤w C(τ) + ρ(k + 1)
∑

1≤τ≤w C(τ)
= ρ(k + 2)

∑
1≤τ≤w C(τ)

and packet p clears node v by time 1 + δ̃(1) +
δ̃(1+ δ̃(1)). It follows that packet p clears node
v by time δ(1).

This completes the proof of the basis case of the
inner induction (on t).

We proceed now to the induction step of the inner
induction, where we assume that t > 1. We again
distinguish between two cases regarding the node
where packet p is injected.

• Assume first that packet p is injected into node
v. Then, clearly, packet p resides at node v by
the end of time step t.

• Else, assume that p arrives at node v over
an edge 〈w, v〉 for some node w such that

level(w) < level(v) = i. By the induction hy-
pothesis (on i), packet p clears node w by time
t+ δ̃(t) where δ̃(t) is the least integer such that∑

t≤τ≤t+δ̃(t)
C(τ)

≥ ρ(k + 1)
∑

max{1,t−w+1}≤τ≤t+w−1 C(τ) .

Thus, in any case, packet p clears node w by time
t + δ̃(t), where δ̃(t) is the least integer such that∑

t≤τ≤t+δ̃(t)
C(τ)

≥ ρ(k + 1)
∑

max{1,t−w+1}≤τ≤t+w−1 C(τ) .

Consider now any packet p
′
injected at time step

t
′ ≤ t − ρ(2w − 1)C(i + 1) − (i + 1). Since t

′
< t,

the induction hypothesis (on t) implies that packet
p
′
clears node v by time step t

′
+ δ(t

′
), where δ(t

′
)

is the least integer such that
∑

t
′≤τ≤t

′
+δ̃(t

′
)
C(τ)

≥ ρ(k + 1)
∑

max{1,t
′−w+1}≤τ≤t

′
+w−1 C(τ) .

We continue to prove:

Lemma 3.3 δ(t′) ≤ ((2w − 1)Cρ − 1)(i + 1) + i

Proof: By definition of δ(t′), it suffices to show
that

∑
t′≤τ≤t′+((2w−1)Cρ−1)(i+1)+i C(τ)

≥ ρ
∑

max{1,t′−w+1}≤τ≤t′+w−1 C(τ).
Since C(t) ≥ 1 for all time steps t, it follows that∑
t′≤τ≤t′+((2w−1)Cρ−1)(i+1)+i C(τ)

≥ ((2w−1)Cρ−1)(i+1)+i+1 = (2w−1)Cρ(i+1).
Since C(t) ≤ C for all time steps t, it follows that

ρ(i + 1)
∑

max{1,t′−w+1}≤τ≤t′+w−1 C(τ)
≤ ρ(2(w − 1) + 1)C(i + 1) = ρ(2w − 1)C(i + 1).
Hence,

∑
t′≤τ≤t′+((2w−1)Cρ−1)(i+1)+i C(τ)

≥ ρ
∑

max{1,t′−w+1}≤τ≤t′+w−1 C(τ) as needed.

It follows that t′+δ(t′) ≤ t′+((2w−1)Cρ−1)(i+
1) + i − 1 by Lemma 3.3. But, t′ + ((2w − 1)Cρ −
1)(i+1)+ i− 1 ≤ t− 1 since t′ ≤ t− ((2w− 1)Cρ−
1)(i + 1)− (i + 1) and t− 1 < t. Thus, packet p can
be delayed in node v only by packets injected in the
time interval [t− ρ(2w − 1)C(i + 1)− (i + 1) + 1, t].

By Lemma 2.3, there are at most
ρ

∑
max{1,t−ρ(2w−1)C(i+1)−(i+1)+1−w+1}≤τ≤t+w−1 C(τ)

such packets. It follows that packet p clears
node v by time t + δ(t), where δ(t) > 0 is
the least integer such that

∑
t≤τ≤t+δ(t) C(τ) ≥

ρ
∑

max{1,t−ρ(2w−1)C(i+1)−(i+1)+1−w+1}≤τ≤t+w−1 C(τ)
as needed. This completes the proof of the inner in-
duction (on t). Thus, the proof is now complete.

