
Long-Lived Rambo:
Trading Knowledge for Communication�

Chryssis Georgiou1, Peter M. Musial2, and Alexander A. Shvartsman2,3

1 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
2 Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, USA

3 CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. Shareable data services providing consistency guarantees, such as
atomicity (linearizability), make building distributed systems easier. However,
combining linearizability with efficiency in practical algorithms is difficult. A re-
configurable linearizable data service, called RAMBO, was developed by Lynch
and Shvartsman. This service guarantees consistency under dynamic conditions
involving asynchrony, message loss, node crashes, and new node arrivals. The
specification of the original algorithm is given at an abstract level aimed at con-
cise presentation and formal reasoning about correctness. The algorithm prop-
agates information by means of gossip messages. If the service is in use for
a long time, the size and the number of gossip messages may grow without
bound. This paper presents a consistent data service for long-lived objects that
improves on RAMBO in two ways: it includes an incremental communication pro-
tocol and a leave service. The new protocol takes advantage of the local knowl-
edge, and carefully manages the size of messages by removing redundant infor-
mation, while the leave service allows the nodes to leave the system gracefully.
The new algorithm is formally proved correct by forward simulation using lev-
els of abstraction. An experimental implementation of the system was developed
for networks-of-workstations. The paper also includes analytical and preliminary
empirical results that illustrate the advantages of the new algorithm.

1 Introduction

This paper presents a practical algorithm implementing long-lived, survivable, atomic
read/write objects in dynamic networks, where participants may join, leave, or fail dur-
ing the course of computation. The only way to ensure survivability of data is through
redundancy: the data is replicated and maintained at several network locations. Replica-
tion introduces the challenges of maintaining consistency among the replicas, and man-
aging dynamic participation as the collections of network locations storing the replicas
change due to arrivals, departures, and failures of nodes.

A new approach to implementing atomic read/write objects for dynamic networks
was developed by Lynch and Shvartsman [10] and extended by Gilbert et al. [6]. This
memory service, called RAMBO (Reconfigurable Atomic Memory for Basic Objects)
maintains atomic (linearizable) readable/writable data in highly dynamic environments.
In order to achieve availability in the presence of failures, the objects are replicated at

� This work is supported in part by the NSF Grants 9984778, 9988304, 0121277, and 0311368.

R. Královič and O. Sýkora (Eds.): SIROCCO 2004, LNCS 3104, pp. 185–196, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



186 Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman

several locations. In order to maintain consistency in the presence of small and transient
changes, the algorithm uses configurations of locations, each of which consists of a set
of members plus sets of read- and write-quorums. In order to accommodate larger and
more permanent changes, the algorithm supports reconfiguration, by which the set of
members and the sets of quorums are modified. Obsolete configurations can be removed
from the system without interfering with the ongoing read and write operations. The
algorithm tolerates arbitrary patterns of asynchrony, node failures, and message loss.
Atomicity is guaranteed in any execution of the algorithm [10, 6].

The original RAMBO algorithm is formulated at an abstract level aimed at concise
specification and formal reasoning about the algorithm’s correctness. Consequently the
algorithm incorporates a simple communication protocol that maintain very little pro-
tocol state. The algorithm propagates information among the participants by means of
gossip messages that contain information corresponding to the sender’s state. The num-
ber and the size of gossip message may in fact grow without bound. This renders the
algorithm impractical for use in long-lived applications.

The gossip messages in RAMBO include the set of participants, and the size of these
messages increases over time for two reasons. First, RAMBO allows new participants to
join the computation, but it does not allow the participants to leave gracefully. In order to
leave the participants must pretend to crash. Given that in asynchronous systems failure
detection is difficult, it may be impossible to distinguish departed nodes from the nodes
that crash. Second, RAMBO gossips information among the participants without regard
for what may already be known at the destination. Thus a participant will repeatedly
gossip substantial amount of information to others even if it did not learn anything new
since the last time it gossiped. While such redundant gossip helps tolerating message
loss, it substantially increases the communication burden. Given that the ultimate goal
for this algorithm is to be used in long-lived applications, and in dynamic networks
with unknown and possibly infinite universe of nodes, the algorithm must be carefully
refined to substantially improve its communication efficiency.

Contributions. The paper presents a new algorithm for reconfigurable atomic memory
for dynamic networks. The algorithm, called LL-RAMBO, makes implementing atomic
survivable objects practical in long-lived systems by managing the knowledge accumu-
lated by the participants and the size of the gossip messages. Each participating node
maintains a more complicated protocol state and, with the help of additional local pro-
cessing, this investment is traded for substantial reductions in the size and the number
of gossip messages. Based on [6, 10], we use Input/Output Automata [11] to specify
the algorithm, then prove it correct in two stages by forward simulation, using levels
of abstraction. We include analytical and preliminary empirical results illustrating the
advantages of the new algorithm. In more detail, our contributions are as follows.

