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Abstract. In this work, we introduce and study a simple, graph-theoretic model for selfishschedulingamongm non-
cooperativeusersover a collection ofn machines; however, each user is restricted to assign its unsplittable load to one
from a pair of machines that are allowed for the user. We modelthese bounded interactions using aninteraction graph,
whose vertices and edges are the machines and the users, respectively. We study the impact of our modeling assumptions
on the properties of Nash equilibria in this new model. The main findings of our study are outlined as follows:

– We prove, as our main result, that theparallel linksgraph is thebest-caseinteraction graph – the one that minimizes
expectedmakespanof thestandard fully mixed Nash equilibrium– among all3-regularinteraction graphs. The proof
employs a graph-theoretic lemma aboutorientationsin 3-regular graphs, which may be of independent interest.

– We prove a lower bound onCoordination Ratio[16] – a measure of the cost incurred to the system due to the
selfish behavior of the users. In particular, we prove that there is an interaction graph incurring Coordination Ratio

Ω

�
log n

log log n

�
. This bound is shown for pure Nash equilibria.

– We present counterexample interaction graphs to prove thata fully mixed Nash equilibriummay sometimes not
exist at all. Moreover, we prove properties of the fully mixed Nash equilibrium forcomplete bipartitegraphs and
hypercubegraphs.

1 Introduction
Motivation and Framework. Consider a group ofm non-cooperativeusers,each wishing to assign its unsplittable unitjob
onto a collection ofn processing (identical)machines. The users seek to arrive at a stable assignment of their jobsfor their
joint interaction. As usual, such stable assignments are modeled asNash equilibria[21], where no user can unilaterally
improve its objective by switching to a different strategy.

We use a structured and sparse representation of the relation between the users and the machines that exploits the lo-
cality of their interaction; such locality almost always exists in complex scheduling systems. More specifically, we assume
that each user has access (that is, finite cost) to onlytwo machines; its cost on other machines is infinitely large, giving it
no incentive to switch there. The (expected) cost of a user isthe (expected) load of the machine it chooses. Interaction with
just a few neighbors is a basic design principle to guaranteeefficient use of resources in a distributed system. Restricting
the number of interacting neighbors to just two is then a natural starting point for the theoretical study of the impact of
selfish behavior in a distributed system with local interactions.

Our representation is based on theinteraction graph,whose vertices and (undirected) edges represent the machines
and the users, respectively. Multiple edges are allowed; however, for simplicity, our interaction multigraphs will becalled
interaction graphs. The model of interaction graphs is interesting because it is the simplest, non-trivial model for selfish
scheduling on restricted parallel links. In this model, anyassignment of users to machines naturally corresponds to an
orientationof the interaction graph. (Each edge is directed to the machine where the user is assigned.)

We will considerpure Nash equilibria,where each user assigns its load to exactly one of its two allowed machines
with probability one; we will also considermixed Nash equilibria,where each user employs a probability distribution to
choose between its two allowed machines. Of particular interest to us is thefully mixed Nash equilibrium[20] where every
user has strictly positive probability to choose each of itstwo machines. In thestandard fully mixed Nash equilibrium,
all probabilities are equal to12 . It is easy to see that the standard fully mixed Nash equilibrium exists if and only if the
(multi)graph is regular.

With each (mixed) Nash equilibrium, we associate aSocial Cost[16] which is the expectedmakespan- the expectation
of the maximum, over all machines, total load on the machine.Best-caseandworst-caseNash equilibria minimize and
maximize Social Cost, respectively. For a given type of Nashequilibrium such as the standard fully mixed Nash equilib-
rium, best-case and worst-case graphs among a graph class minimize and maximize Social Cost of Nash equilibria of the
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number IST-2001-33116) andDELIS (contract number 001907), and by research funds at University of Cyprus.



given type, respectively. The assignment of users to machines that minimizes Social Cost might not necessarily be a Nash
equilibrium; callOptimumthis least possible Social Cost. We will investigateCoordination Ratio[16] - the worst-case ratio
over all Nash equilibria, of Social Cost over Optimum. We areinterested in understanding the interplay between the topol-
ogy of the underlying interaction graph and the various existence, algorithmic, combinatorial, structural and optimality
properties of Nash equilibria in this new model of selfish restricted scheduling with bounded interaction.

Contribution and Significance.We partition our results into three major groups:

3-regular interaction graphs (Section 3).It is easy to prove that the Social Cost of the standard fully mixed Nash equilibrium
for anyd-regular graph isd − f(d, n), wheref(d, n) is a function that goes to0 asn goes to infinity. This gives a general
but rather rough estimation of Social Cost for d-regular graphs; moreover, it does not say how the specific structure of
each particular 3-regular graph affects the Social Cost of the standard fully mixed Nash equilibrium. We continue to prove
much sharper estimations for the special class of 3-regulargraphs. Restricting our model of interaction graphs to3-regular
graphs led us to discover some nice structural properties oforientations in3-regular graphs, which were motivated by Nash
equilibria. However, we have so far been unable to generalize these properties to regular graphs of degree higher than3.

We pursue a thorough study of 3-regular interaction graphs;these graphs further restrict the bounded interaction by
insisting that each machine is accessible to just three users. Specifically, we focus on the standard fully mixed Nash
equilibrium where all probabilities of assigning users to machines are12 . We ask which the best 3-regular interaction
graph is in this case. This question brings into context the problem of comparing against each other the expected number
of 2-orientations and 3-orientations - those with makespan2 and 3, respectively. The manner in which these numbers
outweigh each other brings Social Cost closer to either 2 or 3. We develop some deep graph-theoretic lemmas about 2-
and 3-orientations in 3-regular graphs to prove, as our mainresult, that the simplest 3-regular parallel links graph isthe
best-case 3-regular graph in this setting. The proof decomposes any 3-regular graph down to the parallel links graph in a
way that Social Cost of the standard fully mixed Nash equilibrium does not increase. The graph theoretic lemmas about
2- and 3-orientations are proved using both counting and mapping techniques; both the lemmas and their proof techniques
are, we believe, of more general interest and applicability.

Bound on Coordination Ratio (Section 4).For the more general model of restricted parallel links, a tight bound ofΘ( log n
log log n )

on Coordination ratio restricted to pure Nash equilibria was shown in [9, Theorem 5.2] and independently in [1, Theorem 1].
This implies an upper bound ofO( log n

log log n ) on the Coordination Ratio for pure Nash equilibria in our model as well. We

construct an interaction graph incurring Coordination Ratio Ω( log n
log log n ) to prove that this bound is tight for the model of

interaction graphs as well. The construction extends an approach followed in [9, Lemma 5.1] that proved the same lower
bound for the more general model of restricted parallel links.