6

From Proposition 3.1 it immediately follows:

Theorem 3.4 For any DAG G, consider the sys-
tem 〈G,Aw,ρ, LIS〉. Then, the delay of any packet is
at most (ρ(2w − 1)C − 1)l(G) + l(G), where l(G) is
the length of the longest path in the network.

Proof: Consider any packet p injected at time t
with destination v of level(v) = i. Such a packet
has to arrive to v over an edge 〈w, v〉 for some node
w such that level(w) < level(v) = i. By Proposi-
tion 3.1 packet p clears node w (and arrives at v)
by time t + δ̃(t) where δ̃(t) is the least integer such
that

∑
t≤τ≤t+δ̃(t)

C(τ) ≥ ρ(k + 1)∑
max{1,t−ρ(2w−1)C(k+1)−(k+1)+1−w+1}≤τ≤t+w−1 C(τ).
Consider now any packet p

′
injected at time step

t
′ ≤ t − (2w − 1)Cρi − i. Since t

′
< t, packet p

′

clears node w by time step t
′
+ δ(t

′
), where δ(t

′
) is

the least integer such that
∑

t
′≤τ≤t

′
+δ̃(t

′
)
C(τ)

≥ ρ(k + 1)
∑

max{1,t′−w+1},≤τ≤t′+w−1 C(τ) .
We continue to prove:

Lemma 3.5 δ(t′) ≤ (ρ(2w − 1)C − 1)i + i

Proof: By definition of δ(t′), it suffices to show
that

∑
t′≤τ≤t′+((2w−1)Cρ−1)i+i−1 C(τ) ≥

ρ
∑

max{1,t′−w+1}≤τ≤t′+w−1 C(τ) .
Since C(t) ≥ 1 for all time steps t, it follows that∑
t′≤τ≤t′+((2w−1)Cρ−1)i+i−1 C(τ) ≥

(ρ(2w − 1)C − 1)i + i − 1 + 1 = ρ(2w − 1)Ci.
Since C(t) ≤ C for all time steps t, it follows that

ρi
∑

max{1,t′−w+1}≤τ≤t′+w−1 C(τ) ≤
ρ(2(w − 1) + 1)Ci = ρ(2w − 1)Ci.

Hence,
∑

t′≤τ≤t′+((2w−1)Cρ−1)i+i−1 C(τ) ≥
ρ

∑
max{1,t′−w+1}≤τ≤t′+w−1 C(τ) as needed.

It follows that t′ +δ(t′) ≤ t′ +((2w−1)Cρ−1)i+
i − 2 by Lemma 3.3. But, t′ + ((2w − 1)Cρ − 1)i +
i − 2 ≤ t − 1 since t′ ≤ t − ((2w − 1)Cρ − 1)i − i,
and t − 1 < t. Thus, packet p can be delayed in
node w only by packets injected in the time interval
[t − (2w − 1)Cρi − i + 1, t].

By Lemma 2.3, there are at
most ρ

∑
max{1,t−ρ(2w−1)Ci−i+1−w+1}≤τ≤t+w−1 C(τ)

such packets. It follows that packet p clears
node w by time t + δ(t), where δ(t) > 0 is
the least integer such that

∑
t≤τ≤t+δ(t) C(τ) ≥

ρ
∑

max{1,t−ρ(2w−1)Ci−i+1−w+1}≤τ≤t+w−1 C(τ).

0000 0001

001000

00

0 1

0100 0101

011010

01

1001

101

10

1101

111

11

110

1111

100

Figure 1: The network G0(4)

Because δ(t) ≤ (ρ(2w−1)C−1)i+ i, it holds that
packet p clears node w by time t+δ(t) ≤ t+(ρ(2w−
1)C − 1)i + i. Similarly, we can prove that packet p
clears node w arriving at a node v of level(v) = l(G)
by time t + δ(t) ≤ t + (ρ(2w− 1)C − 1)l(G) + l(G).

