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Abstract

In this work, we study the combinatorial structure and the computational complexity of Nash
equilibria for a certain game that models selfish routing over a network consisting of m parallel
links. We assume a collection of n users, each employing a mixed strategy, which is a probability
distribution over links, to control the routing of its own assigned traffic. In a Nash equilibrium,
each user selfishly routes its traffic on those links that minimize its expected latency cost, given
the network congestion caused by the other users. The social cost of a Nash equilibrium is the
expectation, over all random choices of the users, of the maximum, over all links, latency through
a link.

We embark on a systematic study of several algorithmic problems related to the computation
of Nash equilibria for the selfish routing game we consider. In a nutshell, these problems relate to
deciding the existence of a Nash equilibrium, constructing a Nash equilibrium, constructing the
worst Nash equilibrium (the one with maximum social cost), or computing the social cost of a
(given) Nash equilibrium. Our work provides a comprehensive collection of efficient algorithms,
hardness results (both as NP-completeness and #P-completeness results), and structural results
for these algorithmic problems. Our results span and contrast a wide range of assumptions on the
syntax of the Nash equilibria and on the parameters of the system.

∗This work has been partially supported by the IST Program of the European Union under contract numbers IST-1999-
14186 (ALCOM-FT) and IST-2001-33116 (FLAGS), and by funds from the Joint Program of Scientific and Technological
Collaboration between Greece and Cyprus.
†Department of Information and Communication Systems Engineering, University of the Aegean, 83200 Samos, Greece.

Email: fotakis@aegean.gr. Most of this work was done while the author was a postdoctoral fellow at the Max Planck
Institut für Informatik, 66123 Saarbrücken, Germany.
‡Department of Computer Science, University of Ioannina, 45110 Ioannina, Greece, & Research Academic Computer

Technology Institute, N. Kazantzaki Str., University Campus, 26500 Patras, Greece. Email: kontog@cs.uoi.gr.
Most of this work was done while the author was a postdoctoral fellow at the Max Planck Institut für Informatik, 66123
Saarbrücken, Germany.
§Department of Computer Science, University of California at Los Angeles, & Department of Informatics, University of

Athens, Greece. Email: elias@cs.ucla.edu
¶Department of Computer Science, University of Cyprus, P. O. Box 20537, Nicosia CY-1678, Cyprus. Email:

mavronic@ucy.ac.cy
‖Department of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras, Greece, & Re-

search Academic Computer Technology Institute, N. Kazantzaki Str., University Campus, 26500 Patras, Greece. Email:
spirakis@cti.gr



1 Introduction

1.1 Motivation-Framework

Nash equilibrium [25] (see also [26] for a “popular science” style discussion) is arguably the most im-
portant solution concept in Game Theory [27]. It may be viewed to represent a steady state of the play
of a strategic game in which each player holds an accurate opinion about the (expected) behavior of
other players and acts rationally. Despite the apparent simplicity of the concept, computation of Nash
equilibria in finite games has been long observed to be difficult (cf. [19, 35]); in fact, it is arguably
one of the few, most important algorithmic problems for which no polynomial-time algorithms are
known. Indeed, Papadimitriou [30, p. 1] (see also [31]) actively advocates the problem of computing
Nash equilibria as one of the most significant open problems in Theoretical Computer Science today:

“The Nash equilibrium (definition omitted here) is the predominant concept of rationality
in Game Theory; it is also a most fundamental computational problem whose complexity
is wide open: Is there a polynomial algorithm which, given a two-person game with a
finite strategy space, computes a mixed Nash equilibrium? Together with factoring, the
complexity of finding a Nash equilibrium is in my opinion the most important concrete
open question on the boundary of P today.”

In this work, we embark on a systematic study of the computational complexity of Nash equilibria
in the context of a simple selfish routing game, originally introduced by Koutsoupias and Papadim-
itriou [16], that we describe here. We assume a collection of n users, each employing a mixed strategy,
which is a probability distribution over m parallel links, to control the shipping of its own assigned
traffic. For each link, a capacity specifies the rate at which the link processes traffic. In a Nash equi-
librium, each user selfishly routes its traffic on those links that minimize its expected latency cost,
given the network congestion caused by the other users. A user’s support is the set of those links on
which it may ship its traffic with non-zero probability. The social cost of a Nash equilibrium is the
expectation. over all random choices of the users, of the maximum, over all links, latency through a
link.

We are interested in algorithmic problems related to the computation of Nash equilibria for the
selfish routing game we consider. More specifically, we aim at determining the computational com-
plexity of the following prototype problems, assuming that users’ traffics and links’ capacities are
given:

• Given users’ supports, decide whether there exists a Nash equilibrium; if so, determine the
corresponding users’ (mixed) strategies. (This is an existence and computation problem.)

• Decide whether there exists a Nash equilibrium; if so, determine the corresponding users’ sup-
ports and (mixed) strategies. (This is an existence and computation problem.)

• Determine the supports of the worst (or the best) Nash equilibrium. (These are optimization
problems.)

• Given a Nash equilibrium, determine its social cost. (This turns out to be a hard counting
problem (cf. [36]).)
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Our study distinguishes between pure Nash equilibria, where each user chooses exactly one link
(with probability one), and mixed Nash equilibria, where the choices of each user are modeled by
a probability distribution over links. We also distinguish in some cases between models of uniform
capacities, where all link capacities are equal, and of arbitrary capacities; also, we do so between
models of identical traffics, where all user traffics are equal, and of arbitrary traffics.

1.2 Contribution

We start with pure Nash equilibria. By the linearity of the expected latency cost functions we consider,
the celebrated result of Nash [25] on the existence of Nash equilibria, which follows from Kakutani’s
Fixed Point Theorem [8] 1, assures that a mixed, but not necessarily pure, Nash equilibrium always
exists. The first result (Theorem 3.1), remarked by Kurt Mehlhorn, establishes that a pure Nash equi-
librium always exists. The proof argues (by contradiction) that the lexicographically minimum sorted
vector of expected latencies corresponds, indeed, to a Nash equilibrium. The proof itself is inefficient
(in the sense of Papadimitriou [29]) in that it does not lead to an efficient algorithm for constructing
a pure Nash equilibrium: one would apparently have to examine all expected latency vectors (and
there are exponentially many of them, as many as pure strategies) to choose the lexicographically
minimum one. However, it establishes an interesting connection between pure Nash equilibria and
the lexicographically minimum expected latency vector that may be further explored.

To this end, we continue to present an efficient, yet simple algorithm (Theorem 3.2) that computes
a pure Nash equilibrium. The algorithm proceeds by sorting all user traffics in non-decreasing order
and dropping each traffic in order into the link that currently minimizes its expected latency cost. The
time complexity of the algorithm is Θ(nmax{lg n,m}).

We proceed to consider the related problems BEST NASH EQUILIBRIUM SUPPORTS and
WORST NASH EQUILIBRIUM SUPPORTS of determining either the best or the worst pure Nash
equilibrium (with respect to social cost), respectively. Not surprisingly, we show that the decision
versions of both problems areNP-complete in the strong sense (Theorem 3.3 and Theorem 3.4). The
NP-completeness proofs employ reductions from 3-PARTITION [4, Problem SP15]; the proofs rely
critically on using non-identical traffics, while they assume that all link capacities are equal.

We now turn to mixed Nash equilibria. We start with a structural result for the model of uniform
capacities. In particular, we show that in a Nash equilibrium of the selfish routing game we consider,
there can be no links traversed by a single user which also “crosses” another user over a different
link (Proposition 4.1). Using this property, we establish that for the model of uniform capacities, and
assuming that there are only two users, the worst mixed Nash equilibrium (with respect to social cost)
is the fully mixed Nash equilibrium (Theorem 4.2). Although we believe that this result holds for any
number of users, we have been unable to extend it beyond the case of two (still assuming uniform
capacities).

We continue to formulate an efficient and elegant algorithm for computing a mixed Nash equilib-
rium (Theorem 5.1). More specifically, the algorithm computes a generalized fully mixed Nash equi-
librium; this is a generalization of fully mixed Nash equilibria [18], where there is a set of “empty”
links that do not belong to the support of any user, which includes all remaining links. The algorithm
incrementally constructs the common support of all users by throwing away “slow” links (ones with

1See [37, Notes for Lecture 2] for a modern account of the proof of Nash’s Theorem.
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small capacity) till it converges to a common support that comprises a fully mixed Nash equilibrium.
A crucial requirement for the algorithm to work is that all user traffics be identical.

We have also obtained an analog of Theorem 4.2 for the model of arbitrary capacities. We estab-
lish that any Nash equilibrium, in particular the worst one, incurs a social cost that does not exceed
33.06 times the social cost of the fully mixed Nash equilibrium (Theorem 6.1). This result is shown
by establishing some interesting properties of the support and the expected latency of links in an ar-
bitrary Nash equilibrium and by comparing the tails of the distribution of maximum link latency in
the generalized fully mixed Nash equilibrium and in an arbitrary Nash equilibrium. Theorem 4.2 and
Theorem 6.1 provide together substantial evidence about the “completeness” of the fully mixed Nash
equilibrium: it appears that it suffices, in general, to focus on bounding the social cost of the fully
mixed Nash equilibrium and then use reduction results (such as Theorem 4.2 and Theorem 6.1) to
obtain bounds for the general case.

We then shift gears to study the computational complexity of NASH EQUILIBRIUM SOCIAL
COST 2. We have obtained both negative and positive results here. First for the bad news. We show
that the problem is #P-complete [36] in general for the case of mixed Nash equilibria (Theorem 7.1).
To show that NASH EQUILIBRIUM SOCIAL COST is #P-complete, we use a reduction from the
problem of computing the probability that the sum of n independent random variables does not exceed
a given threshold (see e.g. [11, Theorem 2.1] for the #P-completeness of the latter problem). We
prove that this probability can be recovered by two calls to a (hypothetical) oracle returning the social
cost of a given mixed Nash equilibrium.

