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Abstract. In this work, we introduce and study a simple, graph-théomabdel for selfishrschedulingamongm non-
cooperativeusersover a collection ol machineshowever, each user is restricted to assign its unsplétabld to one
from a pair of machines that are allowed for the user. We mttiede bounded interactions usingiateraction graph,
whose vertices and edges are the machines and the useestiedp. We study the impact of our modeling assumptions
on the properties of Nash equilibria in this new model. Thérfiadings of our study are outlined as follows:

— We prove, as our main result, that tharallel linksgraph is thébest-casénteraction graph — the one that minimizes
expectednakesparmf thestandard fully mixed Nash equilibriusnamong alB-regularinteraction graphs. The proof
employs a graph-theoretic lemma abotientationsin 3-regular graphs, which may be of independent interest.

— We prove a lower bound o@oordination Ratio[16] — a measure of the cost incurred to the system due to the
selfish behavior of the users. In particular, we prove thatettis an interaction graph incurring Coordination Ratio

N (IO:E)Z”) . This bound is shown for pure Nash equilibria.
— We present counterexample interaction graphs to proveathiaty mixed Nash equilibriunmay sometimes not
exist at all. Moreover, we prove properties of the fully mdddash equilibrium forromplete bipartitegraphs and

hypercubeggraphs.

1 Introduction

Motivation and Framework. Consider a group of: non-cooperativasers each wishing to assign its unsplittable yotb
onto a collection of, processing (identicathachinesThe users seek to arrive at a stable assignment of theifgoliseir
joint interaction. As usual, such stable assignments amgeted asNash equilibria[21], where no user can unilaterally
improve its objective by switching to a different strategy.

We use a structured and sparse representation of the relataveen the users and the machines that exploits the lo-
cality of their interaction; such locality almost alwaydsg in complex scheduling systems. More specifically, veeiase
that each user has access (that is, finite cost) to twdynachines; its cost on other machines is infinitely largeingivt
no incentive to switch there. The (expected) cost of a ugbeigexpected) load of the machine it chooses. Interactitin w
just a few neighbors is a basic design principle to guaragiffeent use of resources in a distributed system. Reistgict
the number of interacting neighbors to just two is then a matstarting point for the theoretical study of the impact of
selfish behavior in a distributed system with local interat.

Our representation is based on theeraction graphwhose vertices and (undirected) edges represent the neschin
and the users, respectively. Multiple edges are allowedgkier, for simplicity, our interaction multigraphs will lmalled
interaction graphsThe model of interaction graphs is interesting becausethie simplest, non-trivial model for selfish
scheduling on restricted parallel links. In this model, @asgignment of users to machines naturally corresponds to an
orientationof the interaction graph. (Each edge is directed to the nm&clvhere the user is assigned.)

We will considerpure Nash equilibriawhere each user assigns its load to exactly one of its twavatlanachines
with probability one; we will also considenixed Nash equilibriawhere each user employs a probability distribution to
choose between its two allowed machines. Of particularéstdo us is théully mixed Nash equilibriurf20] where every
user has strictly positive probability to choose each ohits machines. In thetandard fully mixed Nash equilibrium
all probabilities are equal té. It is easy to see that the standard fully mixed Nash eqiilibrexists if and only if the
(multi)graph is regular.

With each (mixed) Nash equilibrium, we associateazial Cos{16] which is the expectechakespan the expectation
of the maximum, over all machines, total load on the macHsst-caseandworst-caseNash equilibria minimize and
maximize Social Cost, respectively. For a given type of Negthilibrium such as the standard fully mixed Nash equilib-
rium, best-case and worst-case graphs among a graph claissirei and maximize Social Cost of Nash equilibria of the
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given type, respectively. The assignment of users to masthmat minimizes Social Cost might not necessarily be a Nash
equilibrium; callOptimunthis least possible Social Cost. We will investig@mordination Ratid16] - the worst-case ratio
over all Nash equilibria, of Social Cost over Optimum. Weiaterested in understanding the interplay between theltopo
ogy of the underlying interaction graph and the variousterise, algorithmic, combinatorial, structural and optitga
properties of Nash equilibria in this new model of selfishnieted scheduling with bounded interaction.

Contribution and Significance. We partition our results into three major groups:

3-regular interaction graphs (Section IB)s easy to prove that the Social Cost of the standard fuikeshNash equilibrium
for anyd-regular graph igl — f(d, n), wheref(d,n) is a function that goes b asn goes to infinity. This gives a general
but rather rough estimation of Social Cost for d-regulapbsa moreover, it does not say how the specific structure of
each particular 3-regular graph affects the Social Codt@ttandard fully mixed Nash equilibrium. We continue tovaro
much sharper estimations for the special class of 3-reguigohs. Restricting our model of interaction graph3-tegular
graphs led us to discover some nice structural properties@fitations irB-regular graphs, which were motivated by Nash
equilibria. However, we have so far been unable to generttiese properties to regular graphs of degree higherthan

We pursue a thorough study of 3-regular interaction grafitese graphs further restrict the bounded interaction by
insisting that each machine is accessible to just threesu&grecifically, we focus on the standard fully mixed Nash
equilibrium where all probabilities of assigning users taamines are}. We ask which the best 3-regular interaction
graph is in this case. This question brings into context tledlem of comparing against each other the expected number
of 2-orientations and 3-orientations - those with makespamd 3, respectively. The manner in which these numbers
outweigh each other brings Social Cost closer to either 2 a¥e&develop some deep graph-theoretic lemmas about 2-
and 3-orientations in 3-regular graphs to prove, as our mesnlt, that the simplest 3-regular parallel links grapthis
best-case 3-regular graph in this setting. The proof decsepany 3-regular graph down to the parallel links graph in a
way that Social Cost of the standard fully mixed Nash equiilim does not increase. The graph theoretic lemmas about
2- and 3-orientations are proved using both counting andpinggechniques; both the lemmas and their proof techniques
are, we believe, of more general interest and applicability