(1) We develop L-RAMBO that implements an atomic memory service and includes a
leave service (Sect. 3). We prove correctness (safety) of L-RAMBO by forward simula-
tion of RAMBO, hence we show that every trace of L-RAMBO is a trace of RAMBO.

(2) We develop LL-RAMBO by refining L-RAMBO to implement incremental gossip
(Sect. 4). We prove that LL-RAMBO implements the atomic service by forward simula-
tion of L-RAMBO. This shows that every trace of LL-RAMBO is a trace of L-RAMBO,
and thus a trace of RAMBO. The proof involves subtle arguments relating the knowledge



Long-Lived Rambo: Trading Knowledge for Communication 187

extracted from the local state to the information that is not included in gossip messages.
We present the proof in two steps for two reasons: (i) the presentation matches the in-
tuition that the leave service and the incremental gossip are independent, and (ii) the
resulting proof is simpler than a direct simulation of RAMBO by LL-RAMBO.
(3) We show (Sect. 5) that LL-RAMBO consumes smaller communication resources
than RAMBO, while preserving the same read and write operation latency, which under
certain steady-state assumptions is at most 8d time, where d is the maximum message
delay unknown to the algorithm. Under these assumptions, in runs with periodic gossip,
LL-RAMBO achieves substantial reductions in communication.
(4) We implemented all algorithms on a network-of-workstations. Preliminary empiri-
cal results complement the analytical comparison of the two algorithms (Sect. 5).
Background. Several approaches can be used to implement consistent data in (static)
distributed systems. Many algorithms used collections of intersecting sets of object
replicas to solve consistency problems, e.g., [2, 14, 15]. Extension with reconfigurable
quorums have been explored [4], but this system has limited ability to support long-
lived data when the longevity of processors is limited. Virtual synchrony [3], and group
communication services (GCS) in general [1], can be used to implement consistent
objects, e.g., by using a global totally ordered broadcast. The universe of nodes in a
GCS can evolve, however forming a new view is indicated after a single failure and can
take a substantial time, while reads and writes are delayed during view formation.

The work on reconfigurable atomic memory [4, 10, 6] results in algorithms that are
more dynamic because they place fewer restrictions on the choice of new configura-
tions and allow for the universe of processors to evolve arbitrarily. However these ap-
proaches are based on abstract communication protocols that are not suited for long-
lived systems. Here we provide a long-lived solution by introducing graceful processor
departures and incremental gossip. The idea of incrementally propagating information
among participating nodes has been previously used in a variety of different settings,
e.g., [7, 12]. Incremental gossip is also called anti-entropy [5, 13] or reconciliation [8];
these concepts are used in database replication algorithms, however due to the nature of
the application they assume stronger assumptions, e.g., ordering of messages.
Document structure. In Section 2 we review RAMBO. In Section 3 we specify and
prove correct the graceful leave service. Section 4 presents the ultimate system, with
leave and incremental gossip, and proves it correct. Section 5 gives the analysis and
experimental results. (Complete proofs and analysis are found in MIT/LCS/TR-943.)

2 Reconfigurable Atomic Memory for Basic Objects (RAMBO)

We now describe the RAMBO algorithm as presented in [10], including the rapid config-
uration upgrade as given in [6]. The algorithm is given for a single object (atomicity is
preserved under composition, and multiple objects can be composed to yield a complete
shared memory). For the detailed Input/Output Automata code see [10, 6]. In order to
achieve fault tolerance and availability, RAMBO replicates objects at several network lo-
cations. In order to maintain memory consistency in the presence of small and transient
changes, the algorithm uses configurations, each of which consists of a set of members
plus sets of read-quorums and write-quorums. The quorum intersection property re-
quires that every read-quorum intersect every write-quorum. In order to accommodate



188 Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman

larger and more permanent changes, the algorithm supports reconfiguration, by which
the set of members and the sets of quorums are modified. Any quorum configuration
may be installed, and atomicity is preserved in all executions.

The algorithm consists of three RAMBO at i

�

�

�

�
Reader-Writeri

�

�

�

�
Joineri

�

�

�

�

RAMBO at j

�

�

�

�
Reader-Writerj

�

�

�

�
Joinerj

�

�

�

�

�

�

�

�
Channeli,j

�

�

�

�
Channelj,i

�

�

�

�
Recon

� �

��
�� ��

�� ��

Fig. 1. RAMBO architecture depicting automata at
nodes i and j, the channels, and the Recon service.

kinds of automata: (i) Joiner au-
tomata, handling join requests,
(ii) Recon automata, handling re-
configuration requests and generat-
ing a totally ordered sequence of
configurations, and (iii) Reader-
Writer automata, handling read
and write requests, manage config-
uration upgrades, and implement
gossip messaging. The overall systems is the composition of these automata with the
automata modelling point-to-point communication channels, see Fig. 1. The Joiner au-
tomaton simply sends a join message when node i joins, and sends a join-ack message
whenever a join message is received. The Recon automaton establishes a total ordering
of configurations (for details see [10]).

