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Abstract. Consider an information network with harmful procedures
called attackers (e.g., viruses); each attacker uses a probability distri-
bution to choose a node of the network to damage. Opponent to the
attackers is the system protector scanning and cleaning from attackers
some part of the network (e.g., an edge or a path), which it chooses inde-
pendently using another probability distribution. Each attacker wishes to
maximize the probability of escaping its cleaning by the system protector;
towards a conflicting objective, the system protector aims at maximizing
the expected number of cleaned attackers.

We model this network scenario as a non-cooperative strategic game
on graphs. We focus on the special case where the protector chooses a
single edge. We are interested in the associated Nash equilibria, where
no network entity can unilaterally improve its local objective. We obtain
the following results:

– No instance of the game possesses a pure Nash equilibrium.

– Every mixed Nash equilibrium enjoys a graph-theoretic structure,
which enables a (typically exponential) algorithm to compute it.

– We coin a natural subclass of mixed Nash equilibria, which we call
matching Nash equilibria, for this game on graphs. Matching Nash
equilibria are defined using structural parameters of graphs, such as
independent sets and matchings.

• We derive a characterization of graphs possessing matching Nash
equilibria. The characterization enables a linear time algorithm
to compute a matching Nash equilibrium on any such graph with
a given independent set and vertex cover.

• Bipartite graphs are shown to satisfy the characterization. So,
using a polynomial-time algorithm to compute a perfect match-
ing in a bipartite graph, we obtain, as our main result, an ef-
ficient graph-theoretic algorithm to compute a matching Nash
equilibrium on any instance of the game with a bipartite graph.

⋆ This work was partially supported by the IST Programs of the European Union
under contract numbers IST-2001-33116 (FLAGS) and IST-2004-001907 (DELIS).



1 Introduction

Motivation and Framework. Consider an information network represented by
an undirected graph. The nodes of the network are insecure and vulnerable to
infection. A system protector (e.g., antivirus software) is available in the system;
however, its capabilities are limited. The system protector can guarantee safety
only to a small part of the network, such as a path or even a single edge, which
it may choose using a probability distribution. A collection of attackers (e.g.,
viruses or Trojan horses) are also present in the network. Each attacker chooses
(via a separate probability distribution) a node of the network; the node is
harmed unless it is covered by the system protector. Apparently, the attackers
and the system protector have conflicting objectives. The system protector seeks
to protect the network as much as possible, while the attackers wish to avoid
being caught by the network protector so that they be able to damage the
network. Thus, the system protector seeks to maximize the expected number
of attackers it catches, while each attacker seeks to maximize the probability it
escapes from the system protector.

Naturally, we model this scenario as a strategic game with two kinds of play-
ers: the vertex players representing the attackers, and the edge player represent-
ing the system protector. The Individual Cost of each player is the quantity to
be maximized by the corresponding entity. We are interested in the Nash equilib-
ria [4, 5] associated with this game, where no player can unilaterally improve its
Individual Cost by switching to a more advantageous probability distribution.
We focus on the simplest case where the edge player chooses a singe edge.

Summary of Results. Our results are summarized as follows:

– We prove that no instance of the game has a pure Nash equilibrium (pure
NE) (Theorem 1).

– We then proceed to study mixed Nash equilibria (mixed NE). We provide a
graph-theoretic characterization of mixed NE (Theorem 2). Roughly speak-
ing, the characterization yields that the support of the edge player and the
vertex players are an edge cover and a vertex cover of the graph and an
induced subgraph of the graph, respectively. Given the supports, the char-
acterization provides a system of equalities and inequalities to be satisfied
by the probabilities of the players. Unfortunately, this characterization only
implies an exponential time algorithm for the general case.

– We introduce matching Nash equilibria, which are a natural subclass of
mixed Nash equilibria with a graph-theoretic definition (Definition 1). Rou-
ghly speaking, the supports of vertex players in a matching Nash equilibrium
form together an independent set of the graph, while each vertex in the
supports of the vertex players is incident to only one edge from the support
of the edge player.

– We provide a characterization of graphs admitting a matching Nash equi-
librium (Theorem 3). We prove that a matching Nash equilibrium can be
computed in linear time for any graph satisfying the characterization once a
suitable independent set is given for the graph.



– We finally consider bipartite graphs for which we show that they satisfy the
characterization of matching Nash equilibria; hence, they always have one
(theorem 5). More importantly, we prove that a matching Nash equilibrium
can be computed in polynomial time for bipartite graphs ( 6).