Bound on Coordination Ratio (Section #pr the more general model of restricted parallel linksghattbound o9 ( log)f‘o"n)

on Coordination ratio restricted to pure Nash equilibrigzwslaown in [9, Theorem 5.2] and independentlyin [1, Theorfm 1

This implies an upper bound m(lolgf’ign) on the Coordination Ratio for pure Nash equilibria in our micas well. We

construct an interaction graph incurring Coordinationi&él(blgol%) to prove that this bound is tight for the model of
interaction graphs as well. The construction extends ancagp foﬁlowed in [9, Lemma 5.1] that proved the same lower
bound for the more general model of restricted paralledink

The Fully Mixed Nash Equilibrium (Section B)Ve pursue a thorough study of fully mixed Nash equilibrieoasrinterac-
tion graphs. Our findings are outlined as follows:
— There exist counterexample interaction graphs for whidlly faixed Nash equilibria may not exist. Among them are
all trees and meshes. These counterexamples provide seigletiabout a possible graph-theoretic characterization o
interaction graphs admitting a fully mixed Nash equililmiu4-cycles and 1-connectivity are factors expected to play
a role in this characterization.
— We next consider the case where infinitely many fully mixediNaquilibria may exist. In this case, the fully mixed
Nash dimension is defined to be the dimensimf the smallesti-dimensional space that can contain all fully mixed
Nash equilibria. For complete bipartite graphs, we proviehatomy theorem that characterizes unigue existence. The
proof employs arguments from Linear Algebra. For hypersutae have only been able to prove that the fully mixed
Nash dimension is the hypercube dimension for hypercubds@nsion 2 or 3. We conjecture that this is true for all
hypercubes, but we have only been able to observe that therdwlpe dimension is a lower bound on the fully mixed
Nash dimension (for all hypercubes).
— We are finally interested in understanding whether (or wtika)fully mixed Nash equilibrium is the worst-case
one in this setting. We present counterexample interagffaphs to show that the fully mixed Nash equilibrium is
sometimes the worst-case Nash equilibrium, but sometimedor the hypercube, there is a pure Nash equilibrium
that is worse (with respect to Social Cost) than the fullyedixne. On the other hand, for the 3-cycle the fully mixed
Nash equilibrium has worst Social Cost.
Related Work and Comparison.Our model of interaction graphs is the special case of theainofdrestricted parallel
links introduced and studied in [9], where each user is nathér restricted to have access to only two machines. The
work in [9] focused on the problem of computing pure Nash oypig for that more general model. Awerbuch et al. [1]
also considered the model of restricted parallel links, pirmved a tight upper bound @(log{g%) on Coordination
Ratio for all (mixed) Nash equilibria. This implies a conpesding upper bound for our model of interaction graphs. It
is an open problem whether this bound@@%) is tight for the model of interaction graphs, or whether adyet
upper bound on Coordination Ratio for all (mixed) Nash afjtid can be proved.

The model of restricted parallel links is, in turn, a genieetlon of the so calledKP-model for selfish routing [16],




which has been extensively studied in the last five yearsespg3-5,7-11,19, 20]. Social Cost and Coordination Ra-
tio were originally introduced in [16]. Bounds on Coordiioat Ratio are proved in [3,8-10,20]. The fully mixed Nash
equilibrium was introduced and studied in [20], where itsque existence was proved for the origikd-model. The
Fully Mixed Nash Equilibrium Conjecture, stating that thlyf mixed Nash equilibrium maximizes Social Cost, was first
explicitly stated in [11]. It was proved to hold for specialses of the KP-model [11, 19] and for variants of this modgl [9
10]. Recently the Fully Mixed Nash Equilibrium Conjecturasdisproved for the origin&P-model and the case that job
sizes arenon-identical6]. This stands in sharp contrast to the model considerddsmpaper where job sizes dtentical

The model of interaction graphs is an alternativgtaphical game$14] studied in the Artificial Intelligence commu-
nity. The essential difference is that in graphical gamssrsiand resources are modeled as vertices and edgestivedpec
The problem of computing Nash equilibria for graphical garas been studied in [13, 14, 18]. Other studied variants of
graphical games include tmetwork gamestudied in [12]multi-agent influence diagranj$5] andgame networkgL7].

2 Framework and Preliminaries

For all integersc > 1, denoteglk] = {1,...,k}.
Interaction Graphs. We consider a grapliy = (V, E') where edges and vertices correspond to users and machines,
respectively. Assume there areusers anch machines, respectively, whene > 1 andn > 1. Each user has a unit job.
From here on, we shall refer to users and edges (respectivathines and vertices) interchangeably. So, an edge ctenne
two vertices if and only if the user can place his job onto the machines.
Strategies and AssignmentsA pure strategyor a user is one of the two machines it connects; so, a putegly represents
an assignment of the user’s job to a machineni&ed strategyor a user is a probability distribution over its pure stggs.
A pure assignmenk = (¢1,...,¢,,) is a collection of pure strategies, one for each user. A pssg@ament induces an
orientation of the grapl” in the natural way. Anixed assignme® = (p;;)ic[n],jcm] IS @ collection of mixed strategies,
one for each user. A mixed assignménis fully mixed[20, Section 2.2] if all probabilities are strictly posiivThe
standard fully mixed assignmeHtis the fully mixed one where all probabilities are equajtarhefully mixed dimension
of a graphG is the dimensionl of the smallesti-dimensional space that contains all fully mixed Nash el for this
graph.
Cost Measures.For a pure assignmeili, the load of a machinej € [n] is the number of users assigned; toThe
Individual Costfor useri € [m]is \; = |{k : {x, = ¢;}|, the load of the machine it chooses. For a mixed assignment
P = (pij)icim),jen)» theexpected loadf a machingj € [n] is the expected number of users assignefl the Expected
Individual Costfor useri € [m] on maching € [n] is the expectation, according®, of the Individual Cost for useron
machinej, then,\;; =1 + Zke[m]yk# pr;- TheExpected Individual Codor useri € [m]is \; = Zje[n] DijNij-
Associated with a mixed assignmdptis theSocial CostSC(G,P) = Ep (max,ep,) [{k : £x = v}]), that is, Social
Cost is the expectation, accordingRoof makespan (that is, maximum load). TptimumOPT(G) is defined as the least
possible, over all pure assignmeiits= (/1,...,¢,) € [n]™, makespan; that iQPT(G) = ming,¢pp)m max,ep,) {4 :
fk = ’U}|
Nash Equilibria and Coordination Ratio. We are interested in a special class of (pure or) mixed assgts calledNash
equilibria [21] that we describe here. The mixed assignniens a Nash equilibrium [9, 16] if for each userc [m], it
minimizes\;(P) over all mixed assignments that differ frafhonly with respect to the mixed strategy of ugefhus, in
a Nash equilibrium, there is no incentive for a user to uaitaty deviate from its own mixed strategy in order to deseca
its Expected Individual Cost. Clearly, this implies thaf = A; if p;; > 0 whereas\;; > \; otherwise. We refer to these
conditions afNash equationandNash inequalitiesrespectively.