The external signature of the service is in Fig. 2. A client at node i uses joini ac-
tion to join the system. After receiving join-acki, the client can issue readi and writei

requests, which result in read-acki and write-acki responses. The client can issue a
reconi request a reconfiguration. The faili action models a crash at node i.

Domains: I , a set of processes; V , a set of legal values; and C , a set of configurations, each consisting of members, read-
and write-quorums

Input: join(rambo, J)i, J ⊆ I − {i}, i ∈ I ,
such that if i = i0 then J = ∅

readi, i ∈ I
write(v)i , v ∈ V , i ∈ I
recon(c, c′)i, c, c′∈C , i∈members(c), i∈I
faili, i ∈ I

Output: join-ack(rambo)i , i ∈ I
read-ack(v)i , v ∈ V , i ∈ I
write-acki, i ∈ I
recon-ack(b)i, b ∈ {ok, nok}, i ∈ I
report(c)i, c ∈ C , i ∈ I

Fig. 2. RAMBO: External signature.

Every node of the system maintains a tag and a value for the data object. Every
time a new value is written, it is assigned a unique tag, with ties broken by process-
ids. These tags are used to determine an ordering of the write operations, and therefore
determine the value that a read operation should return. Read and write operations has
two phases, query and propagation, each accessing certain quorums of replicas. As-
sume the operation is initiated at node i. First, in the query phase, node i contacts read
quorums to determine the most recent known tag and value. Then, in the propagation
phase, node i contacts write quorums. If the operation is a read operation, the second
phase propagates the largest discovered tag and its associated value. If the operation is
a write operation, node i chooses a new tag, strictly larger than every tag discovered
in the query phase. Node i then propagates the new tag and the new value to a write
quorum. Note that every operation accesses both read and write quorums.

Configurations go through three stages: proposal, installation, and upgrade. First,
a configuration is proposed by a recon event. Next, if the proposal is successful, the



Long-Lived Rambo: Trading Knowledge for Communication 189

Recon service achieves consensus on the new configuration, and notifies participants
with decide events. When every non-failed member of the prior configuration has been
notified, the configuration is installed. The configuration is upgraded when every con-
figuration with a smaller index has been removed. Upgrades are performed by the
configuration upgrade operations. Each upgrade operation requires two phases, a query
phase and a propagate phase. The first phase contacts a read-quorum and a write-
quorum from the old configurations, and the second phase contacts a write-quorum
from the new configuration. All three operations, read, write, and configuration up-
grade, are implemented using gossip messages.

The cmap is a mapping from integer indices to configurations ∪{⊥,±}, initially
mapping every integer to ⊥. It tracks which configurations are active, which have not
yet been created, indicated by ⊥, and which have already been removed, indicated by
±. The total ordering on configurations determined by Recon ensures that all nodes
agree on which configuration is stored in each position in cmap . We define c(k) to be
the configuration associated with index k.

The record op is used to store information about the current phase of an ongoing
read or write operation, while upg is used for information about an ongoing configura-
tion upgrade operation. A node can process read and write operations concurrently with
configuration upgrade operations. The op.cmap subfield records the configuration map
associated with the operation. For read or write operations this consists of the node’s
cmap when a phase begins, augmented by any new configurations discovered during
the phase. A phase completes when the initiator has exchanged information with quo-
rums from every valid configuration in op.cmap . The pnum subfield records the phase
number when the phase begins, allowing the initiator to determine which responses cor-
respond to the phase. The acc subfield records which nodes from which quorums have
responded during the current phase.

Finally, the nodes communicate via asynchronous unreliable point-to-point chan-
nels. We denote by Channel i,j the channel from node i to node j.

3 RAMBO with Graceful Leave

Here we augment RAMBO with a leave service allowing the participants to depart grace-
fully. We prove that the new algorithm, called L-RAMBO, implements atomic memory.

Nodes participating in RAMBO communicate by means of gossip messages contain-
ing the latest object value and bookkeeping information that includes the set of known
participants. RAMBO allows participants to fail or leave without warning. Since in asyn-
chronous systems it is difficult or impossible to distinguished slow or departed nodes
from crashed nodes, RAMBO implements gossip to all known participants, regardless
of their status. In highly dynamic systems this leads to (a) the size of gossip messages
growing without bounds, and (b) the number of messages sent in each round of gossip
increasing as new participants join the computation.

