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Abstract. We study the combinatorial structure and computational
complexity of extreme Nash equilibria, ones that maximize or minimize
a certain objective function, in the context of a selfish routing game.
Specifically, we assume a collection of n users, each employing a mixed
strategy, which is a probability distribution over m parallel links, to con-
trol the routing of its own assigned traffic. In a Nash equilibrium, each
user routes its traffic on links that minimize its expected latency cost.
Our structural results provide substantial evidence for the Fully Mixed
Nash Equilibrium Conjecture, which states that the worst Nash equilib-
rium is the fully mixed Nash equilibrium, where each user chooses each
link with positive probability. Specifically, we prove that the Fully Mixed
Nash Equilibrium Conjecture is valid for pure Nash equilibria and that
under a certain condition, the social cost of any Nash equilibrium is
within a factor of 6 + ε, of that of the fully mixed Nash equilibrium,
assuming that link capacities are identical.
Our complexity results include hardness, approximability and inapprox-
imability ones. Here we show, that for identical link capacities and under
a certain condition, there is a randomized, polynomial-time algorithm to
approximate the worst social cost within a factor arbitrarily close to
6 + ε. Furthermore, we prove that for any arbitrary integer k > 0, it is
NP-hard to decide whether or not any given allocation of users to links
can be transformed into a pure Nash equilibrium using at most k selfish
steps. Assuming identical link capacities, we give a polynomial-time ap-
proximation scheme (PTAS) to approximate the best social cost over all
pure Nash equilibria. Finally we prove, that it is NP-hard to approxi-

mate the worst social cost within a multiplicative factor 2 − 2
m + 1

− ε.

The quantity 2− 2
m + 1

is the tight upper bound on the ratio of the worst

social cost and the optimal cost in the model of identical capacities.
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1 Introduction

Motivation and Framework. A Nash equilibrium [21,22] represents a stable
state of the play of a strategic game, in which each player holds an accurate opin-
ion about the (expected) behavior of other players and acts rationally. An issue
that arises naturally in this context concerns the computational complexity of
Nash equilibria of any given strategic game. Due to the ultimate significance of
Nash equilibrium as a prime solution concept in contemporary Game Theory [23],
this issue has become a fundamental algorithmic problem that is being inten-
sively studied in the Theory of Computing community today (see, e.g., [3,6,29]);
in fact, it is arguably one of the few, most important algorithmic problems for
which no general polynomial-time algorithms are known today (cf. [24]).

The problem of computing arbitrary Nash equilibria becomes even more chal-
lenging when one considers extreme Nash equilibria, ones that maximize or min-
imize a certain objective function. So, understanding the combinatorial structure
of extreme Nash equilibria is a necessary prerequisite to either designing efficient
algorithms to compute them or establishing corresponding hardness and thereby
designing efficient approximation algorithms. In this work, we embark on a sys-
tematic study of the combinatorial structure and the computational complexity
of extreme Nash equilibria; our study is carried out within the context of a simple
selfish routing game, originally introduced in a pioneering work by Koutsoupias
and Papadimitriou [15], that we describe next.

We assume a collection of n users, each employing a mixed strategy, which
is a probability distribution over m parallel links, to control the shipping of
its own assigned traffic. For each link, a capacity specifies the rate at which
the link processes traffic. In a Nash equilibrium, each user selfishly routes its
traffic on those links that minimize its expected latency cost, given the network
congestion caused by the other users. A user’s support is the set of those links
on which it may ship its traffic with non-zero probability. The social cost of a
Nash equilibrium is the expectation, over all random choices of the users, of the
maximum, over all links, latency through a link.

Our study distinguishes between pure Nash equilibria, where each user
chooses exactly one link (with probability one), and mixed Nash equilibria, where
the choices of each user are modeled by a probability distribution over links. We
also distinguish in some cases between models of identical capacities, where all
link capacities are equal, and of arbitrary capacities.
The Fully Mixed Nash Equilibrium Conjecture. In this work, we formu-
late and study a natural conjecture asserting that the fully mixed Nash equilib-
rium F is the worst Nash equilibrium with respect to social cost. Formally, we
conjecture:

Conjecture 1 (Fully Mixed Nash Equilibrium Conjecture). For any traffic vec-
tor w such that the fully mixed Nash equilibrium F exists, and for any Nash
equilibrium P, SC (w,P) ≤ SC (w,F).

Clearly, the Fully Mixed Nash Equilibrium Conjecture is intuitive and natu-
ral: the fully mixed Nash equilibrium favors “collisions” between different users
(since each user assigns its traffic with positive probability to every link); thus,
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this increased probability of “collisions” favors a corresponding increase to the
(expected) maximum total traffic through a link, which is, precisely, the social
cost. More importantly, the Fully Mixed Nash Equilibrium Conjecture is also
significant since it precisely identifies the worst possible Nash equilibrium for
the selfish routing game we consider; this will enable designers of Internet pro-
tocols not only to avoid choosing the worst-case Nash equilibrium, but also to
calculate the worst-case loss to the system at any Nash equilibrium due to its
deliberate lack of coordination, and to evaluate the Nash equilibrium of choice
against the (provably) worst-case one.

Contribution and Significance. Our study provides quite strong evidence in
support of the Fully Mixed Nash Equilibrium Conjecture by either establishing
or near establishing the conjecture in a number of interesting instances of the
problem.

We start with the model of arbitrary capacities, where traffics are allowed to
vary arbitrarily. There we prove that the Fully Mixed Nash Equilibrium Con-
jecture holds for pure Nash equilibria. We next turn to the case of identical
capacities. Through a delicate probabilistic analysis, we establish that in the
special case, that the number of links is equal to the number of users and for
a suitable large number of users, the social cost of any Nash equilibrium is less
than 6 + ε (for any ε > 0) times the social cost of the fully mixed Nash equilib-
rium. Our proof employs concepts and techniques from majorization theory [17]
and stochastic orders [28], such as comparing two random variables according to
their stochastic variability (cf. [26, Section 9.5]).

For pure Nash equilibria we show that it is NP-hard to decide whether
or not any given allocation of users to links can be transformed into a pure
Nash equilibrium using at most k selfish steps, even if the number of links is
2. Furthermore, we prove that there exists a polynomial-time approximation
scheme (PTAS) to approximate the social cost of the best pure Nash equilibrium
to any arbitrary accuracy. The proof involves an algorithm that transforms any
pure strategy profile into a pure Nash equilibrium with at most the same social
cost, using at most n reassignments of users. We call this technique Nashification,
and it may apply to other instances of the problem as well.

Still for pure Nash equilibria, we give a tight upper bound on the ratio
between SC(w,L) and OPT(w) for any Nash equilibrium L. Then we show that
it is NP-hard to approximate the worst-case Nash equilibrium with a ratio
that is better than this upper bound. We close our section about pure Nash
equilibria with a pseudopolynomial algorithm for computing the worst-case Nash
equilibrium for any fixed number of links.