The Coordination RatioCR; for a graphG is the maximum, over all Nash equilibr, of the ratio 3X(&-P).

OPT(C)
CR¢ = maxp %C,ﬁg(’g)) . TheCoordination RaticCR is the maximum, over all grapls and Nash equilibri@, of the ratio

Socég(’g)); thus,CR = max¢ p %. Our definitions forCR; and CR extend the original definition of Coordination

Ratio by Koutsoupias and Papadimitriou [16] to encompassaction graphs.
Graphs and Orientations. Some special classes of graphs we shall consider includeyitie C,. on r vertices; the
complete bipartite graph (or bicliquéj, s which is a simple bipartite graph with partite sets of siznds respectively,
such that two vertices are adjacent if and only if they ardfiieidnt partite sets; the hypercubig. of dimension- whose
vertices are binary words of lengthconnected if and only if their Hamming distancelisFor a graph, denoteAq
the maximum degree a@¥. A graph isd-regular if all vertices have the same deg#ed&he graph consisting of 2 vertices
and 3 parallel edges will be callewcklace Also, for evenn, G| (n) will denote theparallel links graph, i.e., the graph
consisting of necklaces.

An orientationof an undirected grap@' results when assigning directions to its edges. Ma&esparf a vertex in an
orientationx is the in-degree it has in. Themakesparmf an orientation is the maximum vertex makespan. For amgirt
d, ad-orientation is an orientation with makespéin a graphG; denoted-or(G) the set ofi-orientations ofG.

thus,
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3 3-Regular Graphs

In this section, we consider the problem of determining thstdzasel-regular graph among the class of difegular
graphs with a given number of vertices (and, therefore, thighsame number of edges), with respect to the Social Cost of
the standard fully mixed Nash equilibrium, where all probitis are equal td /2.

A Rough Estimation. We start with a rough estimation of the Social Cost of dmggular graph, whered > 2. We
first prove a technical lemma about the probability that sucdindom orientation has makespan at naestl. Denote this
probabilitygq(G).

Lemma 1. Let! be an independent set 6% Then,g.(G) < (1 — 2%)'”'.

We are now ready to prove:

Theorem 1. For a d-regular graphG with n vertices SC(F, G) = d — f(n, d), wheref(n,d) — 0 asn — occ.

1, Lemma 1 implies thagy(G) < (1 — %)m

Thus,SC(F, G) > qu(G) +d(1 — q4(G)) = d — (d — 1)g4(@), so thatSC(F, G) = d — f(n,d), wheref (n, d) tends ta)
asn — oo, as heeded. a

Proof. Since every maximal independent set(dhas size at leagt

Cactoids and the Two-Sisters LemmaThe rest of our analysis will deal with 3-regular graphs. Wé ke able to
significantly strengthen and improve Theorem 1 for the speeise of 3-regular graphs. We define a structure that we will
use in our proofs.

Definition 1 (Cactoids).A cactoid is a pailG; = (V, E>, whereV’ is a set of vertices anf is a set consisting of undirected
edges between vertices, and pointers to vertices, i.eseledges incident to one single vertex.

A cactoid is called 3-regular if each vertex is incident teeth elements front. A cactoid may be considered as a
standard multigraph if we add a special vertex and we reach pointer by an edge which connects the special vertex
with the vertex the pointer is incident to. R

Consider now any arbitrary but fixed orientatierof . Call it standard orientationWe will now define variables
xq(e) for eache € E, which take values frord0, 1} in each possible orientatiom of G. The values are defined with
reference to the standard orientatierSo, take any arbitrary orientatienof G. For eache € E, zq(e) = 1if e has the
same direction inv ando, and0 otherwise. Note that, (¢) = 1 forall ¢ € E.

We now continue with a lemma that estimates the probabiflay & random orientation is a 2-orientation in a 3-regular
cactoidG. Consider two vertices andv called the two sisters with incident pointersandr, . Assume that in the standard
orientations, T, andr, point away fromu andv, respectively. Denot& (i, j) the probability that a random orientation
a with z,(u) = ¢ andz,(v) = j, wherei,j € {0,1}, is a 2-orientation. Clearly, by our assumption on the stasd
orientationo, P5(1,1) is not smaller than each @5 (0,0), P5(0,1) and P5(1,0). However, we prove thaPz(1,1) is
upper bounded by their sum.

Lemma 2 (Two Sisters Lemma).For any 3-regular cactoidG = (V, E> and any two sisters, v € V, it holds that
Pé(o, 0) + P@(O, 1+ Pé(l, O) > P@(l, 1).