L-RAMBO allows graceful node departures by letting a node that wishes to leave
the system to send notification messages to an arbitrary subset of known participants.
When another node receives such notification, it marks the sender as departed, and
stops gossiping to that node. The remaining nodes propagate the information about



190 Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman

Signature:
As in RAMBO, plus new actions:
Input : leavei , recv(leave)j,i

Output : send(leave)i,j

State:
As in RAMBO, plus new states:
leave-world, a finite subset of I , ini-
tially ∅
departed, a finite subset of I , initially ∅

ig ∈ IGMap, initially ∀k ∈ I ,
ig(k).wk =∅, ig(k).w-ua =∅,
ig(k).dk =∅, ig(k).d-ua =∅,
ig(k).p-ack = 0

Transitions at i:
Input recv(〈W, D, v, t, cm, pns, pnr〉)j,i

Effect:
if ¬failed ∧ status �= idle then

status ← active
world ← world ∪W
departed ← departed ∪D

[h]hr-W (j , i, pnr) ← W
[h]hr-D(j , i, pnr)← D
ig(j).wk← ig(j).wk ∪W
ig(j).w-ua← ig(j).w-ua −W
ig(j).dk← ig(j).dk ∪D
ig(j).d-ua← ig(j).d-ua −D
if pnr > ig(j).p-ack then
ig(j).wk← ig(j).wk ∪ ig(j).w-ua
ig(j).w-ua ← world − ig(j).wk
ig(j).dk← ig(j).dk ∪ ig(j).d-ua
ig(j).d-ua ← departed − ig(j).dk
ig(j).p-ack ← pnum1

if t > tag then (value, tag)← (v, t)
cmap ← update(cmap, cm)
pnum2(j) ← max(pnum2 (j), pns)
if op.phase ∈ {query, prop}∧pnr ≥ op.pnum then

op.cmap ← extend(op.cmap, truncate(cm))
if op.cmap ∈ Truncated then

op.acc ← op.acc ∪ {j}
else

op.acc ← ∅
op.cmap ← truncate(cmap)

if upg.phase∈{query, prop}∧pnr≥upg.pnum then
upg.acc← upg.acc ∪ {j}

input recv(leave)j,i

Effect:
if ¬failed ∧ status = active then
departed ← departed ∪ {j}

Output send(〈W, D, v, t, cm, pns, pnr〉)i,j

Precondition:
¬failed
status = active
j ∈ (world − departed)
〈W, D, v, t, cm, pns, pnr〉 =

〈world −ig(j).wk ,departed −ig(j).dk ,

value, tag, cmap, pnum1 , pnum2 (j) 〉
Effect:

pnum1 ← pnum1 + 1
[h]h-msg ← h-msg∪
〈〈W, D, v, t, cm, pns, pnr〉, i, j〉

[h]hs-world(i, j , pns)← world
[h]hs-departed(i, j , pns)← departed
[h]hs-wk(i, j , pns)← ig(j).wk
[h]hs-dk(i, j , pns) ← ig(j).dk
[h]hs-wua(i, j , pns)← ig(j).w-ua
[h]hs-dua(i, j , pns)← ig(j).d-ua
[h]hs-pack(i, j , pns)← ig(j).p-ack

input leavei
Effect:

if ¬failed then
failed ← true
departed ← departed ∪ {i}
leave-world ← world − departed

output send(leave)i,j

Precondition:
j ∈ leave-world

Effect:
leave-world ← leave-world − {j}

Fig. 3. Modification of Reader-Writeri for L-RAMBO, and for LL-RAMBO (the boxed code).

the departed nodes to other participants, eventually eliminating gossip to nodes that
departed gracefully.

Specification of L-RAMBO. We interpret the faili event as synonymous with the leavei

event – both are inputs from the environment and both result in node i stopping to
participate in all operations. The difference between faili and leavei is strictly internal:
leavei allows a node to leave gracefully. The well-formedness conditions of RAMBO

and the specifications of Joineri and Recon remain unchanged. The introduction of
the leave service affects only the specification of the Reader-Writeri automata. These
changes for L-RAMBO are given in Fig. 3, except for the boxed segments of code that
should be disregarded until the ultimate long-lived algorithm LL-RAMBO is presented
in Sect. 4 (we combine the two specifications in the interest of space).

The signature of Reader-Writeri automaton is extended with actions recv(leave)j,i

and send(leave)i,j used to communicate the graceful departure status. The state of
Reader-Writeri is extended with new state variables: departed i, the set of nodes that left



Long-Lived Rambo: Trading Knowledge for Communication 191

the system, as known at node i, leave-world i, the set of nodes that node i can inform of
its own departure, once it decides to leave and sets leave-world i to world − departed .

The key algorithmic changes involve the actions recv(m)j,i and send(m)i,j . The
original RAMBO algorithm gossips message m includes: W the world of the sender,
v the object and its tag t, cm the cmap, pns the phase number of the sender, and pnr
the phase number of the receiver that is known to the sender. The gossip message m in
L-RAMBO also includes D, a new parameter, equal to the departed set of the sender.

We now detail the leave protocol. Assume that nodes i and j participate in the
service, and node i wishes to depart following the leavei event, whose effects set the
state variable failed i to true in Joineri, Reconi, and Reader-Writeri. The leavei action
at Reader-Writeri (see Fig. 3) also initializes the set leave-world i to the identifiers
found in world i, less those found in departed i. Now Reader-Writeri is allowed to send
one leave notification to any node in leave-world i. This is done by the send(leave)i,j

action that arbitrarily chooses the destination j from leave-world i. Note that node i
may nondeterministically choose the original faili action, in which case no notification
messages are sent (this is the “non-graceful” departure).