Related Work and Comparison. The selfish routing game considered in
this paper was first introduced by Koutsoupias and Papadimitriou [15] as a ve-
hicle for the study of the price of selfishness for routing over non-cooperative
networks, like the Internet. This game was subsequently studied in the work of
Mavronicolas and Spirakis [18], where fully mixed Nash equilibria were intro-
duced and analyzed. In both works, the aim had been to quantify the amount of
performance loss in routing due to selfish behavior of the users. (Later studies
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of the selfish routing game from the same point of view, that of performance,
include the works by Koutsoupias et al. [14], and by Czumaj and Vöcking [2].)

The closest to our work is the one by Fotakis et al. [6], which focuses on the
combinatorial structure and the computational complexity of Nash equilibria
for the selfish routing game we consider. The Fully Mixed Nash Equilibrium
Conjecture formulated and systematically studied in this paper has been inspired
by two results due to Fotakis et al. [6] that confirm or support the conjecture.
First, Fotakis et al. [6, Theorem 4.2] establish the Fully Mixed Nash Equilibrium
Conjecture for the model of identical capacities and assuming that n = 2. Second,
Fotakis et al. [6, Theorem 4.3] establish that, for the model of identical traffics
and arbitrary capacities, the social cost of any Nash equilibrium is no more than
49.02 times the social cost of the (generalized) fully mixed Nash equilibrium;
Note that Theorem 3 is incomparable to this result, since it assumes identical
links and arbitrary traffics.

The routing problem considered in this paper is equivalent to the multiproces-
sor scheduling problem. Here, pure Nash equilibria and Nashification translate to
local optima and sequences of local improvements. A schedule is said to be jump
optimal if no job on a processor with maximum load can improve by moving to
another processor [27].

Obviously, the set of pure Nash equilibria is a subset of the set of jump opti-
mal schedules. Moreover, in the model of identical processors every jump optimal
schedule can be transformed into a pure Nash equilibrium without altering the
makespan. Thus, for this model the strict upper bound 2 − 2/(m + 1) on the
ratio between best and worst makespan of jump optimal schedules [5,27] also
holds for pure Nash equilibria.

Algorithms for computing a jump optimal schedule from any given schedule
have been proposed in [1,5,27]. The fastest algorithm is given by Schuurman and
Vredeveld [27]. It always moves the job with maximum weight from a makespan
processor to a processor with minimum load, using O(n) moves. However, in
all algorithms the resulting jump optimal schedule is not necessarily a Nash
equilibrium.
Road Map. The rest of this paper is organized as follows. Section 2 presents
some preliminaries. Stochastic orders are treated in Section 3. Pure Nash equilib-
ria are contrasted to the fully mixed Nash equilibrium in Section 4. Worst mixed
Nash equilibria are contrasted to the fully mixed Nash equilibrium in Section 5.
Sections 6 and 7 consider best and worst pure Nash equilibria, respectively. We
conclude, in Section 8, with a discussion of our results and some open problems.

2 Framework

Most of our definitions are patterned after those in [18, Section 2] and [6, Section
2], which, in turn, were based on those in [15, Sections 1 & 2].
Mathematical Preliminaries and Notation. For any integer m ≥ 1, de-
note [m] = {1, . . . , m}. Denote Γ the Gamma function; that is, for any nat-
ural number N , Γ (N + 1) = N !, while for any arbitrary real number x > 0,
Γ (x) =

∫ ∞
0 tx−1e−tdt. The Gamma function is invertible; both Γ and its in-
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verse Γ−1 are increasing. It is well known that Γ−1(N) = lg N
lg lg N (1 + o(1)) (see,

e.g., [9]). For our purposes, we shall use the fact that for any pair of an arbi-
trary real number α and an arbitrary natural number N ,

(
α
e

)α = N if and only
if α = Γ−1(N) + Θ(1). For an event E in a sample space, denote Pr(E) the
probability of event E happening.

For a random variable X, denote E(X) the expectation of X. In the balls-and-
bins problem, m balls are thrown into m bins uniformly at random. (See [13] for a
classical introduction to this problem.) It is known that the expected maximum
number of balls thrown over a bin equals the quantity R(m) = Γ−1(m) − 3

2 +
o(1) [9].

In the paper, we make use of the following Hoeffding inequality:

Theorem 1 ([19], Theorem 2.3.). Let the random variables X1, X2, ..., Xn be
independent, with 0 ≤ Xk ≤ 1 for each k and let Sn =

∑
Xk. Then, for any

β > 0,
Pr(Sn ≥ (1 + β)E(Sn)) ≤ e−((1+β) ln(1+β)−β)E(Sn).

Note that Theorem 1 also holds if 0 ≤ Xk ≤ κ for some constant κ > 0.
General. We consider a network consisting of a set of m parallel links 1, 2, . . . , m
from a source node to a destination node. Each of n network users 1, 2, . . . , n, or
users for short, wishes to route a particular amount of traffic along a (non-fixed)
link from source to destination. Denote wi the traffic of user i ∈ [n]. Define the
n × 1 traffic vector w in the natural way. Assume throughout that m > 1 and
n > 1. Assume also, without loss of generality, that w1 ≥ w2 ≥ . . . ≥ wn. For a
traffic vector w, denote W =

∑n
1 wi.

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user
i ∈ [n] is a probability distribution over pure strategies; thus, a mixed strategy is
a probability distribution over the set of links. The support of the mixed strategy
for user i ∈ [n], denoted support(i), is the set of those pure strategies (links) to
which i assigns positive probability.

A pure strategy profile is represented by an n-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n;
a mixed strategy profile is represented by an n × m probability matrix P of nm
probabilities pj

i , i ∈ [n] and j ∈ [m], where pj
i is the probability that user i

chooses link j. For a probability matrix P, define indicator variables I�
i ∈ {0, 1},

i ∈ [n] and � ∈ [m], such that I�
i = 1 if and only if p�

i > 0. Thus, the support of
the mixed strategy for user i ∈ [n] is the set {� ∈ [m] | I�

i = 1}.
For each link � ∈ [m], define the view of link �, denoted view(�), as the set of

users i ∈ [n] that may assign their traffics to link �; so, view(�) = {i ∈ [n] | I�
i =

1}. For each link � ∈ [m], denote V � = |view(�)|. A mixed strategy profile P is
fully mixed [18, Section 2.2] if for all users i ∈ [n] and links j ∈ [m], Ij

i = 1 1.
System, Models and Cost Measures. Denote c� > 0 the capacity of link
� ∈ [m], representing the rate at which the link processes traffic. So, the latency
for traffic w through link � equals w/c�. In the model of identical capacities, all
link capacities are equal to 1; link capacities may vary arbitrarily in the model of
1 An earlier treatment of fully mixed strategies in the context of bimatrix games has

been found in [25], called there completely mixed strategies. See also [20] for a sub-
sequent treatment in the context of strategically zero-sum games.
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arbitrary capacities. For a pure strategy profile 〈�1, �2, . . . , �n〉, the latency cost
for user i, denoted λi, is (

∑
k:�k=�i

wk)/c�i ; that is, the latency cost for user i is
the latency of the link it chooses. For a mixed strategy profile P, denote δ� the
actual traffic on link � ∈ [m]; so, δ� is a random variable for each link � ∈ [m],
denote θ� the expected traffic on link � ∈ [m]; thus, θ� = E(δ�) =

∑n
i=1 p�

iwi.
Given P, define the m × 1 expected traffic vector Θ induced by P in the natural
way. Given P, denote Λ� the expected latency on link � ∈ [m]; clearly, Λ� = θ�

c� .
Define the m × 1 expected latency vector Λ in the natural way. For a mixed
strategy profile P, the expected latency cost for user i ∈ [n] on link � ∈ [m],
denoted λ�

i , is the expectation, over all random choices of the remaining users,
of the latency cost for user i had its traffic been assigned to link �; thus, λ�

i =
wi+

∑
k=1,k �=i

p�
kwk

c� = (1−p�
i)wi+θ�

c� . For each user i ∈ [n], the minimum expected
latency cost, denoted λi, is the minimum, over all links � ∈ [m], of the expected
latency cost for user i on link �; thus, λi = min�∈[m] λ

�
i . For a probability matrix

P, define the n × 1 minimum expected latency cost vector λ induced by P in the
natural way.