Due to space limits, some proofs are omitted; we include them in the full version
of the paper [3].

Significance. Our work joins the booming area of Algorithmic Game Theory.
Our work is the first3 to model realistic scenarios about infected networks as a
strategic game and study its associated Nash equilibria. Our results contribute
towards answering the general question of Papadimitriou [6] about the complex-
ity of Nash equilibria for our special game. Our results highlight a fruitful inter-
action between Game Theory and Graph Theory. We believe that our matching
Nash equilibria (and extensions of them) will find further applications in other
network games and establish themselves as a candidate Nash equilibrium for
polynomial time computation in other settings as well.

2 Framework

Throughout, we consider an undirected graph G(V,E), with |V (G)| = n and
|E(G)| = m. Given a set of vertices X ⊆ V , the graph G\X is obtained by
removing from G all vertices of X and their incident edges. A graph H, is an
induced subgraph of G, if V (H) ⊆ V (G) and (u, v) ∈ E(H), whenever (u, v) ∈
E(G). Denote ∆(G) the maximum degree of the graph G. For any vertex v ∈
V (G), denote Neigh(v) = {u : (u, v) ∈ E(G)}, the set of neighboring vertices of
v. For a set of vertices X ⊆ V , denote Neigh(X) = {u 6∈ X : (u, v) ∈ E(G) for
some v ∈ X}. For all above properties of a graph G, when no confusion raises,
we omit G.

2.1 The Model

An information network is represented as an undirected graph G(V,E). The
vertices represent the network hosts and the edges represent the communica-
tion links. We define a non-cooperative game Π(G) = 〈N , {Si}i∈N , {IC}i∈N 〉 as
follows:

– The set of players is N = Nvp ∪ Nep, where Nvp is a finite set of vertex
players vpi, i ≥ 1, and Nep is a singleton set of an edge player ep. Denote
ν = |Nep|.

– The strategy set Si of each player vpi, i ∈ Nvp, is V ; the strategy set Sep of

the player ep is E. Thus, the strategy set S of the game is
(

×
i ∈ Nvp

Si

)

×Sep =

V |Nvp| × E.

3 To the best of our knowledge, [1] is a single exception. It considers inoculation
strategies for victims of viruses and establishes connections with variants of the
Graph Partition problem.



– Take any strategy profile s = 〈s1, . . . , s|Nvp|, sep〉 ∈ S, also called a configu-
ration.

• The Individual Cost of vertex player vpi is a function ICi : S → {0, 1}
such that ICi(s) =

{

0, si ∈ sep

1, si 6∈ sep
; intuitively, vpi receives 1 if it is not

caught by the edge player, and 0 otherwise.

• The Individual Cost of the edge player ep is a function ICep : S → N

such that ICep(s) = |{si : si ∈ sep}|.

The configuration s is a pure Nash equilibrium [4, 5] (abbreviated as pure
NE) if for each player i ∈ N , it minimizes ICi over all configurations t that differ
from s only with respect to the strategy of player i.

A mixed strategy for player i ∈ N is a probability distribution over its strat-
egy set Si; thus, a mixed strategy for a vertex player (resp., edge player) is a
probability distribution over vertices (resp., over edges) of G. A mixed strat-
egy profile s is a collection of mixed strategies, one for each player. Denote
Ps(ep, e) the probability that edge player ep chooses edge e ∈ E(G) in s; denote
Ps(vpi, v) the probability that vertex player vpi chooses vertex v ∈ V in s. Note
∑

v∈V Ps(vpi, v) = 1 for each vertex player vpi; similarly,
∑

e∈E Ps(ep, e) = 1.
Denote Ps(vp, v) =

∑

i∈Nvp
Ps(vpi, v) the probability that vertex v is chosen by

some vertex player in s.

The support of a player i ∈ N in the configuration s, denoted Ds(i), is the set
of pure strategies in its strategy set to which i assigns strictly positive probability
in s. Denote Ds(vp) =

⋃

i∈Nvp
Ds(i); so, Ds(vp) contains all pure strategies (that

is, vertices) to which some vertex player assigns strictly positive probability. Let
also ENeighs(v) = {(u, v)E : (u, v) ∈ Ds(ep)}; that is ENeighs(v) contains all
edges incident to v that are included in the support of the edge player in s.

A mixed strategic profile s induces an Expected Individual Cost ICi for each
player i ∈ N , which is the expectation, according to s, of its corresponding Indi-
vidual Cost (defined previously for pure strategy profiles). The mixed strategy
profile s is a mixed Nash equilibrium [4, 5] (abbreviated as mixed NE) if for each
player i ∈ N , it maximizes ICi over all configurations t that differ from s only
with respect to the mixed strategy of player i.

