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Abstract. We study Nash equilibria in a discrete routing game that
combines features of the two most famous models for non-cooperative
routing, the KP model [16] and the Wardrop model [27]. In our model,
users share parallel links. A user strategy can be any probability dis-
tribution over the set of links. Each user tries to minimize its expected
latency, where the latency on a link is described by an arbitrary non-
decreasing, convex function. The social cost is defined as the sum of the
users’ expected latencies. To the best of our knowledge, this is the first
time that mixed Nash equilibria for routing games have been studied in
combination with non-linear latency functions.
As our main result, we show that for identical users the social cost of any
Nash equilibrium is bounded by the social cost of the fully mixed Nash
equilibrium. A Nash equilibrium is called fully mixed if each user chooses
each link with non-zero probability. We present a complete characteri-
zation of the instances for which a fully mixed Nash equilibrium exists,
and prove that (in case of its existence) it is unique. Moreover, we give
bounds on the coordination ratio and show that several results for the
Wardrop model can be carried over to our discrete model.

1 Introduction

Motivation and Framework. One of the most important concepts in non-
cooperative game theory is the concept of Nash equilibria [22]. A Nash equilib-
rium is a state of the system in which no player can improve its objective by
� This work has been partially supported by the European Union within the 6th

Framework Programme under contract 001907 (DELIS), by the IST Program of the
European Union under contract number IST-2001-33116 (FLAGS), by funds from
the Joint Program of Scientific and Technological Collaboration between Greece
and Cyprus, by research funds at University of Cyprus, and by the VEGA grant No.
2/3164/23.

�� International Graduate School of Dynamic Intelligent Systems

J. Diaz et al. (Eds.): ICALP 2004, LNCS 3142, pp. 645–657, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



646 M. Gairing et al.

unilaterally changing its strategy. A Nash equilibrium is called pure if all players
choose exactly one strategy, and mixed if players choose probability distributions
over strategies. The coordination ratio is the worst-case ratio of the social cost
in a Nash equilibrium state and the minimum social cost. Of special interest
to our work is the fully mixed Nash equilibrium where each player chooses each
strategy with non-zero probability. We consider a hybridization of the two most
famous models for non-cooperative routing in literature: the KP model [16] and
the Wardrop model [8,27].

In the KP model, each of n users employs a mixed strategy, which is a prob-
ability distribution over m parallel links, to control the shipping of its traffic.
Traffic is unsplittable. A capacity specifies the rate at which each link processes
traffic. Identical users have the same traffic whereas the traffic of the users may
vary arbitrarily in the model of arbitrary users. In a Nash equilibrium, each user
selfishly routes its traffic on links that minimize its individual cost: its expected
latency cost, given the expected network congestion caused by the other users.
The social cost of a Nash equilibrium is the expectation, over all random choices
of the users, of the maximum latency through a link (over all links).

In the Wardrop model, arbitrary networks with latency functions for edges
are considered. Moreover, the traffic is splittable into arbitrary pieces. Here,
unregulated traffic is modeled as a network flow. Equilibrium flows are flows with
all paths used between a given pair of a source and a destination having the same
latency. The latency functions are convex. Thus, equilibrium flows are optimal
solutions to a convex program. An equilibrium in this model can be interpreted
as a Nash equilibrium in a game with an infinite number of users, each carrying
an infinitesimal amount of traffic from a source to a destination. The Wardrop
model restricts to pure Nash equilibria. The individual cost of a user is the sum
of the edge latencies on a path from the user’s source to the its destination. The
social cost of a Nash equilibrium is the sum of all individual costs.

The routing model considered in this work combines aspects of both the
KP model and the Wardrop model. First, we restrict the network structure
to that of the KP model (parallel links) and we assume a user’s traffic to be
unsplittable. On the other hand, we allow arbitrary non-decreasing and convex
latency functions, whereas in the KP model latency functions are linear. In our
model, the latency function of a link is a function in the total traffic of users
assigned to this link. The social cost is defined as the expected sum of all user
costs – as opposed to the social cost used in the KP model. Thus, as far as the
generality of latency functions and the definition of social cost are concerned,
we lean toward the Wardrop model, whereas the network structure and the
indivisibility of each user’s traffic remain as in the KP model. Restricted to pure
Nash equilibria, our model has already been studied in [6], and restricted to
linear latency functions in [18]. It is a particular instance of what is known as
congestion game [21,23]. It is known that a pure Nash equilibrium always exists
in this setting.