Proof. Denoteby, b, andbs, by the other edges or pointers incident to the two sisteesdv, respectively. Define the
standard orientation so that these edges or pointers point towards v, respectively. Denoté&” the cactoid obtained
from G' by deleting the two sisterg andv and their pointers, and,. Define P; (1,9, x3,x4) the probability that a

random orientatiom of the cactoid?’ with Za(b;) = a; for 1 <14 < 4is a 2-orientation. Then,

1 1
Pé(l,l): E Z Pa\,(l'l,ﬂfg,ﬂf3,lﬂ4> , Pé(0,0): 1_6 Z Pé\,(xl,ZQ,ﬂf3,$4> y
z1,22,23,24€{0,1} z1-22=0,23-24=0
1 1
Pé(O,l): 1_6 Z P@(l‘1,$2,1‘3,$4), and Pé(l,O): 1_6 Z P@(l‘1,$2,$3,$4) .
z1,22€{0,1},23-24=0 z1-x2=0,x3,24€{0,1}

SetnowD = 16 - (P5(0,0) + P5(0,1) + Px(1,0) — Px(1,1)). It suffices to prove thab > 0. Clearly,

D=2 Z P@(Il,ZQ,Zg,L;)*P(].,l,].,l)~

1T =0,{L‘3 ~IL‘4=0



Use now the cactoid’ to define the probabilitie§)(i, j) and R(i,j) wherei,j € {0,1} as follows: Q(i, j) is the
probability that a random orientatienof the cactoidz’ with z,,(b1) = ¢ andz,,(b2) = j is a 2-orientationR(i, j) is the
probability that a random orientatianof the cactoid>’ with z, (b3) = i andz, (by) = j is a 2-orientation. Clearly,

Qz(i,))= >, Pzlijws,za) and Rg(i,j)= Y. Pgler,22,4,5).

r3,24€{0,1} x1,22€{0,1}
We proceed by induction on the number of vertice€05S0, it suffices to assume the claim for the cact@icand prove

the claim for the cactoid?. Assume inductively thaQ7(0,0) + Q& (0,1) + Q& (1,0) > Qg (1,1) and Rz (0,0) +
Rz(0,1) + Rz (1,0) > Rz (1,1). These inductive assumptions and the definition@ gf and R |mplythat

Z P@(Il,ZQ,Zg,lq)Z Z Pé\,(l,l,x3,$4),

z3,v4€{0,1} z3,24€{0,1}
x1-x=0
E Pz (w1, 22,73, 74) > E Pz (r1,22,1,1) .
xz1,v2€{0,1} z1,22€{0,1}
2y wy=0

From the first inequality we obtain,

Z Pz (w1, 22,3, 74) > Z Pz (1,1, 23,74) — Z Pz (r1,22,1,1) .

@3- 24=0 z3,24€{0,1} z1-2w2=0
@] -we=0

From the second inequality we get,

Z Pz (w1, 22,03, 74) > Z Pz (71,221, 1) Z Pz (1,1, 23, 74) .
zp-w2=0 z1,22€{0,1} r3-14=0

23-4=0

Adding up the last two inequalities yields th} - «;.z.=0 Pz (71, 22, 23,74) > 2Pg(1,1,1,1), which impliesD > 0,
x3-x4=0

and the claim follows. O

Orientations and Social Cost.In this section, we prove a graph-theoretic result, nantedy the regular parallel links
graph minimizes the number of 3-orientations among all@iti@ graphs with the same number of vertices.

Theorem 2. For every 3-regular graplt with » vertices it holds that3-or(G)| > [3-or(G(n))|.

Proof. In order to prove the claim, we start from the gragh= G = (V, Ey) and iteratively define grapis; = (V, E;),
1 <i <r, forsomer < n, in away thai7, equalsG (n) and|3-or(G;)| > |3-or(Giy1)| holds for alll <i < r.

Note that in each 3-regular graph, each connected companeitiier isomorphic to a necklace or it contains a path of
length 3 connecting four different vertices, such that dhly middle edge of this path can be a parallel edge. & jrall
connected components are necklaces, thais equal toG(n), otherwise some connected componentgfcontains a
pathe, a, b, d with 4 different vertices:, b, ¢, d. In the latter case, construct a new gra@ph, = (V, E;11) by deleting the
edges{a, c}, {b, d} from E; and adding the edgds, b}, {c, d} to the graph as described in the following paragraph.

e €g €g
SORLEG “(®  ©
€7 €7

G; e Gis1 er
€g €g

es —(b)——(d) es—b) (@)
€3 €9 €9

Fig. 1. Constructing the grap&’;+-1 from G;.

€2 €3

As illustrated in Figure 1, the edges incident to vertiael ¢, d are numbered by somg wherel < j < 9. In this
figure, all the edges are different. This does not necegdaaite to be the case. It may happen that= e5 resulting in
two parallel edges betweenandb in G; and three parallel edges betweeandb in G;.;. It may also happen that or
ey is equal toeg Or eg. It is not possible thatg or e7 is equal toes (or thateg or eg is equal toez) since we assumed that
in the pathc, a, b, d only the middle edge may be a parallel edge. It may be alsdlgeshate, is equal toeg or eg, and
thates is equal toeg or e7. Note also that in each iteration step, the number of sinddeee is decreased by at leasSo
the number of iteration steps is boundedby



First, we will show thai3-or(G;)| > |3-or(Gi+1)| holds if all the edges,, . . ., eg are different. We will consider the
more general case in which some of #)&s are equal at the end of the proof. To make the notation gmple set = 1,
i.e., we consider the graplis, andG,. Note that there is a one-to-one correspondence betwees @G, and edges in
G4. This implies that any arbitrary orientation @&, can be interpreted as an orientationGn and vice versa. Take the
standard orientation @¥; to be the one consistent with the arrows in Figure 2. Thepnétation of this orientation fak;
yields the standard orientation féf, (also shown in Figure 2).