When Reader-Writeri receives a leave notification from node j, it adds j to its
departed i set. Node i sends gossip messages to all nodes in the set world i−departed i,
which including information about j’s departure. When Reader-Writeri receives a gos-
sip message that includes the set D, it updates its departed i set accordingly.

Atomicity of L-RAMBO service. The L-RAMBO system is the composition of all
Reader-Writeri and Joineri automata, the Recon service, and Channeli,j automata for
all i, j ∈ I . We show atomicity of L-RAMBO by forward simulation that proves that any
trace of L-RAMBO is also a trace of RAMBO, and thus L-RAMBO implements atomic
objects. The proof uses history variables, annotated with the symbol [h] in Fig. 3.

For each i we define h-msgi to be the history variable that keeps track of all
messages sent by Reader-Writeri automata. Initially, h-msgi = ∅ for all i ∈ I .
Whenever a message m is sent by i to some node j ∈ I via Channeli,j , we let
h-msg i ← h-msgi∪{〈m, i, j〉}. We define h-MSG to be

⋃
i∈I h-msg i. (The remaining

history variables are used in reasoning about LL-RAMBO, see Sect. 4).
The following lemma states that only good messages are sent.

Lemma 1. In any execution of L-RAMBO, if m is a message received by node i in
a recv(m)i,j event, then 〈m, j, i〉 ∈ h-MSG , and m = 〈W, D, v, t, cm, pns, pnr〉 or
m = leave or m = join.

Next we show that L-RAMBO implements RAMBO, assuming the environment be-
havior as (informally) described in Sect. 2. Showing well-formedness is straightforward
by inspecting the code. The proof of atomicity is based on a forward simulation rela-
tion [9] from L-RAMBO to RAMBO.

Theorem 1. L-RAMBO implements atomic read/write objects.

4 RAMBO with Graceful Leave and Incremental Gossip

Now we present, and prove correct, our ultimate algorithm, called LL-RAMBO (Long-
Lived RAMBO). The algorithm is obtained by incorporating incremental gossip in L-
RAMBO, so that the size of gossip messages is controlled by eliminating redundant in-



192 Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman

formation. In L-RAMBO (resp. RAMBO) the gossip messages contain sets correspond-
ing to the sender’s world and departed (resp. world ) state variables at the time of the
sending (Fig. 3). As new nodes join the system and as participants leave the system,
the cardinality of these sets grows without bound, rendering RAMBO and L-RAMBO

impractical for implementing long-lived objects. The LL-RAMBO algorithm addresses
this issue. The challenge here is to ensure that only the certifiably redundant information
is eliminated from the messages, while tolerating message loss and reordering.

Specification of LL-RAMBO. We specify the algorithm by modifying the code of L-
RAMBO. In Fig. 3 the boxed segments of code specify these modifications. The new
gossip protocol allows node i to gossip the information in the sets world i and departed i

incrementally to each node j ∈ world i − departed i. Following j’s acknowledgment,
node i never again includes this information in the gossip messages sent to j, but will
include new information that i has learned since the last acknowledgment by j.

To describe the incremental gossip in more detail we consider an exchange of a
gossip messages between nodes i and j, where i is the sender and j is the receiver. The
sets world and departed are managed independently and similarly, and we illustrate
incremental gossip using just the set world . First we define new data types. Let an
incremental gossip identifier be the tuple 〈wk , dk ,w-ua, d-ua, p-ack〉, where wk , dk ,
w-ua , and d-ua are finite subsets of I , and p-ack is a natural number. Let IG denote
the set of all incremental gossip identifiers. Finally, let IGMap be the set of incremental
gossip maps, defined as the set of mappings I → IG. We extend the state of the Reader-
Writeri automaton with ig i ∈ IGMap . Node i uses ig(j)i tuple to keep track of the
knowledge it has about the information already in possession of, and currently being
propagated to, node j (see Fig.3). Specifically, for each j ∈ worldi, ig(j )i .wk is the set
of node identifiers that i is assured is a subset of world j , ig(j )i .w-ua is the set of node
identifiers, a subset of world i, that j needs to acknowledge. The components ig(j )i .dk
and ig(j )i .d-ua are defined similarly for the departed set. Lastly, ig(j )i .p-ack is the
phase number of i when the last acknowledgment from j was received. Initially each of
these sets is empty, and p-ack is zero for each ig(j)i with j ∈ I .

Node j acknowledges a set of identifiers by including this set in the gossip message,
or by sending a phase number of i such that node i can deduce that node j received
this set of identifiers in some previous message from i to j. Messages that include i’s
phase number that is larger than ig(j )i .p-ack are referred to as fresh or acknowledgment
messages, otherwise they are referred to as late messages. (This is discussed later.)

The lines annotated with [h] in Fig. 3 deal with history variables that are used only
in the proof of correctness.