The main results of this work are the identification of the worst-case mixed
Nash equilibrium and bounds on the coordination ratio. The convex latency func-
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tions define a very general discrete routing game. To the best of our knowledge
this is the first time that mixed Nash equilibria are studied in such a game.

Related Work. The KP model was introduced by Koutsoupias and Papadim-
itriou [16]. They introduced the notion of coordination ratio and analyzed the
coordination ratio for some special cases. Later, Czumaj and Vöcking [7], and
Koutsoupias et al. [15] gave asymptotically tight upper bounds on the coordi-
nation ratio for pure and mixed Nash equilibria. Mavronicolas and Spirakis [20]
studied further the KP model and introduced the fully mixed Nash equilibrium.
They showed that, in case it exists, the fully mixed Nash equilibrium is unique.
Gairing et al. [12] conjecture that the fully mixed Nash equilibrium, whenever
it exists, has the worst social cost among all Nash equilibria. From here on we
will refer to this as the Fully Mixed Nash Equilibrium Conjecture. Up to now,
the conjecture could be proven only for several particular cases of the KP model
[12,19]. A proof of the conjecture will enable the derivation of upper bounds on
the coordination ratio via studying the fully mixed Nash equilibrium.

Lücking et al. [18] considered the KP model with respect to quadratic social
cost, defined as the sum of weighted individual costs. In this context, they proved
the Fully Mixed Nash Equilibrium Conjecture in the case of identical users and
identical links. This result is strongly related to results presented in this paper.

A natural problem is the effective computation of a Nash equilibrium. For
general strategic games, it is still open as to whether a Nash equilibrium can
be computed in polynomial time, even for two player games. Fotakis et al. [11]
showed that a pure Nash equilibrium for the KP model can be computed in poly-
nomial time using Graham’s algorithm [13]. Furthermore, they proved that the
problem to compute the best or worst pure Nash equilibrium is NP-complete.
Feldmann et al. [9] showed that any deterministic assignment of users to links can
be transformed into a Nash equilibrium in polynomial time without increasing
the social cost. In particular, combining this result with known approximation
algorithms for the computation of optimal assignments [14] yields a PTAS for
the problem to compute a best pure Nash equilibrium.

The Wardrop model was already studied in the 1950’s [2,27], in the context
of road traffic systems. Wardrop [27] introduced the concept of equilibrium to
describe user behavior in this kind of traffic networks. For a survey of the early
work on this model, see [3]. A lot of subsequent work on this model has been mo-
tivated by Braess’s Paradox [5]. Inspired by the new interest in the coordination
ratio, Roughgarden and Tardos [24,25,26] re-investigated the Wardrop model.
For a survey of results, we refer to [10] and references therein.

Results. With our methods, we can only prove results for identical users. How-
ever, for this case we obtain through a very thorough analysis the following

– In the case of its existence, the fully mixed Nash equilibrium is the worst-case
Nash equilibrium for any instance with convex latency functions. Therewith,
we prove the Fully Mixed Nash Equilibrium Conjecture to hold for the model
under consideration, whereas it remains unproven for the KP model in the
general case. This broadens some recent results from [18] for a special case
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of our model, where latency functions are restricted to be linear. We use an
appropriate counterexample to show that the convexity assumption we are
making for the latency functions cannot be relaxed.

– For arbitrary non-decreasing and non-constant latency functions, the fully
mixed Nash equilibrium is unique in the case of its existence.

– We give a complete characterization of instances for which the fully mixed
Nash equilibrium exists.

– For pure Nash equilibria we adapt an upper bound on the coordination ratio
from Roughgarden and Tardos [26] to our (discrete) model. This bound
holds for non-decreasing and non-constant latency functions. Considering
polynomial latency functions with non-negative coefficients and of maximum
degree d, this yields an upper bound of d + 1.

– For identical links with latency function f(x) = xd, d ∈ N, the coordination
ratio for mixed Nash equilibria is bounded by the (d + 1)’th Bell number.
This bound can be approximated arbitrarily but never reached.

– We give a O(m log n log m) algorithm to compute a pure Nash equilibrium
for non-decreasing latency functions.