Associated with a traffic vector w and a mixed strategy profile P is the social
cost [15, Section 2], denoted SC(w,P), which is the expectation, over all random
choices of the users, of the maximum (over all links) latency of traffic through

a link; thus, SC(w,P) =
∑

〈�1,�2,...,�n〉∈[m]n

(
∏n

k=1 p�k

k · max�∈[m]

∑
k:�k=�

wk

c�

)

.

Note that SC (w,P) reduces to the maximum latency through a link in the
case of pure strategies. On the other hand, the social optimum [15, Section
2] associated with a traffic vector w, denoted OPT(w), is the least possible
maximum (over all links) latency of traffic through a link; thus, OPT(w) =

min〈�1,�2,...,�n〉∈[m]n max�∈[m]

∑
k:�k=�

wk

c� .

Nash Equilibria. We are interested in a special class of mixed strategies called
Nash equilibria [21,22] that we describe below. Say that a user i ∈ [n] is satisfied
for the probability matrix P if for all links � ∈ [m], λ�

i = λi if I�
i = 1, and λ�

i > λi

if I�
i = 0; thus, a satisfied user has no incentive to unilaterally deviate from its

mixed strategy. A user i ∈ [n] is unsatisfied for the probability matrix P if i is
not satisfied for the probability matrix P. The probability matrix P is a Nash
equilibrium [15, Section 2] if for all users i ∈ [n] and links � ∈ [m], λ�

i = λi if
I�
i = 1, and λ�

i > λi if I�
i = 0. Thus, each user assigns its traffic with positive

probability only on links (possibly more than one of them) for which its expected
latency cost is minimized. The fully mixed Nash equilibrium [18], denoted F, is a
Nash equilibrium that is a fully mixed strategy. Mavronicolas and Spirakis [18,
Lemma 15] show that all links are equiprobable in a fully mixed Nash equilibrium,
which is unique (for the model of identical capacities).

Fix any traffic vector w. The worst Nash equilibrium is the Nash equilibrium
P that maximizes SC (w,P); the best Nash equilibrium is the Nash equilibrium
that minimizes SC (w,P). The worst social cost, denoted WC (w), is the social
cost of the worst Nash equilibrium; correspondingly, the best social cost, denoted
BC (w), is the social cost of the best Nash equilibrium.
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Fotakis et al. [6, Theorem 1] consider starting from any arbitrary pure strat-
egy profile and following a particular sequence of selfish steps, where in a selfish
step, exactly one unsatisfied user is allowed to change its pure strategy. A selfish
step is a greedy selfish step if the unsatisfied user chooses its best link. A (greedy)
selfish step does not increase the social cost of the initial pure strategy profile.
Fotakis et al. [6, Theorem 1] show that this sequence of selfish steps eventually
converges to a Nash equilibrium, which proves its existence; however, it may take
a large number of steps. It follows that if the initial pure strategy profile has
minimum social cost, then the resulting (pure) Nash equilibrium will have min-
imum social cost as well. This implies that there exists a pure Nash equilibrium
with minimum social cost. Thus, we have BC (w) = OPT (w).

Algorithmic Problems. We list a few algorithmic problems related to Nash
equilibria that will be considered in this work. The definitions are given in the
style of Garey and Johnson [8]. A problem instance is a tuple (n, m, w, c) where
n is the number of users, m is the number of links, w = (wi) is a vector of n
user traffics and c = (cj) is a vector of m link capacities.

Π1: NASH EQUILIBRIUM SUPPORTS
Instance: A problem instance (n, m, w, c).
Output: Indicator variables Ij

i ∈ {0, 1}, where i ∈ [n] and j ∈ [m], that support
a Nash equilibrium for the system of the users and the links.
Fotakis et al. [6, Theorem 2] establish that NASH EQUILIBRIUM SUPPORTS is
in P when restricted to pure equilibria. We continue with two complementary
to each other optimization problems (with respect to social cost).

Π2: BEST NASH EQUILIBRIUM SUPPORTS
Instance: A problem instance (n, m, w, c).
Output: Indicator variables Ij

i ∈ {0, 1}, where i ∈ [n] and j ∈ [m], that support
the best Nash equilibrium for the system of the users and the links.

Π3: WORST NASH EQUILIBRIUM SUPPORTS
Instance: A problem instance (n, m, w, c).
Output: Indicator variables Ij

i ∈ {0, 1}, where i ∈ [n] and j ∈ [m], that support
the worst Nash equilibrium for the system of the users and the links.
Fotakis et al. [6, Theorems 3 and 4] establish that both BEST NASH EQUILIB-
RIUM SUPPORTS and WORST NASH EQUILIBRIUM SUPPORTS are NP-hard.
Since both problems can be formulated as an integer program, it follows that
they are NP-complete.

Π4: NASH EQUILIBRIUM SOCIAL COST
Instance: A problem instance (n, m, w, c); a Nash equilibrium P for the system
of the users and the links.
Output: The social cost of the Nash equilibrium P.
Fotakis et al. [6, Theorem 8] establish that NASH EQUILIBRIUM SOCIAL COST
is #P-complete. Furthermore, Fotakis et al. [6, Theorem 9] show that there exists
a fully polynomial, randomized approximation scheme for NASH EQUILIBRIUM
SOCIAL COST.
The following two problems, inspired by NASH EQUILIBRIUM SOCIAL COST
are introduced for the first time in this work.
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Π5: WORST NASH EQUILIBRIUM SOCIAL COST
Instance: A problem instance (n, m, w, c).
Output: The worst social cost WSC(w).
Π6: BEST NASH EQUILIBRIUM SOCIAL COST
Instance: A problem instance (n, m, w, c).
Output: The best social cost BSC(w).
Π7: k-NASHIFY
Instance: A problem instance (n, m, w, c); a pure strategy profile L for the
system of the users and the links.
Question: Is there a sequence of at most k selfish steps that transform L to a
(pure) Nash equilibrium?
The following problem is a variant of k-NASHIFY in which k is part of the input.
Π8: NASHIFY
Instance: A problem instance (n, m, w, c); a pure strategy profile L for the
system of the users and the links; an integer k > 0.
Question: Is there a sequence of at most k selfish steps that transform L to a
(pure) Nash equilibrium?