3.2 Lower Bound

In this section, we present our lower bound on the
performance of LIS on DAGs. We show:

Theorem 3.6 There is a DAG G and an adversary
Aw,ρ such that in the system 〈G,A, LIS〉 any packet
with destination a node v of G at level i suffers a
delay of Ω(iwCρ) time steps, while the largest queue
required is (w + 1)C.

The Construction of G. For any integer k ≥ 2, con-
sider the complete binary tree G0(k) of height k,
with all edges directed towards the root v0. Fur-
thermore, assign to every node v of G0(k) a binary
string s(v), called the label of node v, as follows:
(i) s(v0) = ε (the empty string), (ii) for each level
l of G0(k) (1 ≤ l ≤ k) order the nodes at level l
from left to right and number them with the integers
1, . . . , 2l. For each node v of order m (1 ≤ m ≤ 2l),
s(v) will be the binary representation of m− 1 that
uses l bits. From the definition of the label function
s, it immediately follows:

Lemma 3.7 For each internal node v of G0(k),
s(v) is the longest common prefix of all s(u), where
u runs over the two children of v.

7

0000 0001

001000

00

0 1

0100 0101

011010

01

1001

101

10

1101

111

11

110

1111

100

Figure 2: The network G(4)

Proof: Assume that v has order m, so that s(v) =
b(m−1), and consider any child u of v. Clearly, the
order of u is either 2m−1 or 2m. Hence, s(u) is the
binary representation b of either 2m − 2 or 2m − 1.
But, b(2m − 2) = b(2(m − 1)) = b(m − 1)0 and
b(2m − 1) = b(2m − 2 + 1) = b(2m − 2) + b(1) =
b(m − 1)0 + b(1) = b(m − 1)0. Thus, s(v) is the
longest common prefix (b(m − 1)) of the two s(u),
where u is a child of v, as needed.

Modify now the network G0(k) to obtain the net-
work G(k). For each internal node v: (i) remove
the edge (vl, v) pointing to v from its left child vl,
and (ii) add a node v

′
l and the edges (vl, vl

′) and
(vl′ , v). Note that the resulting network G(k) is a
subgraph of the complete binary tree of height 2k.
Figures 1 and 2 illustrate the networks G0(4) and
G(4) providing the labels of many nodes.
Preliminaries. For each node v in the network G0(k),
denote Z(v) the number of 0s in the string s(v).
Note that the distance of node v from the root is
different is |s(v)| in G0(k), while it is |s(v)| + Z(v)
in G(k). The additional term Z(v) accounts for the
number of nodes added in the path from v to the
root, which is, by construction, the number of 0s
in Z(v) (since a node is added for each node in the
path that is a left child).

For each leaf v in G0(k), define D(v) to be the
predecessor u of v in G0(k) that is closest to v and
v is a descendant of, or equal to, the left child of a
child of D(v), or the root, if no such predecessor u
exists. The definition of D(v) immediately implies:
For each leaf v in G0(k), D(v) is the node on the path
from v to the root, such that s(D(v)) is obtained
by removing the least significant bits from s(v) till
either one bit after the first 0 has been removed, or

the empty string has been obtained.
The Adversary. We assume that, initially (t = 0),
there is a number of packets that are queued at each
leaf requiring to traverse only the out-going edge
of the leaf where they are queued. The number of
leaves in G(k) is 2k. In the queue at the tail of the
out-going edge of leaf v, there is initially queued a
number of wC + k − Z(v) packets.

The out-going edge of each leaf v has unit capac-
ity at the time interval [0, k − Z(v)). Therefore, at
each one of these time steps one packet from the ini-
tial ones leaves the system at each out-going edge.
Till the time k − Z(v) + w all the packets that are
queued initially in a leaf v have been absorbed. At
time step k−Z(v), the adversary injects wρC

2 packets
to each leaf node v targeted with node D(v). The
path that is assigned to these paths has capacity C
at the interval [k − Z(v), k − Z(v) + w − 1], while
after this time the path changes capacity to unit
(only the edges that do not overlap with paths that
are used for packet injections at other time steps).