For the rest of this section, fix a mixed strategy profile s. For each vertex
v ∈ V , denote Hit(v) the event that the edge player hits vertex v. So, the
probability (according to s) of Hit(v) is Ps(Hit(v)) =

∑

e∈ENeighs(v) Ps(ep, e).

Define the minimum hitting probability Ps as minv Ps(Hit(v)). For each vertex
v ∈ V , denote ms(v) the expected number of vertex players choosing v (according
to s). For each edge e = (u, v) ∈ E, denote ms(e) the expected number of vertex
players choosing either u or v; so, ms(e) = ms(u) + ms(v). It is easy to see
that for each vertex v ∈ V , ms(v) =

∑

i∈Nvp
Ps(vpi, v). Define the maximum

expected number of vertex players choosing e in s as maxe ms(e). We proceed to



calculate the Expected Individual Cost. Clearly, for the vertex player vpi ∈ Nvp,

ICi(s) =
∑

v∈V (G)

Ps(vpi, v) · (1 − Ps(Hit(v))

=
∑

v∈V (G)

Ps(vpi, v) · (1 −
∑

e∈ENeighs(v)

Ps(ep, e)) (1)

For the edge player ep,

ICep(s) =
∑

e=(u,v)∈E(G)

Ps(ep, e) · (ms(u) + ms(v))

=
∑

e=(u,v)∈E(G)

Ps(ep, e) · (
∑

i∈Nvp

Ps(vpi, u) + Ps(vi, v)) (2)

2.2 Background from Graph Theory

Throughout this section, we consider the (undirected) graph G = G(V,E).
G(V,E) is bipartite if its vertex set V can be partitioned as V = V1 ∪ V2 such
that each edge e = (u, v) ∈ E has one of its vertices in V1 and the other in V2.
Such a graph is often referred to as a V1, V2-bigraph. Fix a set of vertices S ⊆ V .
The graph G is an S-expander if for every set X ⊆ S, |X| ≤ |NeighG(X)|.

A set M ⊆ E is a matching of G if no two edges in M share a vertex. Given
a matching M , say that set S ⊆ V is matched in M if for every vertex v ∈ S,
there is an edge (v, u) ∈∈ M . A vertex cover of G is a set V ′ ⊆ V such that for
every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. An edge cover of G is a set E′ ⊆ E
such that for every vertex v ∈ V , there is an edge (v, u) ∈ E′. Say that an edge
(u, v) ∈ E (resp., a vertex v ∈ V ) is covered by the vertex cover V ′ (resp., the
edge cover E′) if either u ∈ V ′ or v ∈ V ′ (resp., if there is an edge (u, v) ∈ E′).
A set IS ⊆ V is an independent set of G if for all vertices u, v ∈ IS, (u, v) /∈ E.
Clearly, IS ⊆ V is an independent set of G if and only if the set V C = V \IS
is a vertex cover of G. We will use the following consequence of Hall’s Theorem
[2, Chapter 6] on the marriage problem.

Proposition 1 (Hall’s Theorem). A graph G has a matching M in which
the vertex set X ⊆ V is matched if and only if for each for each subset S ⊆ X,
|N(S)| ≥ |S|.

3 Nash Equilibria

Theorem 1. If G contains more than one edges, then Π(G) has no pure Nash
equilibrium.

Proof. Consider any graph G with at least two edges and any configuration s of
Π(G). Let e the edge selected by the edge player in s. Since G contains more
than one edges, there exists an e′ ∈ E not selected by the edge player in s, such



that e and e′ contain at least one different endpoint, assume u. If there is at least
one v.p. located on e, it will prefer to go to u so that not to get arrested by the
edge player and gain more. Thus, this case can not be a pure NE for the vertex
players. Otherwise, the edge e contains no vertex player. But in this case, the
edge player would like to change current action and select another edge, where
there is at least one vertex player, so that to gain more. Thus, again this case
can not be a pure NE, for the edge player this time. Since always in any case,
one of the two kinds of players is not satisfied by s, s is not a pure NE. ⊓⊔
Theorem 2 (Characterization of Mixed NE). A mixed strategy profile s is
a Nash equilibrium for any Π(G) if and only if:

1. Ds(ep) is an edge cover of G and Ds(vp) is a vertex cover of the graph
obtained by Ds(ep).

2. The probability distribution of the edge player over E, is such that, (a)
Ps(Hit(v)) = Ps(Hit(u)) = minv Ps(Hit(v)), ∀ u, v ∈ Ds(vp) and (b)
∑

e∈Ds(ep) Ps(ep, e) = 1.