On the positive side, we get around the established hardness of computing exactly the social cost
of any mixed Nash equilibrium by presenting a fully polynomial-time randomized approximation
scheme3 for computing the social cost of any given mixed Nash equilibrium to any required degree of
approximation (Theorem 7.2). The required number of iterations for the Monte Carlo scheme follows
appropriately from Chebyshev’s inequality and an easy upper and lower bound on the social cost.

We point out that the polynomial algorithms we have presented for the computation of pure and
mixed Nash equilibria (Theorem 3.2 and Theorem 5.1, respectively) are the first known polynomial
algorithms for the problem (for either the general case of a strategic game with a finite number of
strategies, or even for a specific game). On the other hand,On the other hand, the hardness results we
have obtained (Theorem 3.3, Theorem 3.4, and Theorem 7.1) indicate that optimization and counting
problems in Computational Game Theory may be hard even when restricted to specific, simple games
such as the selfish routing game considered in our work.

We believe that the polynomial algorithms we have derived (Theorem 3.2 and Theorem 5.1) may
offer valuable ideas for settling either other tractable instances of the same game or other games of
a similar flavor (e.g., selfish routing over a larger network). To this end, we feel that results offering
insights into the syntax and structure of Nash equilibria will be handy. In addition, elimination results,
such as Proposition 4.1, and their extensions may be the key to reducing the number of candidate Nash
equilibria down to polynomial, which will, in turn, imply the tractability of instances of the game that
we have not settled (e.g., computing mixed Nash equilibria when both traffics and capacities vary

2For the case of pure Nash equilibria, this problem is trivially in P , since it amounts to computing the maximum.
3Consider a counting problem Π with solution Π(x) on any instance x. An algorithm A is a fully polynomial-time

randomized approximation scheme [9, 10] for Π, or FPRAS for short, if for each instance x, for any error parameter ε > 0,
IPr (|A(x)−Π(x)| ≤ εΠ(x)) ≥ 3

4
, and the running time of A is polynomial in |x| and 1

ε
.
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arbitrarily). We leave this as a subject for future work.

1.3 Related Work

The selfish routing game considered in this paper was first introduced by Koutsoupias and Papadim-
itriou [16] as a vehicle for the study of the price of selfishness for routing over non-cooperative net-
works [14], like the Internet. This game was subsequently studied in the work of Mavronicolas and
Spirakis [18], where fully mixed Nash equilibria were introduced and analyzed. In both works, the
aim had been to quantify the amount of performance loss in routing due to selfish behavior of the
users. (Later studies of the selfish routing game from the same point of view, that of performance,
include the works by Koutsoupias et al. [15], and by Czumaj and Vöcking [1].) Unlike these previous
papers, our work considers the selfish routing game from the point of view of computational complex-
ity and attempts to classify certain algorithmic problems related to the computation of Nash equilibria
of the game with respect to their computational complexity.

Extensive surveys of algorithms and techniques from the literature of Game Theory for the com-
putation of Nash equilibria of general bimatrix games in either strategic or extensive form appear
in [19, 35]; see also [24, Section 3.1]. All known such algorithms incur exponential running time,
with the seminal algorithm of Lemke and Howson [17] being the prime example; see also [32, 34] for
still inefficient extensions. Issues of computational complexity for the computation of Nash equilibria
in general games have been raised by Megiddo [20], Megiddo and Papadimitriou [21], and Papadim-
itriou [29]. The NP-hardness of computing a Nash equilibrium of a general bimatrix game with
maximum payoff has been established by Gilboa and Zemel [5]. For other algorithmic works on the
computation of Nash equilibria, see, e.g., [12, 13]. The book by Scarf [33] is devoted to the computa-
tion of Nash equilibria over various economic settings. A similar in motivation and spirit to our paper
is the very recent paper by Deng et al. [2], which proves complexity, approximability and inapprox-
imability results for the problem of computing an exchange equilibrium in markets with indivisible
goods. A general account on overlaps between Computer Science and Game Theory appears in [7].

2 Framework

Most of our definitions are patterned after those in [16, Sections 1 & 2] and [18, Section 2].

2.1 Notation

Throughout, denote for any integer m ≥ 2, [m] = {1, . . . ,m}. For an event E in a sample space,
denote IPr(E) the probability of event E happening. For a random variable X , denote IE(X) the
expectation of X and Var(X) the variance of X .

We consider a network consisting of a set of m parallel links 1, 2, . . . ,m from a source node to a
destination node. Each of n network users 1, 2, . . . , n, or users for short, wishes to route a particular
amount of traffic along a (non-fixed) link from source to destination. (Throughout, we will be using
subscripts for users and superscripts for links.) Denote wi the traffic of user ı ∈ [n]. Define the n× 1
traffic vector w in the natural way. Assume throughout that m > 1 and n > 1.
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A pure strategy for user ı ∈ [n] is some specific link. a mixed strategy for user ı ∈ [n] is a
probability distribution over pure strategies; thus, a mixed strategy is a probability distribution over
the set of links. The support of the mixed strategy for user ı ∈ [n], denoted support(ı), is the set
of those pure strategies (links) to which ı assigns positive probability. A pure strategies profile is
represented by an n-tuple 〈`1, `2, . . . , `n〉 ∈ [m]n; a mixed strategies profile is represented by an
n ×m probability matrix P of nm probabilities pı , ı ∈ [n] and  ∈ [m], where pı is the probability
that user ı chooses link .

For a probability matrix P, define indicator variables I`ı ∈ {0, 1}, ı ∈ [n] and ` ∈ [m], such
that I`ı = 1 if and only if p`i > 0. Thus, the support of the mixed strategy for user ı ∈ [n] is the set
{` ∈ [m] | I`ı = 1}. For each link ` ∈ [m], define the view of link `, denoted view(`), as the set of
users i ∈ [n] that potentially assign their traffics to link `; so, view(`) = {i ∈ [n] | I`i = 1}. A link
` ∈ [m] is solo [18] if |view(`)| = 1; thus, there is exactly one user, denoted s(`), that considers a
solo link `. Denote S the set of solo links.

2.1.1 Syntactic Classes of Mixed Strategies

A mixed strategies profile P is fully mixed [18] if for all users ı ∈ [n] and links  ∈ [m], Iı = 1.
Throughout, we will be considering a pure strategies profile as a special case of a mixed strategies
profile. in which all (mixed) strategies are pure. We proceed to define two new variations of fully
mixed strategies profiles. A mixed strategies profile P is generalized fully mixed if there exists a
subset Links ⊆ [m] such that for each pair of a user ı ∈ [n], and a link  ∈ [m], Iı = 1 if  ∈ Links

and 0 if  6∈ Links. Thus, the fully mixed strategies profile is the special case of generalized fully
mixed strategies profiles where Links = [m].

2.1.2 Cost Measures

Denote c` > 0 the capacity of link ` ∈ [m], representing the rate at which the link processes traffic.
So, the latency for traffic w through link ` equals w/c`. In the model of uniform capacities, all
link capacities are equal to c, for some constant c > 0; link capacities may vary arbitrarily in the
model of arbitrary capacities. For a pure strategies profile 〈`1, `2, . . . , `n〉, the latency cost for user
ı ∈ [n], denoted λı, is (

∑
k:`k=`ı

wk)/c`i ; that is, the latency cost for user i is the latency of the
link it chooses. For a mixed strategies profile P, denote W ` the expected traffic on link ` ∈ [m];
clearly, W ` =

∑n
i=1 p

`
iwi. Given P, define the m× 1 expected traffic vector W induced by P in the

natural way. Given P, denote Λ` the expected latency on link ` ∈ [m]; clearly, Λ` = W `

c`
. Define the

m × 1 expected latency vector Λ in the natural way. For a mixed strategies profile P, the expected
latency cost for user ı ∈ [n] on link ` ∈ [m], denoted λ`i , is the expectation, over all random choices
of the remaining users, of the latency cost for user ı had its traffic been assigned to link `; thus,

λ`ı =
wı+

∑
k=1,k 6=ı p

`
kwk

c`
= (1−p`ı)wı+W `

c`
. For each user ı ∈ [n], the minimum expected latency cost,

denoted λı, is the minimum, over all links ` ∈ [m], of the expected latency cost for user ı on link `;
thus, λi = min`∈[m] λ

`
i . For a probability matrix P, define the n × 1 minimum expected latency cost

vector λ induced by P in the natural way.
Associated with a traffic vector w and a mixed strategies profile P is the social cost [16, Section

2], denoted SC(w,P), which is the expectation, over all random choices of the users, of the maximum
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(over all links) latency of traffic through a link; thus,

SC(w,P) = IE
(

max
`∈[m]

∑
k:`k=`wk

c`

)
=

∑
〈`1,`2,...,`n〉∈[m]n

(
n∏
k=1

p`kk · max
`∈[m]

∑
k:`k=`wk

c`

)

Note that SC(w,P) reduces to the maximum latency through a link in the case of pure strategies.
On the other hand, the social optimum [16, Section 2] associated with a traffic vector w, denoted
OPT(w), is the least possible maximum (over all links) latency of traffic through a link; thus,

OPT(w) = min
〈`1,`2,...,`n〉∈[m]n

max
`∈[m]

∑
k:`k=`wk

c`

Note that while SC(w,P) is defined in relation to a mixed strategies profile P, OPT(w) refers to the
optimum pure strategies profile.

2.1.3 Nash Equilibria

We are interested in a special class of mixed strategies called Nash equilibria [25] that we describe
below. Formally, the probability matrix P is a Nash equilibrium [16, Section 2] if for all users ı ∈ [n]
and links ` ∈ [m], λ`ı = λı if I`ı = 1, and λ`ı > λı if I`ı = 0. Thus, each user assigns its traffic with
positive probability only on links (possibly more than one of them) for which its expected latency cost
is minimized; this implies that there is no incentive for a user to unilaterally deviate from its mixed
strategy in order to avoid links on which its expected latency cost is higher than necessary.

We continue to state some already known properties of Nash equilibria that will be used in our
later proofs. Koutsoupias and Papadimitriou [16, Section 2] provide necessary conditions for Nash
equilibria.