€2 €6 €6
es —~(a)——(cx, OO @
7 7

el‘ es

€4
Gi er G2 ‘
€g €g

es (o) —(a) es—(b) ()
es3 T eg €9

Fig. 2. The standard orientations @&; andG..

€3

We will prove our claim by defining an injective mappidg : 3-or(G2) — 3-or(G1). We want to use the identity
mapping as far as possible. We €&t = {a; a € 3-0or(G2) , o ¢ 3-or(G1)} andC; = {a; a € 3-or(G1) , o ¢
3-or(G3)}, and we will defineF" such thatF'(a) = « for a € 3-or(G2) \ C2 and thatF : Co — (4 is injective. Note that
a mappingF : 3-or(G2) — 3-or(G;) defined this way is injective, since if € C1, theng ¢ 3-or(G2) and therefores is
not an image when using the identity function.

Let « be an arbitrary orientation. Note that all verticest {a,b, c,d} have the same makespan@h and in Gy with
respect tav. We identify first the clas€’; and consider the verticesb, ¢, d. We observe:

ahasmakespan3ii; = 1 =23 =24 =1 dhas makespan3i; = 23 = 0,28 =29 = 1

= a has makespan 3 i, = d has makespan 3 i,
bhasmakespan3ii; = 21 =22 =0, 25 =1 chasmakespan3if; = 23 =2 =27 =1

x3 = 1 = b has makespan 3 i¥; x9 = 0 = ¢ has makespan 3 iff;

x3 =0, xrgs = r9 = 1 = d has makespan 3 if; 1 =0A x5 =1 = bhas makespan 3 ii;

x¢ = x7 = 1 = ¢ has makespan 3 i@¥, 9 =1Ax1 =24 =1 = a has makespan 3 i@,

Collecting this characterization, we construct the classis

Co={aé¢3or(G1);x1=20=23=0A5 =1Awg -7 =25 -9 =0}
U{a¢3or(Gi);za=a3=as=a7=1ANx1-24=0 A (21 =1Va5=0)}.

In a similar way, we construct the cla€s as

4 :{a¢3-or(G2); 1 =0A 29 21‘321‘5:1/\356'357:0}
U{a¢3-or(Ge); za=23=0Nzs=a7=1ANz5-2g=0 A(z1=1Va;=0)}.
Now, to defineF’, we consider four cases about orientations Cs:
(1) Considerx € C5 with

To=x3=Tg=T7=1ANT1-24=0 AN x8-29g=0 A (351:1 \/33‘5:0).
SetF(JJl,1,1,$4,$5,1,1,$8,$9,...):(1‘1,0,0,1‘4,x5,1,1,1‘8,x9,...).

€e
ONY 95
ain G, ey ‘ez es F(a) in Gy
€g
Q 4 €9

Fig. 3. The mappingF'.

1

Note that vertices frorja, b, ¢, d} have the same connections to vertices out§ide, c, d}; thereforep ¢ 3-or(Gy)
implies thatF'(«) ¢ 3-or(G2). This implies thatF'(«) € C4.



(2) Considerx € Cowithazy =29 =23 =0Ax5 =1 Ax6-27 =0A 28 - T9 = 0.
SetF(0,0,0, 24,1, g, 7, 28, T9,...) = (0,1,1, 24,1, ¢, 7, T3, Tg, . . . ).
In a way similar to case (1), we conclude tl&ix) € C.

After these two cases, any orientatiore Hs with
Hy={aeCy|las=as=a¢s=ax7=1Ax1- 24 =0AN2g=a9g=1A(x7=1Vas=0)}
has not been mapped I#; and orientationg € H; with
H={8cC|aza=x3=0ANas =7 =1Ax1 =24 =1A2g 29 =0}
U{feCi|lz1=0,a0=x3=o5=1ANxs- 27 =0Ax8 =29 = 1}
are not images undét. We continue with these orientations.
(3) Set
Hoyy={a€Cy;ao=a3=as=a7=axg=x9=1A21 =1A24 =0}
Hyp={0€Ci;ra=23=0A01 =24 =26 =27 =1 AN2ag 29 =0}

We will show that|Hz; | < |Hq1]| holds.

Consider the cactoids,; and7}; obtained by omitting the vertices b, ¢, d from Hs; and Hyq, respectivelyls
and7, consist of edges and 6 pointers 4 < j < 9. Fixing the directions of the pointers in the same way as in
the definitions ofH»; and Hy,, respectively, the number @forientations off; is equal to] H2;| and the number of
2-orientations off'}; is equal to H1;|. See Figure 4 for an illustration.

e

OO

H,, el‘ ‘ez es Hy,
) .

€5
€9

Fig. 4. Orientations from the setd>; and H11.

The pointergg ande; have the same directionsi; andT7; andes; has no specified direction in both cases. Edge
has different directions iff,; and7?,. Directing edge4 in 75, towards vertex: would lead to an increased number
of 2-orientations since the other vertex incidentjdhas in this case makespan 2 with a larger probability Thetoe
the cactoid obtained fror,; by directing edge, towardsa. ThenT,; andT}; differ only in the directions given to
edgeseg andeg.
Let P(i,7) be the probability of -orientation inG if g = i andzg = j. Setm = gn Then,% = P(0,0) +
P(0,1) + P(1,0) > P(1,1) > 221} 'hecause of Lemma 2. It follows thefl: | < |H11|-

(4) To finish the first part of the proof, set

HQQZ{ﬁECQ;$2:$3:l‘6:$7:$821‘9:1/\351 :.155:0}
ngz{ﬁecl;xl:0/\1‘2:1‘3:355:358:3;‘9:1/\356'1‘7:0}

See Figure 5 below for an illustration. In the same way as $& ¢8), we show thatiss| < |Hiz|.

O
€1

e, e

€g e
(exC e —(a—~(<
€7
22 3 €1
€g

€3
es es —(b)— ()
€9 €3 €9

Fig. 5. Orientations from the setd>; and H12.



