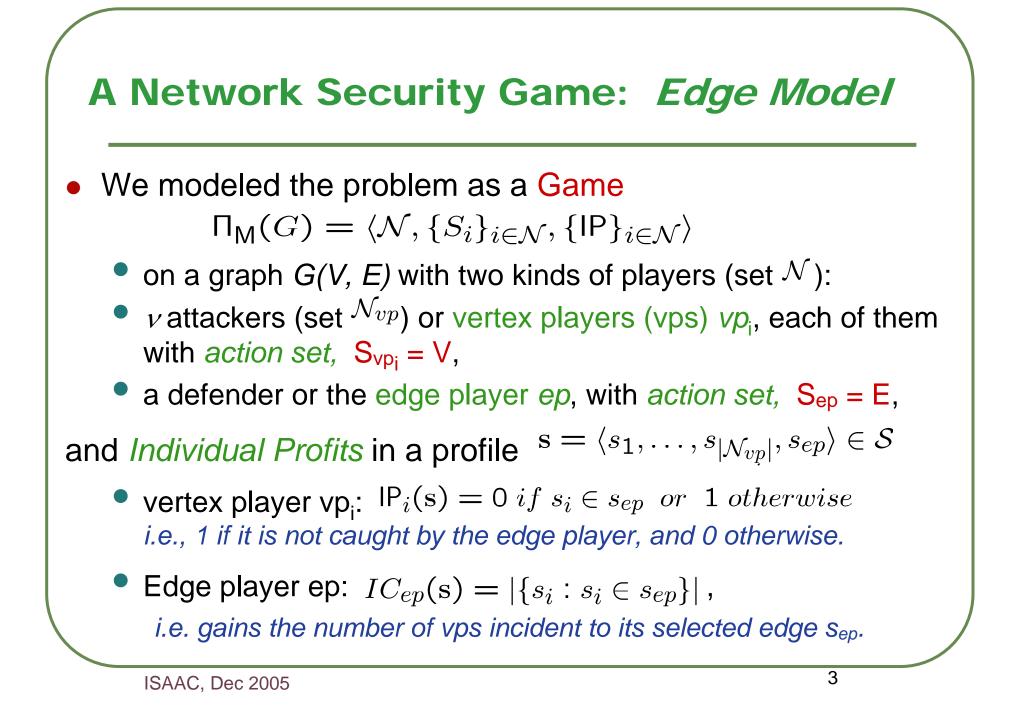
Network Game with Attacker and Protector Entities

M. Mavronicolas*, V. Papadopoulou*, A. Philippou* and P. Spirakis[§]

University of Cyprus, Cyprus* University of Patras and RACTI, Greece§

- Information network with
 - nodes *insecure* and vulnerable to *infection* by attackers e.g., viruses, Trojan horses, eavesdroppers, and
 - a system security software or a defender of limited power, e.g. able to clean a part of the network.
- In particular, we consider
 - a graph G with
 - v attackers each of them locating on a node of G and
 - a defender, able to clean a single edge of the graph.



Nash Equilibria in the Edge Model

- We consider pure and mixed strategy profiles.
- Study associated Nash equilibria (NE), where no player can unilaterally improve its Individual Cost by switching to another configuration.

Notation

- P_s(ep, e): probability ep chooses edge e in s
- $P_s(vp_i, v)$: probability vp_i chooses vertex v in s
- $P_s(vp, v) = \sum_{i \ge N_{vp}} P_s(vp_i, v)$: # vps located on vertex v in s
- D_s(i): the support (actions assigned positive probability) of player i2 N in s.
- $ENeigh_s(v) = \{(u,v) \in E : (u,v) \in D_s(ep)\}$
- $P_s(Hit(v)) = \sum_{e \in ENeigh(v)} P_s(ep, e)$: the hitting probability of v
- $m_{s}(v) = \sum_{i \in N_{vp}} P_{s}(vp_{i}, v)$: expected # of vps choosing v
- $m_{s}(e) = m_{s}(u) + m_{s}(v)$
- Neigh_G(X) = { $u \notin X : (u, v) \in E(G)$ }

vertex players vp;

$$\mathsf{P}_i(\mathbf{s}) = \sum_{v \in V} P_{\mathbf{s}}(vp_i, v) \cdot (1 - P_{\mathbf{s}}(Hit(v)))$$
(1)