In RAMBO, once node i learns about node j, it can gossip to j at any time. We now
examine the send(〈W, D, v, t, cm, pns, pnr〉)i,j action. The world component, W , is
set to the difference of world i and the information that i knows that j has, ig(j )i .wk , at
the time of the send. Remaining components of the gossip message are the same as in
L-RAMBO. The effect of the send action causes phase number of the sender to increase;
this ensures that each message sent is labeled with a unique phase number of the sender.

Now we examine recv(〈W, D, v, t, cm, pns, pnr〉)i,j action at j (note that we
switch i and j relative to the code in Fig. 3 to continue referring to the interaction of the
sender i and receiver j). The component W contains a subset of node identifiers from
j’s world . Hence W is always used to update world j , ig(i)j .wk , and ig(i)j .w-ua. The



Long-Lived Rambo: Trading Knowledge for Communication 193

update of world j is identical to that in L-RAMBO. By definition ig(i)j .wk is the set of
node identifiers that j is assured that i has, hence we update it with information in W .
Similarly, by definition ig(i)j .w-ua is the set of node identifiers that j is waiting for i to
acknowledge. It is possible that i has learned some or all of this information from other
nodes and it is now a part of W , hence we remove any identifiers in W that are also in
ig(i)j .w-ua from ig(i)j .w-ua; these identifiers do not need further acknowledgment.

What happens next in the effect of recv depends on the value of pnr (the phase num-
ber that i believes j to be in). First, if pnr ≤ ig(i)j .p-ack , this means that this message
is a late message since there must have been a prior message from i to j that included
this or higher pnr. Hence, no updates take place. Second, if pnr > ig(i)j .p-ack , this
message is considered to be an acknowledgment message. By definition ig(i)j .p-ack
contains the phase number of j when last acknowledgment from i was received. Fol-
lowing last acknowledgment, phase number of j was incremented, ig(i)j .p-ack was
assigned the new value of phase number of j, and lastly new set of identifiers to be
propagated was recorded. Since node i replied to j with phase number larger than
ig(i)j .p-ack it means that j and i exchanged messages where i learned about the new
phase number of j, by the same token i also learned the information included in these
messages. (We show formally that ig(i)j .w-ua is always a subset of each message com-
ponent W that is sent to i by j.) Hence, it is safe for j to assume that i at least received
the information in ig(i)j .w-ua and to add it to ig(i)j .wk .

Since the choice of i and j is arbitrary, gossip from j to i is defined identically.
Atomicity of LL-RAMBO. We show that any trace of LL-RAMBO is a trace of L-
RAMBO, and thus a trace of RAMBO. We start by defining the remaining history vari-
ables used in the proofs. These variables are annotated in Fig. 3 with a [h] symbol.

– For every tuple 〈m, i, j〉 ∈ h-msg i, where m = 〈W, D, v, t, cm, pns, pnr〉 and
pns = p, the history variable hs-W (i , j , p) is a mapping from I × I × IN to
2I ∪ {⊥}. This variable records the world component of the message, W , when i
sends message m to j, and i’s phase number is p. Similarly, we define a derived
history variable hs-D(i , j , p), a mapping from I× I× IN to 2I ∪{⊥}. This history
variable records the departed component of the message, D, when i sends message
m to j, and i’s phase number is p.

Now we list history variables used to record information for each send(〈W, D, v, t, cm,
pns, pnr〉)i,j event.

– Each of the following variables is a mappings from I × I × IN to 2I ∪
{⊥}. hs-world(i , j , pns) records the value of worldi, hs-departed(i , j , pns)
records the value of departedi, hs-wk(i , j , pns) records the value of ig(j )i .wk ,
hs-dk(i , j , pns) records the value of ig(j )i .dk , hs-wua(i , j , pns) records the value
of ig(j )i .w-ua, and hs-dua(i , j , pns) records the value of ig(j )i .d-ua .

– hs-pack(i , j , pns) is a mapping from I × I × IN to IN. It records the value of
ig(j )i .p-ack .

The last history variables record information in messages at each recv(〈W, D, v, t, cm,
pns, pnr〉)j,i event.

– Each of the following is a mapping from I×I ×IN to 2I∪{⊥}. hr-W (j , i , pns)
records the component W (world) and hr-D(j , i , pns) records the component D
(departed).



194 Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman

We begin by showing properties of messages delivered by Reader-Writer processes.

Lemma 2. Consider a step 〈s, e, s′〉 of an execution α of LL-RAMBO, where e =
recv(〈W, D, v, t, cm, pj , pi〉)j,i for i, j ∈ I , and pi > s.ig(j )i .p-ack . Then,
(a) s.ig(j )i .p-ack = s.hs-pack(i , j , pi ), (b) s.ig(j )i .w-ua ⊆ s.hs-wua(i , j , pi ),
(c) s.ig(j )i .d-ua ⊆ s.hs-dua(i , j , pi ).

Invariant 1 is used in proving the correctness of LL-RAMBO. In Invariant 1, parts
(a) to (e) and Lemma 1 are used to show the key parts (f) and (g).

