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Abstract. In hot-potato (deflection) routing, nodes in the network have
no buffers for packets in transit, so that some conflicting packets must
be deflected away from their destinations. We study one-to-many batch
routing problems on arbitrary tree topologies with n nodes. We present
two hot-potato routing algorithms, one deterministic and one random-
ized, whose routing times are asymptotically near-optimal (within poly-
logarithmic factors). Both algorithms are local, hence distributed, and
greedy; so, routing decisions are made locally, and packets are advanced
towards their destinations whenever possible.

1 Introduction

Packet routing is the general task of delivering a set of packets from their sources
to their destinations. Hot-potato (or deflection) routing is relevant in networks
whose nodes cannot buffer packets in transit – any packet that arrives at a node
must immediately be forwarded to another node at the next time step, as if it
were a “hot potato”. A routing algorithm (or protocol) specifies at every time step
the actions that each node takes while routing the packets. Hot-potato routing
was introduced by Baran [4], and since then, hot-potato routing algorithms have
been extensively studied and observed to work well in practice [1, 5, 7, 8, 10, 12,
16, 17]

Here, we consider synchronous tree networks in which a global clock defines a
discrete time. At each time step t, a node may receive packets, which it forwards
to adjacent nodes according to the routing algorithm. These packets reach the
adjacent nodes at the next time step t + 1. At each time step, a node is allowed
to send at most one packet per link.† Bufferless routing in tree networks has
generated considerable interest in the literature: most existing work is for the
matching routing model, [2, 14, 18] or the direct routing model, [3, 9]; hot-potato
routing of permutations on trees has been studied in [15].

We consider one-to-many batch routing problems on trees with n nodes,
where each node is the source of at most one packet; however, each node may be
the destination of multiple packets. The routing time of a routing-algorithm is

† At any time step, at most two packets can traverse an edge in the tree, one packet
along each direction of the edge.



the time for the last packet to reach its destination. Denote by rt∗ the minimum
possible routing time for a given routing problem. For a given routing problem,
and a set of paths to be followed from the sources to destinations, the dilation D
is the maximum length of a path, and the congestion C is the maximum number
of paths that use any link (in either direction). Since at most one packet can
traverse an edge in a given direction at each time step, were the packets to follow
their shortest paths, the routing time for the specified paths is Ω(C + D). On a
tree, any set of paths must contain the shortest paths, from the sources to the
destinations. Let C∗ and D∗ be the congestion and dilation for the shortest paths
respectively. We immediately get that rt∗ = Ω(C∗ +D∗). For store-and-forward

routing, in which nodes have buffers for storing packets in transit, there are
routing algorithms whose performance on trees is close to rt∗ [11, 13]. However,
such algorithms are not applicable when buffers are not available.

We consider greedy hot potato routing. A routing algorithm is greedy if a
packet always follows a link toward its destination whenever this is possible. In
hot-potato routing, a problem occurs if two or more packets appear at the same
node at the same time, and all these packets wish to follow the same link at
the next time step. This constitutes a conflict between the packets because only
one of them can follow that particular link. Since nodes have no buffers, the
other packets will have to follow different links that lead them further from their
destination. We say that these packets are deflected. In a greedy algorithm, a
packet π can be deflected only when another packet makes progress along the
link that π wished to follow.

Our Contributions. We present two hot-potato routing algorithms on trees with
near optimal routing time. Our algorithms are local, and thus distributed: at
every time step, each node makes routing decisions locally based only on the
packets it receives at that particular time step. In our algorithms, every source
node determines the time at which its packet will be injected. From then on, the
packet is routed greedily to its destination. We assume that each source node
knows the tree topology, as well as C∗ and D∗ for the batch routing problem; we
emphasize, however, that it need not know the specific sources and destinations
of the other packets. The assumption that C∗ and D∗ are known is common to
many distributed routing algorithms [7, 13]. Our two algorithms are sumarized
below:

i. Algorithm Deterministic has routing time O((δ · C∗ + D∗) lg n) = O(δ · rt∗ ·
lg n), where δ is the maximum node degree in the tree. All routing choices
are deterministic.

ii. Agorithm Randomized has routing time less than O((C∗ + D∗) lg2 n) =
O(rt∗ · lg2 n) with probability at least 1 − 1

n
. Randomization is used when

packets select priorities. These priorities are then used to resolve conflicts.

For bounded-degree trees, algorithm Deterministic is within a logarithmic factor
of optimal. Algorithm Randomized is only an additional logarithmic factor away
from optimal for arbitrary tree topologies.