3. The probability distributions of the vertex players over V are such that, (a)
ms(e1) = ms(e2) = maxe ms(e), ∀ e1 = (u1, v1), e2 = (u2, v2) ∈ Ds(ep) and
(b)

∑

v∈V (Ds(ep)) ms(v) = ν.

4 Matching Nash Equilibria

The obvious difficulty of solving the system of Theorem 2 directs us in trying
to investigate the existence of some polynomially computable, solutions of the
system, corresponding to mixed NE of the game. We introduce a class of such
configurations, called mathing. We prove that they can lead to mixed NE, we
investigate their existence and their polynomial time computation.

Definition 1. A matching configuration s of Π(G) satisfies: (1) Ds(vp) is
an independent set of G and (2) each vertex v of Ds(vp) is incident to only one
edge of Ds(ep).

Lemma 1. For any graph G, if in ΠE(G) there exists a matching configuration
which additionally satisfies condition 1 of Theorem 2, then there exists probability
distributions for the vertex players and the edge player such that the resulting
configuration is a mixed Nash equilibrium for ΠE(G). These distributions can be
computed in polynomial time.

Proof. Consider any configuration s as stated by the lemma (assuming that there
exists one) and the following probability distributions of the vertex players and
the edge player on s:

∀e ∈ Ds(ep), Ps(ep, e) := 1/|Ds(ep)|, ∀e′ ∈ E, e′ /∈ Ds(ep), Ps(ep, e′) := 0
(3)

∀ i ∈ Nvp, ∀ v ∈ Ds(vp), Ps(vpi, v) := 1
|Ds(vp)| ,

∀u ∈ V, u /∈ Ds(vp), Ps(vpi, u) := 0
(4)



Proposition 2.

∀ v ∈ Ds(vp), ms(v) =
ν

|Ds(vp)| and ∀ u ∈ V, u 6∈ Ds(vp), ms(u) = 0

We show that s satisfies all conditions of Theorem 2, thus it is a mixed NE.
2.(a): Ps(Hit(v)) = 1

|Ds(ep)| , ∀ v ∈ Ds(vp), by condition (2) of the definition

of a matching configuration and equation (3) above. 3.(a): ms(e1) = ms(v1) +
ms(u1) = 0 + ν

|Ds(vp)| = ν
|Ds(vp)| , ∀ e1 = (u1, v1) ∈ Ds(ep), because Dep is an

edge cover of G (by assumption), Dvp is an independent set of G (condition (1)
of the definition of a matching configuration) and recalling Proposition 2 above.
3.(c): Since Devp(s) is an edge cover of G (by assumption) and by Proposition
2, we have

∑

v∈V (Ds(ep)) ms(v) =
∑

v∈V
ν

|Ds(vp)| = |Ds(vp)| · ν
|Ds(vp)| = ν. The

rest of the conditions, can be easily shown to be fulfilled in s; see [3]. ⊓⊔

Definition 2. A matching configuration which additionally satisfies condition
1 of Theorem 2 is called a matching mixed NE.

We proceed to characterize graphs that admit matching Nash equilibria.

Theorem 3. For any graph G, Π(G) contains a matching mixed Nash equilib-
rium if and only if the vertices of the graph G can be partitioned into two sets
IS, V C (V C ∪ IS = V and V C ∩ IS = ∅), such that IS is an independent set
of G (equivalently, V C is a vertex cover of the graph) and G is a V C-expander
graph.

Proof. We first prove that if G has an independent set IS and the graph G is a
V C-expander graph, where V C = V \IS, then ΠE(G) contains a matching mixed
NE. By the definition of a V C-expander graph, it holds that Neigh(V C ′) ≥ V C ′,
for all V C ′ ⊆ V C. Thus, by the Marriage’s Theorem 1, G has a matching M
such that each vertex u ∈ V C is matched into V \V C in M ; that is there exists
an edge e = (u, v) ∈ M , where v ∈ V \V C = IS. Partition IS into two sets
IS1, IS2, where set IS1 consists of vertices v ∈ IS for which there exists an
e = (u, v) ∈ M and u ∈ V C. Let IS2 the remaining vertices of the set, i.e.
IS2 = {v ∈ IS : ∀ u ∈ V C, (u, v) 6∈ M}.