Proposition 2.1 (Koutsoupias and Papadimitriou [16]) Fix a Nash equilibrium P. Then, for any
user i ∈ [n] and link ` ∈ [m], (1) for all links ` ∈ [m], W ` =

∑n
k=1 I

`
k

(
W ` + wk − c`λk

)
, and (2)

for all users i ∈ [n], wi =
∑m

j=1 I
j
i

(
W j + wi − cjλi

)
.

The following result due to Mavronicolas and Spirakis [18, Lemma 6.1] provides a simple char-
acterization of existence and uniqueness of fully mixed Nash equilibria under the model of identical
traffics and capacitated parallel links.

Lemma 2.2 (Mavronicolas and Spirakis [18]) Consider the fully mixed case for n users of identical
traffic and m capacitated parallel links, and let C(m) =

∑m
`=1 c

`. Then, for all links ` ∈ [m],

c` ∈
(

C(m)
m+ n− 1

,
nC(m)

m+ n− 1

)
,

if and only if there exists a Nash equilibrium, which must be unique and have associated Nash proba-
bilities

p`i =
(m+ n− 1)c` − C(m)

(n− 1)C(m)
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Mavronicolas and Spirakis [18, Lemma 4.2] proved that in a fully mixed Nash equilibrium, the
vector of users’ minimum expected latency costs is a linear transformation of the vector of users’
traffics. Therefore, under the model of identical traffics, all users incur the same minimum expected
latency cost in a fully mixed equilibrium. The following lemma is a special case of [18, Lemma 4.2]
for the model identical traffics.

Lemma 2.3 (Mavronicolas and Spirakis [18]) Consider a fully mixed Nash equilibrium for a selfish
routing game on n users of identical traffic and m capacitated parallel links. Let λi denote the
minimum expected latency cost of any user i, and let C(m) =

∑m
`=1 c

`. Then, λi = (m + n −
1)/C(m).

Finally, Mavronicolas and Spirakis [18, Lemma 5.1] show that in the model of uniform capacities,
all links are equiprobable in a fully mixed Nash equilibrium.

Lemma 2.4 (Mavronicolas and Spirakis [18]) Consider the fully mixed case under the model of
uniform capacities. Then, there exists a unique Nash equilibrium with associated Nash probabili-
ties p`i = 1/m for each user i ∈ [n] and link ` ∈ [m].

2.2 Algorithmic Problems

In this section, we formally define several algorithmic problems related to Nash equilibria. The defi-
nitions are given in the style of Garey and Johnson [4].
Π1: NASH EQUILIBRIUM SUPPORTS
INSTANCE: A number n of users; a number m of links; for each user i, a rational number wi > 0,
called the traffic of user i; for each link j, a rational number cj > 0, called the capacity of link j.
OUTPUT: Indicator variables Iji ∈ {0, 1}, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, that support a Nash
equilibrium for the system of the users and the links.
We continue with two complementary to each other optimization problems (with respect to social
cost).
Π2: BEST NASH EQUILIBRIUM SUPPORTS
INSTANCE: A number n of users; a number m of links; for each user i, a rational number wi > 0,
called the traffic of user i; for each link j, a rational number cj > 0, called the capacity of link j.
OUTPUT: Indicator variables Iji ∈ {0, 1}, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, that support a Nash
equilibrium with minimum social cost for the system of the users and the links.
Π3: WORST NASH EQUILIBRIUM SUPPORTS
INSTANCE: A number n of users; a number m of links; for each user i, a rational number wi > 0,
called the traffic of user i; for each link j, a rational number cj > 0, called the capacity of link j.
OUTPUT: Indicator variables Iji ∈ {0, 1}, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, that support a Nash
equilibrium with maximum cost for the system of the users and the links.
Π4: NASH EQUILIBRIUM WITH GIVEN SUPPORTS
INSTANCE: A number n of users; a number m of links; for each user i, a rational number wi > 0,
called the traffic of user i; for each link j, a rational number cj > 0, called the capacity of link j; for
each pair of user i and link j, an indicator variable Iji ∈ {0, 1}.
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QUESTION: Does there exist a Nash equilibrium supported by the indicator variables for the system
of the users and the links?
By results of Mavronicolas and Spirakis [18, Theorem 4.7], NASH EQUILIBRIUM WITH GIVEN
SUPPORTS can be solved in time Θ(mn) when restricted to fully mixed strategies. This suggests
that for any particular syntactic class of Nash equilibria, the problem NASH EQUILIBRIUM WITH
GIVEN SUPPORTS can be solved efficiently by formulating a set of (polynomially computable)
necessary and sufficient conditions, and evaluating them on any particular instance of the problem.
Π5: NASH EQUILIBRIUM SOCIAL COST
INSTANCE: A number n of users; a number m of links; for each user i, a rational number wi > 0,
called the traffic of user i; for each link j, a rational number cj > 0, called the capacity of link j; a
Nash equilibrium P for the system of the users and the links.
OUTPUT: The social cost of the Nash equilibrium P.
To establish our hardness results, we will use the problem 3-PARTITION, which is NP-complete in
the strong sense (see e.g. [4, Problem SP15 and Theorem 4.4]). 3-PARTITION is formally defined as
follows:
Π0: 3-PARTITION
INSTANCE: A positive integer m ≥ 2, a positive integer B, and a set J = {w1, . . . , w3m} of 3m
positive integer weights such that B/4 < wi < B/2 for all i ∈ [3m], and

∑3m
i=1wi = mB.

QUESTION: Can [3m] be partitioned intom sets J1, . . . , Jm such that
∑

i∈Jj wi = B for all j ∈ [m]?

3 Pure Nash Equilibria

3.1 Existence of a Pure Nash Equilibrium

We start with a preliminary result remarked by Kurt Mehlhorn.

Theorem 3.1 (A Pure Nash Equilibrium Exists) There exists at least one pure Nash equilibrium.

Proof: Consider the universe of pure strategies profiles. Each such profile induces a sorted expected
latency vector Λ = 〈Λ1,Λ2, . . . ,Λm〉, such that Λ1 ≥ Λ2 ≥ . . . ≥ Λm, in the natural way. (Rear-
rangement of links may be necessary to guarantee that the expected latency vector is sorted.) Consider
the lexicographically minimum expected latency vector Λ0

4 and assume that it corresponds to a pure
strategies profile P0. We will argue that P0 is a (pure) Nash equilibrium.

Indeed, assume, by way of contradiction, that P0 is not a Nash equilibrium. By definition of Nash
equilibrium, there exists a user ı ∈ [n] assigned by P0 to link  ∈ [n], and a link κ ∈ [m] such that

Λ > Λκ +
wı
cκ
.

Construct now from P0 a pure strategies profile P̂0 which is identical to P0 except that user ı is now
assigned to link κ. Denote Λ̂0 = 〈Λ̂1, Λ̂2, . . . , Λ̂m〉 the traffic vector induced by P̂0. By construction,

Λ̂ = Λ − wı
c

< Λ ,

4For any two m× 1 vectors x and y say that x is lexicographically less than y if there is an index k ≤ m such that for
each index i ≤ k, xi = yi, while xk < yk. Clearly, the relation of being lexicographically less induces a total order on a
set of vectors. The lexicographically minimum vector is the least element of this total order.
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while by construction and assumption,

Λ̂κ = Λκ +
wı
cκ

< Λ .

Since Λ0 is sorted in non-increasing order and Λκ + wı
cκ < Λ, Λ precedes Λκ in Λ0. Clearly, all

entries preceding Λ in Λ0 remain unchanged in Λ̂0. Consider now the -th entry of Λ̂0. There are
three possibilities.

• The -th entry of Λ̂0 is Λ̂. Since Λ̂ < Λ, it follows that Λ̂0 is lexicographically less than Λ0.
A contradiction.

• The -th entry of Λ̂0 is Λ̂κ. Since Λ̂κ < Λ, it follows that Λ̂0 is lexicographically less than Λ0.
A contradiction.

• The -th entry of Λ̂0 is some entry of Λ0 that followed Λ in Λ0 and remained unchanged in
Λ̂0. Since Λ0 is sorted in non-increasing order, any such entry is less than Λ. It follows that
Λ̂0 is lexicographically less than Λ0. A contradiction.

Since we obtained a contradiction in all possible cases, the proof is now complete.

We remark that the proof of Theorem 3.1 establishes that the lexicographically minimum expected
traffic vector represents a (pure) Nash equilibrium. Since there are exponentially many pure strategies
profiles and that many expected traffic vectors, Theorem 3.1 only provides an inefficient proof of
existence of pure Nash equilibria (cf. Papadimitriou [29]). An efficient algorithmic proof of existence
of pure Nash equilibria is the subject of the following section.

3.2 Computing a Pure Nash Equilibrium

We show:

Theorem 3.2 NASH EQUILIBRIUM SUPPORTS is in P when restricted to pure equilibria.

Proof: We present a polynomial-time algorithm Apure that computes the supports of a pure Nash
equilibrium. Roughly speaking, the algorithm Apure works in a greedy fashion; it considers each of
the user traffics in non-increasing order and assigns it to the link that minimizes (among all links) the
latency cost of the user had its traffic been assigned to that link. (Figure 3.2 presents pseudocode for
the algorithm Apure.)

Clearly, the supports computed by Apure represent a pure strategies profile. We will show that this
profile is a Nash equilibrium. We argue inductively on the number ı of iterations, 1 ≤ ı ≤ n, of the
main loop of Apure. We prove that the system of users and links is is Nash equilibrium after each such
iteration.

For the basis case, where ı = 1, consider the user 1 assigned to link `. After the first iteration,
W ` = w1

c`
, while W  = 0 for  6= `. By the way link ` was chosen, for each link  ∈ [m], with

 6= `, w1

c`
≤ w1

c , or W ` < W  + w1
c . This establishes that the system of users and links is in Nash

equilibrium after iteration 1.
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The algorithm Apure:

• For each pair of a user ı ∈ [n] and a link  ∈ [m], Iı := 0.

• For each link  ∈ [m], W  := 0.

• Sort the traffics in non-increasing order so that w1 ≥ w2 ≥ . . . ≥ wn.