In order to guarantee that this adversary is a valid
one, we should show that the packets that want to
traverse any common edge with capacity C at the
time of their injection cannot be more than wρC
packets. Because the adversary injects in any leaf
wρC

2 packets, it suffices to show that any edge is used
at most by the packet flows injected in two leaves.
Note that if a packet that is injected to a leaf v
wants to reach the nodes u1 and u2 of the original
tree there are two cases depending on whether these
nodes are neighbors or not. If these nodes are neigh-
bors, the packet should traverse the edge (u1, u2),
otherwise it should traverse the edges (u1, u

′
1) and

(u
′
1, u2). For this purpose, the k−|s(u1)|−1 least sig-

nificant bits of s(v) must all be 1’s, and the |s(u1)|
most significant bits of |s(v)| must all match the
corresponding bits of s(u1). This can happen for
at most two leaves. Thus, at most two leaves send
packets that traverse any edge, and therefore any
edge is used by at most wρC packets.
Evolution of the System Configuration. We show
here the evolution of the system configuration at
any internal node of the network Gk.

Claim 3.8 Consider any node v of G0(k) such that
|s(v)| ≤ k − 2. Then, all packets that traverse v
arrive at v between time (k − |s(v)| − 1)wCρ

2 + 2k −

8

Z(v)−|s(v)|+w−1 and time (k−|s(v)|)wCρ
2 +2k−

Z(v) − |s(v)| + w − 2.

Proof: We prove this by induction on k − |s(v)|,
i.e., on the height of the node v.
Basis case: Let v be any node such that |s(v)| =
k − 2, let vρ be the right child of v, and let vl be
the left child of v in the original tree. Note that
s(vl) = s(v)0. Let v

′′
l be the right child of vl, and

let v
′
l be the left child of vl in the original tree.

At time k−Z(v
′
l), the adversary injects in v

′
l

wCρ
2

packets requiring a path with capacity C at time
k−Z(v

′
l). After time k−Z(v

′
l)+w−1 the path they

follow to reach vl changes capacity to 1. Therefore,
these packets arrive, one per time step, to vl starting
at time k−Z(v

′
l)+1+w. Since s(v

′
l) = s(vl)0, then

Z(v
′
l) = Z(vl)+1. Thus, k−Z(v

′
l +2 = k−Z(vl)+1.

The packets that vl receives from v
′′
l are injected by

the adversary to v
′′
l at time k − Z(v

′′
l) = k − Z(vl).

So, the packets from v
′′
l and v

′
l arrive to vl at exactly

the same time steps.
But, the packets coming to vl from v

′
l have been

in the system longer than those coming from v
′′
l .

So, they will have priority over the packets from
v
′′
l . But, packets from v

′
l have v as final destination.

Thus, the first of the packets that v receives from
vl, which will be forwarded on (packets coming from
v
′′
l), arrives at v at time [k−Z(vl)+1]+ wρC

2 +1+w,
and the remainder arrive one per time step for the
next wCρ

2 − 1 time steps as the path they follow till
there has unit capacity. Since Z(vl) = Z(v)+1 and
|s(v)| = k−2, we take [k−Z(vl)+1]+ wρC

2 +1+w =
(k−|s(v)|−1)wρC

2 +2k−Z(v)−|s(v)|+w−1. This
means that exactly one of those packets arrives at
every time step between time (k − |s(v)| − 1)wCρ

2 +
2k−Z(v)−|s(v)|+w−1, and time (k−|s(v)|)wCρ

2 +
2k−Z(v)−|s(v)|+w−2. An analogous fact holds for
the packets arriving to v from vρ that are forward
onward by v.
Inductive hypothesis: For any node v of G0(k), the
packets that reach v on their way to another node,
arrive in v between time (j − 1)wCρ

2 + 2k − Z(v) −
|s(v)|+w−1 and time j wCρ

2 +2k−Z(v)−|s(v)|+w−2
for k − |s(v)| = j.
Induction step: We assume the claim for all v

′
such

that k − |s(v′
)| ≤ j. Choose any v such that k −

|s(v)| = j + 1, let vρ be the right child of v, and let
vl be the left child of v in G0(k). By induction, the

packets that vl forwards to v arrive at vl between
time (j − 1)wCρ

2 + 2k − Z(vl) − |s(vl)| + w − 1 and
time j wCρ

2 + 2k − Z(vl) − |s(vl)| + w − 2. Of these
packets, the ones that vl receives from its left child
have been originated at a node v