• edge player *ep*:

$$\mathsf{IP}_{ep}(\mathbf{s}) = \sum_{e=(u,v)\in E} P_{\mathbf{s}}(ep,e) \cdot (m_{\mathbf{s}}(u) + m_{\mathbf{s}}(v))$$
(2)

Summary of Results

- No instance of the model contains a pure NE
- A graph-theoretic characterization of mixed NE
- Introduce a subclass of mixed NE:
 - \Rightarrow Matching NE
 - A characterization of graphs containing matching NE
 - A linear time algorithm to compute a matching NE on such graphs
 - Bipartite graphs and trees satisfy the characterization
 - Polynomial time algorithms for matching NE in bipartite graphs

Significance

- The *first* work (with an exception of ACY04) to model *network security problems* as strategic game and study its associated Nash equilibria.
- One of the few works highlighting a fruitful interaction between *Game Theory* and *Graph Theory*.
- Our results contribute towards answering the general question of Papadimitriou about the complexity of Nash equilibria for our special game.
- We believe Matching Nash equilibria (and/or extensions of them) will find further applications in other network games.

Pure Nash Equilibria

Theorem 1. If G contains more than one edges, then $\Pi(G)$ has no pure Nash Equilibrium.

Proof.

- Let e=(u,v) the edge selected by the ep in s.
- $|E| > 1 \Rightarrow$ there exists an edge $(u', v') = e' \neq e$, such that $u \neq u'$.
- If there is a *vp*_i located on *e*,
 - vp_i will prefer to switch to u and gain more
 - \Rightarrow Not a NE.
- Otherwise, no vertex player is located on e.
 - Thus, *IC_{ep}(s)=0*,
 - ep can gain more by by selecting any edge containing at least one vertex player.
 - \Rightarrow Not a NE.

Characterization of Mixed NE

Theorem 2. A mixed configuration s is a Nash equilibrium for any $\Pi(G)$ if and only if:

- 1. $D_s(ep)$ is an edge cover of G and
- **2.** $D_s(vp)$ is a vertex cover of the graph obtained by $D_s(ep)$.
- 3. (a) $P(Hit(v)) = P_s(Hit(u)) = min_v P_s (Hit(v)), 8 u, v 2 D_s(vp),$ (b) $\sum_{e \ 2 \ D_s(ep)} P_s(ep, e) = 1$
- 4. (a) $m_s(e_1)=m_s(e_2)=max_e m_s(e)$, 8 e_1 , e_2 2 $D_s(ep)$ and (b) $\sum_{V 2 V(Ds(ep))} m_s(V)=V$.

1. (Edge cover) Proof:

If there exists a set of vertices NC $\neq \emptyset$, Not covered by D_s(ep),

- \Rightarrow D_s(vp_i) µ NC, for all vp_i 2 N_{vp} \Rightarrow IC_s(ep)=0
- \Rightarrow ep can switch to an edge with at least one vp and gain more.

Matching Nash Equilibria

Definition 1. A matching configuration s of $\Pi(G)$ satisfies:

- 1. $D_s(vp)$ is an independent set of G and
- 2. each vertex v of $D_s(vp)$ is incident to only one edge of $D_s(ep)$.

Lemma 1. For any graph G, if in $\Pi(G)$ there exists a matching configuration which additionally satisfies condition 1 of Theor. 2,

- then setting $D_s(vp_i) := D_s(vp)$, 8 vp_i 2 N_{vp} and
- applying the uniform probability distribution on the support of each player,

we get a NE for $\Pi(G)$, which is called matching NE.

Characterization of Matching NE

Definition 2. The graph G is an S-expander graph if for every set X μ S μ V, $|X| \cdot |Neigh_G(X)|$.

Marriage Theorem. A graph G has a matching M in which set X μ V is matched into V\X in M if and only if for each subset S μ X, |Neigh_G(S)|, |S|.