• For each user ı := 1 to n, do

– ` := arg min1≤≤m
(
W  + wı

c

)
;

– I`ı := 1;

– W ` := W ` + wi
c`

Figure 1: The algorithm Apure.

Assume inductively that the system of users and links is in Nash equilibrium after iteration ı− 1.
Consider what happens after iteration ı, at which user ı was assigned to link `. Note that iteration ı
only increased the expected traffic on link ` and did not increase the expected traffic on any other link.
Since, by induction hypothesis, the system was in Nash equilibrium right before before iteration ı, no
user other than ı wanted to switch its link right before iteration ı. It follows that no user other than
ı and those already assigned to link ` wants to switch its link right after iteration ı. (Users already
assigned to link ` must also be exempted since the expected traffic on the link they were assigned
increases, and this may make it possible for them to want to switch links.) Note that among all users
assigned to link `, including user ı, the traffic of user ı is the smallest; thus, it suffices to show that
user ı does not want to switch links after iteration ı. By the way link ` was chosen for user ı, it must
be that for any other link  6= `, W ` + wı

c`
< W  + wı

c , where W  is the expected traffic on link 
right before iteration ı. Since, by the algorithm, W  + wı

c is the expected traffic on link  right after
iteration ı, it follows that user ı does not want to switch links after iteration ı, as needed.

(This nice observation is due to B. Monien [22].) We remark that Apure can be viewed as a
variant of Graham’s Longest Processing Time (LPT [6]) algorithm for assigning tasks to identical
machines. Nevertheless, since in our case the links may have different capacities, our algorithm
instead of choosing the link that will first become idle, it actually chooses the link that minimizes
the completion time of the specific task (i.e., the load of a machine prior to the assignment of the
task under consideration, plus the overhead of this task). Clearly, this greedy algorithm leads to an
assignment which is, as we establish, a Nash equilibrium.

3.3 The Complexity of Computing the Best and the Worst Pure Nash Equilibrium

We prove that it is NP-hard to compute the best Nash equilibrium and the worst pure Nash equilib-
rium.
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Theorem 3.3 The decision version of BEST NASH EQUILIBRIUM SUPPORTS is NP-complete
in the strong sense even for identical links.

Proof: By the definition of the social cost, a selfish routing game on identical links admits a Nash
equilibrium of social cost at most B iff it admits a pure Nash equilibrium of social cost at most B (see
also the proof of Theorem 4.2). Hence we can restrict our attention to pure Nash equilibria.

It is straightforward to decide in NP whether a selfish routing game admits a pure Nash equilib-
rium of social cost at most B. To establish NP-completeness in the strong sense, we use a reduction
from 3-PARTITION, which is NP-complete in the strong sense (see e.g. [4, Problem SP15 and
Theorem 4.4]).

Given an instance (m,B, J) of 3-PARTITION, we construct a selfish routing game (w,m) with
3m users on m identical links. For every i ∈ [3m], the traffic of user i is wi. By construction, (w,m)
admits a pure Nash equilibrium of social cost B iff (m,B, J) is a YES-instance of 3-PARTITION.

More precisely, if (m,B, J) is a YES-instance of 3-PARTITION, let J1, . . . , Jm be a partition of
[3m] into m sets such that

∑
i∈Jj wi = B for all j ∈ [m], and let P be the pure strategies profile

where for every i ∈ [3m], pji = 1 if i ∈ Jj , and pji = 0 otherwise. Since all links have latency B in P,
P is a pure Nash equilibrium with social cost B. For the converse, let us assume that (w,m) admits a
pure Nash equilibrium P of social cost at most B. Since

∑3m
i=1wi = mB, all links have latency (and

traffic) B in P. Therefore, setting Jj = {i ∈ [3m] : pji = 1}, j ∈ [m], yields a YES-certificate for the
corresponding instance of 3-PARTITION.

Theorem 3.4 When restricted to pure equilibria, the decision version of WORST NASH EQUILIB-
RIUM SUPPORTS is NP-complete in the strong sense even for identical links.

Proof: Membership in NP is straightforward. To establish NP-completeness in the strong sense,
we use a reduction from 3-PARTITION.

Given an instance (m,B, J) of 3-PARTITION, we construct a selfish routing game (w,m + 1)
with 3m + 2 users on m + 1 identical links. For every i ∈ [3m], the traffic of user i is wi. The
traffic of users 3m + 1 and 3m + 2 is w3m+1 = w3m+2 = B. By the definition of 3-PARTITION,
B/4 < wi < B/2 for all i ∈ [3m], and

∑3m+2
i=1 wi = (m+ 2)B. We show that (w,m+ 1) admits a

pure Nash equilibrium of social cost at least 2B iff (m,B, J) is a YES-instance of 3-PARTITION.
If (m,B, J) is a YES-instance of 3-PARTITION, let J1, . . . , Jm be a partition of [3m] into m

sets with
∑

i∈Jj wi = B for all j ∈ [m], and let P be the pure strategies profile assigning users
3m + 1 and 3m + 2 to link m + 1, and the remaining users according to J1, . . . , Jm. Formally,
pm+1

3m+1 = pm+1
3m+2 = 1 and pj3m+1 = pj3m+2 = 0 for all j ∈ [m], and for all i ∈ [3m] and j ∈ [m],

pji = 1 if i ∈ Jj , and pji = 0 otherwise. Every link j ∈ [m] has latency B and link m+ 1 has latency
2B. Since no user has an incentive to deviate from her strategy, P is a pure Nash equilibrium of social
cost 2B.

For the converse, let us assume that (w,m + 1) admits a pure Nash equilibrium P of social cost
at least 2B. Without loss of generality, let m + 1 be a link with latency at least 2B in P. Since all
users have traffic at most B and no user assigned to m+ 1 can decrease her latency cost by switching
to a different link, all links have latency at least B in P. Since the total traffic is equal to (m + 2)B,
the latency (and traffic) of the first m links is precisely B, and the latency of link m + 1 is precisely
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2B. Furthermore, none of the first 3m users is assigned to link m+ 1 because B/4 < wi < B/2 for
all i ∈ [3m]. Otherwise, a user i ∈ [3m] assigned to link m + 1 could decrease her latency cost by
switching to a link j ∈ [m]. Therefore, P assigns users 3m + 1 and 3m + 2 to link m + 1 and the
first 3m users to the first m links. For every j ∈ [m], let Jj = {i ∈ [3m] : pji = 1}. Then J1, . . . Jm
comprises a YES-certificate for the corresponding instance of 3-PARTITION.

4 A Characterization of the Worst Mixed Nash Equilibrium

We start with a structural property of mixed Nash equilibria. In the following proposition, we say that
a user crosses another user if their supports cross each other, i.e. their supports are neither disjoint nor
the same.

Proposition 4.1 Let P be any Nash equilibrium under the model of uniform capacities. Then P
induces no solo link considered by a user that crosses another user.

Proof: Assume that P induces a solo link ` considered by a user s(`) that crosses another user; thus,
there exists another link `0 ∈ support(s(`)) and a user i0 ∈ view(`0), so that p`0i0 > 0. By the
definition of users’ expected latency cost,

λ`0s(`) ≥ ws(`) + p`0i0wi0 > ws(`) = λ`s(`) ,

which contradicts the hypothesis that P is a Nash equilibrium.

We then use Proposition 4.1 to provide a syntactic characterization of the worst mixed Nash equi-
librium under the model of uniform capacities.

Theorem 4.2 Consider the model of uniform capacities and assume that n = 2. Then, the worst
Nash equilibrium is the fully mixed Nash equilibrium.

Proof: Assume, without loss of generality, that w1 ≥ w2. Thus, for any assignment of the two
traffics to the m links, the only possible maxima are w1 (occurring if users 1 and 2 choose different
links) and w1 + w2 (occurring if users 1 and 2 choose the same link). Consider any mixed Nash
equilibrium P, which is a 2×m matrix. Thus,
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SC (w,P) = w1

∑
`1,`2∈[m],`1 6=`2

p`11 p
`2
2 + (w1 + w2)

∑
`∈[m]

p`1p
`
2

= w1

∑
`1,`2∈[m],`1 6=`2

p`11 p
`2
2 + w1

∑
`∈[m]

p`1p
`
2 + w2

∑
`∈[m]

p`1p
`
2

= w1

 ∑
`1,`2∈[m],`1 6=`2

p`11 p
`2
2 +

∑
`∈[m]

p`1p
`
2

+ w2

∑
`∈[m]

p`1p
`
2

= w1

∑
`1,`2∈[m]

p`11 p
`2
2 + w2

∑
`∈[m]

p`1p
`
2

= w1

∑
`1∈[m]

p`11

 ∑
`2∈[m]

p`22

+ w2

∑
`∈[m]

p`1p
`
2

= w1

∑
`1∈[m]

p`11 · 1 + w2

∑
`∈[m]

p`1p
`
2

= w1 · 1 + w2

∑
`∈[m]

p`1p
`
2

= w1 + w2

∑
`∈[m]

p`1p
`
2 .

We will show that SC(w,P) is maximized when P is the fully mixed equilibrium. We proceed
by case analysis.

1. Assume first that P is pure. We observe that it is not possible for both users to have the same
pure strategy (since then the latency cost of a user on any other strategy would be smaller than its
current latency cost, contradicting the equilibrium). This implies that the social cost of any pure
Nash equilibrium is max{w1, w2} = w1. Hence, the social cost of any mixed Nash equilibrium
is no less than the cost of any pure Nash equilibrium, which implies that the worst mixed Nash
equilibrium is no better than any pure Nash equilibrium. We continue to analyze the cost of a
mixed Nash equilibrium.

2. Assume now that P is not pure. There are two cases to consider.

(a) Assume first that support(1) ∩ support(2) = ∅. Then, clearly, the minimum expected
latency cost of user 1 is w1 (since user 2 does not consider any of the links in its support)
and the minimum expected latency cost of user 2 is w2 (since user 1 does not consider any
of the links in its support). Since SC(w,P) = w1 + w2

∑
`∈[m] p

`
1p
`
2 and there is no link

` ∈ [m] such that both p`1 6= 0 and p`2 6= 0, it follows that SC(w,P) = w1, which is no
worse than the social cost of any pure Nash equilibrium.