The Fully Mixed Nash Equilibrium (Section 5).We pursue a thorough study of fully mixed Nash equilibria across interac-
tion graphs. Our findings are outlined as follows:

– There exist counterexample interaction graphs for which fully mixed Nash equilibria may not exist. Among them are
all trees and meshes. These counterexamples provide some insight about a possible graph-theoretic characterization of
interaction graphs admitting a fully mixed Nash equilibrium. 4-cycles and 1-connectivity are factors expected to play
a role in this characterization.

– We next consider the case where infinitely many fully mixed Nash equilibria may exist. In this case, the fully mixed
Nash dimension is defined to be the dimensiond of the smallestd-dimensional space that can contain all fully mixed
Nash equilibria. For complete bipartite graphs, we prove a dichotomy theorem that characterizes unique existence. The
proof employs arguments from Linear Algebra. For hypercubes, we have only been able to prove that the fully mixed
Nash dimension is the hypercube dimension for hypercubes ofdimension 2 or 3. We conjecture that this is true for all
hypercubes, but we have only been able to observe that the hypercube dimension is a lower bound on the fully mixed
Nash dimension (for all hypercubes).

– We are finally interested in understanding whether (or when)the fully mixed Nash equilibrium is the worst-case
one in this setting. We present counterexample interactiongraphs to show that the fully mixed Nash equilibrium is
sometimes the worst-case Nash equilibrium, but sometimes not. For the hypercube, there is a pure Nash equilibrium
that is worse (with respect to Social Cost) than the fully mixed one. On the other hand, for the 3-cycle the fully mixed
Nash equilibrium has worst Social Cost.

Related Work and Comparison.Our model of interaction graphs is the special case of the model of restricted parallel
links introduced and studied in [9], where each user is now further restricted to have access to only two machines. The
work in [9] focused on the problem of computing pure Nash equilibria for that more general model. Awerbuch et al. [1]
also considered the model of restricted parallel links, andproved a tight upper bound ofΘ( log n

log log log n ) on Coordination
Ratio for all (mixed) Nash equilibria. This implies a corresponding upper bound for our model of interaction graphs. It
is an open problem whether this bound ofO( log n

log log log n ) is tight for the model of interaction graphs, or whether a better
upper bound on Coordination Ratio for all (mixed) Nash equilibria can be proved.

The model of restricted parallel links is, in turn, a generalization of the so calledKP-model for selfish routing [16],
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which has been extensively studied in the last five years; seee.g. [3–5, 7–11,19, 20]. Social Cost and Coordination Ra-
tio were originally introduced in [16]. Bounds on Coordination Ratio are proved in [3, 8–10,20]. The fully mixed Nash
equilibrium was introduced and studied in [20], where its unique existence was proved for the originalKP-model. The
Fully Mixed Nash Equilibrium Conjecture, stating that the fully mixed Nash equilibrium maximizes Social Cost, was first
explicitly stated in [11]. It was proved to hold for special cases of the KP-model [11, 19] and for variants of this model [9,
10]. Recently the Fully Mixed Nash Equilibrium Conjecture was disproved for the originalKP-model and the case that job
sizes arenon-identical[6]. This stands in sharp contrast to the model considered inthis paper where job sizes areidentical.

The model of interaction graphs is an alternative tographical games[14] studied in the Artificial Intelligence commu-
nity. The essential difference is that in graphical games, users and resources are modeled as vertices and edges, respectively.
The problem of computing Nash equilibria for graphical games has been studied in [13, 14, 18]. Other studied variants of
graphical games include thenetwork gamesstudied in [12],multi-agent influence diagrams[15] andgame networks[17].

2 Framework and Preliminaries

For all integersk ≥ 1, denote[k] = {1, . . . , k}.
Interaction Graphs. We consider a graphG = (V, E) where edges and vertices correspond to users and machines,
respectively. Assume there arem users andn machines, respectively, wherem > 1 andn > 1. Each user has a unit job.
From here on, we shall refer to users and edges (respectively, machines and vertices) interchangeably. So, an edge connects
two vertices if and only if the user can place his job onto the two machines.
Strategies and Assignments.A pure strategyfor a user is one of the two machines it connects; so, a pure strategy represents
an assignment of the user’s job to a machine. Amixed strategyfor a user is a probability distribution over its pure strategies.
A pure assignmentL = 〈ℓ1, . . . , ℓm〉 is a collection of pure strategies, one for each user. A pure assignment induces an
orientation of the graphG in the natural way. Amixed assignmentP = (pij)i∈[n],j∈[m] is a collection of mixed strategies,
one for each user. A mixed assignmentF is fully mixed [20, Section 2.2] if all probabilities are strictly positive. The
standard fully mixed assignmentF̃ is the fully mixed one where all probabilities are equal to1

2 . Thefully mixed dimension
of a graphG is the dimensiond of the smallestd-dimensional space that contains all fully mixed Nash equilibria for this
graph.
Cost Measures.For a pure assignmentL, the load of a machinej ∈ [n] is the number of users assigned toj. The
Individual Costfor useri ∈ [m] is λi = |{k : ℓk = ℓi}|, the load of the machine it chooses. For a mixed assignment
P = (pij)i∈[m],j∈[n], theexpected loadof a machinej ∈ [n] is the expected number of users assigned toj. TheExpected
Individual Costfor useri ∈ [m] on machinej ∈ [n] is the expectation, according toP, of the Individual Cost for useri on
machinej, then,λij = 1 +

∑
k∈[m],k 6=i pkj . TheExpected Individual Costfor useri ∈ [m] is λi =

∑
j∈[n] pijλij .

Associated with a mixed assignmentP is theSocial CostSC(G,P) = EP

(
maxv∈[n] |{k : ℓk = v}|

)
, that is, Social

Cost is the expectation, according toP, of makespan (that is, maximum load). TheOptimumOPT(G) is defined as the least
possible, over all pure assignmentsL = 〈ℓ1, . . . , ℓn〉 ∈ [n]m, makespan; that is,OPT(G) = minL∈[n]m maxv∈[n] |{k :
ℓk = v}|.
Nash Equilibria and Coordination Ratio. We are interested in a special class of (pure or) mixed assignments calledNash
equilibria [21] that we describe here. The mixed assignmentP is a Nash equilibrium [9, 16] if for each useri ∈ [m], it
minimizesλi(P) over all mixed assignments that differ fromP only with respect to the mixed strategy of useri. Thus, in
a Nash equilibrium, there is no incentive for a user to unilaterally deviate from its own mixed strategy in order to decrease
its Expected Individual Cost. Clearly, this implies thatλij = λi if pij > 0 whereasλij ≥ λi otherwise. We refer to these
conditions asNash equationsandNash inequalities, respectively.