Invariant 1 For all states s of any execution α of LL-RAMBO:
(a) 〈〈W, D, v, t, cm, pns, pnr〉, i, j〉∈s.h-MSG⇒W ⊆s.world i∧D ⊆s.departed i,
(b) ∀ i, j ∈ I : s.ig(j )i .w-ua ⊆ s.world i − s.ig(j )i .wk ,
(c) ∀ i, j ∈ I : s.ig(j )i .d-ua ⊆ s.world i − s.ig(j )i .dk ,
(d) 〈〈W, D, v, t, cm, p, pnr〉, i, j〉 ∈ s.h-MSG ⇒ s.hs-wua(i , j , p) ⊆W ,
(e) 〈〈W, D, v, t, cm, p, pnr〉, i, j〉 ∈ s.h-MSG ⇒ s.hs-dua(i , j , p) ⊆ D,
(f) ∀ i, j ∈ I : s.ig(j )i .wk ⊆ s.world j , and
(g) ∀ i, j ∈ I : s.ig(j )i .dk ⊆ s.departed j .

Parts (f) and (g) of Invariant 1 show that no node overestimates the knowledge
of another node about its world and departed sets. Finally we show the atomicity of
objects implemented by LL-RAMBO by proving that it simulates L-RAMBO, i.e., by
showing that every trace of LL-RAMBO is a trace of L-RAMBO (hence of RAMBO).

Theorem 2. LL-RAMBO implements atomic read/write objects.

Proof. (Sketch) We define a relation R to map (a) a state t of LL-RAMBO to a state
s of L-RAMBO so that every “common” state variable has the same value (e.g., for
i ∈ I , t.worldi = s.worldi, t.pnum1i = s.pnum1i, etc.) and (b) a message
m = 〈W, D, v, t, cm, pns, pnr〉 in the Channel automaton of LL-RAMBO to a mes-
sage m′ = 〈W, D, v, t, cm, pns, pnr〉 in the Channel automaton of L-RAMBO so that:
m.v = m′.v, m.t = m′.t, m.cm = m′.cm, m.pns = m′.pns, m.pnr = m′.pnr,
m.W = hs-world(i , j , pns)− hs-wk(i , j , pns) and m′.W = hs-world(i , j , pns), and
m.D = hs-departed(i , j , pns)−hs-dk(i , j , pns) and m′.D = hs-departed(i , j , pns).
Using the specifications of the two algorithms and Invariant 1, we show that R is a sim-
ulation mapping from LL-RAMBO to L-RAMBO. Since L-RAMBO implements atomic
objects per Theorem 1, so does LL-RAMBO.

5 LL-RAMBO Implementation and Performance

We developed proof-of-concept implementations of RAMBO and LL-RAMBO on a
network-of-workstations. In this section we presents preliminary experimental results
and overview conditional analysis of algorithms.

Experimental Results. We developed the system by manually translating the In-
put/Output Automata specification to Java code. To mitigate the introduction of er-
rors during translation, the implementers followed a set of precise rules that guided the
derivation of Java code. The platform consists of a Beowulf cluster with ten machines



Long-Lived Rambo: Trading Knowledge for Communication 195

running Linux. The machines are various Pentium processors up to 900 MHz inter-
connected via a 100 Mbps Ethernet switch. The implementation of the two algorithms
share most of the code and all low-level routines, so that any difference in performance
is traceable to the distinct world and departed set management and the gossiping disci-
pline encapsulated in each algorithm.

We are interested in long-lived applications and we assume that the number of par-
ticipants grows arbitrarily. Given the limited number of physical nodes, we use majority
quorums of the these nodes, and we simulate a large number of other nodes that join the
system by including such node identifiers in the world sets. Using non-existent nodes
approximates the behavior of a long-lived system with a large set of participants. How-
ever, when using all-to-all gossip that grows quadratically in the number of participants,
it is expected that the differences in RAMBO and LL-RAMBO performance will become
more substantial when using a larger number of physical nodes.

The experiment is designed as follows. There are ten nodes that do not leave the
system. These nodes perform concurrent read and write operations using a single con-
figuration (that does not change over time), consisting of majorities, i.e., six nodes.
Figure 4 compares (a) the average latency of gossip messages and (b) the average la-
tency of read and write operations in RAMBO and LL-RAMBO, as the cardinality of
world sets grows from 10 to 7010.