′
l such that s(v

′
l) =

s(vl)01j−1, and the ones that vl receives from its
right child have been originated at a node v

′′
l such

that s(v
′
l) = s(vl)1j . Since Z(v

′
l) = Z(v

′′
l) + 1, all

the packets that vl receives from its left child have
been in the system longer than the packets that vl

receives from its right child.
Thus, all the packets that vl receives from its left

child and passes on to v (which must also have v as
their final destination) have priority over any packet
that vl receives from its right child and passes on to
v. Since vl receives one packet to forward per time
step from each of its children, all the packets, which
have v as their destination, are forwarded before
any packet that has a further destination. There
are wCρ

2 packets that vl forwards to v having v as a
final destination. Thus, the packets that v receives
from vl that need to be forwarded arrive between
times j wCρ

2 + 2k −Z(vl)− |s(vl)|+ 1 + w, and time
(j +1)wCρ

2 +2k−Z(vl)−|s(vl)|+w. Since |s(vl)| =
|s(v)|+1 and Z(vl) = Z(v)+1, these times steps are
between time (k−|s(v)|−1)wCρ

2 +2k−Z(v)−|s(v)|+
w−1 and time (k−|s(v)|)wCρ

2 +2k−Z(v)−|s(v)|+
w−2. Note that exactly one of those packets arrives
at v at each time step. A similar argument shows
that at each time step where v receives a packet from
vl to forward it onward, it also receives a packet from
vρ for forwarding.

Proof of the Theorem 3.6. The theorem follows from
the fact that the longest path that leads to any node
v is i = 2(k−|s(v)|). By Claim 3.8, packets destined
for v reach vρ, the right child of v, no earlier than
time (k − |s(vρ)| − 1)wCρ

2 + 2k − Z(vρ) − |s(vρ)| +
w − 1. The last of these packets will reach v at
time (k − |s(vρ)|)wCρ

2 + 2k − Z(vρ) − |s(vρ)| + w.
These packets are inserted at a leaf v

′
such that

s(v
′
) = s(vρ)01k−|s(vρ)|−1 at time step k − Z(v

′
) =

k−Z(vρ)− 1 and the path that is assigned to them
has capacity C. Thus, the total time spent in the
system by these packets is (k − |s(vρ)|)wCρ

2 + k −
|s(vρ)| + w + 1. Substituting |s(v)| + 1 for |s(vρ)|,
this is (k− |s(v)| − 1)(wCρ

2 +1)+w +1 = Ω(iwCρ).
The largest queue required for the adversary con-

9

struction is wC+k. For k = C, we take wC++C =
(w + 1)C.

4 SIS on DAGs

In this section, we present lower bounds on the per-
formance of SIS on DAGs. We show:

Theorem 4.1 There is a DAG G and an adversary
Aw,ρ such that in the system 〈G,A, LIS〉 any packet
with destination a node v of G at level i suffers a
delay of Ω(iwCρ) time steps, while the largest queue
required is (w + 1)C.

Sketch of proof: This proof is similar to the
proof of Theorem 3.6. Again for any integer k ≥ 2
we consider the complete binary tree of height k,
G0(k) where a binary string s(v), called the label
of node v, is assigned to every node v as in The-
orem 3.6 (Figure 1 illustrates the network G0(4),
providing the labels of many nodes.) We construct
similarly to Theorem 3.6 the network G(k) that is
a subgraph of the complete binary tree of height 2k
(Figure 2 illustrates the network G(4).)

The only difference here to the proof of Theo-
rem 3.6 is the construction of the adversary. More
specifically, now we assume that, initially (t = 0) at
each leaf v with order m from left to right, where m
takes on even values from the integer interval [1, 2k],
there are queued wC+k−(k−Z(v)) packets requir-
ing to traverse only the queue where they have been
injected. Also, we assume that, initially at each leaf
v with order m from left to right, where m takes
on odd values from the integer interval [1, 2k], there
are queued wC + k − (k − Z(v)) + 1 packets.