In our hardness and completeness proofs, we will employ the following NP-
complete problems [12]:
Π9: BIN PACKING
Instance: A finite set U of items, a size s(u) ∈ N for each u ∈ U , a positive
integer bin capacity B, and a positive integer K.
Question: Is there a partition of U into disjoint sets U1, . . . ,UK such that for
each set Ui, 1 ≤ i ≤ K,

∑
u∈Ui

s(u) ≤ B?
Π10: PARTITION
Instance: A finite set U and a size s(u) ∈ N for each element u ∈ U .
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U ′ s(u) =

∑
u∈U\U ′ s(u)?

We note that BIN PACKING is strongly NP-complete [7] 2.

3 Stochastic Order Relations

In this section, we treat stochastic order relations; we establish a certain stochas-
tic order relation for the expected maxima of certain sums of Bernoulli random
variables.

Recall that a function f : � → � is convex if for all numbers λ such that
0 < λ < 1, f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). We proceed to describe
a stochastic order relation between two random variables.

Definition 1. For any pair of arbitrary random variables X and Y , say that X
is stochastically more variable than Y if for all increasing and convex functions
f : � → �, E(f(X)) ≥ E(f(Y )).
2 A problem is strongly NP-complete if it remains NP-complete even if any instance

of length n is restricted to contain integers of size polynomial in n. So, strongly NP-
complete problems admit no pseudopolynomial-time algorithms unless P = NP.
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Call stochastically more variability the corresponding stochastic order rela-
tion on the set of random variables. (See [26, Section 9.5] for a more complete
treatment of the notion of stochastically more variable and [17,28] for more on
majorization theory and stochastic orders.) The following lemma [26, Propo-
sition 9.5.1] provides an alternative, analytic characterization of stochastically
more variability.

Lemma 1. Consider any pair of non-negative random variables X and X̂.
Then, X is stochastically more variable than X̂ if and only if for all numbers
α ≥ 0,

∫ ∞
x=α

Pr(X > x)dx ≥ ∫ ∞
x=α

Pr(X̂ > x)dx.

Consider now a setting of the balls-and-bins problem where n balls 1, . . . , n
with traffics w1, . . . , wn are allocated into m bins 1, . . . , m uniformly at random.
So, for each pair of a ball i ∈ [n] and a link j ∈ [m], define Bernoulli random

variables Y j
i = wi with probability 1

m and 0 with probability 1− 1
m , and Ỹ j

i = W
n

with probability 1
m and 0 with probability 1 − 1

m . For each link j ∈ [m], define

the random variables δj =
∑

i∈[n] Y
j
i and δ̃j =

∑
i∈[n] Ỹ

j
i ; thus, each of δj

and δ̃j , j ∈ [m], is a sum of Bernoulli random variables; denote θj = E(δj)
and θ̃j = E(δ̃j) the expectations of δj and δ̃j , respectively. Note that θj =
E

(∑
i∈[n] Y

j
i

)
=

∑
i∈[n] E

(
Y j

i

)
=

∑
i∈[n]

(
wi

1
m + 0

(
1 − 1

m

))
= W

m , while θ̃j =

E(δ̃j) = E
(

∑
i∈[n] Ỹ

j
i

)

=
∑

i∈[n] E
(

Ỹ j
i

)

=
∑

i∈[n]

(
W
n

1
m + 0

(
1 − 1

m

))
= W

m .

So, θj = θ̃j for each bin j ∈ [m].

For two numbers x, y ∈ �+ define [x − y] =

{
x − y : if x > y

0 : else.
We can then show the following preliminary lemma:

Lemma 2. Let bi ∈ �+ for i ∈ [n] and let d = 1
n

∑n
i=1 bi. Then for all x ≥ 0,∑n

i=1[bi − x] ≥ n · [d − x].

Proof. Without loss of generality, assume that b1 ≤ b2 ≤ . . . ≤ bn. The claim is
true if x > d. If x ≤ b1, then x ≤ d and

∑n
i=1[bi −x] =

∑n
i=1(bi −x) = n ·(d−x).

Now let bj < x ≤ bj+1 and d > x. It follows that
∑n

i=1[bi−x] =
∑n

i=j+1(bi−x) =
∑n

i=j+1 bi − (n − j)x =
∑n

i=j+1 bi − n · x + j · x ≥ ∑n
i=j+1 bi − n · x +

∑j
i=1 bi =

∑n
i=1 bi − n · x = n · (d − x) 	

We finally prove:

Lemma 3 (Stochastically More Variability Lemma). For any traffic vec-
tor w, max

{
δ1, . . . , δm

}
is stochastically more variable than max

{
δ̃1, . . . , δ̃m

}
.

Proof. Define the discrete random variables X = max{δ1, . . . , δm} and X̃ =
max{δ̃1, . . . , δ̃m}. By Lemma 1, it suffices to show that

∫ ∞
x=α

Pr (X > x) dx ≥
∫ ∞

x=α
Pr

(
X̃ > x

)
dx for all α ≥ 0. Let Sk be the collection of all pure strategy
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profiles, where the maximum number of traffics on any link j ∈ [m] is exactly k.
If i �= j, then Si ∩Sj = ∅. Furthermore

⋃n
i=� n

m � Si = [m]n. For any pure strategy
profile L ∈ Sk, define Link(L) to be the smallest index of a link, holding k
traffics. Furthermore, for any pure strategy profile L, let I(L) be the collection
of users that are assigned to Link(L). Every set of k traffics is equal to some
I(L), L ∈ Sk with the same probability, say pk. Define the actual traffic on
Link(L) as b(L) =

∑
i∈I(L) wi. If all traffics are identical the actual traffic on

Link(L) for a pure strategy profile L ∈ Sk is simply b̃(L) = k · W
n .

Every pure strategy profile L ∈ [m]n occurs with the same probability 1
mn

and defines together with b(L) a discrete random variable Z. Z is a discrete
random variable that can take every possible value b(L), L ∈ [m]n.

It is easy to see, that X is stochastically more variable than Z, since for
any pure strategy profile L, Z refers to the actual traffic on Link(L), whereas X
refers to the maximum actual traffic over all links. We will complete our proof by
showing, that Z is stochastically more variable than X̃. Since Z and X̃ are dis-
crete random variables

∫ ∞
x=α

Pr(Z > x)dx =
∑n

k=� n
m � (pk · Ak) , where Ak =

∑
L∈Sk

[b(L) − α] and
∫ ∞

x=α
Pr(X̃ > x)dx =

∑n
k=� n

m �
(
pk · Ãk

)
, where Ãk =

|Sk| · [k · W
n −α] Since for a fixed k each traffic contributes with the same proba-

bility to b(L),
∑

L∈Sk
b(L) = |Sk| ·k · W

n . It follows from Lemma 2 that Ak ≥ Ãk

for each k. Therefore Z is stochastically more variable than X̃, which completes
the proof of the lemma. 	


By definition of stochastically more variability, Lemma 3 implies:

Corollary 1. For any traffic vector w,
E (

max
{
δ1, . . . , δm

}) ≥ E
(
max

{
δ̃1, . . . , δ̃m

})
.