TheCoordination RatioCRG for a graphG is the maximum, over all Nash equilibriaP, of the ratio SC(G,P)
OPT(G) ; thus,

CRG = maxP

SC(G,P)
OPT(G) . TheCoordination RatioCR is the maximum, over all graphsG and Nash equilibriaP, of the ratio

SC(G,P)
OPT(G) ; thus,CR = maxG,P

SC(G,P)
OPT(G) . Our definitions forCRG andCR extend the original definition of Coordination

Ratio by Koutsoupias and Papadimitriou [16] to encompass interaction graphs.
Graphs and Orientations. Some special classes of graphs we shall consider include thecycle Cr on r vertices; the
complete bipartite graph (or biclique)Kr,s which is a simple bipartite graph with partite sets of sizer ands respectively,
such that two vertices are adjacent if and only if they are in different partite sets; the hypercubeHr of dimensionr whose
vertices are binary words of lengthr connected if and only if their Hamming distance is1. For a graphG, denote∆G

the maximum degree ofG. A graph isd-regular if all vertices have the same degreed. The graph consisting of 2 vertices
and 3 parallel edges will be callednecklace. Also, for evenn, G‖(n) will denote theparallel linksgraph, i.e., the graph
consisting ofn2 necklaces.

An orientationof an undirected graphG results when assigning directions to its edges. Themakespanof a vertex in an
orientationα is the in-degree it has inα. Themakespanof an orientation is the maximum vertex makespan. For any integer
d, ad-orientation is an orientation with makespand in a graphG; denoted-or(G) the set ofd-orientations ofG.
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3 3-Regular Graphs

In this section, we consider the problem of determining the best-cased-regular graph among the class of alld-regular
graphs with a given number of vertices (and, therefore, withthe same number of edges), with respect to the Social Cost of
the standard fully mixed Nash equilibrium, where all probabilities are equal to1/2.

A Rough Estimation. We start with a rough estimation of the Social Cost of anyd-regular graphG, whered ≥ 2. We
first prove a technical lemma about the probability that sucha random orientation has makespan at mostd− 1. Denote this
probabilityqd(G).

Lemma 1. LetI be an independent set ofG. Then,qd(G) ≤
(
1 − 1

2d

)|I|.
.

We are now ready to prove:

Theorem 1. For a d-regular graphG with n vertices,SC(F̃, G) = d − f(n, d), wheref(n, d) → 0 asn → ∞.

Proof. Since every maximal independent set ofG has size at least⌈ n
d+1⌉, Lemma 1 implies thatqd(G) ≤

(
1 − 1

2d

) n
d+1 .

Thus,SC(F̃, G) ≥ qd(G) + d(1− qd(G)) = d− (d− 1)qd(G), so thatSC(F̃, G) = d− f(n, d), wheref(n, d) tends to0
asn → ∞, as needed. ⊓⊔

Cactoids and the Two-Sisters Lemma.The rest of our analysis will deal with 3-regular graphs. We will be able to
significantly strengthen and improve Theorem 1 for the special case of 3-regular graphs. We define a structure that we will
use in our proofs.

Definition 1 (Cactoids).A cactoid is a pairĜ = 〈V, Ê〉, whereV is a set of vertices and̂E is a set consisting of undirected
edges between vertices, and pointers to vertices, i.e., loose edges incident to one single vertex.

A cactoid is called 3-regular if each vertex is incident to three elements from̂E. A cactoid may be considered as a
standard multigraph if we add a special vertex and we replaceeach pointer by an edge which connects the special vertex
with the vertex the pointer is incident to.

Consider now any arbitrary but fixed orientationσ of Ĝ. Call it standard orientation. We will now define variables
xα(e) for eache ∈ Ê, which take values from{0, 1} in each possible orientationα of Ĝ. The values are defined with
reference to the standard orientationσ. So, take any arbitrary orientationα of Ĝ. For eache ∈ Ê, xα(e) = 1 if e has the
same direction inα andσ, and0 otherwise. Note thatxσ(e) = 1 for all e ∈ Ê.

We now continue with a lemma that estimates the probability that a random orientation is a 2-orientation in a 3-regular
cactoidĜ. Consider two verticesu andv called the two sisters with incident pointersπu andπv. Assume that in the standard
orientationσ, πu andπv point away fromu andv, respectively. DenoteP bG(i, j) the probability that a random orientation
α with xα(u) = i andxα(v) = j, wherei, j ∈ {0, 1}, is a 2-orientation. Clearly, by our assumption on the standard
orientationσ, P bG(1, 1) is not smaller than each ofP bG(0, 0), P bG(0, 1) andP bG(1, 0). However, we prove thatP bG(1, 1) is
upper bounded by their sum.

Lemma 2 (Two Sisters Lemma).For any 3-regular cactoidĜ = 〈V, Ê〉 and any two sistersu, v ∈ V , it holds that
P bG(0, 0) + P bG(0, 1) + P bG(1, 0) ≥ P bG(1, 1).

Proof. Denoteb1, b2 andb3, b4 the other edges or pointers incident to the two sistersu andv, respectively. Define the
standard orientationσ so that these edges or pointers point towardsu or v, respectively. DenotêG′ the cactoid obtained
from Ĝ by deleting the two sistersu andv and their pointersπu andπv. DefineP
G′(x1, x2, x3, x4) the probability that a

random orientationα of the cactoid̂G′ with xα(bi) = xi for 1 ≤ i ≤ 4 is a 2-orientation. Then,

P bG(1, 1) =
1

16

∑

x1,x2,x3,x4∈{0,1}

P
G′(x1, x2, x3, x4) , P bG(0, 0) =
1

16

∑

x1·x2=0,x3·x4=0

P
G′(x1, x2, x3, x4) ,

P bG(0, 1) =
1

16

∑

x1,x2∈{0,1},x3·x4=0

P
G′(x1, x2, x3, x4), and P bG(1, 0) =
1

16

∑

x1·x2=0,x3,x4∈{0,1}

P
G′(x1, x2, x3, x4) .