The general idea of our algorithms is to divide packets into levels based on
the position of their source in the tree. Packets at different levels are routed
in different phases. We show that there are at most O(lg n) such phases. In
algorithm Deterministic, each phase has a duration O(δ · C∗ + D∗), while in
algorithm Randomized, each phase has duration O((C∗ + D∗) lg n)). Combining
these bounds with the bound on the number of phases leads to our routing
time bounds. The heart of both of our algorithms lies in the use of canonical

deflections, in which packets are only deflected onto edges used by other packets
that moved forward in the previous time step.

Paper Outline. We first introduce trees and hot-potato routing in Sections 2
and 3. We then present our deterministic and randomized routing algorithms in
Sections 4 and 5.

2 Trees

A tree T = (V, E) is a connected acyclic graph with |V | = n and |E| = n − 1.
The degree of node v is the number of nodes adjacent to v. Let v ∈ V ; then, T
induces a subgraph on V − {v} which consists of a number (possibly zero) of
connected components. Each such connected component is a subtree of v in T .‡

If v is adjacent to K nodes in T , then there are k disjoint subtrees T1, . . . , Tk of
v, one for each node vi ∈ Ti that is adjacent to v. The distance from v to u, is
the number of edges in the (unique) shortest path from v to u.

The main idea behind our algorithms is to look at the tree from the point of
view of a short node. A node v in the tree is short if every subtree of v contains at
most n/2 nodes. At least one short node is guaranteed to exist, and by starting
at an arbitrary node and moving along a path of largest subtrees (if the size of
the subtree is greater than n/2), a short node can be found in in O(n) time. A
tree T may have many short-nodes, however, a deterministic algorithm always
starting at a particular node will always return a particular short-node. So, from
now on, we will assume that the short-node of a tree is uniquely determined.

We now define (inductively) the level ` of a node, and the inner-trees of T as
follows. The tree T is the only inner-tree at level ` = 0. The only node at level
` = 0 is the short node of T . Assume we have defined inner-trees up to level
` ≥ 0. Every connected component obtained from the inner-trees of level ` by
removing the short nodes of these inner-trees at level ` is an inner-tree at level
` + 1. The level ` + 1 nodes are precisely the short nodes of the inner-trees at
level ` + 1.

It is clear that the above definition inductively defines the inner-trees at all
levels; it correspondingly assigns a level to every node. We can easily construct
an O(n2) procedure to determine the node levels and inner-trees of T at every
level. Further, the following properties (which we state here without proof) hold:

‡ Note that for unrooted trees which we consider here, a subtree of a node v originates
from every adjacent node of v; in contrast, the convention for rooted trees is that a
subtree of v is any tree rooted at a child of v.



(i) every inner tree is a tree, (ii) the maximum level of any node and inner-tree
is no more than lg n, (iii) an inner-tree T ′ at level ` contains a unique node x at
level `, which is the short node of the inner-tree (we say that x is the inducing
node of T ′), (iv) any two inner-trees at the same level are disconnected, and (v)
all nodes in a level-` inner-tree other than the inducing node have a level that
is smaller than `.

3 Packets

Packet Paths. A path is any sequence of nodes (v1, v2, . . . , vk). The length of the
path is the number of edges in the path. After a packet has been routed from
its source to its destination, it has followed some path. We define the original

path of a packet π as the shortest path from the source node of the packet to
its destination node. This will be the path that would be greedily followed if the
packet experiences no deflections.

Let ` be the minimum level of any node in the original path of π. Then,
there is a unique node v with level ` in the path of π (since otherwise inner-trees
of the same level would not be disconnected). Let T ′ be the inner-tree that v
is inducing. The whole original path of π must be a subgraph of T ′ (from the
definition of inner-trees). We say that the level of packet π is `, and that the
inner-tree of π is T ′.

After injection, the current path of packet π, at any time step t, is the shortest
path from its current node to its destination node. At the moment when the
packet is injected, its current path is its original path. While packet π is being
routed to its destination, it may deviate from its original path due to deflections.
However, the packet traverses each edge of its original path at least once before
reaching its destination.

A packet moves forward if it follows the next link of its current path; other-
wise, the packet is deflected. When a packet moves forward, its current path gets
shorter by removing the edge that the packet follows. If a packet is deflected, its
current path grows by the edge on which the packet was deflected, and its new
current path is the shortest path from its current node to its destination node.

Packet Routing and Deflections. In our algorithms, a packet remains in its source
node until a particular time step at which the packet becomes active. When the
packet becomes active, it is injected at the first available time step on which the
first link of its original path is not used by any other packets that reside at its
source node. We call such an injection a canonical injection.