(b) Assume now that support(1) ∩ support(2) 6= ∅. We will show that in this case P is the
fully mixed Nash equilibrium.
We observe that Proposition 4.1 implies that support(1) = support(2). Otherwise,
there would a solo link and the two supports would cross. We will show that, in fact,
support(1) = support(2) = [m].
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Assume, by way of contradiction, that there exists some link `′′ ∈ [m] \ support(1)
(= [m]\support(2)). Then, clearly, the expected latency cost of user 1 on link `′′ is equal
to w1, which is less than w1 +w2p

`
2, its expected latency cost on link ` (since p`2 > 0), and

this contradicts equilibrium. It follows that in this case support(1) = support(2) = [m],
so that P is a fully mixed Nash equilibrium. By Lemma 2.4, p`1 = p`2 = 1

m , so that

SC (w,P) = w1 + w2

∑
`∈[m]

p`1p
`
2

= w1 + w2 ·m ·
1
m2

= w1 + w2 ·
1
m

The previous analysis establishes that the worst mixed Nash equilibrium is the fully mixed Nash
equilibrium, with corresponding social cost w1 + w2 · 1

m .

5 The Generalized Fully Mixed Nash Equilibrium

In this section, we prove that every selfish routing game on users of identical traffic and capacitated
links admits a unique generalized fully mixed Nash equilibrium computable in O(m logm) time.
Throughout this section, we assume, without loss of generality, that the links are indexed in non-
increasing capacity order, i.e. c1 ≥ c2 ≥ . . . ≥ cm, and that all traffics are equal to 1. For any integer
k ∈ [m], we let C(k) denote the total capacity of the fastest k links, i.e. C(k) =

∑k
j=1 c

j . For any
k ∈ [m], we say that the set [k] consisting of the fastest k links is a fast link set.

We start with a polynomial upper bound on the complexity of computing a generalized fully mixed
Nash equilibrium.

Theorem 5.1 Assume that all traffics are identical. Then, NASH EQUILIBRIUM SUPPORTS is in
P when restricted to generalized fully mixed equilibria.

Proof: We present a polynomial-time algorithm Agfm that computes the support of a generalized
fully mixed equilibrium. A generalized fully mixed Nash equilibrium corresponds to a fully mixed
equilibrium when the game is restricted to the links in its support. The following modification of
Lemma 2.2 gives a simple characterization of the games that admit a fully mixed Nash equilibrium.

Proposition 5.2 (B. Monien [22]) Consider a selfish routing game Γ on n users of identical traffic
and m capacitated parallel links. Then Γ admits a fully mixed Nash equilibrium, which must be
unique, if and only if cm > C(m)/(m+ n− 1).

Proof: Since the links are indexed in non-decreasing capacity order, cm > C(m)/(m+n−1) implies
that c` > C(m)/(m+ n− 1) for all ` ∈ [m]. This in turn implies that c` < nC(m)/(m+ n− 1) for
all ` ∈ [m], since otherwise the total link capacity would be greater than C(m). Then the proposition
follows from Lemma 2.2.
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The algorithm Agfm:

• Let c1 ≥ c2 ≥ · · · ≥ cm;

• Users := [n]; m′ := m; C(m′) =
∑m′

`=1 c
`;

• while m′ ≥ 0 do

– if cm′ > C(m′)/(m′ + n− 1) then

∗ output the fully mixed strategies profile on Users and [m′] and exit;

– else

∗ C(m′ − 1) = C(m′)− cm′ ; m′ := m′ − 1;

∗ continue;

Figure 2: The algorithm Agfm in pseudocode.

The algorithm Agfm (Figure 2) finds the largest fast link set [m′] for which the capacity of the
slowest link is greater than C(m′)/(m′ + n − 1). By Proposition 5.2, the restriction of the routing
game to [m′] admits a fully mixed Nash equilibrium. Agfm outputs the fully mixed Nash equilibrium
for the restriction of the routing game to [m′] and terminates. The fast link set [m′] output by Agfm
is never empty because for m′ = 1, c1 > c1/n, for all n ≥ 2. To establish correctness, it suffices
to show that the fully mixed Nash equilibrium for the fast link set [m′] output by Agfm remains a
(generalized fully mixed) Nash equilibrium when the game is extended to the entire set of links [m].

Lemma 5.3 The fully mixed Nash equilibrium for the system of all users and the fast link set [m′]
output by Agfm remains a Nash equilibrium when the game is extended to the entire set of links [m].

Proof: Let P be the fully mixed Nash equilibrium for the selfish routing game on Users and [m′].
We prove that P (completed with pji = 0 for all i ∈ [n] and j ∈ [m] \ [m′]) is a (generalized fully
mixed) Nash equilibrium with support [m′] for the selfish routing game on Users and [m].

The claim is trivial ifm′ = m. Otherwise, Lemma 2.3 implies that the minimum expected latency
cost of any user i is λi = (m′ + n − 1)/C(m′). Since Agfm does not include link m′ + 1 in the
support of P, cm

′+1 ≤ C(m′ + 1)/(m′ + n). Therefore,

cm
′+1(m′ + n− 1) ≤ C(m′)⇒ 1

cm′+1 ≥ m′+n−1
C(m′) = λi

Furthermore, for all j > m′ + 1, 1/cj ≥ λi because cm
′+1 ≥ cj . Therefore, no user has an incentive

to deviate to some slower link in [m] \ [m′] and P is a generalized fully mixed Nash equilibrium for
the routing game on Users and [m].

The time complexity of Agfm is dominated by the time to sort the links in non-increasing capacity
order. The while loop is executed at most m − 1 times and each iteration takes constant time. When
the support is found, the fully mixed strategies profile P is computed in O(m) time using Lemma 2.2,
since all users have the same strategy. Therefore, the time complexity of Agfm is O(m logm).
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Next we establish the uniqueness of the generalized fully mixed equilibrium.

Theorem 5.4 Consider a selfish routing game Γ on n users of identical traffic and m capacitated
parallel links. The equilibrium output by Agfm is the unique generalized fully mixed equilibrium of Γ.

Proof: Let P be the generalized fully mixed Nash equilibrium output by Agfm, let [m′] be its sup-
port, and let P′ be any generalized fully mixed Nash equilibrium of Γ with support S ⊆ [m].

We first show that S is a fast link set. To reach a contradiction, let us assume that S is not a
fast link set, i.e. there is some k ∈ [m − 1] such that k 6∈ S and k + 1 ∈ S. By hypothesis, P′

is a fully mixed Nash equilibrium of the restriction of Γ to S. Thus by Lemma 2.3, the minimum
expected latency cost λi of any user i is equal to (|S| + n − 1)/

(∑
j∈S c

j
)

, and by Proposition 5.2,

ck+1 >
∑

j∈S c
j/(|S|+ n− 1). Using ck ≥ ck+1, we obtain that

1
ck
<
|S|+ n− 1∑

j∈S c
j

= λi (1)

Since the left-hand side of (1) is equal to the latency cost of any user deviating to link k, (1) contradicts
the hypothesis that P′ is a Nash equilibrium of Γ.

¿From now on, we assume that S is a fast link set. By the analysis of Agfm, no fast link set [q],
where q > m′, is the support of a generalized fully mixed Nash equilibrium of Γ. Hence S ⊆ [m′].
We prove that S = [m′] by contradiction. Let us assume that S ⊂ [m′], and let q < m′ be the last
link in S. Since P′ is a fully mixed Nash equilibrium of the restriction of Γ to [q], by Lemma 2.3, the
minimum expected latency cost of any user i in P′ is λ′i = (q + n− 1)/C(q). On the other hand, by
the description of Agfm,

cm
′
(m′ + n− 1) > C(m′) (2)

Adding
∑m′

j=q+1 c
j ≥ (m′ − q)cm′ to (2), we obtain that

cm
′
(q + n− 1) > C(q)⇒ 1

cm′
< q+n−1

C(q) = λ′i ,

which contradicts the hypothesis that P′ is a Nash equilibrium of Γ.

We conclude this section with an alternative characterization of the support of the generalized
fully mixed Nash equilibrium.

Proposition 5.5 Consider a selfish routing game on n users of identical traffic and m capacitated
parallel links. The support of the generalized fully mixed Nash equilibrium coincides with the set
S = {` ∈ [m] : c` > C(`)/(`+ n− 1)}.

Proof: Let m′ ∈ [m] be the largest index such that cm
′
> C(m′)/(m′ + n− 1). By the analysis of

Agfm, [m′] is the support of the generalized fully mixed Nash equilibrium. To establish that S ⊆ [m′],
we observe that the links excluded from [m′] by Agfm are also excluded from S. To show that
[m′] ⊆ S, we observe that if some link ` ≥ 2 belongs to S, then link ` − 1 also belongs to S. In
particular,

C(`) < (`+ n− 1)c` ⇒ C(`− 1) < (`+ n− 2)c` ≤ (`+ n− 2)c`−1

Since m′ ∈ S by definition, every link in [m′] belongs to S.
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6 Approximating the Social Cost of the Worst Nash Equilibrium

In this section, we consider selfish routing games on users of identical traffic and capacitated links and
prove that the social cost of the generalized fully mixed Nash equilibrium is within a constant factor
of the social cost of the worst Nash equilibrium. The remainder of this section is devoted to the proof
of the following:

Theorem 6.1 For a selfish routing game on users of identical traffic and capacitated parallel links,
the social cost of the worst Nash equilibrium is at most 33.06 times the social cost of the generalized
fully mixed Nash equilibrium.

6.1 Outline of the Proof

We start with some basic properties of Nash equilibria allowing the comparison of the social cost of the
worst Nash equilibrium to the social cost of the generalized fully mixed equilibrium (cf. Section 6.2).
A few important properties are that the set of non-solo links in the support of any Nash equilibrium
is a subset of the support of the generalized fully mixed Nash equilibrium (cf. Proposition 6.7), and
that the expected latency of any non-solo link in any Nash equilibrium is at most twice the expected
latency of the same link in the generalized fully mixed Nash equilibrium (cf. Proposition 6.8).