Set nowD = 16 ·
(
P bG(0, 0) + P bG(0, 1) + P bG(1, 0) − P bG(1, 1)

)
. It suffices to prove thatD ≥ 0. Clearly,

D = 2
∑

x1·x2=0,x3·x4=0

P
G′(x1, x2, x3, x4) − P (1, 1, 1, 1) .
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Use now the cactoid̂G′ to define the probabilitiesQ(i, j) and R(i, j) wherei, j ∈ {0, 1} as follows:Q(i, j) is the
probability that a random orientationα of the cactoid̂G′ with xα(b1) = i andxα(b2) = j is a 2-orientation;R(i, j) is the
probability that a random orientationα of the cactoid̂G′ with xα(b3) = i andxα(b4) = j is a 2-orientation. Clearly,

Q
G′(i, j) =
∑

x3,x4∈{0,1}

P
G′(i, j, x3, x4) and R
G′(i, j) =
∑

x1,x2∈{0,1}

P
G′(x1, x2, i, j) .

We proceed by induction on the number of vertices ofĜ. So, it suffices to assume the claim for the cactoidĜ′ and prove
the claim for the cactoid̂G. Assume inductively thatQ
G′(0, 0) + Q
G′(0, 1) + Q
G′(1, 0) ≥ Q
G′(1, 1) andR
G′(0, 0) +
R
G′(0, 1) + R
G′(1, 0) ≥ R
G′(1, 1). These inductive assumptions and the definitions ofQ
G′ andR
G′ imply that

∑

x3,x4∈{0,1}
x1·x2=0

P
G′(x1, x2, x3, x4) ≥
∑

x3,x4∈{0,1}

P
G′(1, 1, x3, x4) ,

∑

x1,x2∈{0,1}
x3·x4=0

P
G′(x1, x2, x3, x4) ≥
∑

x1,x2∈{0,1}

P
G′(x1, x2, 1, 1) .

From the first inequality we obtain,

∑

x3·x4=0

x1·x2=0

P
G′(x1, x2, x3, x4) ≥
∑

x3,x4∈{0,1}

P
G′(1, 1, x3, x4) −
∑

x1·x2=0

P
G′(x1, x2, 1, 1) .

From the second inequality we get,

∑

x1·x2=0

x3·x4=0

P
G′(x1, x2, x3, x4) ≥
∑

x1,x2∈{0,1}

P
G′(x1, x21, 1) −
∑

x3·x4=0

P
G′(1, 1, x3, x4) .

Adding up the last two inequalities yields that2
∑

x1·x2=0

x3·x4=0

P
G′(x1, x2, x3, x4) ≥ 2P
G′(1, 1, 1, 1), which impliesD ≥ 0,

and the claim follows. ⊓⊔

Orientations and Social Cost.In this section, we prove a graph-theoretic result, namely that the regular parallel links
graph minimizes the number of 3-orientations among all 3-regular graphs with the same number of vertices.

Theorem 2. For every 3-regular graphG with n vertices it holds that|3-or(G)| ≥ |3-or(G‖(n))|.

Proof. In order to prove the claim, we start from the graphG0 = G = (V, E0) and iteratively define graphsGi = (V, Ei),
1 ≤ i ≤ r, for somer ≤ n, in a way thatGr equalsG‖(n) and|3-or(Gi)| ≥ |3-or(Gi+1)| holds for all1 ≤ i < r.

Note that in each 3-regular graph, each connected componentis either isomorphic to a necklace or it contains a path of
length 3 connecting four different vertices, such that onlythe middle edge of this path can be a parallel edge. If inGi all
connected components are necklaces, thanGi is equal toG‖(n), otherwise some connected component ofGi contains a
pathc, a, b, d with 4 different verticesa, b, c, d. In the latter case, construct a new graphGi+1 = (V, Ei+1) by deleting the
edges{a, c}, {b, d} from Ei and adding the edges{a, b}, {c, d} to the graph as described in the following paragraph.

e4

e5

e6

e7

e8

e9

e1

e2

e3
e5

e1 e2

e4

e3

e6

e7

e8

e9

iG i+1G

b

a c

db

a

d

c

Fig. 1. Constructing the graphGi+1 from Gi.

As illustrated in Figure 1, the edges incident to verticesa, b, c, d are numbered by somej, where1 ≤ j ≤ 9. In this
figure, all the edges are different. This does not necessarily have to be the case. It may happen thate4 = e5 resulting in
two parallel edges betweena andb in Gi and three parallel edges betweena andb in Gi+1. It may also happen thate6 or
e7 is equal toe8 or e9. It is not possible thate6 or e7 is equal toe2 (or thate8 or e9 is equal toe3) since we assumed that
in the pathc, a, b, d only the middle edge may be a parallel edge. It may be also possible thate4 is equal toe8 or e9, and
thate5 is equal toe6 or e7. Note also that in each iteration step, the number of single edges is decreased by at least1. So
the number of iteration steps is bounded byn.
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First, we will show that|3-or(Gi)| ≥ |3-or(Gi+1)| holds if all the edgese1, . . . , e9 are different. We will consider the
more general case in which some of theej ’s are equal at the end of the proof. To make the notation simpler, we seti = 1,
i.e., we consider the graphsG1 andG2. Note that there is a one-to-one correspondence between edges inG1 and edges in
G2. This implies that any arbitrary orientation inG1 can be interpreted as an orientation inG2 and vice versa. Take the
standard orientation ofG1 to be the one consistent with the arrows in Figure 2. The interpretation of this orientation forG1

yields the standard orientation forG2 (also shown in Figure 2).

e4

e5

e6

e7

e8

e9

e1

e2

e3
e5

e1 e2

e4

e3

e6

e7

e8

e9
b

a c

db

a

d

c

GG 1 2

Fig. 2. The standard orientations inG1 andG2.