– For arbitrary users, computing the best-case or worst-case pure Nash equi-
librium is NP-hard even for identical links with a linear latency function.

Road Map. Section 2 introduces notations and terminology. In Section 3, the
Fully Mixed Nash Equilibrium Conjecture is proven for the model we consider.
The necessity of the convexity assumption is also established there. Furthermore,
we determine the conditions under which the fully mixed Nash equilibrium exists.
Section 4 presents bounds on coordination ratio and complexity results.

2 Discrete Routing Games

General. The number of ways a set of k elements can be partitioned into non-
empty subsets is called the k-th Bell Number [4,28], denoted by Bk. It is defined
by the recursive formula B0 = 1 and

Bk+1 =
∑

0≤q≤k

Bq ·
(

k

q

)
for all k ≥ 0. (1)

Throughout, denote for any integer m ≥ 1, [m] = {1, . . . , m}.
We consider a network consisting of a set of m parallel links 1, 2, . . . , m from

a source node to a destination node. Each of n network users 1, 2, . . . , n, or users
for short, wishes to route a particular amount of traffic along a (non-fixed) link
from source to destination. Denote as wi the traffic of user i ∈ [n]. Define the
n×1 traffic vector w in the natural way. For any subset A ⊆ [n] of users, denote
wA =

∑
i∈A wi. If users are identical, we assume that wi = 1 for all i ∈ [n]. In

this case, wA reduces to |A|. Assume throughout that m > 1 and n > 1.
A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user

i ∈ [n] is a probability distribution over pure strategies; thus, a mixed strategy is
a probability distribution over the set of links. The support of the mixed strategy
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for user i ∈ [n], denoted as support(i), is the set of those pure strategies (links)
to which i assigns positive probability. A pure strategy profile is represented by
an n-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n; a mixed strategy profile is represented by an
n×m probability matrix P of nm probabilities p(i, j), i ∈ [n] and j ∈ [m], where
p(i, j) is the probability that user i chooses link j.

For a probability matrix P, define indicator variables I(i, j) ∈ {0, 1}, where
i ∈ [n] and j ∈ [m], such that I(i, j) = 1 if and only if p(i, j) > 0. Thus, the
support of the mixed strategy for user i ∈ [n] is the set {j ∈ [m] | I(i, j) = 1}.
A mixed strategy profile P is fully mixed [20, Section 2.2] if for all users i ∈ [n]
and links j ∈ [m], I(i, j) = 1. Throughout, we will cast a pure strategy profile
as a special case of a mixed strategy profile in which all strategies are pure.

System, Models and Cost Measures. Associated with every link j ∈ [m],
is a latency function fj : R

+
0 → R

+
0 , fj(0) = 0, which is non-decreasing and

non-constant. Define the m×1 vector of latency functions Φ in the natural way.
If fj = f for all j ∈ [m], we say that the links are identical, otherwise they are
arbitrary. For a pure strategy profile 〈�1, �2, . . . , �n〉, the individual latency cost
for user i ∈ [n], denoted by λi, is defined by fj(

∑
k∈[n] : �k=j wk), with j = �i.

For a mixed strategy profile P, denote as Λj the expected latency on link j ∈ [m],
i.e.

Λj =
∑

A⊆[n]

∏

k∈A

p(k, j) ·
∏

k/∈A

(1 − p(k, j)) · fj(wA).

The expected latency cost for user i ∈ [n] on link j ∈ [m], denoted by λij , is the
expectation, over all random choices of the remaining users, of the individual
latency cost for user i had its traffic been assigned to link j; thus,

λij =
∑

〈�1,...,�n〉

∏

k∈[n]\{i}
p(k, �k) · fj(wi +

∑

k∈[n]\{i}
�k=j

wk)

=
∑

A⊆[n]\{i}

∏

k∈A

p(k, j)
∏

k �∈A∪{i}
(1 − p(k, j)) · fj(wi + wA).