Now, recall that there is no edge between any two vertices of set IS, since
it is independent set, by assumption. Henceforth, since G is a connected graph,
∀ u ∈ IS2 ⊆ IS, there exists e = (u, v) ∈ E and moreover v ∈ V \IS = V C.
Now, construct set M1 ⊆ E consisting of all those edges. That is, initially set
M := ∅ and then for each v ∈ IS2, add one edge (u, v) ∈ E in M1. Note that, by
the construction of the set M1, each edge of it is incident to only one vertex of
IS2. Next, construct the following configuration s of ΠE(G): Set Ds(vp) := IS
and Ds(ep) := M ∪ M1.

We first show that that s is a matching configuration. Condition (1) of a
matching configuration is fulfilled because Ds(vp)(= IS) is an independent set.
We show that condition (2) of a matching configuration is fulfilled. Each vertex
of set IS belongs either to IS1 or to IS2. By definition, each vertex of IS1 is



incident to only one edge of M and each vertex of IS2 is incident to no edge in
M . Moreover, by the construction of set M1, each vertex of IS2 is incident to
exactly one edge of M1. Thus, each vertex v ∈ Ds(vp)(= IS) is incident to only
one edge of Ds(ep)(= M ∪M1), i.e. condition (2) holds as well. Henceforth, s is
a matching configuration.

We next show that condition 1 of Theorem 2 is satisfied by s. We first show
that Ds(ep) is an edge cover of G. This is true because (i) set M ⊆ Ds(ep) covers
all vertices of set V C and IS1, by its construction and (ii) set M1 ⊆ Ds(ep) covers
all vertices of set IS2, which are the remaining vertices of G not covered by set
M , also by its construction. We next show that Ds(vp) is a vertex cover of the
subgraph of G obtained by set Ds(ep). By the definition of sets IS1, IS2 ⊆ IS,
any edge e ∈ M is covered by a vertex of set IS1 and each edge e ∈ M1 is
covered by a vertex of set IS2. Since Ds(ep) = M ∪M1, we get that all edges of
the set are covered by Ds(vp) = IS1 ∪ IS2. This result combined with the above
observation on Ds(ep) concludes that condition 1 of Theorem 2 is satisfied by s.
Henceforth, by lemma 1, it can lead to a matching mixed NE of ΠE(G).

We proceed to show that if G contains a matching mixed NE, assume s,
then G has an independent set IS and the graph G is a V C-expander graph,
where V C = V \IS. Define sets IS = Ds(vp) and V C = V \IS. We show that
these sets satisfy the above requirements for G. Note first that, set IS is an
independent of G since Ds(vp) is an independent set of G by condition (1) of
the definition of a matching configuration.

We next show G contains a matching M such that each vertex of V C is
matched into V \V C in M . Since Ds(ep) is an edge cover of G (condition 1 of a
mixed NE of Theorem 2), for each v ∈ V C, there exists an edge (u, v) ∈ Ds(ep).
Note that for edge (u, v), it holds that v ∈ IS, since otherwise IS would not
be a vertex cover of Ds(ep) (Condition 1 of a mixed NE). Now, construct a set
M ⊆ E consisting of all those edges. That is, That is, initially set M := ∅ and
then for each v ∈ V C, add one edge (u, v) ∈ Ds(ep) in M . By the construction of
set M and condition (2) of a matching mixed NE, we get that M is a matching
of G and that each vertex of V C is matched into V \V C in M . Thus, by the
Marriage’s Theorem 1, we get that Neigh(V C ′) ≥ V C ′, for all V C ′ ⊆ V C and
so G is a V C-expander and condition (2) of a matching configuration also holds
in s. ⊓⊔

4.1 A Polynomial Time Algorithm

The previous Theorems and Lemmas enables us to develop a polynomial time
algorithm for finding matching mixed NE for any Π(G), where G is a graph satis-
fying the requirements of Theorem 3. The Algorithm is described in pseudocode
in Figure 1.

Theorem 4. Algorithm A computes a matching mixed Nash equilibrium for
Π(G) and needs linear time O(m).



Algorithm A(Π(G), IS, V C)

Input: A game Π(G) and a partition of V (G) into sets IS, V C = V \IS, such that
IS is an independent set of G and G is a V C-expander graph.
Output: A mixed NE s for Π(G).

1. Compute a set M ⊆ E, as follows:
(a) Initialization: Set M := ∅, Matched := ∅ (currently matched vertices in M),

Unmatched := V C (currently unmatched vertices in M vertices of V C),
Unused := IS, i := 1, Gi := G and M1 := ∅.