We will prove our claim by defining an injective mappingF : 3-or(G2) → 3-or(G1). We want to use the identity
mapping as far as possible. We setC2 = {α ; α ∈ 3-or(G2) , α /∈ 3-or(G1)} andC1 = {α ; α ∈ 3-or(G1) , α /∈
3-or(G2)}, and we will defineF such thatF (α) = α for α ∈ 3-or(G2) \ C2 and thatF : C2 → C1 is injective. Note that
a mappingF : 3-or(G2) → 3-or(G1) defined this way is injective, since ifβ ∈ C1, thenβ /∈ 3-or(G2) and thereforeβ is
not an image when using the identity function.
Let α be an arbitrary orientation. Note that all verticesu /∈ {a, b, c, d} have the same makespan inG1 and inG2 with
respect toα. We identify first the classC2 and consider the verticesa, b, c, d. We observe:

a has makespan 3 inG2 ⇒ x1 = x2 = x4 = 1
⇒ a has makespan 3 inG1

d has makespan 3 inG2 ⇒ x3 = 0, x8 = x9 = 1
⇒ d has makespan 3 inG1

b has makespan 3 inG2 ⇒ x1 = x2 = 0 , x5 = 1
x3 = 1 ⇒ b has makespan 3 inG1

x3 = 0 , x8 = x9 = 1 ⇒ d has makespan 3 inG1

x6 = x7 = 1 ⇒ c has makespan 3 inG1

c has makespan 3 inG2 ⇒ x3 = x6 = x7 = 1
x2 = 0 ⇒ c has makespan 3 inG1

x1 = 0 ∧ x5 = 1 ⇒ b has makespan 3 inG1

x2 = 1 ∧ x1 = x4 = 1 ⇒ a has makespan 3 inG1

Collecting this characterization, we construct the classC2 as

C2 = {α /∈ 3-or(G1) ; x1 = x2 = x3 = 0 ∧ x5 = 1 ∧ x6 · x7 = x8 · x9 = 0}

∪ {α /∈ 3-or(G1) ; x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ (x1 = 1 ∨ x5 = 0)} .

In a similar way, we construct the classC1 as

C1 = {α /∈ 3-or(G2) ; x1 = 0 ∧ x2 = x3 = x5 = 1 ∧ x6 · x7 = 0}

∪ {α /∈ 3-or(G2) ; x2 = x3 = 0 ∧ x6 = x7 = 1 ∧ x8 · x9 = 0 ∧ (x1 = 1 ∨ x5 = 0)} .

Now, to defineF , we consider four cases about orientationsα ∈ C2:

(1) Considerα ∈ C2 with
x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ x8 · x9 = 0 ∧ (x1 = 1 ∨ x5 = 0).
SetF (x1, 1, 1, x4, x5, 1, 1, x8, x9, . . . ) = (x1, 0, 0, x4, x5, 1, 1, x8, x9, . . . ).

e4

e5

e6

e7

e8

e9
e5

e4
e6

e7

e8

e9

e1 e2 e3 e1

e2

e3

G2inα αF(   ) G 1in

b

a c

db

a

d

c

Fig. 3. The mappingF .

Note that vertices from{a, b, c, d} have the same connections to vertices outside{a, b, c, d}; therefore,α /∈ 3-or(G1)
implies thatF (α) /∈ 3-or(G2). This implies thatF (α) ∈ C1.
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(2) Considerα ∈ C2 with x1 = x2 = x3 = 0 ∧ x5 = 1 ∧ x6 · x7 = 0 ∧ x8 · x9 = 0.
SetF (0, 0, 0, x4, 1, x6, x7, x8, x9, . . . ) = (0, 1, 1, x4, 1, x6, x7, x8, x9, . . . ).
In a way similar to case (1), we conclude thatF (α) ∈ C1.

After these two cases, any orientationα ∈ H2 with

H2 = {α ∈ C2 | x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ x8 = x9 = 1 ∧ (x1 = 1 ∨ x5 = 0)}

has not been mapped byF , and orientationsβ ∈ H1 with

H1 = {β ∈ C1 | x2 = x3 = 0 ∧ x6 = x7 = 1 ∧ x1 = x4 = 1 ∧ x8 · x9 = 0}

∪ {β ∈ C1 | x1 = 0 , x2 = x3 = x5 = 1 ∧ x6 · x7 = 0 ∧ x8 = x9 = 1}

are not images underF . We continue with these orientations.

(3) Set

H21 = {α ∈ C2 ; x2 = x3 = x6 = x7 = x8 = x9 = 1 ∧ x1 = 1 ∧ x4 = 0}

H11 = {β ∈ C1 ; x2 = x3 = 0 ∧ x1 = x4 = x6 = x7 = 1 ∧ x8 · x9 = 0}

We will show that|H21| ≤ |H11| holds.
Consider the cactoidsT21 andT11 obtained by omitting the verticesa, b, c, d from H21 andH11, respectively.T21

andT11 consist of edges and 6 pointersej, 4 ≤ j ≤ 9. Fixing the directions of the pointers in the same way as in
the definitions ofH21 andH11, respectively, the number of2-orientations ofT21 is equal to|H21| and the number of
2-orientations ofT11 is equal to|H11|. See Figure 4 for an illustration.

e4

e5

e6

e7

e8

e9
e5

e4
e6

e7

e8

e9

e1 e2 e3 e1

e2

e3

H11

b

a c

db

a

d

c

H21

Fig. 4.Orientations from the setsH21 andH11.

The pointerse6 ande7 have the same directions inT21 andT11 ande5 has no specified direction in both cases. Edgee4

has different directions inT21 andT11. Directing edgee4 in T21 towards vertexa would lead to an increased number
of 2-orientations since the other vertex incident toe4 has in this case makespan 2 with a larger probability. LetT̃21 be
the cactoid obtained fromT21 by directing edgee4 towardsa. ThenT̃21 andT11 differ only in the directions given to
edgese8 ande9.
Let P (i, j) be the probability of a2-orientation inG2 if x8 = i andx9 = j. Setm = 3

2n. Then, |H11|
2m−3 = P (0, 0) +

P (0, 1) + P (1, 0) ≥ P (1, 1) ≥ |H21|
2m−3 , because of Lemma 2. It follows that|H21| ≤ |H11|.

(4) To finish the first part of the proof, set

H22 = {β ∈ C2; x2 = x3 = x6 = x7 = x8 = x9 = 1 ∧ x1 = x5 = 0}

H12 = {β ∈ C1; x1 = 0 ∧ x2 = x3 = x5 = x8 = x9 = 1 ∧ x6 · x7 = 0}

See Figure 5 below for an illustration. In the same way as in case (3), we show that|H22| ≤ |H12|.

e4

e5

e6

e7

e8

e9
e5

e4
e6

e7

e8

e9

e1 e2 e3 e1

e2

e3
b

a c

db

a

d

c

H H1222

Fig. 5.Orientations from the setsH22 andH12.
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SinceH2 = H21 ∪ H22 andH1 = H11 ∪ H12, there exists an injective mapping

F : 3-or(G2) → 3-or(G1)

in the case that all edgese4, . . . , e9 are different.
Now we consider the case that some of these edges are equal. Ifei = ej then in each orientationα the variablesxi and

xj get opposite values. Recall that the construction and proofof injectivity of the mappingF , which we described above,
was done in 3 steps:

(i) We definedF (α) = α for all α ∈ 3-or(G2) \ C2

(ii) In cases (1) and (2) for some well definedα = (x1, . . . , x9, . . . ), the valueF (α) is obtained by negatingx2 andx3

and leaving the other directions unchanged.
(iii) |H2| ≤ |H1| is shown for the remaining cases.