The out-going edge of each leaf v with order m
(1 ≤ m ≤ 2k) has unit capacity at the time interval
[0, Z(v)). Therefore, at each one of these time steps
one packet from the initial ones leaves the system
at each out-going edge. Till the time Z(v) + w all
the packets that are queued initially in a leaf v have
been absorbed. At time step Z(v), the adversary
injects wρC

2 packets to each leaf node v targeted with
node D(v). The path that is assigned to these paths
has capacity C till the time Z(v)+w−1, while after
this time the path changes capacity to unit (only the
edges that do not overlap with paths that are used
for packet injections at other time steps).

The rest of the proof is similar to the correspond-
ing part of the proof of Theorem 3.6. The only
differences are that the injection time of packets at
each node v is Z(v) instead of k−Z(v) and the initial
packets at the leaves of Gk leave till time Z(v) + w
instead of Z(v) + w − 1. Thus, the total packet de-
lay in the system is Ω(iwCρ) and the largest queue
required for the adversary construction is wC + k.
For k = C, we take wC + +C = (w + 1)C.

5 Sufficient Stability Conditions

In this section, we present upper bounds on stability
thresholds. We denote d(G) the length of the longest
directed path that may be followed by any packet.
We still consider the model of dynamic capacities [4]
where each link capacity may take on integer values
from [1, C]. We first show:

Theorem 5.1 Let ρ ≤ 1
C(d(G)+1) . For any network

G, any adversary Aw,ρ and any greedy protocol P,
the system 〈G,A, P〉 is stable.

Proof: It suffices to show that any packet that
arrives at a queue at time t, leaves this queue by
time t + �wρ	. Our proof is by induction on time t.
Basis case: Consider any t ≤ d(G)wρ + 1. Let
p be a packet that arrives to the queue e at time
t ≤ d(G)wρ+1. The edge e has unit capacity in the
time interval [t, t+ �wρ] in the worst-case (unit ca-
pacity permits the preservation of the biggest num-
ber of packets in the queue). Assume towards a con-
tradiction that p is at the same queue at the end of
time t+�wρ	. This means that for each of the �wρ	
time steps in [t+1, t+ �wρ] some other packet was
sent over edge e due to the use of a greedy protocol.

From the definition of the adversary, the largest
number of packets that can be injected into the sys-
tem by the end of time t + �wρ	 − 1 requiring edge
e is �wρC	 + 1 packets because C is the capacity
value of edge e at injection time that maximizes the
number of packets that can be injected into the sys-
tem requiring e (these are the packet p itself, and
the �wρC	 packets that were sent over e). Since
t ≤ d(G)wρ+1, we have t+�wρ	−1 ≤ (d(G)+1)wρ.
By the definition of the adversary, the number of
packets that require e and they are injected by the
end of any time step t

′ ≤ (d(G) + 1)wρ is at most

10

(d(G)+1)ρ��wρC	 because C is the capacity value
of edge e at injection time that maximizes the num-
ber of packets that can be injected into the system
requiring e. Since we assume ρ ≤ 1

C(d(G)+1) this is
at most �wρ	. A contradiction to the fact that we
identified �wρ	 + 1 packets.
Inductive hypothesis: Any packet that arrives at
some queue at time t

′ ≤ t, leaves the queue by time
step t

′
+ �wρ	.

Induction step: We now prove the claim for any
t > d(G)wρ + 1. Let p be a packet that arrives to
the queue e at some time t. Consider any packet
that requires edge e and it was injected by time t−
d(G)�wρ	. By inductive hypothesis, we know that
such a packet left the queue where it was injected
by time t−d(G)�wρ	+ �wρ	, left the next queue by
time step t− d(G)�wρ	+ 2�wρ	, etc. I.e., it arrived
to its destination by time t− d�wρ	+ d(G)�wρ	 = t
(since the length of its path is at most d(G), and all
its “arrival times” are earlier than t, so the induction
hypothesis holds). It follows that any packet that
can delay packet p from going over edge e must be
injected at time t − wρd(G) + 1 or later.