(b) While Unmatched 6= ∅ Do:
i. Consider a u ∈ Unmatched.
ii. Find a v ∈ Unused such that (u, v) ∈ Ei. Set M := M∪(u, v), Unused :=

Unused\{v}.
iii. Prepare next iteration: Set i := i + 1, Matched := Matched ∪ {u},

Unmatched := Unmatched\{u}, Gi := Gi−1\u\v.
2. Partition set IS into two sets IS1, IS2 as follows: IS1 := {u ∈ IS : ∃ (u, v) ∈ M}

and IS2 := IS\IS1. Note that IS2 := {u ∈ IS : 6 ∃ (u, v) ∈ M, v ∈ V C}.
Compute a set M1 as follows: ∀ u ∈ IS2, set M1 := M1 ∪ (u, v), for any (u, v) ∈ E,
v ∈ V C.

3. Define a s with the following support: Ds(vp) := IS, Ds(ep) := M ∪ M1.
4. Determine the probabilities distributions of the vertex players and the edge player of

configuration s′ using equations (3) and (4) of Lemma 1.

Fig. 1. Algorithm A.

5 Bipartite Graphs

Lemma 2. In any bipartite graph G there exists a matching M and a vertex
cover V C such that (1) every edge in M contains exactly one vertex of V C and
(2) every vertex in V C is contained in exactly one edge of M .

Proof. Let X,Y the bipartition of the bipartite graph G. Consider any minimum
vertex cover of the graph G, V C. We are going to construct a matching M of
G so that conditions (1) and (2) of the Lemma hold. Let R the vertices of V C
contained in set X, i.e. R = V C ∩ X and T the vertices of V C contained in set
Y , i.e. T = V C ∩ Y . Note that V C = R ∪ T . Let H and H ′ the subgraphs of G
induced by R ∪ (Y − T ) and T ∪ (X − R), respectively. We are going to show
that G contains a matching in M as required by the Lemma.

Since R∪T is a vertex cover, G has no edge from Y −T to X −R. We show
that for each S ⊆ R, NH(S) ⊆ Y − T . If |NH(S)| < |S|, then we can substitute
NH(S) for S in V C to obtain a smallest vertex cover (∗1). This is true because
(i) NH(S) covers all edges incident to S that are not covered by T and (ii) since
G is a bipartite graph there are no edges between the vertices of set S, so that
a possible substitute of set S do not need to cover any such edge.



Thus, |NH(S)| ≥ |S|, for all S ⊆ R. By Hall’s Theorem (Theorem 1), H has
a matching MH such that each vertex of R is matched in MH . Using similar
arguments for set T , we can prove that for each S′ ⊆ T , |NH′(S′)| ≥ |S′|.
Henceforth, H ′ has a matching MH′ such that each vertex of T is matched in
MH′ . Now define M = MH ∪ MH′ . Since each H, H ′ is an induced subgraph
of G and the two subgraphs have disjoint sets of vertices, we get that M is
matching of G and that each vertex of V C = R∪T is matched in M . This result
combined with the fact that M is a matching of G concludes that condition (2)
of the Lemma holds.

We proceed to prove condition (1). That is, to show that every edge of M
contains exactly one vertex of V C. Observe first that by the construction of set
M , every edge of M contains at least one vertex of V C. Moreover, note that
only one of the endpoints of the edge is contained in M . This is true because by
the construction of set M each edge of set M matches either (i) a vertex of set
R ⊆ X to a vertex of set (Y − T ) ⊆ Y or (ii) a vertex of set T ⊆ Y to a vertex
of set (X − R) ⊆ X. So, for any case exactly one of the two endpoints of the
edge is not contained in V C. ⊓⊔

Lemma 3. Any X,Y -bigraph graph G can be partitioned into two sets IS, V C
(IS ∪ V C = V and IS ∩ V C = ∅) such that V C is a vertex cover of G (equiva-
lently, IS is an independent set of G) and G is a V C-expander graph.

Lemma 3 and Theorem 3 finally imply:

Theorem 5. Any Π(G) for which G is a connected bipartite graph, contains a
matching mixed Nash equilibrium.

Finally, we proved that,

Theorem 6. For any Π(G), for which G is a bipartite graph, a matching mixed
Nash equilibrium of Π(G) can be computed in polynomial time, max{O(m

√
n),

O(n2.5/
√

log n)}, using Algorithm A.
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