Steps (i) and (ii) are not influenced by settingxi = x̄j for somei, j ∈ {4, . . . , 9}, i 6= j. So it remains to consider step
(iii). If ei = ej for i ∈ {6, 7}, j ∈ {8, 9}, thenxi = x̄j holds and this implies thatH2 = ∅, since for allα ∈ H2 it holds
x6 = x7 = x8 = x9 = 1. Clearly, this implies|H2| ≤ |H1|.

So we can assume now thatei 6= ej for i ∈ {6, 7}, j ∈ {8, 9} and we consider the casee4 = e5. We will show first that
|H21| ≤ |H11| holds also in this case. Consider the cactoidsT21 andT11 obtained by deleting the verticesa, b, c, d from
H21 andH11. Since edgee4 = e5 connects verticesa andb, it is also deleted when the cactoids are formed. Each of the
cactoidsT11 andT21 has now only the 4 pointersej, 6 ≤ j ≤ 9. A simple inspection of the proof given above shows that
|H21| ≤ |H11| holds also in this case. Furthermore,|H22| ≤ |H21| can be shown in the same way. The casese4 = e8 and
e5 = e6 can be handled in a very similar way. This completes the proofof the claim. ⊓⊔

Our main result follows now as an immediate consequence of Theorem 2.

Corollary 1. For a 3-regular graphG with n vertices,SC(G, F̃) ≥ SC(G‖(n), F̃) = 3 −
(

3
4

)n/2
.

We can also show that equality doesnothold in Corollary 1.

Example 1. There is a 3-regular graph for which the Social Cost of the standard fully mixed Nash equilibrium is larger
than for the corresponding parallel links graph.

4 Coordination Ratio

In this section, we present a bound on the Coordination Ratiofor pure Nash equilibria.

Theorem 3. Restricted to pure Nash equilibria,CR = Θ
(

log n
log log n

)
.

Proof. Upper bound:Since our model is a special case of the restricted parallel links model, the upper boundO
(

log n
log log n

)

in [9] also holds for our model.

Lower bound:Let G be the complete tree of heightk, where each vertex in layerl, 0 ≤ l ≤ k hask− l children. Denote by
kl = k(k−1)·. . .·(k−l) thelth falling factorialof k. Then, the number of vertices isn =

∑
0≤l≤k kl < (k+1)! = Γ (k+2).

This impliesk > Γ−1(n) − 2.

(1.) Denote byL1 the pure assignment in which all users are assigned toward the root. Clearly, the Individual Cost of a
user assigned to a vertex in layerl is k − l. Moreover, such a user can not improve by moving to its vertexin layer
(l + 1). Thus,L1 is a pure Nash equilibrium with Social Costk.

(2.) Denote byL2 the pure assignment in which all users are assigned toward the leaves. Clearly, the Individual Cost of all
users is1. Thus, the Social Cost ofL2 is 1.

It follows thatmaxG,L
SC(G,L)
OPT(G) ≥ SC(G,L1)

SC(G,L2)
= k > Γ−1(n) − 2 = Ω

(
log n

log log n

)
, as needed. ⊓⊔

Observation 1. Restricted to pure Nash equilibria, for any interaction graphG, CRG ≤ ∆G, and this bound is tight.
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5 The Fully Mixed Nash Equilibrium

In this section, we study the fully mixed Nash equilibrium. For a graphG = (V, E), for each edgejk ∈ E, denotejk the
user corresponding to the edgejk. Denotep̂jk andp̂kj the probabilities (according toP) that userjk chooses machinesj
andk, respectively. For each machinej ∈ V , the expected load of machinej excluding a set of edges̃E, denotedπP(j)\Ẽ,
is the sum

∑
kj∈E\ eE p̂kj . As a useful combinatorial tool for the analysis of our counterexamples, we prove:

Lemma 3 (The 4-Cycle Lemma).Take any 4-cycleC4 in a graphG, and any two verticesu, v ∈ C4 that are non-adjacent
in C4. Consider a Nash equilibriumP for G. Then,πP (u) \ C4 = πP (v) \ C4.

Non-Existence Results.We first observe:

Counterexample 1. There is no fully mixed Nash equilibrium for trees and meshes.

We remark that the crucial property of trees that was used in the proof of Counterexample 1 is that each tree contains
at least one leaf. Thus, Counterexample 1 actually applies to the more general class of graphs with no vertex of degree 1.
We continue to prove:

Counterexample 2. For each graph in Figure 1, there is no fully mixed Nash equilibrium.

Our six counterexample graphs suggest that the existence of4-cycles across the “boundary” of a graph or1-connectivity
may be crucial factors that disallow the existence of fully mixed Nash equilibria. Of course, this remains yet to be proven.

Uniqueness and Dimension Results.ForComplete Bipartite Graphs, we prove:

Theorem 4. Consider the complete bipartite graphKr,s, wheres ≥ r ≥ 2 and s ≥ 3. Then, the fully mixed Nash
equilibriumF for Kr,s exists uniquely if and only ifr > 2. Moreover, in caser = 2, the fully mixed Nash dimension of
Kr,s is s − 1.

Hypercube Graphs.Observe first that, in general, any point in(0, 1)r is mapped to a fully mixed Nash equilibrium with
equal Nash probabilities on all edges of the same dimension (and “pointing” to the same direction). This implies:

Observation 2. Consider the hypercubeHr, for anyr ≥ 2. Then, the fully mixed Nash dimension ofHr is at leastr.

To show thatr is also an upper bound, we need to prove that no other fully mixed Nash equilibria exist. We manage to
do this only forr ∈ {2, 3}.

Theorem 5. Consider the hypercubeHr, for r ∈ {2, 3}. Then, the fully mixed Nash dimension isr.