After justifying some simplifying assumptions and introducing some notation (cf. Section 6.3),
we proceed to analyze the tails of the distribution of maximum link latency in the generalized fully
mixed Nash equilibrium (cf. Section 6.4) and in an arbitrary Nash equilibrium (cf. Section 6.5). In
Section 6.4, we consider the generalized fully mixed Nash equilibrium and establish a lower bound
on the probability that the maximum link latency is no less than a given value (cf. Lemma 6.11).
Thus we obtain a strong lower bound on the social cost of the generalized fully mixed Nash equi-
librium (cf. Lemma 6.12). In Section 6.5, we consider an arbitrary Nash equilibrium and establish
an upper bound on the probability that the maximum link latency is no less than a given value (cf.
Lemma 6.13). Combining Lemma 6.11 with Lemma 6.13, we derive an upper bound on the social
cost of any Nash equilibrium in terms of our lower bound on the social cost of the generalized fully
mixed Nash equilibrium (cf. Lemma 6.14).

6.1.1 Notation

Throughout this section, we consider a selfish routing game on n ≥ 2 users of identical traffic and
m ≥ 2 capacitated parallel links. We assume, without loss of generality, that the links are indexed in
non-increasing capacity order, i.e. c1 ≥ c2 ≥ . . . ≥ cm, and that all traffics are equal to 1. For any
k ∈ [m], we let C(k) denote the total capacity of the fastest k links, i.e. C(k) =

∑k
j=1 c

j . We let
e = 2.718 . . . denote the basis of natural logarithms and exp(x) = ex.

We let P denote the generalized fully mixed Nash equilibrium, and let P denote an arbitrary Nash
equilibrium. In general, we use overlined symbols to refer to the quantities related to P and plain
symbols to refer to the quantities related to P. For example, Λ` denotes the expected latency of link `
in the generalized fully mixed Nash equilibrium, and Λ` denotes the expected latency of ` in P.
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6.2 Basic Properties of Nash Equilibria

In this section, we prove some basic properties of the generalized fully mixed Nash equilibrium and
of Nash equilibria in general. We start with a lower bound on the expected link latencies and a
preliminary lower bound on the social cost of the generalized fully mixed Nash equilibrium.

Proposition 6.2 Let [m′] denote the support of the generalized fully mixed Nash equilibrium P, and
let Λ` denote the expected latency of link ` in P. Then, Λ` > m′+n−1

C(m′) −
1
c`

for all ` ∈ [m′], and

Λ` = 0 for all ` ∈ [m] \ [m′]. Moreover, Λ1 ≥ · · · ≥ Λm.

Proof: Lemma 2.2 implies that for any user i ∈ [n], p`i = c`

C(m′) + m′c`−C(m′)
(n−1)C(m′) for all ` ∈ [m′], while

p`i = 0 for all ` ∈ [m] \ [m′]. Since p`i’s are the same for all users, for any link ` ∈ [m′],

Λ` =
n

c`

(
c`

C(m′)
+
m′c` − C(m′)
(n− 1)C(m′)

)
=

n

n− 1

(
m′ + n− 1
C(m′)

− 1
c`

)
>
m′ + n− 1
C(m′)

− 1
c`
,

while Λ` = 0, for all ` ∈ [m] \ [m′]. In addition, since Λ` = n
n−1(m

′+n−1
C(m′) −

1
c`

) > 0 for all ` ∈ [m′],

and c1 ≥ · · · ≥ cm′ , we conclude that Λ1 ≥ · · · ≥ Λm.

Proposition 6.3 The social cost of the generalized fully mixed Nash equilibrium with support [m′] is
at least max{Λ1, m

′+n−1
2C(m′) }.

Proof: Since the social cost cannot be less than the expected latency of any link, we obtain a lower
bound of Λ1. If we assume that m

′+n−1
2C(m′) > Λ1, then using that Λ1 > m′+n−1

C(m′) −
1
c1

, we obtain that
1
c1
> m′+m−1

2C(m′) . Since the social cost is at least 1/c1, we obtain a lower bound of m
′+m−1

2C(m′) .

We continue with some basic properties that hold for all Nash equilibria. First we show that the
minimum expected latency cost of any user in any Nash equilibrium does not exceed the ratio of
k + n− 1 to the total capacity of the fastest k links, for any k ∈ [m].

Proposition 6.4 Let λi be the minimum expected latency cost of any user i in any Nash equilibrium
P. Then for any k ∈ [m], λi ≤ (k + n− 1)/C(k).

Proof: To reach a contradiction, let us assume that there is some k ∈ [m] and some user i such
that λi > (k + n − 1)/C(k). Since P is a Nash equilibrium, for every link j ∈ [m], λi ≤ λji =
Λj + (1− pji )/cj . Therefore, for every link j ∈ [m],

cj
k + n− 1
C(k)

< cjΛj + 1− pji (3)

Summing up (3) over the fastest k links and using the definitions of C(k) and Λj , we obtain that

k + n− 1 <
∑
q∈[n]

k∑
j=1

pjq + k −
k∑
j=1

pji

=
∑

q∈[n]\{i}

k∑
j=1

pjq + k ≤ n− 1 + k ,

a contradiction.
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We proceed to state two useful corollaries of Proposition 6.4. The first corollary shows that in
any Nash equilibrium, the expected latency of any link is at most (m′ + n − 1)/C(m′). The second
corollary establishes the same upper bound on the (observed) latency of any solo link.

Corollary 6.5 Let Λ` be the expected latency of any link ` ∈ [m] in any Nash equilibrium P. Then,
Λ` ≤ (m′+n−1)/C(m′), where [m′] is the support of the generalized fully mixed Nash equilibrium.

Proof: If Λ` > 0, there is a user i with p`i > 0. Since P is a Nash equilibrium, λi = λ`i ≥ Λ`.
Applying Proposition 6.4 with k = m′, we obtain that Λ` ≤ λi ≤ (m′ + n− 1)/C(m′).

Corollary 6.6 For every solo link ` in a Nash equilibrium P, the (observed) latency of ` is at most
(m′ + n− 1)/C(m′), where [m′] is the support of the generalized fully mixed Nash equilibrium.

Proof: Since ` is solo, its (observed) latency is at most 1/c`. Let i be the only user in view(`). Since
P is a Nash equilibrium, λi = λ`i = 1/c`. Applying Proposition 6.4 with k = m′, we obtain that
1/c` = λi ≤ (m′ + n− 1)/C(m′).

In combination with Proposition 5.5, the following proposition shows that if a Nash equilibrium
contains some link ` 6∈ [m′] in its support, then ` is solo. Since the (observed) latency of a solo link is
at most 2 SC(1,P) (see Proposition 6.3 and Corollary 6.6), we can ignore all links excluded from the
support of the generalized fully mixed Nash equilibrium.

Proposition 6.7 The support of any Nash equilibrium P does not include any link ` with c` <

C(`)/(` + n − 1). If the support of P includes a link ` with c` = C(`)/(` + n − 1), then ` is
solo.

Proof: Let ` be any link in the support of P. Then there is a user i with p`i > 0 and 1/c` ≤ λi.
Applying Proposition 6.4 with k = `, we obtain that λi ≤ (`+ n− 1)/C(`). Therefore, for any link
` in the support of P, c` ≥ C(`)/(`+ n− 1). Moreover, if c` = C(`)/(`+ n− 1), then 1/c` = λi,
which can happen only if ` is solo.

Next we show that the expected latency of any non-solo link in any Nash equilibrium is at most
twice the expected latency of the same link in the generalized fully mixed Nash equilibrium.

Proposition 6.8 Let P be any Nash equilibrium and P be the generalized fully mixed Nash equilib-
rium. For every link ` non-solo in P,

Λ` <
(

1 +
1

|view(`)| − 1

)
Λ` ,

where Λ` (resp. Λ`) denotes the expected latency of ` in P (resp. P), and view(`) is the set of users
whose support in P includes `.

Proof: Let [m′] be the support of P. For simplicity of notation, let k` = |view(`)|. Since k` > 1,
there is a user i ∈ view(`) with p`i ∈ (0, Λ`c`

k`
]. Therefore, the minimum expected latency cost of i is

λi = λ`i = Λ` + 1−p`i
c`
≥ k`−1

k`
Λ` + 1

c`
(4)
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Applying Proposition 6.4 with k = m′, we obtain that λi ≤ (m′ + n − 1)/C(m′). Combining this
inequality with (4), we obtain that

k`−1
k`

Λ` ≤ m′+n−1
C(m′) −

1
c`
< Λ` ,

where the last inequality follows from Proposition 6.2. Therefore, Λ` < (1 + 1
k`−1

)Λ`.

6.3 Preliminaries

In the following, we assume, without loss of generality, that the support of the generalized fully mixed
Nash equilibrium coincides with the entire set of links, i.e. m′ = m, and that n ≥ 3 lnm.

For the former assumption, Proposition 5.5 and Proposition 6.7 imply that we can ignore every
link not in the support of the generalized fully mixed Nash equilibrium. More precisely, we can
ignore every link ` with c` < C(`)/(`+ n− 1), because it is not included in the support of any Nash
equilibrium (see Proposition 6.7). A link ` with c` = C(`)/(`+ n− 1) is not included in the support
of the generalized fully mixed Nash equilibrium (see Proposition 5.5), but it may be included in the
support of some other Nash equilibrium as a solo link (see Proposition 6.7). However, the (observed)
latency of any solo link is at most m

′+n−1
C(m′) (see Corollary 6.6). Since the social cost of the generalized

fully mixed Nash equilibrium is at least m
′+n−1

2C(m′) (see Proposition 6.3), solo links cannot increase the

maximum link latency above 2 SC(1,P). Therefore we can ignore, without loss of generality, all links
excluded from the support of the generalized fully mixed Nash equilibrium, and assume that m′ = m.
For simplicity of notation, we use m instead of m′ in what follows.