In the balls-and-bins game in which m balls are thrown uniformly at random
into m bins, Corollary 1 shows that, if the sum of the ball weights is the same,
the expected maximum load over all bins is larger when the balls have different
weights in comparison to all balls having the same weight.

4 Pure versus Fully Mixed Nash Equilibria

In this section, we establish the Fully Mixed Nash Equilibrium Conjecture for
the case of pure Nash equilibria. This result holds also for the model of arbitrary
capacities. We start by proving:

Lemma 4. Fix any traffic vector w, mixed Nash equilibrium P and user i.
Then, λi (w,P) ≤ λi (w,F).

Proof. Let P =
(
pj

k

)
,F =

(
f j

k

)
for k ∈ [n] and j ∈ [m]. We can then state, that

∑
j∈[m]

(∑
k∈[n],k 	=i pj

kwk

)
=

∑
k∈[n],k 	=i wk

(∑
j∈[m] p

j
k

)
=

∑
k∈[n],k 	=i wk , and

∑
j∈[m]

(∑
k∈[n],k 	=i f j

kwk

)
=

∑
k∈[n],k 	=i wk

(∑
j∈[m] f

j
k

)
=

∑
k∈[n],k 	=i wk. It
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follows that
∑

j∈[m]

(∑
k∈[n],k 	=i pj

kwk

)
=

∑
j∈[m]

(∑
k∈[n],k 	=i f j

kwk

)
. Therefore

there exists some link j0 ∈ [m] such that
∑

k∈[n],k 	=i pj0
k wk ≤ ∑

k∈[n],k 	=i f j0
k wk.

Then, λi (w,P) ≤ λj0
i (w,P) (since λi is the minimum of all λj

i , j ∈ [n]) =
wi+

∑
k∈[n],k �=i

p
j0
k

wk

cj0 ≤ wi+
∑

k∈[n],k �=i
f

j0
k

wk

cj0 = λj0
i (w,F) = λi (w,F) (since f j0

i >
0 and F is a Nash equilibrium). 	

We now prove:

Theorem 2. Fix any traffic vector w and pure Nash equilibrium L. Then,
SC (w,L) ≤ SC (w,F).

Proof. For each user i ∈ [n], λi (w,P) is the minimum, over all links j ∈ [m], of
the expected latency cost for user i on link j, and SC (w,P) is the expectation of
the maximum (over all links) latency of traffic through a link. This implies that
λi (w,P) ≤ SC (w,P) for every mixed Nash equilibrium P. Hence, by Lemma 4:
λi(w,P) ≤ λi (w,F) ≤ SC (w,F) The claim follows now since SC(w,L) =
maxi∈[n] λi(w,L) holds for every pure Nash equilibrium L. 	


5 Worst Mixed Nash Equilibria

In this section we show that if n = m and m is suitable large then the social
cost of any Nash equilibrium is at most 6 + ε times the social cost of the fully
mixed Nash equilibrium.

Theorem 3. Consider the model of identical capacities. Let n = m, m suitable
large. Then, for any traffic vector w and Nash equilibrium P, SC (w,P) < (6 +
ε) SC (w,F), for any ε > 0.

Proof. Fix any traffic vector w and Nash equilibrium P. We start by showing a
simple technical fact.

Lemma 5. Fix any pair of a link � ∈ [m] and a user i ∈ view(�). Then, p�
iwi ≥

θ� − W
m .

Proof. Clearly,
∑

j∈[m] θ
j =

∑
j∈[m]

(∑
i∈[n] p

j
iwi

)
=

∑
i∈[n]

(∑
j∈[m] p

j
iwi

)
=

∑
i∈[n]

(
wi

∑
j∈[m] p

j
i

)
= W . This implies that there exists some link �′ ∈ [m]

such that θ�′ ≤ W
m . Note that by definition of social cost, λ�′

i = (1 − pi)wi + θ�′
.

It follows that λ�′
i ≤ wi + W

m . On the other hand, λ�
i = (1 − p�

i)wi + θ�.
Since i ∈ view(�), we have, by definition of Nash equilibria, that λ�

i ≤ λ�′
i

(with equality holding when i ∈ view(�′)). It follows that (1−p�
i)wi+θ� ≤ wi+W

m ,
or that p�

iwi ≥ θ� − W
m , as needed. 	


As an immediate consequence of Lemma 5, we obtain:

Corollary 2. Fix any link � ∈ [m]. Then, θ� ≤ V �

V �−1
W
m .
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Proof. Clearly, by Lemma 5 it follows, θ� =
∑

i∈[n] p
�
iwi =

∑
i∈view(�) p�

iwi ≥
∑

i∈view(�)

(
θ� − W

m

)
= V �

(
θ� − W

m

)
, or θ� ≤ V �

V �−1
W
m , as needed. 	


Since V � ≥ 2, V �

V �−1 ≤ 2. Thus, by Corollary 2:

Lemma 6. Fix any link � ∈ [m] with V � ≥ 2. Then, θ� ≤ 2 W
m .

We now prove a complementary lemma. Fix any link � ∈ [m] with V � = 1.
Let view(l) = {i}. Then θl = wi ≤ maxi wi ≤ OPT(w) ≤ SC (w,F). Thus:

Lemma 7. Fix any link � ∈ [m] with V � = 1. Then, θ� ≤ SC (w,F).

Use w to define the vector w̃ with all entries equal to W
n . By definition

of social cost, SC (w̃,F) is the load W
m of each ball times the expected maxi-

mum number of balls thrown uniformly at random into m bins. Since n = m,

we can state SC (w̃,F) = R(m) · W
m , or W

m =
SC(w̃,F)

R(m) . Fix now any link
j ∈ [n] with V j ≥ 2. Then, θj ≤ 2 W

m (by Lemma 6) = 2
R(m) SC (w̃,F) ≤

2
R(m) SC (w,F) (by Corollary 1) .

Thus, for any constant ε > 0, Pr
(
δj > 4 (1 + ε) SC (w,F)

)

≤ Pr
(
δj > 4 (1 + ε) R(m)

2 θj
)

(since θj ≤ 2
R(m) SC (w,F))

= Pr
(
δj > 2 (1 + ε) R(m) θj

)
= Pr

(
δj > 2 (1 + ε) R(m) E (

δj
))

.
¿From Theorem 1 it follows that for any β > 0, Pr

(
δj ≥ (1 + β)E(δj)

) ≤
e−((1+β)ln(1+β)−β)E(δj) = eβE(δj)

(1+β)(1+β)E(δj) <
(

e
1+β

)(1+β)E(δj)
.

With (1 + β) = 2(1 + ε)R(m) we get:

Pr
(
δj > 4 (1 + ε) SC (w,F)

)
<

(
e

2(1+ε)R(m)

)2(1+ε)R(m) E(δj)
.

Note that by definition of R(m), e
2(1+ε)R(m) < e

2R(m) = e
2 (Γ −1(m)− 3

2+o(1)) <
e

2Γ −1(m)−3 . Thus, e
2Γ −1(m)−3 < 1 if and only if Γ−1(m) > e+3

2 , which holds for
all integers m ≥ 3.