Worst-Case Equilibria. We present two counterexamples to show that a fully mixed Nash equilibrium is not necessarily
the worst-case Nash equilibrium, but it can be.

Counterexample 3. There is an interaction graph for which no fully mixed Nash equilibrium has worst Social Cost.
Counterexample 4. There is an interaction graph for which there exists a fully mixed Nash equilibrium with worst Social
Cost.

6 Epilogue

We introduced a simple graph-theoretic model, calledinteraction graphs, to address the effect of structured and sparse
interactions among users and machines in complex multischeduling systems. Within our new model, we studied the impact
of selfish behavior of the users reaching a stable state of thesystem modeled as a Nash equilibrium [21]. In this setting,
we investigated the amount of performance loss under various topological assumptions on interaction graphs. As our main
result, we determined that the simplest parallel links graph is the best among all 3-regular graphs with respect to expected
makespan in the standard fully mixed Nash equilibrium. The proof of our main result has required a lot of non-standard
structural graph theory to be proven.

Our work presents a new genre of mathematical problems in relation to the model of interaction graphs that remain
tantalizingly open. We conclude by listing a few of them here:

– Extend our analysis on the optimality of the parallel links graph to alld-regular graphs, for any fixedd > 3.
– Is the standard fully mixed Nash equilibrium essential for the optimality of the parallel links graph? Or does the

optimality hold for all fully mixed Nash equilibria?
– Characterize in graph-theoretic terms the graphs for whicha fully mixed Nash equilibrium exists, and those for which

a fully mixed Nash equilibrium is (respectively, is not) theworst Nash equilibrium.
– Is Θ( log n

log log n ) the right bound on Coordination Ratio for all mixed Nash equilibria? Or is itΘ( log n
log log log n )? We know

it is Ω( log n
log log n ) andO( log n

log log log n ).
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– Extend our model to encompass the more realistic assumptions of non-unit weights for the users and capacities for the
links (cf. [16]), or the capability of users to place their jobs on more then two machines (that is, the interaction graph
becomes a hypergraph). It will be very interesting to study the impact of these additional dimensions.

In conclusion, our work deals with a currently trendy topic,namely the (impact of) selfish behavior of users, in a simple
graph-theoretic model for restricted scheduling, namely the interaction graphs. Numerous open problems and issues re-
main, and we believe that our work will stimulate further research on the topic.

Acknowledgments:We thank Paul Spirakis and Karsten Tiemann for helpful discussions on the topic of our work.
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Appendix

Fig. 6. Six counterexample graphs

Proof of Lemma 1

Consider an independent setI = {v1, . . . , vr} of G. For eachj, 1 ≤ j ≤ r, denoteEj the set of edges incident toj.
Clearly,|Ej | = d for all j. Moreover, for all indicesj andh, j 6= h, Ej andEh are disjoint sinceI is an independent set.
Choose any arbitrary vertexv ∈ I. The probability thatv has makespan≤ d − 1 is 1 − 1

2d . Since all setsEj , 1 ≤ j ≤ r,

are disjoint, the probability that all vertices fromI have makespan≤ d − 1 is
(
1 − 1

2d

)|I|
. The probability that all vertices

from V have makespan≤ d − 1 is no larger, and the claim follows. ⊓⊔

Proof of Corollary 1

For each orientation of a 3-regular graph, the makespan is atleast 2. SoSC(G, F̃) = 2 ·q3(G)+3(1−q3(G)) = 3−q3(G).

Because of Theorem 3.3q3(G) ≤ q3(G‖(n)) =
(

3
4

)n/2
, as needed. ⊓⊔

Example 1

LetG be the complete graph with 4 vertices andG′ be the corresponding parallel links graph. DenoteF̃ andF̃′ the standard
fully mixed Nash equilibria for the graphG andG′, respectively. Each graph has exactly 6 edges, so there are26 = 64
possible assignments of the users. Since we consider the standard fully mixed Nash equilibrium, each of these assignments
is equiprobable. Enumerating all possible assignments andcounting the number of 3-orientations (the ones with makespan
3) we get 32 and 28 forG andG′, respectively. Thus,SC(G, F̃) > SC(G′, F̃′). ⊓⊔

i



Proof of the 4-Cycle Lemma

DenoteC4 = u, x, v, y, u. We will write down the Nash equations for usersux, xv, vy andyu. These are

(i) πP (u) \ C4 + p̂yu = πP (x) \ C4 + p̂vx,
(ii) πP (x) \ C4 + p̂ux = πP (v) \ C4 + p̂yv,
(iii) πP (y) \ C4 + p̂uy = πP (v) \ C4 + p̂xv,
(iv) πP (u) \ C4 + p̂xu = πP (y) \ C4 + p̂vy.

Adding all these equations and using the fact that for any user ab we havêpab = 1 − p̂ba, it follows that

2πP (u) \ C4 + πP (x) \ C4 + πP (y) \ C4 = 2πP (v) \ C4 + πP (x) \ C4 + πP (y) \ C4 .

This implies thatπP (u) \ C4 = πP (v) \ C4, as needed. ⊓⊔

Counterexample 1

Assume, by way of contradiction, that a fully mixed Nash equilibrium F exists for a treeT . Take any edgeuv for a leafv
in T . The Nash equation for useruv is πP (u) − f̂vu = πP (v) − f̂uv or πP (u)− f̂vu = 0 (sincev is a leaf). Sinceu is not
a leaf,πP (u) − f̂vu > 0. A contradiction. The non-existence of fully mixed Nash equilibria for meshes is an immediate
consequence of the 4-Cycle Lemma. ⊓⊔

Counterexample 2

Consider the top left graph in Figure 6. Assume, by way of contradiction, that there is a fully mixed Nash equilibrium for
it. Name the machinesx, y, z, z′, x′, y′ from top to bottom. The Nash equations become

(i) f̂zx = f̂zy

(ii) f̂yx = f̂yz + f̂z′z

(iii) f̂xy = f̂xz + f̂z′z

(iv) f̂xz + f̂yz = f̂x′z′ + f̂y′z′

(v) f̂y′x′ = f̂y′z′ + f̂zz′

(vi) f̂x′y′ = f̂x′z′ + f̂zz′

(vii) f̂z′x′ = f̂z′y′

Recall, that for any userab we havef̂ab = 1 − f̂ba. It follows from (ii) and (iii) with (i) that f̂xy = 1
2 . By symmetry,

f̂x′y′ = 1
2 . Now adding (ii) and (v) yieldŝfyx + f̂y′x′ = f̂yz + f̂y′z′ +1 which implies thatf̂yz + f̂y′z′ = 0, a contradiction

to the assumption that there is a fully mixed Nash equilibrium.