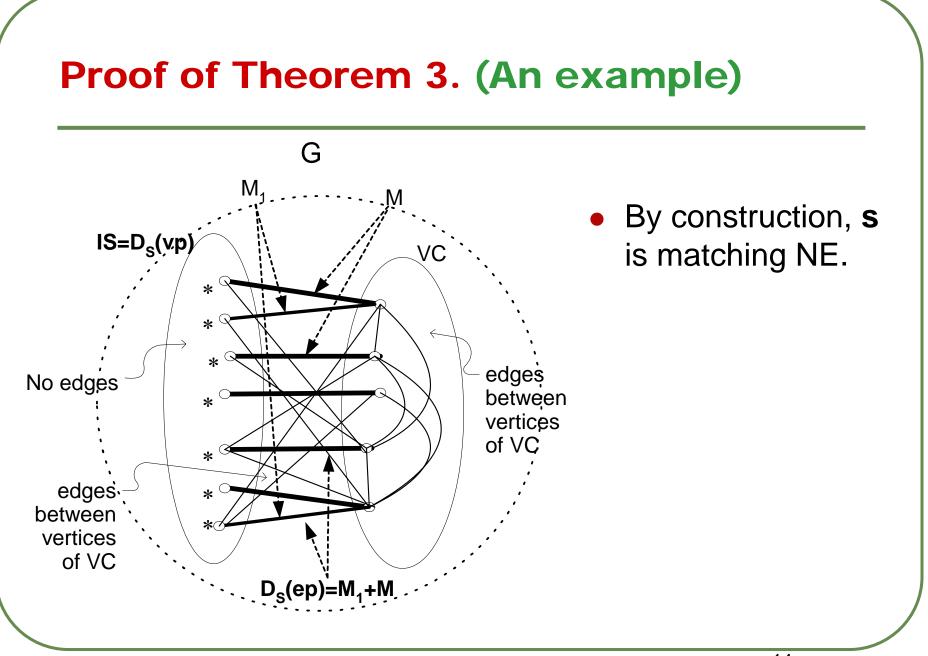
Theorem 3. For any G, $\Pi(G)$ contains a matching NE if and only if the vertices of G can be partitioned into two sets:

• IS and $VC = V \setminus IS$

such that IS is an independent set of G and G is a VC-expander graph.

Proof of Theorem 3.

- If G contains an independent set IS and G is VC-expander then Π(G) contains a matching NE. Proof:
- G is VC-expander ⇒ by the Marriage Theorem, G has a matching M such that each vertex u 2 VC is matched into V\VC in M.
- Partition IS into two sets:
 - $IS_1 = \{v \mid 2 \mid S \text{ such that there exists an } e = (u, v) \mid 2 \mid M \text{ and } u \mid 2 \mid VC \}$.
 - IS_2 = the remaining vertices of *IS*.
- Define a configuration s as follows:
 - For each v2 IS_2 , add one edge (u, v) 2 E in set M_1 .
 - Set $D_s(vp) = D_s(vp_i)_{8 vpi 2 Nvp} := IS$ and $D_s(ep) := M[M_1]$.
 - Apply the uniform distribution for all players



ISAAC, Dec 2005

Proof of Theorem 3. (Cont.)

- If Π(G) contains a matching NE then G contains an independent set IS and G is VC-expander, where VC = V \ IS. Proof:
- Define set IS=D_s(vp)
 - IS is an independent set of G
 - for each v2 VC, there exists (u,v) 2 D_s(ep) such that v2 IS
 - for each v2 VC, add edge (u,v) 2 $D_s(ep)$ in a set Mµ E.
 - \Rightarrow M matches each vertex of VC into V \ VC =IS
 - \Rightarrow by the Marriage's Theorem, |Neigh(VC')|, |VC'|, for all VC' μ VC, i..e.
 - \Rightarrow G is a VC-expander

A polynomial time Algorithm A(((G), IS))

Input: $\Pi(G)$, independent set *IS*, such that G is *VC*-expander, where VC=V\IS.

Output: a matching NE of $\Pi(G)$

- 1. Compute a matching *M* covering all vertices of set *VC*.
- **2.** Partition IS = V V C into two sets:
 - $IS_1 = \{ v \in IS \text{ such that there exists an } e=(u,v) \in M \text{ and } u \in VC \}$
 - IS_2 = the remaining vertices of *IS*.
- **3.** Compute set M_1 : for each $v_2 IS_2$, add one edge (u, v) 2 E in set M_1 .
- 4. Set $D_s(vp) = D_s(vp_i)_{8 vpi 2 Nvp} := IS$ and $D_s(ep) := M[M_1]$ and apply the uniform distribution for all players

Correctness and Time Complexity

Theorem 4. Algorithm $A(\Pi(G), IS))$ computes a matching (mixed) Nash equilibrium for $\Pi(G)$ in time O(m).