At each time step, each node in the network does the following: (i) the node
receives packets from adjacent nodes, (ii) the node makes routing decisions, and
(iii) according to these decisions, the node sends packets to adjacent nodes.

We say that two or more packets meet if they appear in the same node at the
same time step; they conflict if they also wish to follow the same link forward.
In a conflict, one of the packets will successfully follow the link, while the other
packets must be deflected. Our algorithms are greedy: a packet always attempts
move forward unless it is deflected by another packet with which it conflicts.



In our algorithms, packets are deflected in a particular fashion so as to ensure
that the congestion of any edge (with respect to the set of current paths) never
increases. Consider a node v at time t. Let Sf denote the set of packets which
moved forward during the previous time step and now appear in v. Let Ef be the
set of edges that the packets in Sf followed during the previous time step. Let π
be a packet in node v that is deflected at time t. Node v first attempts to deflect π
along an edge in Ef . Only if all the edges in Ef are being used by packets moving
forward, or by other deflected packets, is some other edge adjacent to v is used
to deflect π. We call this process of deflecting packets canonical deflection. The
deflection is safe if it was along an edge in Ef . One can show that if injections are
canonical, then all deflections are safe. Safe deflections simply “recycle” edges
from one path to another path, and thus cannot increase an edge’s congestion.

4 A Deterministic Algorithm

Here we present the algorithm Deterministic in pseudo-code format.

Algorithm: Deterministic

Input: Tree T with max. node degree δ; A set of packets Π with shortest path
congestion C∗ and dilation D∗; each node knows T, C∗, D∗;

for every packet π at level ` do

1 π gets active at time τ · `, where τ = 2(δ · C∗
− 1) + D∗;

2 The injection and deflections of π are canonical;
3 π moves greedily to its destination;

end

Theorem 1. The routing time of algorithm Deterministic is O((δ ·C∗+D∗) lg n).

We proceed by sketching the proof of Theorem 1. Let m be the maximum level
in T . Since a level l + 1 inner-tree has fewer than half the nodes of the level l
inner-tree that gave rise to it, it is easy to see that m ≤ lg n. We divide time
into consecutive phases φ0, φ1, . . . , φm, such that each phase consists of τ time
steps. Denote the level i packets by Πi, 0 ≤ i ≤ m. The packets in Πi become
active at the first time step of phase φi. We will show that all packets of level
i are absorbed during phase φi. In particular, we will show that the following
invariants hold, where i ≥ 0:

Pi: all packets of Π0 ∪ Π1 ∪ · · · ∪ Πi are absorbed by the end of phase φi.

Set P−1 to true. It suffices to show that the following statement holds, for i ≥ 0:

Qi: if Pi−1 holds, then all packets in Πi are absorbed during phase φi.

Consider a particular level ` ≥ 0 and phase φ`. Assume that P`−1 holds. In phase
φ` the only packets in the network are those of Π`. During phase φ`, let π be the
first packet to leave its inner-tree going from node u to node v. Since deflections



are safe, this means that some packet π′ moved from v to u in the previous time
step. Since the entire original path of π′ was contained in some level ` inner-tree,
this means that π′ left its inner-tree before π did, a contradiction. Thus, we have

Lemma 1. During phase φ`, each packet of Π` remains inside its inner-tree.

Since only packets of the same inner-tree may conflict with each other, we only
need to show that every level-` packet with a particular inner-tree T ′ is absorbed
during phase φ`.

We adapt a technique developed by Borodin et al. [6, Section 2], called a
“general charging scheme”, based upon deflection sequences. Their result implies
that for greedy routing on trees, whenever a packet is deflected, some other
packet makes it to its destination. Thus if the number of packets is k, then a
packet can be deflected at most k − 1 times, giving:

Corollary 1 ([6]). Each packet is absorbed in at most D∗ +2(k− 1) time steps

after injection, where k is the number of packets with inner-tree T ′.

All packets with inner-tree T ′ use node r. Since degree(r) ≤ δ, and the congestion
on an edge never increases, k ≤ δ ·C∗. Subsequently, all packets of inner-tree T ′

are absorbed in at most 2(δ · C∗ − 1) + D∗ ≤ τ time steps, i.e., by the end of
phase φ`. Since there are at most O(lg n) phases, the theorem is proved.

5 A Randomized Algorithm

Algorithm Randomized is similar to algorithm Deterministic, except that packets
now have priorities: low or high. High priority packets have precedence (to move
forward) over low priority packets in a conflict. Conflicts between equal priority
packets are arbitrarily resolved canonically.