Thus, for all such integers e
2(1+ε)R(m) < 1 and

(
e

2(1+ε)R(m)

)2(1+ε)R(m)
< 1

as well. Hence,
(

e
2(1+ε)R(m)

)2(1+ε)R(m)E(δj)
<

(
e

2(1+ε)R(m)

)2(1+ε)R(m)
. It fol-

lows that Pr
(
δj > 4 (1 + ε) SC (w,F)

)
<

(
e

2(1+ε)R(m)

)2(1+ε)R(m)
. Note, how-

ever, that
(

e
2(1+ε)R(m)

)2(1+ε)R(m)
=

( 1
2

)2(1+ε)R(m) ·
((

e
(1+ε)R(m)

)(1+ε)R(m)
)2

<

((
e

(1+ε)R(m)

)(1+ε)R(m)
)2

, since
( 1

2

)2(1+ε)R(m)
< 1. Define now α > 0 so that

(
α
e

)α = m. Then, clearly, α = Γ−1(m) + Θ(1). Note that (1 + ε)R(m)
= (1 + ε)Γ−1(m) − (1 + ε) 3

2 + o(1) = (1 + ε)Γ−1(m) + Θ(1) > α , for suitable
large m, since ε > 0. Since

(
x
e

)x is an increasing function of x, this implies that



Extreme Nash Equilibria 13

(
(1+ε)R(m)

e

)(1+ε)R(m)
>

(
α
e

)α = m . Thus
((

e
(1+ε)R(m)

)(1+ε)R(m)
)2

< 1
m2 . It

follows that Pr
(
δj > 4 (1 + ε) SC (w,F)

)
< 1

m2 . Hence
Pr

(
max�∈[m] | |V �|≥2 δ� > 4(1 + ε)SC (w,F)

)
=

Pr
(∨

�∈[m] | |V �|≥2 δ� > 4(1 + ε)SC (w,F)
)

≤
∑

�∈[m] | |V �|≥2 Pr
(
δ� > 4(1 + ε)SC (w,F)

)
<

∑
�∈[m] | |V �|≥2

1
m2 ≤ m · 1

m2 =
1
m . Now, clearly, max�∈[m] δ

� = max
{
max�∈[m] | |V �|≥2 δ�, max�∈[m] | |V �|=1 δ�

}≤
max�∈[m] | |V �|≥2 δ� + max�∈[m] | |V �|=1 δ� ≤max�∈[m] | |V �|≥2 δ� + maxi∈[n] wi ≤
max�∈[m] | |V �|≥2 δj + OPT(w) , so that
E (

max�∈[m] δ
�
) ≤ E (

max�∈[m] | |V �|≥2 δj + OPT(w)
)

= E (
max�∈[m] | |V �|≥2 δj

)
+ OPT(w) . Note, however, that

E (
max�∈[m] | |V �|=1 δj

)
=

∑
0≤δ≤W δ Pr

(
max�∈[m] ||V �|≥2 δ� = δ

)

=
∑

0≤δ≤4(1+ε)SC(w,F) δ Pr
(
max�∈[m] ||V �|≥2 δ� = δ

)

+
∑

4(1+ε)SC(w,F)<δ≤W δ Pr
(
max�∈[m] ||V �|≥2 δ� = δ

)

≤ ∑
0≤δ≤4(1+ε)SC(w,F) 4(1 + ε)SC (w,F) Pr

(
max�∈[m] ||V �|≥2 δ� = δ

)

+
∑

4(1+ε)SC(w,F)<δ≤W W Pr
(
max�∈[m] ||V �|≥2 δ� = δ

)

= 4(1 + ε)SC (w,F)
∑

0≤δ≤4(1+ε)SC(w,F) Pr
(
max�∈[m] ||V �|≥2 δ� = δ

)

+ W
∑

4(1+ε)SC(w,F)<δ≤W Pr
(
max�∈[m] ||V �|≥2 δ� = δ

)

= 4(1 + ε)SC (w,F) Pr
(
max�∈[m] ||V �|≥2 δ� ≤ 4(1 + ε)SC (w,F)

)

+ WPr
(
max�∈[m] ||V �|≥2 δ� > 4(1 + ε)SC (w,F)

)

< 4(1 + ε)SC (w,F) · 1 + W · 1
m

(since Pr
(
max�∈[m] | |V �|≥2 δ� > 4(1 + ε)SC (w,F)

)
< 1

m ). Hence,
SC (w,P) = E (

max�∈[m] δ
�
) ≤ E (

max�∈[m] | |V �|=1 δj
)

+ OPT(w) ≤ 4(1 +
ε)SC (w,F)+ W

m +OPT(w) ≤ 4(1+ε)SC (w,F)+2 OPT(w) ≤ 4(1+ε)SC (w,F)+
2SC (w,F) = (6 + ε)SC (w,F) , for any ε, where 0 < ε < 1, as needed. 	


Recall that there is a randomized, polynomial-time approximation scheme
(RPTAS) to approximate the social cost of any Nash equilibrium (in particular,
the fully mixed) within any arbitrary ε > 0 [6, Theorem 9]. Thus, since, by
Theorem 3, the worst social cost is bounded by 6+ ε times the social cost of the
fully mixed Nash equilibrium, this yields:

Theorem 4. Consider the model of identical capacities. Let n = m, m suitable
large. Then, there exists a randomized, polynomial-time algorithm with approx-
imation factor 6 + ε, for any ε > 0, for WORST NASH EQUILIBRIUM SOCIAL
COST.

We significantly improve Theorem 3 under a certain assumption on the traffics.
Theorem 5. Consider any traffic vector w such that w1 ≥ w2 + . . .+wn. Then,
for any Nash equilibrium P, SC (w,P) ≤ SC (w,F).

Proof. Since w1 ≥ w2 + . . . + wn, it follows that the link with maximum la-
tency has user 1 assigned to it in any pure strategy profile. Thus, in particular,
SC (w,P) = λ1 (w,P) and SC (w,F) = λ1 (w,F). By Lemma 4, λ1 (w,P) ≤
λ1 (w,F). It follows that SC (w,P) ≤ SC (w,F), as needed. 	
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6 Best Pure Nash Equilibria and Nashification

We start by establishing NP-hardness for NASHIFY:

Theorem 6. NASHIFY is NP-hard, even if m = 2.

Proof. By reduction from PARTITION. Consider any arbitrary instance of PAR-
TITION consisting of a set A of k items a1, . . . , ak with sizes s(a1), . . . , s(ak) ∈ N,
for any integer k. Construct from it an instance of NASHIFY as follows: Set
n = 3k and m = 2. Set wi = s(ai) for 1 ≤ i ≤ k, and wi = 1

2k for k +1 ≤ i ≤ 3k.
Take the pure strategy profile that assigns users 1, 2, . . . , 2k to link 1 and users
2k + 1, . . . , 3k to link 2.