Now assume towards a contradiction that packet
p is still at queue e at the end of time t + �wρ	. So,
there are some other packets that crossed edge e in
[t + 1, t + �wρ]. These packets are present in the
network at the end of time t or later, and they are
injected by time t + �wρ	 − 1. However, we know
that any packet injected by time t − d(G)�wρ	 al-
ready left the network by the end of time t. Thus,
those packets must have been injected in the time
interval [t − d(G)�wρ	 + 1, t + �wρ	 − 1]. There
are �wρ	(d(G) + 1) − 1 time steps in this inter-
val. So, the number of packets that require e that
can be injected during this interval is bounded by

(d(G)+1)ρ��wρC	 because C is the capacity value
of edge e at injection time that maximizes the num-
ber of packets that can be injected into the system
requiring e. Since ρ ≤ 1

C(d(G)+1) this is at most
�wρ	, a contradiction.

Now we will show how we can relax the obtained
stability condition for time-priority protocols, such
as FIFO and LIS. A time priority protocol is any
greedy protocol that forwards a packet arriving at
a queue at time t against any other packet that is
injected into the system after time t. We show:

Theorem 5.2 Let ρ ≤ 1
Cd(G) . For any network G,

any adversary Aw,ρ and any time-priority protocol
P, the system 〈G,A, P〉 is stable.

Proof: It suffices to show that any packet that
arrives at a queue at time step t, leaves this queue
by time t+�wρ	. Our proof is by induction on time
t.
Basis case: Consider any t ≤ d(G)wρ + 1. We will
use contradiction in order to prove it. Let p be a
packet that arrives at queue e at time t ≤ d(G)wρ.
Assume towards a contradiction that p is at the
same queue at the end of time step t + �wρ	. Since
the protocol is greedy and the edge e has unit
capacity in the time interval [t, t + �wρ] in the
worst-case (unit capacity permits the preservation
of the biggest number of packets in the queue),
there are at least �wρ	 + 1 packets that traverse
edge e in the time interval [t, t + �wρ] (these are
p, and the packets that were sent over e in the in-
terval [t, t + �wρ]). However, since the protocol
is timepriority, these packets must have been in-
jected into the system by the end of time step t
(otherwise they cannot delay p). By definition of
the adversary, the number of packets that may use
e and they are injected by the end of time t is at
most
t/w��wρC	 ≤
d(G)ρ��wρC	 ≤ �wρ	, since
ρ ≤ 1/Cd(G), and C is the capacity value of edge
e at injection time that maximizes the number of
packets that can be injected into the system requir-
ing e, a contradiction.
Inductive hypothesis: Any packet that arrives at
some queue at time t

′ ≤ t, leaves the queue by time
step t

′
+ �wρ	.

Induction step: Let t > d(G)wρ, and assume by in-
duction that any packet that arrives at some queue
at time t

′ ≤ t, leaves this queue by time t
′
+ �wρ	.

Let p be a packet that arrives at the queue of edge
e at t. Assume towards a contradiction that packet
p is still at e at the end of time t + �wρ	. The edge
e has unit capacity in the interval [t, t + �wρ] in
the worst-case. Then, there is a set of �wρ	 + 1
distinct packets that use edge e in the time interval
[t, t + �wρ]. Since we have a timepriority protocol,
all these packets were injected by the end of time t.

Moreover, we now prove that all these pack-
ets were injected at time t − wρd(G) + 1 or later.
Consider any packet q that was injected by time

11

t − d(G)�wρ	. By induction, q left the first queue
on its path by time t − d(G)�wρ	 + �wρ	, left the
next queue by time t − d(G)�wρ	 + 2�wρ	, and so
on. Hence, q arrived at its destination by time
t−d(G)�wρ	+d(G)�wρ	 = t: since the length of its
path is at most d(G), all its “arrival times” are ear-
lier than t, so we may apply the inductive hypothe-
sis. So, all the �wρ	+1 packets that use e in the in-
terval [t, t+�wρ] must have been injected in the in-
terval [t−d(G)�wρ	+1, t]. There are �wρ	d(G) steps
in this interval, and therefore the number of packets
that require e and they can be injected during this
interval is bounded by
d(G)ρ��wρC	 since C is the
capacity value of edge e at injection time that max-
imizes the number of packets that can be injected
into the system requiring e. Since ρ ≤ 1/Cd(G)
the number of packets that are injected during the
interval [t− d(G)�wρ	+1, t] is at most �wρ	, a con-
tradiction.