Algorithm: Randomized

Input: A tree T ; A set of packets Π with shortest path congestion C∗ and dilation
D∗; each node knows T, C∗, D∗;

for every packet π at level ` do

1 π gets active at time step τ ·`, where τ = 16·(C∗+D∗)·(2 lg n+lg lg 2n)+3D∗+1;
2 The injection and deflections of π are canonical, and initially π has low priority;
3 π moves greedily to its destination;
4 When packet π becomes active it has low priority;
5 Let p = 1

4(C∗+D∗)
; if π is deflected, on the next time step, its priority becomes

high with probability p, and low with probability 1 − p, independent of its
previous priority; π keeps its new priority until the next deflection;

end

Theorem 2. With probability at least 1 − 1/n, the routing time of algorithm

Randomized is at most κ(C∗ + D∗) lg2 n, for some constant κ ≈ 33.



We very briefly sketch the proof of Theorem 2. We define Pi and Qi as in Section
4, and we show that Pi holds with high probability by showing that Qi holds
with high probability. Once again we focus on the level-` packets of a particular
inner tree, and suppose that all packets of the previous phases are absorbed. We
will show that every packet with inner-tree T ′ will be absorbed in phase φ`, with
high probability. Let T1, T2, . . . , Tw denote the subtrees of r in T ′. We summarize
some useful properties of these subtrees (without proof).

Lemma 2. At any time during phase φ`, at most C∗ packets appear in any

subtree Tj.

Using Lemma 2, since at most one new packet can enter a subtree in one time
step, we obtain:

Lemma 3. During any time period of length x time steps, at most C∗ + x.

different packets appear in any subtree Tj.

Corollary 2. If packet π is not deflected for a period of x time steps, then it

may have conflicted at most once with at most 2C∗ + x different packets.

The depth of node v (or packet currently at node v), is its distance from r.

Lemma 4. At any time during phase φ`, the depth of a packet is at most ≤ D∗.

Consider some packet π. By Lemma 4, the current path of a packet is always
at most 2D∗, so if it is not deflected for 2D∗ time steps, then it reaches its
destination. Suppose that π has high priority. It can only be deflected by another
high priority packet σ. Each such packet σ has at most one chance to deflect
it, with with probability at most p, since σ must be high priority. If the packet
is not deflected for 2D∗ time steps, then at most 2C∗ + 2D∗ packets had a
chance to deflect it (Corollary 2). Thus the probability of deflection is at most
2(C∗ + D∗)p = 1

2 , giving the main lemma:

Lemma 5. A high priority packet reaches its destination without deflections

with probability at least 1/2.

Thus, each time a packet is deflected, it has probability at least 1
2p = 1

8(C∗+D∗)

to reach its destination. If a packet has not reached its destination after τ steps,
then it has been deflected at least 1

2 (x − D∗) times, over the interval of times
[t1, tx] where x = τ − 2D∗ − 1. The probability of not reaching its destination

after so many deflections is at most (1 − 1
2p)

1

2
(x−D∗), which after substituting

the expression for τ yields:

Lemma 6. Packet π is absorbed in phase φ` with probability at least 1− 1
n2 lg 2n

.

Since there are at most n packets in a phase, and at most lg n + 1 phases, we
use a union bound to obtain a lower bound on the probability that every phase
is succesful, giving Theorem 2.



References

1. A. S. Acampora and S. I. A. Shah. Multihop lightwave networks: a comparison
of store-and-forward and hot-potato routing. In Proc. IEEE INFOCOM, pages
10–19, 1991.

2. N. Alon, F.R.K. Chung, and R.L.Graham. Routing permutations on graphs via
matching. SIAM Journal on Discrete Mathematics, 7(3):513–530, 1994.

3. Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Direct
routing on trees. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 98), pages 342–349, 1998.

4. P. Baran. On distributed communications networks. IEEE Transactions on Com-
munications, pages 1–9, 1964.

5. Constantinos Bartzis, Ioannis Caragiannis, Christos Kaklamanis, and Ioannis Ver-
gados. Experimental evaluation of hot-potato routing algorithms on 2-dimensional
processor arrays. In EUROPAR: Parallel Processing, 6th International EURO-
PAR Conference, pages 877–881. LNCS, 2000.

6. A. Borodin, Y. Rabani, and B. Schieber. Deterministic many-to-many hot potato
routing. IEEE Transactions on Parallel and Distributed Systems, 8(6):587–596,
June 1997.
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