SinceH, = Hy; U Hep andH; = Hy1 U Hyo, there exists an injective mapping
F : 3-or(G3) — 3-or(G1)

in the case that all edges, . . ., eg are different.

Now we consider the case that some of these edges are eqyak H; then in each orientation the variables:; and
x; get opposite values. Recall that the construction and mbinfectivity of the mapping, which we described above,
was done in 3 steps:

(i) We definedF(a) = o forall a € 3-or(G2) \ Co
(i) In cases (1) and (2) for some well defined= (z1,...,x9,...), the valueF(«) is obtained by negating, andx;
and leaving the other directions unchanged.
(i) |Ha| < |H1|is shown for the remaining cases.

Steps (i) and (ii) are not influenced by setting= z, for somei,j € {4,...,9},i # j. So it remains to consider step
(iii). If e; = e; fori € {6,7},7 € {8,9}, thenz; = z; holds and this implies thai, = (, since for alla € H, it holds
xg = x7 = xg = g = 1. Clearly, this impliesHs| < |H1|.

So we can assume now thats ¢; fori € {6, 7}, 7 € {8,9} and we consider the casg = e5. We will show first that
|H21| < |Hq1]| holds also in this case. Consider the cactdiglsandT;; obtained by deleting the verticesb, ¢, d from
H»; and Hy;. Since edges = e; connects vertices andb, it is also deleted when the cactoids are formed. Each of the
cactoidsI; and75; has now only the 4 pointees, 6 < j < 9. A simple inspection of the proof given above shows that
|Ho1| < |Hi1| holds also in this case. FurthermofHyz| < |H21| can be shown in the same way. The cases es and
e5 = eg can be handled in a very similar way. This completes the pobtife claim. O

Our main result follows now as an immediate consequence ebiiém 2.
Corollary 1. For a 3-regular graphG with n vertices SC(G, F) > SC(Gy(n), F) = 3 — (2)"°.
We can also show that equality dassthold in Corollary 1.

Example 1. There is a 3-regular graph for which the Social Cost of thend&rd fully mixed Nash equilibrium is larger
than for the corresponding parallel links graph.

4 Coordination Ratio

In this section, we present a bound on the Coordination Ratipure Nash equilibria.

Theorem 3. Restricted to pure Nash equilibrieR = © ( log n )

loglogn

Proof. Upper boundSince our model is a special case of the restricted paralled model, the upper bour@ (log’ign)
in [9] also holds for our model.

Lower bound1 et G be the complete tree of heightwhere each vertex in layér0 < [ < k hask — [ children. Denote by
kt = k(k—1)-...-(k—1) thelthfalling factorial of k. Then, the number of verticesis= 3", kt < (k+1)! = I'(k+2).
This impliesk > I'"1(n) — 2.

(1.) Denote byl,; the pure assignment in which all users are assigned towartbtii. Clearly, the Individual Cost of a
user assigned to a vertex in layeis k£ — [. Moreover, such a user can not improve by moving to its vertdayer
(I+1). Thus,L; is a pure Nash equilibrium with Social Cdst

(2.) Denote by, the pure assignment in which all users are assigned towardakies. Clearly, the Individual Cost of all
users isl. Thus, the Social Cost df; is 1.

It follows thatmaxg 1, SOCP(TG(’é‘)) > ggggiig =k>I"'n)—2=0 (lolg"ign), as needed. O

Observation 1. Restricted to pure Nash equilibria, for any interaction ghei;, CRg < A¢, and this bound is tight.



5 The Fully Mixed Nash Equilibrium

In this section, we study the fully mixed Nash equilibriurorfa graphG = (V, E), for each edgék € E, denotejk the
user corresponding to the edgle. Denotep;;, andpy,; the probabilities (according ) that userjk chooses machings
andk, respectively. For each machipe V, the expected load of machigiexcluding a set of edgel??,, denotedrp (j)\E,

is the sum)_, . 1\ 5 Pk; - As a useful combinatorial tool for the analysis of our cemexamples, we prove:

Lemma 3 (The 4-Cycle Lemma)Take any 4-cycl€’y in a graphG, and any two vertices, v € C,4 that are non-adjacent
in C4. Consider a Nash equilibriuf® for G. Then,rp(u) \ Cy = wp(v) \ Ca.

Non-Existence ResultsWe first observe:
Counterexample 1. There is no fully mixed Nash equilibrium for trees and meshes

We remark that the crucial property of trees that was useldrptoof of Counterexample 1 is that each tree contains
at least one leaf. Thus, Counterexample 1 actually apmi#iset more general class of graphs with no vertex of degree 1.
We continue to prove:

Counterexample 2. For each graph in Figure 1, there is no fully mixed Nash edpuilim.

Our six counterexample graphs suggest that the existerdeeyafies across the “boundary” of a graphleconnectivity
may be crucial factors that disallow the existence of fulixed Nash equilibria. Of course, this remains yet to be pnove

Unigueness and Dimension Results:or Complete Bipartite Graphsve prove:

Theorem 4. Consider the complete bipartite graphi, s, wheres > r > 2 ands > 3. Then, the fully mixed Nash
equilibriumF for K, s exists uniquely if and only if > 2. Moreover, in case = 2, the fully mixed Nash dimension of
K, siss—1.

Hypercube Graphs.Observe first that, in general, any point(ih 1)” is mapped to a fully mixed Nash equilibrium with
equal Nash probabilities on all edges of the same dimenaiwh ‘{pointing” to the same direction). This implies:

Observation 2. Consider the hypercub®,., for anyr > 2. Then, the fully mixed Nash dimensionif is at leastr.

To show that- is also an upper bound, we need to prove that no other fullecidash equilibria exist. We manage to
do this only forr € {2, 3}.