6 Discussion and Directions for
Further Research

In this work, we studied the impact of dynamically
changing link capacities (link capacities can take on
integer values from [1, C] with C > 1) on the per-
formance bounds of LIS and SIS protocols on DAGs
and we obtained stability bounds for greedy pro-
tocols running on arbitrary networks. We proved
that LIS and SIS protocols have linear performance
bounds on DAGs and that there are polynomial sta-
bility thresholds for greedy protocols on arbitrary
networks depending on the maximum link capacity
C and the length of the longest network path.

A careful inspection of the lower bounds for LIS
and SIS obtained in this work reveals that they, also,
hold in a more restrictive case, where link capacities
can take on values from the two-valued set of inte-
gers {1, C} for C > 1 that will stay fixed for a long
time that is at least a constant proportion of the
number of packets in the system at the time when
the capacity was last set (Quasi-Static Link Ca-
pacities Model [9]). Therefore, the tight bound we
prove here for LIS implies the collapse of a powerful
model (Model of Dynamic Capacities) to a weaker
one (Quasi-Static Link Capacities Model) that is
rather surprising.

An open question that remains is if there is a
linear upper bound on the packet delay of SIS on
DAGs. Also, an interesting question would be to
determine polynomial performance bounds for other
stable protocols on DAGs such as FTG and NTS.

References

[1] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg,
T. Leighton, and Z. Liu, “Universal Stability Results for
Greedy Contention-Resolution Protocols,” Journal of the
ACM, Vol. 48, No. 1, pp. 39-69, January 2001.

[2] M. Adler and A. Rosén, “Tight Bounds for the Perfor-
mance of Longest-in-System on DAGs,” Proceedings of
the 19th Annual Symposium on Theoretical Aspects of
Computer Science, LNCS 2285, pp. 88–99, March 2002.

[3] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan and
D. Williamson, “Adversarial Queueing Theory,” Journal
of the ACM, Vol. 48, No. 1, pp. 13–38, January 2001.

[4] A. Borodin, R. Ostrovsky and Y. Rabani, “Stability Pre-
serving Transformations: Packet Routing Networks with
Edge Capacities and Speeds,” Proceedings of the 12th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp.
601–610, January 2001.

[5] H. Chen and D. D. Yao, Fundamentals of Queueing Net-
works, Springer, 2000.

[6] J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spi-
rakis and D. Thilikos, “Stability and Non-Stability of the
FIFO Protocol,” Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp.
48–52, July 2001.

[7] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas and
P. Spirakis, “On the Stability of Compositions of Univer-
sally Stable, Greedy, Contention-Resolution Protocols,”
Proceedings of the 16th International Symposium on DIS-
tributed Computing, LNCS 2508, pp. 88–102, October
2002.

[8] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas and
P. Spirakis, “The Impact of Network Structure on the
Stability of Greedy Protocols,” 5th Italian Conference on
Algorithms and Complexity, accepted.

[9] D. Koukopoulos, M. Mavronicolas and P. Spirakis, “In-
stability of Networks with Quasi-Static Link Capacities,”
10th International Colloquium on Structural Information
and Communication Complexity, accepted.

[10] D. Koukopoulos, S. Nikoletseas, and P. Spirakis, “Sta-
bility Issues in Heterogeneous and FIFO Networks under
the Adversarial Queueing Model,” Invited Keynote Ad-
dress, Proceedings of the 8th International Conference on
High Performance Computing, pp. 3–14, December 2001.

[11] Z. Lotker, B. Patt-Shamir and A. Rosén, “New Stabil-
ity Results for Adversarial Queueing,” Proceedings of the
15th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 192–199, August 2002.

12