For each user i ∈ [n], the expected individual latency cost, denoted by λi, is the
expectation, over all links j ∈ [m], of the expected latency cost for user i on link
j; thus, λi =

∑
j∈[m] p(i, j) · λij . Associated with a mixed strategy profile P and

a vector of latency functions Φ is the social cost, denoted by SCΣ(Φ,P), which
is the sum, over all users, of the expected individual latency costs of the users.
Thus, SCΣ(Φ,P) =

∑
i∈[n] λi. On the other hand, the social optimum, denoted

by OPTΣ(Φ), is the least possible value, over all pure strategy profiles L, of the
social cost. Thus, OPTΣ(Φ) = minL SCΣ(Φ,L).

Nash Equilibria and Coordination Ratio. We are interested in a special
class of mixed strategies called Nash equilibria [22] that we describe below. Say
that a user i ∈ [n] is satisfied for the probability matrix P if λij = λi for all links
j ∈ support(i), and λij ≥ λi for all j �∈ support(i). Otherwise, user i is unsatisfied.
Thus, a satisfied user has no incentive to unilaterally deviate from its mixed
strategy. P is a Nash equilibrium [16, Section 2] if and only if all users i ∈ [n] are
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satisfied for P. The coordination ratio is the maximum value, over all vectors of
latency functions Φ and Nash equilibria P, of the ratio SCΣ(Φ,P)/OPTΣ(Φ).

3 Results on Fully Mixed Nash Equilibria

For the model of identical users, we now consider fully mixed Nash Equilibria.
We start with a definition and a technical lemma. Both can be proven for the
model of arbitrary users, and are useful several times throughout the paper.

Definition 1. For a vector of r probabilities p = (p1, . . . , pr) and a function
g : R → R define

H(p,w, g) =
∑

A⊆[r]

∏

k∈A

pk

∏

k/∈A

(1 − pk) · g(wA).

In the same way, we define a function H̃(p̃, r,w, g) by replacing p with a vector
of r probabilities all equal to p̃. In the case that all users have the same traffic,
we omit w in the parameter list. Note that wA reduces to |A| in this case.

We prove a natural monotonicity property of the function H(p,w, g).

Lemma 1. For every vector of r probabilities p = (p1, . . . , pr) and every non-
decreasing and non-constant function g : R → R, H(p,w, g) is strictly increasing
in each probability pi, ∀i ∈ [r].

Proof. We prove, that H(p,w, g) is strictly increasing in pr. The lemma then
follows by symmetry of H(p,w, g) in all probabilities pi, i ∈ [r]. It is

H(p,w, g) =
∑

A⊆[r]

∏

k∈A

pk

∏

k/∈A

(1 − pk) · g(wA)

=
∑

A⊆[r−1]

∏

k∈A

pk

∏

k/∈A∪{r}
(1 − pk) · [g(wA) + pr · (g(wA + wr) − g(wA))]

As g(wA + wr) − g(wA) ≥ 0 for all A ⊆ [r − 1] (g is non-decreasing), and
g(wA + wr) − g(wA) > 0 for some A ⊆ [r − 1] (g is non-constant), the claim
follows. 	


3.1 The Worst-Case Nash Equilibrium

We now focus on the Fully Mixed Nash Equilibrium Conjecture. We first show
that for an arbitrary Nash equilibrium P, the expected latency of a user i on
a link j increases if we set all user probabilities on link j to be the average
probability on that link. We then use this result to show that the expected
individual latency of user i in the Nash equilibrium P is at most its expected
individual latency in the fully mixed Nash equilibrium. By definition, this proves
the Fully Mixed Nash Equilibrium Conjecture for our model. We furthermore
give an example with a strictly increasing but non-convex latency function for
which the Fully Mixed Nash Equilibrium Conjecture does not hold, showing that
the assumption of convexity for the latency functions is essential.
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Lemma 2. Let g be convex and define p = (p1, . . . , pn) and p̃ =
∑

i∈[n] pi

n . Then
H(p, g) ≤ H̃(p̃, n, g).

Proof. Define a set of n probabilities q = (q1, . . . , qn) by q1 = q2 = p1+p2
2 and

qi = pi, ∀i ∈ [3, n]. Then

H(p, g) =
∑

A⊆[3,n]

∏

k∈A

pk

∏

k/∈A∪{1,2}
(1 − pk) · F (|A|, p, g),

where

F (|A|, p, g) = p1 · p2 · [g(|A| + 2) − 2g(|A| + 1) + g(|A|)]
+ (p1 + p2) · [g(|A| + 1) − g(|A|)] + g(|A|).