The 4-Cycle Lemma immediately implies that there is no fullymixed Nash equilibrium for the three graphs at the
bottom. The non-existence of the fully mixed Nash equilibrium for the two remaining graphs follows with arguments
similar to those we used for the top left graph. ⊓⊔

Proof of Theorem 4

For any integerk ≥ 2, denoteIk×k andJk×k the identitymatrix and thecomplementary identitymatrix, respectively; that
is,

Ik×k =




1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1


 and Jk×k =




0 1 . . . 1 1
1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 0


 .

Recall thats ≥ r ≥ 2 ands ≥ 3. We show in (1.) that there exists a unique fully mixed Nash equilibrium if and only if
r > 2. In (2.), we prove that the fully mixed dimension iss − 1 if r = 2.
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(1.) Define vectorsf1, f2, . . . , fr so that for each indexl, 1 ≤ l ≤ r, fl contains thes probabilities for each ofs users
attached to machinel in the right bipartition to assign its load to machinel. So, each vectorfl corresponds to a vertex
in the left partite set (of sizer); each such vector hass components, each corresponding to a vertex in the right partite
set. It is immediate to derive that the fully mixed Nash equations become




Js×s Is×s . . . Is×s Is×s

Is×s Js×s . . . Is×s Is×s

...
...

. . .
...

...
Is×s Is×s . . . Is×s Js×s


 ·




f1

f2

...
fr


 = (r − 1)




1
1
...
1


 .

Take any two adjacent block rows in the Nash equations. For example, take the first block row and the second block
row; these areJs×s · f1 + f2 + . . . + fr = (r − 1)1s×1 andf1 + Js×s · f2 + . . . + fr = (r − 1)1s×1. By subtraction,
it follows that Js×s · (f1 − f2) = f1 − f2. Since1 is not an eigenvalue ofJs×s, it follows that f1 = f2. In this
way, it is proved thatf1 = f2 = . . . = fr; set this common value tof . Then, each block row may be written as
Js×s · f + (r − 1)f = (r − 1)1s×1, or




r − 1 1 . . . 1 1
1 r − 1 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 r − 1


 · f = (r − 1)1s×1 .

This linear system has the solutionr−1
r+s−2 1s×1, which is unique if and only if the system matrix is non-singular; thus,

the fully mixed Nash equilibriumF exists uniquely if and only ifr > 2, as needed.
(2.) Assume now thatr = 2. Similar to the previous case (by swappingr ands), we can express the Nash equations with

help of the matrix

M =




J2×2 I2×2 I2×2 · · · I2×2 I2×2

I2×2 J2×2 I2×2 · · · I2×2 I2×2

...
. . .

...
...

. . .
...

I2×2 I2×2 I2×2 · · · J2×2 I2×2

I2×2 I2×2 I2×2 · · · I2×2 J2×2




.

We now proceed by deriving the dimension of the solution space with help of matrix manipulation. Fromi = 2 to s,
subtract theith row block from the(i − 1)th row block. This yields

M ′ =




J2×2 − I2×2 I2×2 − J2×2 0 · · · 0 0
0 J2×2 − I2×2 I2×2 − J2×2 · · · 0 0
...

. . .
. . .

...
...

. . .
. . .

...
0 0 0 · · · J2×2 − I2×2 I2×2 − J2×2

I2×2 I2×2 I2×2 · · · I2×2 J2×2




.

Then, fromi = 1 to s − 1, add theith row block ofM ′ to the(i + 1)the column block. This yields

M ′′ =




J2×2 − I2×2 0 0 · · · 0 0
0 J2×2 − I2×2 0 · · · 0 0
...

. . .
...

...
. . .

...
0 0 0 · · · J2×2 − I2×2 0

I2×2 2I2×2 3I2×2 · · · (s − 1)I2×2 J2×2 + (s − 1)I2×2




.

SinceM ′′ is a lower triangular matrix, it suffices to derive the rank ofthe matrices on the diagonal. On the one hand,
the determinant ofJ2×2 − I2×2 is

det(J2×2 − I2×2) =

∣∣∣∣
(
−1 1
1 −1

)∣∣∣∣ = 0.
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Thus, the rank ofJ2×2 − I2×2 is 1. On the other hand, the determinant ofJ2×2 + (s − 1)I2×2 is

det(J2×2 + (s − 1)I2×2) =

∣∣∣∣
(

s − 1 1
1 s − 1

)∣∣∣∣ = (s − 1)2 − 1
s≥3
> 0.

Thus, the rank ofJ2×2 + (s − 1)I2×2 is 2. Combining these results, we get that the rank ofM ′′ is s + 1. This implies
that the kernel has dimension2s − (s + 1) = s − 1, proving the claim. ⊓⊔

Proof of Theorem 5

The lower bounds follow from Observation 2. Forr = 2, note thatH2 = C4 = u, x, v, y, u, the 4-cycle. The Nash
equations for usersux andxv are f̂yu = f̂vx and f̂ux = f̂yv, which implies thatdimH2

(F) ≤ 2. Consider now the
caser = 3, wheredimH3

(F) ≤ 3·8
2 = 12. Using the Nash equations and the4-Cycle Lemma, we prove that the Nash

probabilities on edges of the same dimension (and “pointing” to the same direction) arenecessarilyequal, which implies
thatdimH3

(F) ≤ 3. ⊓⊔

Counterexample 3

Let G be the 4-cycles, t, u, v, s. ForG there exists a pure Nash equilibrium with social cost2: userst andtu are assigned
to machinet, useruv is assigned to machineu, and uservs is assigned to machines. Since the social cost of any pure
assignment is at most2 and there exist pure assignments with social cost1 which contribute to the social cost of any fully
mixed Nash equilibrium, the social cost of any fully mixed Nash equilibrium is strictly less than2, proving the claim. ⊓⊔

Counterexample 4

Let g be the 3-cycle. ForG there are two symmetric pure Nash equilibria where there is exactly one user assigned to each
machine. LetL be such a pure Nash equilibria. It is,SC(G,L) = 1. Clearly, there is only one further Nash equilibrium
for G, which is the standard fully mixed Nash equilibriumF. In F each of the three users chooses each of its two possible
links with probability1

2 . This impliesSC(G,F) = 1.75 > SC(G,L). ⊓⊔
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