The latter assumption excludes some trivial cases only and can be made without loss of generality.
In particular, if n < 3 lnm, the social cost of any Nash equilibrium is at most 16 m+n−1

C(m) , while the
social cost of the generalized fully mixed Nash equilibrium is at least m+n−1

2C(m) (see Proposition 6.3)

For each link j and any x ≥ max{Λ1, m+n−1
2C(m) }, the function fj(x) gives a lower bound on the

probability that j’s latency in the generalized fully mixed equilibrium is at least x (cf. Lemma 6.11):

fj(x) =


(

Λj

2ex

)2xcj

if x ≤ n/cj

0 if x > n/cj

(5)

The following proposition gives a useful property of fj(x).

Proposition 6.9 For any j ∈ [m], and for all z ≥ 0 and y ≥ 1, fj(zy) ≤ [fj(z)]y.

Proof: The claim is trivial if fj(zy) = 0. Otherwise, z ≤ zy ≤ n/cj . Using y ≥ 1, we conclude
that

fj(zy) =
(

Λj

2ezy

)2zycj

≤

[(
Λj

2ez

)2zcj
]y

= [f(z)]y
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For each link j and any x > (m+ n− 1)/C(m), the function hj(x) gives an upper bound on the
probability that j’s latency in Nash equilibrium P is at least x (cf. Lemma 6.13):

hj(x) =


(
eΛj

x

)xcj
if x ≤ |view(j)|/cj

0 if x > |view(j)|/cj
(6)

In the proof of Lemma 6.14, we use the following proposition and compare the social cost of Nash
equilibrium P to the social cost of the generalized fully mixed Nash equilibrium P.

Proposition 6.10 For any j ∈ [m] and all x ≥ 8/cm, hj(x) ≤
[
fj( 7x

16e2
)
]8e2/7.

Proof: The claim is trivial if hj(x) = 0. Otherwise, x ≤ |view(j)|/cj ≤ n/cj . Thus |view(j)| ≥ 8,
because x ≥ 8/cm and cj ≥ cm. Using Proposition 6.8, we obtain that

hj(x) =
(
eΛj

x

)xcj
≤
(

8eΛj

7x

)xcj
=

( Λj

2e 7x
16e2

)2cj 7x
16e2

8e2/7

=
[
fj( 7x

16e2
)
]8e2/7

For the last equality, we observe that 7x
16e2
≤ x ≤ n/cj .

6.4 A Lower Bound on the Social Cost of the Generalized Fully Mixed Equilibrium

We proceed to establish a lower bound on the probability that the maximum latency in the generalized
fully mixed Nash equilibrium is no less than given value.

Lemma 6.11 Let Lmax denote the maximum link latency in the generalized fully mixed equilibrium.
Then, for all x ≥ max{Λ1, m+n−1

2C(m) },

IPr[Lmax ≥ x] ≥ 1− exp

− m∑
j=1

fj(x)


Proof: For each i ∈ [n] and j ∈ [m], let Xj

i be the random variable indicating whether user i routes
her traffic on link j in the generalized fully mixed Nash equilibrium. By Lemma 2.2, all users have the
same probability of routing their traffic on every link. Therefore,Xj

i takes the value 1 with probability
Λjcj

n and the value 0 otherwise. For each j ∈ [m], letXj =
∑n

i=1X
j
i be the random variable denoting

the number of users routing their traffic on link j. Then Lmax = maxj∈[m]{Xj/cj}.
For any link j and any x, where max{Λ1, m+n−1

2C(m) } ≤ x ≤ n/c
j , we let kj =

⌈
xcj
⌉
. Then,

IPr[Xj ≥ kj ] ≥
(
n

kj

)(
Λjcj

n

)kj (
1− Λjcj

n

)n−kj

≥ nk
j

(kj)kj

(
Λjcj

n

)kj (
1− kj

n

)n−kj

≥
(

Λjcj

ekj

)kj

≥
(

Λj

2ex

)2xcj
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For the second inequality, we use that kj ≥ Λjcj , because kj ≥ xcj and x ≥ Λ1 ≥ Λj (see
Proposition 6.2). For the third inequality, we use the fact that for all k ∈ [n], (1− k

n)n−k ≥ e−k. For
the last inequality, we use that 2xcj ≥

⌈
xcj
⌉
, since xcj ≥ 1/2. In particular, xcj ≥ 1/2 follows from

the facts that: (i) cj > C(m)/(m + n − 1) because link j is in the support of the generalized fully
mixed Nash equilibrium, and (ii) x ≥ m+n−1

2C(m) .

On the other hand, IPr[Xj ≥
⌈
xcj
⌉
] = 0, for all x > n/cj . Therefore, for any link j and any

x ≥ max{Λ1, m+n−1
2C(m) },

IPr[Xj ≥
⌈
xcj
⌉
] ≥ fj(x) (7)

where fj(x) is defined in (5). Using the fact that in “balls and bins” experiments, the occupancy
numbers are negatively associated (see e.g. [3]), we obtain that

IPr[Lmax < x] = IPr

 m∧
j=1

(Xj <
⌈
xcj
⌉
)

 ≤
m∏
j=1

IPr
[
Xk <

⌈
xcj
⌉]

≤
m∏
j=1

(1− fj(x))

≤ exp

− m∑
j=1

fj(x)


For the first inequality, we use that the random variables X1, . . . , Xm are negatively associated (see
e.g. [3, Proposition 29 and Theorem 33]). The second inequality follows from (7). For the third
inequality, we use that for all x ≥ 0, 1− x ≤ e−x.

For simplicity of notation, we introduce the function g(x) =
∑m

j=1 fj(x). The function g(x)
is non-negative in [0,∞), and has g(0) = m and g(x) = 0 for all x > n. There is a point x∗,
where Λm/(2e2) ≤ x∗ ≤ Λ1/(2e2), such that g(x) is non-decreasing in [0, x∗) and non-increasing
in (x∗,∞]. The function g(x) is not continuous due to the jump discontinuity in the definition of
fj(x)’s. However, these jumps are negligible provided that n is not very small. More precisely, for
every j ∈ [m], the j-th term of g(x) jumps from fj(n/cj) < ( 1

2e)
2n to 0 at n/cj . Thus each jump of

g(x) is less than m( 1
2e)

2n. Assuming that n ≥ 3 lnm and that m ≥ 2, we obtain that each jump of
g(x) is less than 0.0018. Therefore, for any α ∈ (1, e), there is at least one point x ∈ (x∗, n) such
that g(x) ∈ (ln(α)− 0.0018, ln(α)]. In the following, we let µα denote the smallest such value:

µα ≡ arg min{x ∈ (x∗, n) : g(x) ∈ (ln(α)− 0.0018, ln(α)]} (8)

By the definition of µα, g(µα) ≥ ln(α)− 0.0018. Moreover, since g(x) is non-increasing in (x∗,∞),
for all x ≥ µα, g(x) ≤ ln(α).

For simplicity of notation, we let µ∗α = max{Λ1, m+n−1
2C(m) , µα}. The following lemma establishes

a lower bound of (1− e0.0018

α )µ∗α on the social cost of the generalized fully mixed Nash equilibrium.

Lemma 6.12 For any α ∈ (1, e), SC(1,P) ≥ (1− e0.0018

α )µ∗α, where µ∗α = max{Λ1, m+n−1
2C(m) , µα}.
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Proof: In Proposition 6.3, we show that SC(1,P) ≥ max{Λ1, m+n−1
2C(m) }. If µα > max{Λ1, m+n−1

2C(m) },
we apply Lemma 6.11 with x = µα and obtain that

IPr[Lmax ≥ µα] ≥ 1− exp(−g(µα)) ≥ 1− e0.0018

α

because g(µα) ≥ ln(α) − 0.0018. Therefore, the social cost of the generalized fully mixed Nash
equilibrium is at least (1− e0.0018

α ) max{Λ1, m+n−1
2C(m) , µα}.

6.5 An Upper Bound on the Social Cost of any Nash Equilibrium

Next we consider an arbitrary Nash equilibrium P and obtain an upper bound on the probability that
the maximum link latency is no less than a given value.

Lemma 6.13 Let P be any Nash equilibrium, and let Lmax denote the maximum link latency in P.
Then, for all x > (m+ n− 1)/C(m),

IPr[Lmax ≥ x] ≤
m∑
j=1

hj(x)

Proof: For each i ∈ [n] and j ∈ [m], let Xj
i be the random variable indicating whether user i routes

her traffic on link j in P. Xj
i takes the value 1 with probability pji and the value 0 otherwise. For each

j ∈ [m], let Xj =
∑

i∈view(j)X
j
i be the random variable denoting the number of users routing their

traffic on link j. Then Lmax = maxj∈[m]{Xj/cj}. By linearity of expectation, IE[Xj ] = Λjcj .
For any link j and any x ∈ (Λj , |view(j)|/cj ], we apply the Chernoff bound5 and obtain that

IPr[Xj ≥ xcj ] ≤
(
eΛj

x

)xcj
On the other hand, IPr[Xj ≥ xcj ] = 0 for all x > |view(j)|/cj . Thus for any link j and any

x > Λj , IPr[Xj ≥ xcj ] ≤ hj(x), where hj(x) is defined in (6).
Observing that x > (m + n − 1)/C(m) implies that x > Λj for all j ∈ [m] (see Corollary 6.5),

and applying the union bound, we conclude that for any x > (m+ n− 1)/C(m),

IPr[Lmax ≥ x] = IPr

 m∨
j=1

(Xj ≥ xcj)

 ≤ m∑
j=1

hj(x)

In the following lemma, we obtain an upper bound on the social cost of P in terms of µ∗α.

