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A Network Security Problem

Information network with
• nodes insecure and vulnerable to infection by attackers

e.g.,  viruses, Trojan horses, eavesdroppers, and
• a system security software or a defender of limited 

power, e.g. able to clean a part of the network.

In particular, we consider
• a graph G with

• ν attackers each of them locating on a node of G and
• a defender, able to clean a single edge of the graph.
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A Network Security Game:  Edge Model

We modeled the problem as a Game

• on a graph G(V, E) with two kinds of players (set     ):
• ν attackers (set       ) or vertex players (vps) vpi, each of them 

with action set, Svpi = V,
• a defender or the edge player ep, with action set, Sep = E,

and Individual Profits in a profile , 
• vertex player vpi:    

i.e., 1 if it is not caught by the edge player, and 0 otherwise.

• Edge player ep: , 
i.e. gains the number of vps incident to its selected edge sep.
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Nash Equilibria in the Edge Model

We consider pure and mixed strategy profiles.
Study associated Nash equilibria (NE), where no player 
can unilaterally improve its Individual Cost by switching 
to another configuration.
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Notation

Ps(ep, e): probability ep chooses edge e in s
Ps(vpi, υ): probability vpi chooses vertex υ in s
Ps(vp, υ) = ∑i 2 Nvp Ps(vpi,v): # vps located on vertex υ in s
Ds(i): the support (actions assigned positive probability) of 
player i2 in s.
ENeighs(υ) =
Ps(Hit(υ)) = : the hitting probability of υ
ms(v) =  : expected # of vps choosing υ
ms(e) = ms(u)+ms(v) 
NeighG(X) =  
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Expected Individual Costs

vertex players vpi:
(1)

edge player ep:
(2)
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Summary of Results

No instance of the model contains a pure NE
A graph-theoretic characterization of mixed NE
Introduce a subclass of mixed NE:
⇒ Matching NE
• A characterization of graphs containing matching NE
• A linear time algorithm to compute a matching NE on 

such graphs
• Bipartite graphs and trees satisfy the characterization
• Polynomial time algorithms for matching NE in bipartite 

graphs
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Significance

The first work (with an exception of ACY04)  to model 
network security problems as strategic game and study  
its associated Nash equilibria.
One of the few works highlighting a fruitful interaction 
between Game Theory and Graph Theory.
Our results contribute towards answering the general 
question of Papadimitriou about the complexity of Nash 
equilibria for our special game.
We believe Matching Nash equilibria (and/or extensions 
of them) will find further applications in other network
games.
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Pure Nash Equilibria

Theorem 1. If G contains more than one edges, then Π(G) 
has no pure Nash Equilibrium.

Proof.

Let e=(u,v) the edge selected by the ep in s.
|E| > 1 ⇒ there exists an edge (u´,v´) = e´ ≠ e , such that u ≠ u´.
If there is a vpi located on e, 
• vpi will prefer to switch to u and gain more     
⇒ Not a NE.

Otherwise, no vertex player is located on e. 
• Thus, ICep(s)=0,
• ep can gain more by by selecting any edge containing at least one 

vertex player.
⇒ Not a NE. �
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Characterization of Mixed NE

Theorem 2. A mixed configuration s  is a Nash equilibrium for
any Π(G) if and only if:

1. Ds(ep) is an edge cover of G and
2. Ds(vp) is a vertex cover of the graph obtained by Ds(ep).
3. (a) P(Hit(v)) = Ps(Hit(u)) = minv Ps (Hit(v)), 8 u,v 2 Ds(vp), 

(b) ∑e 2 Ds(ep) Ps(ep,e) = 1 
4. (a) ms(e1)=ms(e2)=maxe ms(e), 8 e1, e2 2 Ds(ep) and

(b) ∑v 2 V(Ds(ep)) ms(v)=ν.

1. (Edge cover) Proof:
If there exists a set of vertices NC ≠ ∅, Not covered by Ds(ep), 
⇒ Ds(vpi) µ NC, for all vpi 2 Nvp ⇒ ICs(ep)=0 

⇒ ep can switch to an edge with at least one vp and gain more. �
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Matching Nash Equilibria

Definition 1. A matching configuration s of Π(G) satisfies: 
1. Ds(vp) is an independent set of G and
2. each vertex v of Ds(vp) is incident to only one edge of

Ds(ep).

Lemma 1. For any graph G, if in Π(G) there exists a matching
configuration which additionally satisfies condition 1 of Theor. 2,

• then setting Ds(vpi) := Ds(vp), 8 vpi 2 Nvp and
• applying the uniform probability distribution on the support of

each player, 
we get a NE for Π(G), which is called matching NE.