We establish that this yields a reduction from PARTITION to NASHIFY.
Assume first that the instance of PARTITION is positive; that is, there exists a
subset A′ ⊆ A such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a). Since either |A′| ≤ k

2 or
|A \ A′| ≤ k

2 , assume, without loss of generality, that |A′| ≤ k
2 . Note that each

user assigned to link 1 is unsatisfied in the constructed pure strategy profile
since its latency cost on link 1 is

∑
a∈A s(a) + k · 1

2k =
∑

a∈A s(a) + 1
2 , while

its latency cost on link 2 is k · 1
2k = 1

2 , which is less. Thus, each step that
transfers an unsatisfied user that corresponds to an element a ∈ A′ from link
1 to link 2 is a selfish step, and the sequence of steps that transfer all users
that correspond to elements of A′ from link 1 to link 2 is a sequence of at most
k
2 < k steps. As a result of this sequence of selfish steps, the latency of link 1 will
be

∑
a∈A\A′ s(a) + 1

2 , while the latency of link 2 will be
∑

a∈A′ s(a) + 1
2 . Since

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a), these two latencies are equal and the resulting pure

strategy profile is therefore a Nash equilibrium which implies that NASHIFY is
positive.

Assume now that the instance of NASHIFY is positive; that is, there exists
a sequence of at most k selfish steps that transforms the pure strategy profile
in the constructed instance of NASHIFY to a Nash equilibrium. Assume that
in the resulting pure strategy profile users corresponding to a subset A′ ⊆ A
remain in link 1, users corresponding to the subset A \ A′ ⊆ A are transfered
to link 2, while the sums of traffics of users with traffic 1

2k that reside in link 1
and link 2 are x and 1 − x, respectively; thus, the latencies of links 1 and 2 are∑

a∈A′ s(a) + x and
∑

a∈A\A′ s(a) + 1 − x, respectively. We consider two cases:
Assume first that A′ = A. Then after at most k selfish steps the latency on

link 2 is at most 1 whereas the latency on link 1 is at least
∑

a∈A s(a) ≥ k. So
there exists an unsatisfied user a ∈ A, a contradiction to the fact that NASHIFY is
positive. So let A′ �= A. We show that this implies

∑
a∈A′ s(a)−∑

a∈A\A′ s(a) =
0. Assume | ∑a∈A′ s(a) − ∑

a∈A\A′ s(a)| �= 0. Since the traffics of users in A

are integer, this implies | ∑a∈A′ s(a) − ∑
a∈A\A′ s(a)| ≥ 1. The fact that A′ �=

A shows that at least one user with large traffic was transformed to link 2.
So we can make at most k − 1 selfish steps with the small traffics. However,
transforming k − 1 small traffics to the link with smaller latency leaves one
user with small traffic unsatisfied, a contradiction to the fact that NASHIFY is
positive. So | ∑a∈A′ s(a) − ∑

a∈A\A′ s(a)| = 0 which implies that PARTITION is
positive. 	
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Algorithm Anashify:
Input: A pure strategy profile L of n users with traffics
w1, . . . , wn.
Output: A pure strategy profile L′ that is a Nash equilibrium.

– Sort the user traffics in non-increasing order so that w1 ≥
. . . ≥ wn.

– For each user i := 1 to n, do
• remove user i from the link it is currently assigned;
• find the link � with the minimum latency;
• reassign user i to the link �.

od
– Return the resulting pure strategy profile L′.

Fig. 1. The algorithm Anashify

We remark that NASHIFY is NP-complete in the strong sense (cf. [8, Section
4.2]) if m is part of the input. Thus, there is no pseudopolynomial-time algorithm
for NASHIFY (unless P = NP). In contrast, there is a natural pseudopolynomial-
time algorithm Ak−nashify for k-NASHIFY, which exhaustively searches all se-
quences of k selfish steps; since a selfish step involves a (unsatisfied) user and a
link for a total of mn choices, the running time of Ak−nashify is Θ((mn)k). We
continue to present an algorithm Anashify that solves NASHIFY when n selfish
steps are allowed.

The algorithm Anashify sorts the user traffics in non-increasing order so that
w1 ≥ . . . ≥ wn. Then for each user i := 1 to n, it removes user i from the link
it is currently assigned, it finds the link � with the minimum latency, and it
reassigns user i to the link �. We prove:

Lemma 8. A greedy selfish step of an unsatisfied user i with traffic wi makes
no user k with traffic wk ≥ wi unsatisfied.

Proof. Let L = 〈l1, . . . , ln〉 be a pure strategy profile. Furthermore, let p = li,
and let q be the link with minimum latency. Denote λj and λ̂j the latency of
link j ∈ [m] before and after user i changed its strategy, respectively. Assume
that user k becomes unsatisfied due to the move of user i. Since only the latency
on link p and q changed, we have to distinguish between two cases. Either lk �= q
and user k wants to change its strategy to p, or lk = q and user k becomes
unsatisfied due to the additional traffic wi on link q.

First, assume that lk �= q, and that user k wants to change its strategy to p.
Since user i changed its strategy from p to q we know that λq < λ̂p and therefore
wk + λq < wk + λ̂p. So if user k wants to change its strategy to p, then user k
was already unsatisfied before user i changed its strategy, a contradiction.

For the case that the strategy of user k is q we define λ̃q = λq −wk. We have
∀j ∈ [m] : λj + wk ≥ λj + wi ≥ λq + wi = λ̃q + wk + wi. Therefore k stays
satisfied. 	
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Theorem 7. Let L = 〈l1, . . . , ln〉 be a pure strategy profile for n users with
traffics w1, ..., wn on m links with social cost SC(w,L). Then algorithm Anashify

computes a Nash equilibrium from L with social cost ≤ SC(w,L) using O(n lg n)
time.

Proof. In order to complete the proof of Theorem 7, we have to show that
algorithm Anashify returns a pure strategy profile L′ that is a Nash equilibrium
and has social cost SC(w,L′) ≤ SC(w,L). It is easy to see that SC(w,L′) ≤
SC(w,L), since for user j we always choose the link with lowest latency as its
strategy. After every iteration the user that changed its strategy is satisfied.
Since we go through the list of users in descending order of their traffic and
because of Lemma 8, all users that changed their strategy in earlier iterations
stay satisfied. Therefore after we went through the complete list of users, all
users are satisfied and thus L′ is a Nash equilibrium.

The running time of algorithm Anashify is O(n lg n) for sorting the n user
traffics, O(m lg m) for constructing a heap with all latencies in the input pure
strategy profile L, and O(n lg m) for finding the minimum element of the heap
in each of the n iterations of the algorithm. Thus, the total running time is
O(n lg n+m lg m+n lg m). The interesting case is when m ≤ n (since otherwise, a
single user can be assigned to each link, achieving an optimal Nash equilibrium).
Thus, in the interesting case, the total running time of Anashify is O(n lg n). 	


Running the PTAS of Hochbaum and Shmoys [10] for scheduling n jobs on
m identical machines yields a pure strategy profile L such that SC (w,L) ≤
(1+ε) OPT(w). On the other hand, applying the algorithm Anashify on L yields
a Nash equilibrium L′ such that SC (w,L′) ≤ SC (w,L). Thus, SC (w,L′) ≤
(1 + ε)OPT (w). Since also OPT (w) ≤ SC (w,L′), it follows that:

Theorem 8. There exists a PTAS for BEST PURE NASH EQUILIBRIUM, for
the model of identical capacities.