Theorem 5. Consider the hypercubH,., for r € {2, 3}. Then, the fully mixed Nash dimensiom is

Worst-Case Equilibria. We present two counterexamples to show that a fully mixechagiilibrium is not necessarily
the worst-case Nash equilibrium, but it can be.

Counterexample 3. There is an interaction graph for which no fully mixed Nashilrium has worst Social Cost.
Counterexample 4. There is an interaction graph for which there exists a fulixed Nash equilibrium with worst Social
Cost.

6 Epilogue

We introduced a simple graph-theoretic model, calfgdraction graphsto address the effect of structured and sparse
interactions among users and machines in complex muliisdimg systems. Within our new model, we studied the impact
of selfish behavior of the users reaching a stable state afytsiem modeled as a Nash equilibrium [21]. In this setting,
we investigated the amount of performance loss under vat@qological assumptions on interaction graphs. As ounmai
result, we determined that the simplest parallel links briaghe best among all 3-regular graphs with respect to eggec
makespan in the standard fully mixed Nash equilibrium. Treopof our main result has required a lot of non-standard
structural graph theory to be proven.

Our work presents a new genre of mathematical problems atioal to the model of interaction graphs that remain
tantalizingly open. We conclude by listing a few of them here

Extend our analysis on the optimality of the parallel linkaggh to alld-regular graphs, for any fixed > 3.

Is the standard fully mixed Nash equilibrium essential fog bptimality of the parallel links graph? Or does the
optimality hold for all fully mixed Nash equilibria?

Characterize in graph-theoretic terms the graphs for waitthly mixed Nash equilibrium exists, and those for which
a fully mixed Nash equilibrium is (respectively, is not) twerst Nash equilibrium.

— Is ©(=22_) the right bound on Coordination Ratio for all mixed Nash éitia? Or is it O (—2£"—)? We know
loglogn log log log n

itis (22" ) andO(—2En ),

loglogn logloglogn




— Extend our model to encompass the more realistic assunggafamon-unit weights for the users and capacities for the
links (cf. [16]), or the capability of users to place theibfgpon more then two machines (that is, the interaction graph
becomes a hypergraph). It will be very interesting to stumyimpact of these additional dimensions.

In conclusion, our work deals with a currently trendy topiamely the (impact of) selfish behavior of users, in a simple
graph-theoretic model for restricted scheduling, namiedyihteraction graphs. Numerous open problems and isstes re
main, and we believe that our work will stimulate furthereasch on the topic.

Acknowledgments:We thank Paul Spirakis and Karsten Tiemann for helpful dismns on the topic of our work.
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Appendix

Fig. 6. Six counterexample graphs

Proof of Lemma 1

Consider an independent set= {vy,...,v,.} of G. For eachj,1 < j < r, denoteE; the set of edges incident to
Clearly,|E;| = d for all j. Moreover, for all indiceg andh, j # h, E; andE), are disjoint sincd is an independent set.
Choose any arbitrary vertexe I. The probability that: has makespag d — 1is1 — Qid Since all setdv;,1 < j <,

are disjoint, the probability that all vertices frahhave makespan d — 1 is (1 — %)'Il. The probability that all vertices
from V have makespagft d — 1 is no larger, and the claim follows. O

Proof of Corollary 1

For each orientation of a 3-regular graph, the makespanésstt2. SG6C(G, F) = 2-¢3(G) +3(1 — ¢3(G)) = 3—g¢3(G).
Because of Theorem 3@(G) < ¢3(G(n)) = (%)”/2, as needed. O

Example 1

Let G be the complete graph with 4 vertices agicbe the corresponding parallel links graph. DerdndF’ the standard
fully mixed Nash equilibria for the grap& andG’, respectively. Each graph has exactly 6 edges, so ther2f are64
possible assignments of the users. Since we consider tidesthfully mixed Nash equilibrium, each of these assigrisien
is equiprobable. Enumerating all possible assignmentgandting the number of 3-orientations (the ones with makesp
3) we get 32 and 28 fa& andG’, respectively. Thu§SC(G, F) > SC(G', F’). O



Proof of the 4-Cycle Lemma

DenoteCy = u, x,v, y, u. We will write down the Nash equations for usets, xv, vy andyu. These are

0} 7"-P(u) \ Cy+ ﬁyu = 7T'P(x) \ Cy + Doz
(”) ’/TP(L]S‘) \ C4 +ﬁuz = WP(U) \ C(4 +f)\yvn
("I) WP(y) \ C4 + ﬁuy = WP(”) \ C(4 +ﬁzvn
(V) mp(u)\ Cs + Pou = 7P (Y) \ Ca + Puy-

Adding all these equations and using the fact that for any aise/e havep,, = 1 — Dy, it follows that
27p(u) \ Ca +7p(x) \ Ca+7p(y) \ Ca = 27p(v) \ Cs + 7p(x) \ Ca + 7p(y) \ Cs .
This implies thatrp(u) \ Cs = mp(v) \ Cy4, as needed. O

Counterexample 1

Assume, by way of contradiction, that a fully mlxed Nash Ghuum F exists for atred’. Take any edgew for a leafv
in T. The Nash equation for usep is 7p(u) — fW =7p(v) — fw ormp(u) — fw = 0 (sincev is a leaf). Since: is not
a leaf,7p(u) — fw > 0. A contradiction. The non-existence of fully mixed Nash i#ifjtia for meshes is an immediate
consequence of the 4-Cycle Lemma. a

Counterexample 2

Consider the top left graph in Figure 6. Assume, by way of i@ittion, that there is a fully mixed Nash equilibrium for
it. Name the machines, vy, z, 2/, 2/, ¢’ from top to bottom. The Nash equations become

W) foo =T W) Jywr = Fyor + Foo
W) fyo = Jyz+ oz V) fory = Joror + Jow
(i) fry = Foe+ Fore Wil) forwr = Fary

(IV) f1z+fyz f;c’z’+fy’z’