�
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Characterization of Matching NE

Definition 2. The graph G is an S-expander graph if for every set X 
µ S µ V, |X|· |NeighG(X)|.

Marriage Theorem. A graph G has a matching M in which
set X µ V is matched into V\X in M if and only if for each subset   

Sµ X,   |NeighG(S)| ¸ |S|.

Theorem 3. For any G, Π(G) contains a matching NE if and 
only if the vertices of G can be partitioned into two sets: 
• IS and  VC= V \ IS 

such that IS is an independent set  of G and 
G is a VC-expander graph.
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Proof of Theorem 3.

If G contains an independent set IS and G is VC-expander 
then Π(G) contains a matching NE. Proof:
G is VC-expander ⇒ by the Marriage Theorem, G has a matching M
such that each vertex u 2 VC is matched into V\VC in M.
Partition IS into two sets:
• IS1 = {v 2 IS such that there exists an e=(u,v) 2 M and u 2 VC}. 
• IS2 = the remaining vertices of IS.

Define a configuration s as follows:
• For each v2 IS2, add one edge (u,v) 2 E in set M1.
• Set Ds(vp) = Ds(vpi)8 vpi 2 Nvp := IS and   Ds(ep) := M[ M1.
• Apply the uniform distribution for all players
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Proof of Theorem 3. (An example)

By construction, s
is matching NE.

∗

G

IS=DS(vp)

∗

∗

∗

∗
∗
∗

edges
between
vertices
of VC

No edges

VC

MM1

DS(ep)=M1+M

edges
between
vertices

of VC
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Proof of Theorem 3. (Cont.)

If Π(G) contains a matching NE then G contains an independent 
set IS and G is VC-expander, where VC = V \ IS. Proof:
Define set  IS=Ds(vp)
• IS is an independent set of G
• for each v2 VC, there exists (u,v) 2 Ds(ep) such that v2 IS
• for each v2 VC, add edge (u,v) 2 Ds(ep) in a set Mµ E.
⇒ M matches each vertex of VC into V \ VC =IS
⇒by the Marriage's Theorem, |Neigh(VC')|¸ |VC'|, for all VC' µ VC, i..e.
⇒ G is a VC-expander

�
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A polynomial time Algorithm A(Π(G), IS))

Input: Π(G), independent set IS, such that G is VC-expander, 
where VC=V\IS. 

Output: a matching NE of Π(G)

1. Compute a matching M covering all vertices of set VC.
2. Partition IS = V\VC into two sets:

• IS1 = { v 2 IS such that there exists an e=(u,v) 2 M and u 2 VC } 
• IS2 = the remaining vertices of IS.

3. Compute set M1: for each v2 IS2, add one edge (u,v) 2 E in set M1.

4. Set Ds(vp) = Ds(vpi)8 vpi 2 Nvp := IS and Ds(ep) := M[ M1 and apply the 
uniform distribution for all players
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Correctness and Time Complexity

Theorem 4. Algorithm A(Π(G), IS)) computes a matching
(mixed) Nash equilibrium for Π(G) in time O(m).

Proof.

The algorithm follows the constructive proof of Theorem 3.
�
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Application of Matching NE:  
Bipartite Graphs

Lemma 2. In any bipartite graph G there exists a matching M and 
a vertex cover VC such that 

1. every edge in M contains exactly one vertex of VC and 
2. every vertex in VC is contained in exactly one edge of M.
Proof Sketch.

Consider a minimum vertex cover VC
By the minimality of VC and since G is bipartite,
• for each Sµ VC,  NeighG(S)µ S

⇒ by the Marriage Theorem, G has a matching M covering all 
vertices of  VC (condition 2)

• every edge in M contains exactly one vertex of VC (condition 1)
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Application of Matching NE:  
Bipartite Graphs

Theorem 5. (Existence and Computation)
If G is a bipartite graph, then 

• Π(G) contains a matching mixed NE of Π(G) and 
• one can be computed in polynomial time,        

using Algorithm A.

Proof Sketch.
Utilizing the constructive proofs of Lemma 2 and Theorem 3,
we compute an independent set IS such that G is VC-expander, 
where VC = V\IS, as required by algorithm A.
Thus, algorithm A is applicable for Π(G).

�
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Current and Future Work

Compute other structured/unstructured Polynomial time NE 
• for specific graph families, 
• exploiting their special properties

Existence and Complexity of Matching equilibria for general 
graphs 

Generalizations of the Edge model
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