Similarly,
H(q, g) =

∑

A⊆[3,n]

∏

k∈A

qk

∏

k/∈A∪{1,2}
(1 − qk) · F (|A|, q, g).

It suffices to show, that F (|A|, q, g) − F (|A|, p, g) ≥ 0. Indeed,

F (|A|, q, g) − F (|A|, p, g) = (q1 · q2 − p1 · p2) · [g(|A| + 2) − 2g(|A| + 1) + g(|A|)]
+ (q1 + q2 − (p1 + p2)) · [g(|A| + 1) − g(|A|)]

=
(p1 − p2

2

)2
[g(|A| + 2) − 2g(|A| + 1) + g(|A|)] ≥ 0,

since g is convex. 	


Lemma 3. Consider the model of identical users and arbitrary links with non-
decreasing, non-constant and convex latency functions. If there exists a fully
mixed Nash equilibrium F, then for every mixed Nash equilibrium P, λi(P) ≤
λi(F) for all i ∈ [n].

Proof. Define Θij =
∑

k∈[n],k �=i p(k, j) and p̃(j) = Θij

n−1 . The claim holds if
λij(P) ≤ λi(F), for all i ∈ [n], j ∈ [m]. So assume there exists i ∈ [n] and
j ∈ [m] with λij(P) > λi(F). By Lemma 2

λij(P) ≤
∑

A⊆[n]\{i}

∏

k∈A

p̃(j)
∏

k/∈A∪{i}
(1 − p̃(j)) · fj(1 + |A|), and

λij(F) =
∑

A⊆[n]\{i}

∏

k∈A

pF (j)
∏

k/∈A∪{i}
(1 − pF (j)) · fj(1 + |A|),

where pF (j) is the probability for any user to choose link j in the fully mixed
Nash equilibrium F. Note that the upper bound on λij(P) is strictly increasing
in p̃(j), since fj is non-decreasing and non-constant. Therefore, λij(P) > λi(F)
implies that p̃(j) > pF (j). Since

∑
j∈[m] p̃(j) =

∑
j∈[m] pF (j) = 1, there exists a

link k with p̃(k) < pF (k). However, this implies that λik(P) < λi(F) and thus
λi(P) < λi(F). 	
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If we look at the different model where latency functions only depend on the user
and not on the link, we know that there exists a fully mixed Nash equilibrium
with probabilities p(i, j) = 1

m for all i ∈ [n] and j ∈ [m]. With the same method
as in Lemma 3, we can prove that the expected individual latency of a user is
bounded by its expected individual latency of this fully mixed Nash equilibrium.

Theorem 1. Consider the model of identical users and arbitrary links with non-
decreasing, non-constant and convex latency functions. If the fully mixed Nash
equilibrium F exists, then for every mixed Nash equilibrium P, SCΣ(Φ,P) ≤
SCΣ(Φ,F).

Proof. Follows from the definition of SCΣ(Φ,P) combined with Lemma 3. 	

The Fully Mixed Nash Equilibrium Conjecture has been proven for the
model of identical users, identical links and latency function f(x) = x by
Lücking et al. [18]. Theorem 1 generalizes this result to non-decreasing, non-
constant and convex latency functions. We continue to prove that the convexity
assumption is essential.

Proposition 1. There exists an instance with identical users, identical links
and a non-decreasing, non-convex latency function with a pure Nash equilibrium
L and fully mixed Nash equilibrium F such that λi(L) > λi(F) for all i ∈ [n].

Proof. Consider an instance with m = 2 links and n = 4 users. Define f as
follows: f(1) = 1, f(2) = 2, f(3) = 2 + ε, f(4) = 2 + 2ε, where ε > 0. Then in
each pure Nash equilibrium, there are exactly 2 users on each link. Let L be
such a pure Nash equilibrium. Then λi(L) = 2 for all i ∈ [n]. Now consider the
fully mixed Nash equilibrium F. Here p(i, j) = 1

2 for all i ∈ [n], j ∈ [m]. Thus,

λi(F) =
1
8
(f(1) + 3f(2) + 3f(3) + f(4)) =

15
8

+
5ε

8
, ∀i ∈ [n].

For ε < 1
5 it follows that λi(L) > λi(F) for all i ∈ [n]. 	