Recall, that for any userb we havef,, = 1 — fy,. It follows from (i) and (i) with (|) that fzy = 1. By symmetry,

fory = 4. Now adding (ii) and (v) yield§,, + fyor = fyz + f,rr + 1 which implies thatf,.. + f.. = 0 a contradiction
to the assumptlon that there is a fully mixed Nash equiliriu

The 4-Cycle Lemma immediately implies that there is no fullixed Nash equilibrium for the three graphs at the
bottom. The non-existence of the fully mixed Nash equilibrifor the two remaining graphs follows with arguments
similar to those we used for the top left graph. a

Proof of Theorem 4

For any integek > 2, denotdl, «, andJ ., theidentitymatrix and thecomplementary identityatrix, respectively; that
is,

10...00 01...11
01...00 10...11
Loxe =1 ... .. and Jixp =1 ...
00...01 11...10

Recall thats > r > 2 ands > 3. We show in (1.) that there exists a unique fully mixed Nashildarium if and only if
r > 2.1n (2.), we prove that the fully mixed dimensionds- 1 if r = 2.



(1.) Define vectordy, fs, ..., f. so that for each indek 1 < [ < r, f; contains thes probabilities for each of users
attached to machinkin the right bipartition to assign its load to machin&o, each vectdf; corresponds to a vertex
in the left partite set (of size); each such vector hascomponents, each corresponding to a vertex in the righit@art
set. Itis immediate to derive that the fully mixed Nash etpreg become

Jsxs Is><s oo Is><s Is><s fl 1

Is><s Jsxs oo Is><s Is><s f2 1
. .o . . ‘ =(r—1)

sts Is><s ---sts Js><s fr 1

Take any two adjacent block rows in the Nash equations. Famele, take the first block row and the second block
row; these ard v - f1 +fo + ...+ £, = (r — 1)1sx1 andfy + Jsxs - f2 + ... + £, = (r — 1)1,x1. By subtraction,

it follows that Jsxs - (fi — f2) = f; — f5. Sincel is not an eigenvalue af s, it follows thatf; = f5. In this
way, it is proved that; = f, = ... = f,; set this common value tb. Then, each block row may be written as
Jows T+ (r=1Df = (r —1)1sx1, 0r

r—1 1 ...1 1
1 r—1...1 1

1 1 ...1r—1
This linear system has the solutleh— 1:x1, which is unique if and only if the system matrix is non-sitaguthus,
the fully mixed Nash equnlbrlunF eX|sts uniquely if and only if > 2, as needed.

(2.) Assume now that = 2. Similar to the previous case (by swappingnds), we can express the Nash equations with
help of the matrix

Jaxa Taxo Ioxo - -+ Inxa Ioxo

Iaxa Jox2 Iax2 -+ Ioxa Iax2
M =

Ioxo Iaxo Ioxo -+ Jaxo Taxo

Ioxo Iaxo Ioxo -+ Ioxo Jaxo

We now proceed by deriving the dimension of the solution epeith help of matrix manipulation. From= 2 to s,
subtract theth row block from the(i — 1)th row block. This yields

Joxa — Ioxa Taxa — Jox2 0 0 0
0 Joxa — Ioxa Iaxa — Joxo - 0 0
. ) . . )
0 0 0 o Jaxo — Iaxo Ioxa — Jaxo
Ioyo Ioyo Ioyo Izx2 Jox2

Then, fromi = 1to s — 1, add theith row block of M’ to the(i + 1)the column block. This yields

Jaxo — Iaxo 0 o --- 0 0
0 Joxo —Ioxa 0 --- 0 0
M// — : ;
0 0 0 - Jox2 — Iax2 0
Izx2 2Ihxo  3laxe -+ (s —1)Iaxa Jaxa+ (s — 1)Iaxe

SinceM" is a lower triangular matrix, it suffices to derive the rankleé matrices on the diagonal. On the one hand,
the determinant ofla o — Ioo IS

-1 1
det(JQXQ 7[2><2) = ‘( 1 _1>‘ = 0



Thus, the rank ofla.o — 2«2 is 1. On the other hand, the determinantif.s + (s — 1)Iax2 IS

-1 1 523
det(Jaxa + (s — 1)Iaxa) = ‘(5 L. 1)‘ =(s—12-1 5> 0.
Thus, the rank off5x 5 + (s — 1) I2x2 is 2. Combining these results, we get that the rank®f is s + 1. This implies
that the kernel has dimensi@a — (s + 1) = s — 1, proving the claim. O

Proof of Theorem 5

The lower bounds follow from Observation 2. For= 2, note thatH, = Cy, = u,x,v,y,u, the4-cycle. The Nash
equations for usergsz andzv are fyu = fm and fux = fyv, which implies thatdim g, (F) < 2. Consider now the
caser = 3, wheredimy, (F) < 28 = 12. Using the Nash equations and th&ycle Lemma, we prove that the Nash
probabilities on edges of the same dimension (and “poihtimghe same direction) aneecessarilyequal, which implies
thatdimg, (F) < 3. 0

Counterexample 3

Let G be the 4-cycles, ¢, u, v, s. ForG there exists a pure Nash equilibrium with social chstserst andtu are assigned
to machinet, useruw is assigned to maching and usews is assigned to machine Since the social cost of any pure
assignment is at mo8tand there exist pure assignments with social ¢aghich contribute to the social cost of any fully
mixed Nash equilibrium, the social cost of any fully mixedskaquilibrium is strictly less tha® proving the claim. O

Counterexample 4

Let g be the 3-cycle. Fofr there are two symmetric pure Nash equilibria where thergastéy one user assigned to each
machine. LefL be such a pure Nash equilibria. It BC(G, L) = 1. Clearly, there is only one further Nash equilibrium
for G, which is the standard fully mixed Nash equilibridm In F each of the three users chooses each of its two possible
links with probability$. This impliesSC(G, F) = 1.75 > SC(G, L). O