Proof.

The algorithm follows the constructive proof of Theorem 3.

Application of Matching NE: Bipartite Graphs

Lemma 2. In any bipartite graph G there exists a matching M and a vertex cover VC such that

- 1. every edge in M contains exactly one vertex of VC and
- 2. every vertex in VC is contained in exactly one edge of M. Proof Sketch.
- Consider a minimum vertex cover VC
- By the minimality of VC and since G is bipartite,
 - for each S μ VC, Neigh_G(S) μ S

 \Rightarrow by the Marriage Theorem, G has a matching M covering all vertices of VC (condition 2)

• every edge in M contains exactly one vertex of VC (condition 1)

Application of Matching NE: Bipartite Graphs

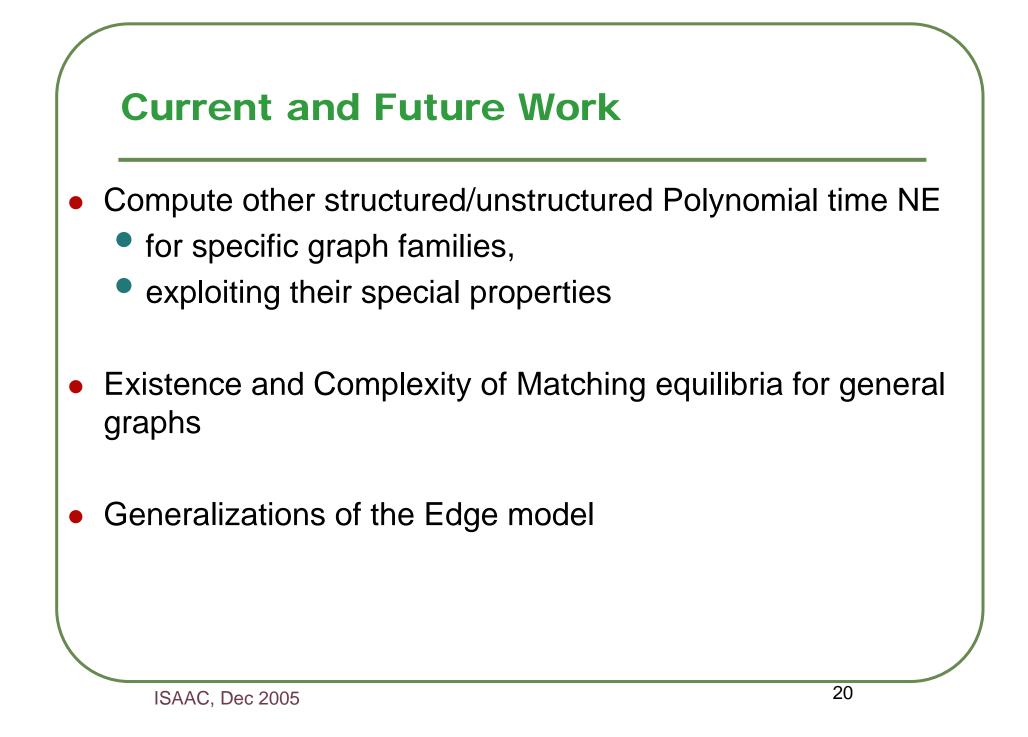
Theorem 5. (Existence and Computation)

If G is a bipartite graph, then

- $\Pi(G)$ contains a matching mixed NE of $\Pi(G)$ and
- one can be computed in polynomial time, max{ $O(m\sqrt{n}), O(n^{2.5}/\sqrt{\log n})$ } using Algorithm A.

Proof Sketch.

- Utilizing the constructive proofs of Lemma 2 and Theorem 3,
- we compute an independent set IS such that G is VC-expander, where VC = V\IS, as required by algorithm A.
- Thus, algorithm A is applicable for $\Pi(G)$.



Thank you for your Attention !