3.2 Uniqueness of the Fully Mixed Nash Equilibrium

We first show that the probabilities of all users on a certain link are identical in
a fully mixed Nash equilibrium. We then use this fact to establish uniqueness of
the fully mixed Nash equilibrium.

Theorem 2 (Uniqueness of the Fully Mixed Nash Equilibrium). Con-
sider the model of identical users and arbitrary links with non-decreasing and
non-constant latency functions. If a fully mixed Nash equilibrium F exists, then
it is unique.

3.3 Existence of Fully Mixed Nash Equilibrium

For the special case where all latency functions are equal, i.e. fj = f for all
j ∈ [m], a fully mixed Nash equilibrium always exists and has probabilities
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p(i, j) = 1
m for all i ∈ [n], j ∈ [m]. For the general case, the existence of the fully

mixed Nash equilibrium is not granted, but depends on the latency functions fj .
We will now shed light on this dependence. Without loss of generality, assume the
links to be ordered non-decreasingly according to fj(1). Let gj : [n−1]∪{0} → R

be defined by gj(x) = fj(x+1) for all j ∈ [m]. For k ∈ [m], j ∈ [k−1], determine
pj(k), such that H̃(pj(k), n − 1, gj) = fk(1). Then, H̃(pj(k), n − 1, gj) is the
expected individual latency of any user on link j, if p(i, j) = pj(k) for all i ∈ [n].
Note, that due to Lemma 1, H̃(pj(k), n − 1, gj) is strictly increasing in pj(k),
and hence pj(k) is uniquely determined.

Definition 2. Links k with
∑

j∈[k−1] pj(k) > 1 are called dead links. Links k

with
∑

j∈[k−1] pj(k) = 1 are called special links.

Lemma 4. Consider the model of identical users and arbitrary links with non-
decreasing and non-constant latency functions. If j ∈ [m] is a dead link, then in
any Nash equilibrium P, p(i, j) = 0 for all i ∈ [n].

Lemma 5. Consider the model of identical users and arbitrary links with non-
decreasing and non-constant latency functions. Let S be the set of special links.
In any Nash equilibrium P, there exists at most one user i with p(i, j) > 0 for
some j ∈ S.

Theorem 3 (Characterization of Fully Mixed Nash Equilibria). Con-
sider the model of identical users and arbitrary links with non-decreasing and
non-constant latency functions. There exists a fully mixed Nash equilibrium, if
and only if there are no special and no dead links.

Theorem 3 implies that if the fully mixed Nash equilibrium does not exist, then
the instance contains dead or special links. But dead links are never used in any
Nash equilibrium and could be removed from the instance. We now broaden the
result from Theorem 3 by giving an upper bound on the social cost in the case
that the fully mixed Nash equilibrium does not exist.

Theorem 4. Consider an instance with special or dead links. Then the social
cost of any Nash equilibrium P is bounded by the social cost of the fully mixed
Nash equilibrium F for the instance where the links are restricted to the non-
special and non-dead links.

4 Coordination Ratio and Complexity Results

4.1 Bounds on Coordination Ratio for Special Latency Functions

We now consider the model of identical users and identical links with latency
function f(x) = xd, d ∈ N. In this model, every pure Nash equilibrium has opti-
mal social cost. For mixed Nash equilibria, we now show that the coordination
ratio is bounded by the (d+1)-th Bell Number Bd+1 (see Equation (1)). Due to
[17], Bd+1 ≈ (d + 1)− 1

2 [γ(d + 1)]d+1+ 1
2 eγ(d+1)−d−2, where the function γ(d + 1)

is defined implicitly by γ(d + 1) · ln(γ(d + 1)) = d + 1.
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Theorem 5. Consider the model of identical users and identical links with la-
tency function f(x) = xd, d ∈ N. Then,

sup
w,P

SCΣ(Φ,P)
OPTΣ(Φ)

= Bd+1.

4.2 Bounds on Coordination Ratio for General Latency Functions

In this section, we carry over an upper bound from Roughgarden and Tardos
[26, Corollary 2.10] on the coordination ratio for splittable flows and continuous
latency functions to our discrete setting. For the proof, which is a straightforward
adaption of the corresponding proof in [26], we make use of the following lemma.