7 Worst Pure Nash Equilibria

Denote with m-WCpNE the decision problem corresponding to the problem to
compute the worst-case pure Nash equilibrium for n users with traffics w1, . . . , wn

on m links. If m is part of the input, then we call the problem WCpNE. We first
show:

Theorem 9. Fix any traffic vector w and pure Nash equilibrium L. Then,
SC(w,L)
OPT(w) ≤ 2 − 2

m+1 . Furthermore, this upper bound is tight.

Proof. Schuurman and Vredeveld [27] showed the tightness of the upper bound
for jump optimal schedules proved by Finn and Horowitz [5]. Since every pure
Nash equilibrium is also jump optimal, the upper bound follows directly. Greedy
selfish steps on identical links can only increase the minimum load over all links.
Thus, we can transform every jump optimal schedule into a Nash equilibrium
without altering the makespan, proving tightness. 	
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Theorem 10. It is NP-hard to find a pure Nash equilibrium L with WC(w)
SC(w,L) <

2 − 2
m+1 − ε, for any ε > 0. It is NP-hard in the strong sense if the number of

links m is part of the input.

Proof. We show that for a certain class of instances we have to solve BIN PACK-
ING in order to find a Nash equilibrium with desired property. BIN PACKING
is NP-complete in the strong sense [8]. Consider an arbitrary instance of BIN
PACKING consisting of a set of items U = {u1, . . . , u|U|} with sizes s(uj) ≤ δ,∑

uj∈U = m − 1, and K = m − 1 bins of capacity B = 1. From this in-
stance we construct an instance for the stated problem as follows: Set ε = 2δ.
There are n − 2 = |U| users with traffic wi = s(ui) and two users with traffic
wn−1 = wn = 1. Note that the social cost of a Nash Equilibrium is either 2 when
the users with traffic 1 are on the same link, or at most m+1

m + δ otherwise.
If BIN PACKING is negative, then there exists no Nash equilibrium with both

users with traffic 1 on the same link. Thus every Nash equilibrium has the desired
property. If BIN PACKING is positive, then there exists a Nash equilibrium with
both users with traffic 1 on the same link. The social cost of this Nash equilibrium
is WC(w) = 2. For any other Nash Equilibrium L where the users with traffic 1
use different links, SC(w,L) ≤ m+1

m + δ. This yields

WC(w)
SC(w,L)

≥ 2
m+1

m + δ
=

2
m+1

m + ε
2

=
2m

m + 1 + εm
2

= 2 − 2
m + 1 + εm

2
− εm

m + 1 + εm
2

> 2 − 2
m + 1

− ε .

So, to find a Nash equilibrium with desired property, we have to find a distribu-
tion of the small traffics w1, . . . , wn−2 to m−1 links which solves BIN PACKING.

Since BIN PACKING is NP-hard in the strong sense, if the number of bins
is part of the input, it follows that computing a pure Nash equilibrium L with
WC(w)

SC(w,L) < 2 − 2
m+1 − ε is also NP-hard in the strong sense, if m is part of the

input. 	

Since WCpNE is NP-hard in the strong sense [6], there exists no pseudopoly-

nomial algorithm to solve WCpNE. However, we can give such an algorithm for
m-WCpNE.

Theorem 11. There exists a pseudopolynomial-time algorithm for m-WCpNE.

Proof. We start with the state set S0 in which all links are empty. After inserting
the first i traffics the state set Si consists of all (2m)-tuples (λ1, w̃1, . . . , λm, w̃m)
describing a possible placement of the largest i traffics with λj being the latency
on link j and w̃j the smallest traffic placed on link j. We need at most m · |Si|
steps to create Si+1 from Si, and |Si| ≤ (Wi)m · (w1)m, where Wi =

∑i
j=1 wj .

Therefore the overall computation time is bounded by O(n ·m ·Wm ·(w1)m). The
best-case Nash equilibrium and the worst-case Nash equilibrium can be found
by exhaustive search over the state set Sn using O(n · m · Wm · (w1)m) time. 	


Remark 1. Theorem 11 also holds for the case of arbitrary link capacities.
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8 Conclusions and Discussion

In this work, we have studied the combinatorial structure and the computational
complexity of the extreme (either worst or best) Nash equilibria for the selfish
routing game introduced in the pioneering work of Koutsoupias and Papadim-
itriou [15].

Our study of the combinatorial structure has revealed an interesting, highly
non-trivial, combinatorial conjecture about the worst such Nash equilibrium,
namely the Fully Mixed Nash Equilibrium Conjecture, abbreviated as FMNE
Conjecture; the conjecture states that the fully mixed Nash equilibrium [18]
is the worst Nash equilibrium in the setting we consider. We have established
that the FMNE Conjecture is valid when restricted to pure Nash equilibria.
Furthermore, we have come close to establishing the FMNE Conjecture in its
full generality by proving that the social cost of any (pure or mixed) Nash
equilibrium is within a factor of 6 + ε, for any ε > 0, of that of the fully mixed
Nash equilibrium, under the assumptions that all link capacities are identical, the
number of users is equal to the number of links and the number of links is suitable
large. The proof of this result has relied very heavily on applying and extending
techniques from the theory of stochastic orders and majorization [17,28]; such
techniques are imported for the first time into the context of selfish routing,
and their application and extension are both of independent interest. We hope
that the application and extension of techniques from the theory of stochastic
orders and majorization will be valuable to further studies of the selfish routing
game considered in this paper and for the analysis and evaluation of mixed Nash
equilibria for other games as well.

Our study of the computational complexity of extreme Nash equilibria has
resulted in both positive and negative results. On the positive side, we have de-
vised, for the case of identical link capacities, equal number of users and links
and a suitable large number of links, a randomized, polynomial-time algorithm
to approximate the worst social cost within a factor arbitrarily close to 6 + ε,
for any ε > 0. The approximation factor 6 + ε of this randomized algorithm will
immediately improve upon reducing 6 further down in our combinatorial result
described above, relating the social cost of any Nash equilibrium to that of the
fully mixed. We have also introduced the technique of Nashification as a tool for
converging to a Nash equilibrium starting with any assignment of users to links
in a way that does not increase the social cost; coupling this technique with a
polynomial-time approximation scheme for the optimal assignment of users to
links [10] has yielded a polynomial-time approximation scheme for the social
cost of the best Nash equilibrium. In sharp contrast, we have established a tight
limit on the approximation factor of any polynomial-time algorithm that approx-
imates the social cost of the worst Nash equilibrium (assuming P �= NP). Our
approximability and inapproximability results for the best and worst Nash equi-
libria, respectively, establish an essential difference between the approximation
properties of the two types of extreme Nash equilibria.

The most obvious problem left open by our work is to establish the FMNE
Conjecture. Some progress on this problem has been already reported by Lücking
et al. [16], where the conjecture is proved in various special cases of the model of
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selfish routing introduced by Koutsoupias and Papadimitriou [15] and considered
in this work; furthermore, Lücking et al. disprove the FMNE Conjecture in a
different model for selfish routing that borrows from the model of unrelated
machines [11] studied in the scheduling literature.

The technique of Nashification, as an algorithmic tool for the computation
of Nash equilibria, deserves also further study. Some steps in this direction have
been taken already by Feldmann et al. [4].
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