LL-RAMBO exhibits substantially better

0

50

100

150

200

250

10 510 1010 1510 2010 2510 3010 3510 4010 4510 5010 5510 6010 6510 7010

World Cardinality

A
ve

ra
ge

 G
os

si
p 

M
es

sa
ge

 L
at

en
cy

 (
m

se
c) RAMBO

LL-RAMBO

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

10 510 1010 1510 2010 2510 3010 3510 4010 4510 5010 5510 6010 6510 7010

World cardinality

A
vg

er
ag

e 
O

pe
re

ra
tio

n 
L

a t
en

cy
 (

m
se

c)

RAMBO

LL-RAMBO

(b)

Fig. 4. Preliminary empirical results:
(a) gossip message latency, (b) read and
write latency.

gossip message latency than RAMBO (Fig. 4(a)).
In fact the average gossip latency in LL-RAMBO

does not vary noticeably. On the other hand, the
gossip latency in RAMBO grows substantially as
the cardinality of the world sets increases. This
is expected due to the smaller incremental gos-
sip messages of LL-RAMBO, while in RAMBO,
the size of the gossip messages is always pro-
portional to the cardinality of the world set. LL-
RAMBO trades local resources (computation and
memory) for smaller and fewer gossip messages.
We observe that the read/write operation latency
is slightly lower for RAMBO when the cardinal-
ity of the world sets is small (Fig. 4(b)). As the
size of the world sets grows, the operation la-
tency in LL-RAMBO becomes substantially bet-
ter than in RAMBO.

Performance analysis. We briefly summarize our performance analysis of LL-
RAMBO. Here we assume that the participating nodes perpetually gossip with a
period d. We show that the latency of read and write operations matches that of
RAMBO [10, 6]. Specifically, if d is the maximum message delay, then read and write
operations take at most 8d time, when reconfigurations are not too frequent. We analyze
the communication of LL-RAMBO in the following scenario. We consider the scenario
where, once an object is created, several nodes join the system, such that, together with
the creator, there are n nodes. Then l nodes leave the system, such that the number of



196 Chryssis Georgiou, Peter M. Musial, and Alexander A. Shvartsman

remaining active nodes is a = n− l. We show that in this case, after r rounds of gossip,
the savings in gossip messages for LL-RAMBO are between Ω(r · n) and O(r · n2).

6 Discussion and Future Work

We presented an algorithm for long-lived atomic data in dynamic networks. Prior solu-
tions for dynamic networks [10, 6] did not allow the participants to leave gracefully and
relied on gossip that involved sending messages whose size grew with time. The new
algorithm, called LL-RAMBO improves on prior work by supporting graceful depar-
tures of participants and implementing incremental gossip. The algorithm substantially
reduces the size and the number of gossip messages, leading to improved performance
of the read and write operations. Our improvements are formally specified and proved.

Acknowledgements. The work of Chryssis Georgiou was performed at the University
of Connecticut. The authors thank Nancy Lynch and Seth Gilbert for many discussions.

References

1. Special Issue on Group Communication Services, vol. 39(4) of Comm. of the ACM, 1996.
2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message Passing Systems.

Journal of the ACM 42(1):124–142, 1996.
3. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In Proceedings

of the 11th ACM Symposium on Operating Systems Principles, December 1987.
4. Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration in a robust emulation of

shared memory. In Proc. of Inter. Conf. on Dist.d Computer Systems, pp. 454–463, 2000.
5. Golding, R.A.: Weak-consistency group communication and membership. PhD Thesis,

University of California, 1992.
6. Gilbert, S.,Lynch, N., Shvartsman, A.A.: RAMBO II: Rapidly reconfigurable atomic mem-

ory for dynamic networks. In Proc. of Inter. Conf. on Dependable Systems and Networks,
pp. 259–268, 2003.

7. Ghorbani, A., Bhavsar, V.: Training artificial neural networks using variable precision incre-
mental communication. In Proc. of IEEE World Congress On Computational Intelligence,
3:1409–1414, 1994.

8. Guy, R.G., Heidemann, J.S., Mak, W., Page Jr., T.W., Popek, G.J., Rothmeier, D.: Imple-
mentation of the Ficus Replicated File System. In Proc. of Summer USENIX Conference,
pp. 63-71, 1990.

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
10. Lynch, N., Shvartsman, A.A.: RAMBO: A reconfigurable atomic memory service for dy-

namic networks. In Proc. of 16th Inter. Symp. on Dist. Comp., pp. 173–190, 2002.
11. Lynch, N.A., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.

LCS/TR-387, MIT, 1987.
12. Minsky, Y.: Spreading rumors cheaply, quickly, and reliably. Ph.D Thesis, Cornell Univer-

sity, 2002.
13. Rabinovich, M., Gehani, N., Kononov, A.: Efficient update propagation in epidemic repli-

cated databases. In Proc. of 5th Int. Conf. on Extending Database Tech., pp. 207-222, 1996.
14. Upfal, E., Wigderson, A.: How to share memory in a distributed system. Journal of the

ACM 34(1):116–127, 1987.
15. Vitanyi, P., Awerbuch, B.: Atomic shared register access by asynchronous hardware. In

Proc. of 27th IEEE Symposium on Foundations of Computer Science, pp. 233–243, 1986.


	1 Introduction
	2 Reconfigurable Atomic Memory for Basic Objects (RAMBO)
	3 RAMBO with Graceful Leave
	4 RAMBO with Graceful Leave and Incremental Gossip
	5 LL-RAMBO Implementation and Performance
	6 Discussion and Future Work
	Acknowledgements.
	References