Lemma 6. Let gj : [n] → R be a convex function for j ∈ [m]. Set X = {x =
(x1, . . . , xm) ∈ N

m
0 | ∑

j∈[m] xj = n}. Then
∑

j∈[m] gj(xj) is minimum among
all x = (x1, . . . , xm) ∈ X, if and only if

gj(xj + 1) + gk(xk − 1) ≥ gj(xj) + gk(xk) ∀j, k ∈ [m] .

Lemma 6 can be shown by the application of convex cost flows [1, Chapter 14].

Lemma 7. Consider the model of identical users and arbitrary links with non-
decreasing and non-constant latency functions. If xfj(x) ≤ α

∑x
t=1 fj(t) for

all j ∈ [m], then the social cost of any pure Nash equilibrium is bounded by
αOPTΣ(Φ).

The following corollary is an example for the application of the upper bound.

Corollary 1. Consider the model of identical users and arbitrary links. If la-
tency functions are polynomials with non-negative coefficients and maximum de-
gree d, then the coordination ratio for pure Nash equilibria is bounded by d + 1.

4.3 Computation of Pure Nash Equilibrium and Optimum

In the model of identical users and identical links, the users are evenly distributed
to the links in every pure Nash equilibrium, and every pure Nash equilibrium has
optimum social cost. In the following, we give an algorithm to compute a pure
Nash equilibrium in the model of identical users but arbitrary non-decreasing
latency functions. A simple approach is to assign the users one by one to their
respective best link. This greedy algorithm, also known as Graham’s algorithm,
can be implemented with running time O((n + m) log m) if the links are kept in
a priority queue according to their latency after the assignment of the next user.
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ALGORITHM 1
Input: n and any assignment x1, . . . , xm

Output: Nash Equilibrium x1, . . . , xm

for δ = n, �n
2 �, �n

4 �, . . . , 1 do
let t be such that ft(xt + δ) is minimum;
while ∃s ∈ [n] with xs ≥ δ and fs(xs) > ft(xt + δ) do

let s ∈ [m] be such that xs ≥ δ and
fs(xs) is maximum w.r.t. this requirement;

xs = xs − δ; xt = xt + δ;
let t be such that ft(xt + δ) is minimum;

Our algorithm takes time O(m log n log m), which is better if m = o( n
log n ). The

algorithm takes as input an arbitrary initial assignment of users to links given
by x1, . . . , xm, where xj is the number of users on link j. It transforms this
assignment into a Nash equilibrium by moving chunks of users at a time. The
first chunk contains all users. In each phase the chunk size is cut in half until a
chunk consists of one user only. In the sequel we refer to xj as the load on link
j ∈ [m].

Proposition 2. Consider the model of identical users and arbitrary links with
non-decreasing latency functions. Then Algorithm 1 computes a pure Nash equi-
librium in time O(m log n log m).

The following lemma shows that we can compute an optimal pure assignment in
the same way as a Nash equilibrium, but according to other latency functions.
A corresponding result holds for the case of continuous latency functions and
splittable flows (see e.g. [26]).

Lemma 8. Consider an instance of the routing model with identical users and
m links with latency function fj(x) on link j for j ∈ [m], such that xfj(x) is
convex. Set hj(x) = xfj(x)− (x−1)fj(x−1). Let L be any pure strategy profile.
L is an optimal assignment with respect to latency functions fj, if and only if L
is a Nash equilibrium with respect to latency functions hj.

Due to Lemma 8, Algorithm 1 can be used to compute an optimal pure assign-
ment by applying it to the instance with latency functions hj on link j.

4.4 Complexity Results

Fotakis et al. [11] proved that computing the best-case or worst-case pure Nash
equilibrium in the KP model is NP-hard. Keep in mind that in the KP model the
social cost of a pure Nash equilibrium is the maximum latency on a link, whereas
in our model the social cost is the sum of the individual latency costs. We now
show that computing the best-case or the worst-case pure Nash equilibrium in
our model is also NP-hard even for identical links with latency function f(x) = x.

Proposition 3. Consider the model of arbitrary users and identical links with
latency function f(x) = x. Then, computing the best-case or the worst-case pure
Nash equilibrium is NP-hard.
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It is easy to see that Graham’s algorithm [13] (known to work for the KP model
[11]) still works for the model under consideration to compute a pure Nash
equilibrium in polynomial time.
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