5We use the following standard form of the Chernoff bound (see e.g. [23]) with 1 + δ = x/Λj : Let X1, X2, . . . , Xn be
independent 0/1 random variables, let X =

∑n
i=1Xi, and let IE[X] denote the expectation of X . Then for any δ > 0,

IPr[X ≥ (1 + δ)IE[X]] <

(
eδ

(1 + δ)(1+δ)

)IE[X]
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Lemma 6.14 Let P be any Nash equilibrium. For any α ∈ (1, e),

SC(1,P) ≤

(
16e2

7
− 2 ln(α)8e2/7

ln ln(α)

)
µ∗α

Proof: Using Lemma 6.13, we bound the social cost of P as follows:

SC(1,P) = IE[Lmax] =
∫ ∞

0
IPr[Lmax ≥ x]dx

≤ 16
7 e

2µ∗α +
∫ ∞

16
7
e2µ∗α

IPr[Lmax ≥ x]dx

≤ 16
7 e

2µ∗α +
∫ ∞

16
7
e2µ∗α

m∑
j=1

hj(x)dx (9)

For the second equality, we use that the expectation of a non-negative random variable X is given
by IE[X] =

∫∞
0 IPr[X ≥ x]dx. The first inequality holds because IPr[Lmax ≥ x] ≤ 1 for all

x ≥ 0. For the second inequality, we apply Lemma 6.13. Using µ∗α ≥ m+n−1
2C(m) > 0 we obtain that

16
7 e

2µ∗α > (m+ n− 1)/C(m) as required by the hypothesis of Lemma 6.13.
To conclude the proof, we establish an upper bound on the last term of (9):∫ ∞

16
7
e2µ∗α

m∑
j=1

hj(x)dx ≤
∫ ∞

16
7
e2µ∗α

m∑
j=1

[
fj( 7x

16e2
)
]8e2/7

dx

= 16
7 e

2µ∗α

∫ ∞
1

∑m
j=1 [fj(µ∗αy)]8e

2/7 dy

≤ 16
7 e

2µ∗α

∫ ∞
1

m∑
j=1

[fj(µ∗α)]8e
2y/7dy

≤ 16
7 e

2µ∗α

∫ ∞
1

[g(µ∗α)]8e
2y/7 dy

≤ 16
7 e

2µ∗α

∫ ∞
1

ln(α)8e2y/7dy

= −2 ln(α)8e2/7

ln ln(α)
µ∗α

For the first inequality, we apply Proposition 6.10 for all j ∈ [m]. Since µ∗α ≥ m+n−1
2C(m) > 1

2cm ,
because m is in the support of the generalized fully mixed Nash equilibrium, x ≥ 16

7 e
2µ∗α ≥ 8/cm

as required by the hypothesis of Proposition 6.10. The first equality follows by changing the variable
of integration to y = 7x

16e2µ∗α
. The second inequality follows from Proposition 6.9, since y ≥ 1. For

the third inequality, we use the fact that for all x1, . . . , xm ≥ 0 and all z ≥ 1, xz1 + · · · + xzm ≤
(x1 + · · ·+ xm)z . Therefore, for all y ≥ 1,

m∑
j=1

[fj(µ∗α)]8e
2y/7 ≤

 m∑
j=1

fj(µ∗α)

8e2y/7

= [g(µ∗α)]8e
2y/7

where g(x) =
∑m

j=1 fj(x). For the fourth inequality, we use that g(µ∗α) ≤ ln(α), since µ∗α ≥ µα. For
the last equality, we calculate the integral and use that α ∈ (1, e).
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Combining Lemma 6.12 with Lemma 6.14, we obtain that the social cost of any Nash equilibrium
P is within a constant factor of the social cost of the generalized fully mixed Nash equilibrium P.
More precisely, for any α ∈ (1, e),

SC(1,P) ≤

(
16e2

7
− 2 ln(α)8e2/7

ln ln(α)

)
α

α− e0.0018
SC(1,P)

Using α = 2.17, we conclude that SC(1,P) ≤ 33.06 SC(1,P).

7 Computing the Social Cost of a Mixed Nash Equilibrium

7.1 The Complexity of Computing the Social Cost of a Mixed Nash Equilibrium

On the negative side, we prove that it is #P-complete to compute the social cost of a given mixed
Nash equilibrium.

Theorem 7.1 NASH EQUILIBRIUM SOCIAL COST is #P-complete even for identical links.

Proof: Membership in #P follows from the definition of social cost and the fact that the probabili-
ties in a mixed Nash equilibrium are rational (see e.g. Proposition 2.1 and [16, Section 2]). To show
that NASH EQUILIBRIUM SOCIAL COST is #P-complete, we use a reduction from the problem
of computing the probability that the sum of n independent random variables does not exceed a given
threshold.

More precisely, let J = {w1, . . . , wn} be a set of n integer weights and let C ≥
∑n

i=1wi/2 be an
integer. Counting the number of J’s subsets with total weight at most C is #P-complete because it
is equivalent to counting the number of feasible solutions of the corresponding KNAPSACK instance
(see e.g. [28]). Therefore, given n independent random variables Y1(w1, 1/2), . . . , Yn(wn, 1/2),
where Yi(wi, 1/2) takes the value wi with probability 1/2 and the value 0 otherwise, it is #P-
complete to compute the probability that Y =

∑n
i=1 Yi is at most C (see also [11, Theorem 2.1]).

Next we show that IPr[Y ≤ C] can be recovered by two calls to an oracle returning the social cost of
a given mixed Nash equilibrium.

Given n random variables Y1(w1, 1/2), . . . , Yn(wn, 1/2) and an integer C ≥
∑n

i=1wi/2, we
construct a selfish routing game on n + 1 users and 3 identical links. For every i ∈ [n], the traffic of
user i is wi and the traffic of user n + 1 is C. We consider a mixed strategies profile P where user
n + 1 selects link 3 with certainty (i.e. p3

n+1 = 1 and p1
n+1 = p2

n+1 = 0), and the remaining users
select one of the first two links equiprobably (i.e. p1

i = p2
i = 1/2 and p3

i = 0 for all i ∈ [n]). Since
C ≥

∑n
i=1wi/2, P is a Nash equilibrium. Since wi’s are integral, the social cost of P is

SC1 = C + 2
∞∑

B=C+1

IPr[Y ≥ B] , (10)

where we use that the expectation of a non-negative integral random variable X is given by IE[X] =∑∞
i=1 IPr[X ≥ i] (see e.g [23, Proposition C.7]) and that for all B >

∑n
i=1wi/2, the events that link

j, j ∈ {1, 2}, has latency at least B are mutually exclusive.
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Increasing the traffic of user n + 1 to C + 1, we obtain a slightly different game for which P
remains a Nash equilibrium. As before, the social cost of P for the new game is

SC2 = C + 1 + 2
∞∑

B=C+2

IPr[Y ≥ B] (11)

Combining (10) and (11), we obtain that

SC2 − SC1 = 1− 2 IPr[Y ≥ C + 1] (12)

Since wi’s and C are integers, IPr[Y ≤ C] = 1 − IPr[Y ≥ C + 1]. Therefore, (12) implies that
IPr[Y ≤ C] = (SC2 − SC1 + 1)/2.

7.2 Approximating the Social Cost of a Mixed Nash Equilibrium

On the positive side, we get around the #P-completeness result by formulating a FPRAS that ap-
proximates the social cost of any given mixed Nash equilibrium.

Theorem 7.2 Consider the model of uniform capacities. Then there exists a fully polynomial-time
randomized approximation scheme for NASH EQUILIBRIUM SOCIAL COST.

Proof: We define an efficiently samplable random variable which accurately estimates the social
cost of the given Nash equilibrium P on the given traffic vector w. More precisely, we perform the
following experiment, where N is a fixed integer that will be specified later:

“Repeat N times the random experiment of assigning each user to a link in its support
according to the given Nash probabilities. For each experiment i ∈ [N ], let Limax be
the (measured) maximum link latency. Output the mean

∑N
i=1 L

i
max/N of the measured

values.”

Let Lmax be the random variable denoting the outcome of the algorithm. Lmax is the mean of N
identically distributed independent random variables. Its expectation is equal to the social cost of P
and its variance is bounded is at most n2w2

max/N , where wmax denotes the maximum traffic in w.
Applying Chebyshev’s inequality (see e.g. [23]), we obtain that for any ε > 0,

IPr[|Lmax − SC(w,P)| ≥ εSC(w,P)] ≤ Var[Lmax]
ε2 SC2(w,P)

≤ n2

ε2N
,

where the last inequality follows from Var[Lmax] ≤ n2w2
max/N and SC(w,P) ≥ wmax. Therefore,

for all ε > 0 and N ≥ 4n2/ε2, the probability that the outcome of the algorithm is within a factor of
(1± ε) from SC(w,P) is at least 3/4.

8 Conclusion and Open Problems

We have presented a comprehensive collection of algorithmic, hardness and structural results for the
computation of Nash equilibria for a specific game that models selfish routing over a set of parallel
links. Our work leaves open numerous interesting questions that are directly related to our results. We
list a few of them here.
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• What is the complexity of computing the supports of a pure Nash equilibrium? Theorem 3.2
shows that it is O(n lg n+ nm) = O(nmax{lg n,m}). Can this be further improved?

• Recall that the NP-hardness proof (Theorem 3.4) for WORST NASH EQUILIBRIUM SUP-
PORTS uses different traffics, while it assumes uniform capacities. What happens in the model
of identical traffics and arbitrary capacities? Does the problem remain NP-hard?

• Consider the specific pure Nash equilibria that are computed by the algorithm that is implicit
in the proof of Theorem 3.1 and the algorithm Apure in the proof of Theorem 3.2. It would be
interesting to study how well these specific pure Nash equilibria approximate the worst one (in
terms of social cost).

• What is the complexity of computing the supports of a generalized fully mixed Nash equi-
librium? Theorem 5.1 shows that it is O(m lgm) in the case where all traffics are identical.
Can this be further improved? Nothing is known about the general case, where traffics are not
necessarily identical.

• What is the complexity of computing the supports of a generalized fully mixed Nash equilib-
rium? Theorem 5.1 shows that it isO(m2) in the case where all traffics are identical. Can this be
further improved? Nothing is known about the general case, where traffics are not necessarily
identical. Is the general problem still in P?

• It is tempting to conjecture that Theorem 4.2 holds for all values of n ≥ 2. To prove this, it may
require to obtain an improved understanding of the combinatorial structure of fully mixed Nash
equilibria.

Besides these directly related open problems, we feel that the most significant extension of our
work would be to study other specific games and classify their instances according to the computa-
tional complexity of computing the Nash equilibria of the game. We hope that our work provides an
initial solid ground for such studies.
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