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Abstract

We study the problem of selfish routing in the presence of incomplete network information. Our
model consists of a number of users who wish to route their traffic on a network of m parallel links
with the objective of minimizing their latency. However, in doing so, they face the challenge of lack
of precise information on the capacity of the network links. This uncertainty is modelled via a set
of probability distributions over all the possibilities, one for each user. The resulting model is an
amalgamation of the KP-model of [12] and the congestion games with user-specific functions of [16].

We embark on a study of Nash equilibria and the price of anarchy in this new model. In particular,
we propose polynomial-time algorithms for computing some special cases of pure Nash equilibria and
we show that negative results of [16], for the non-existence of pure Nash equilibria in the case of
three users, do not apply to our model. Consequently, we propose an interesting open problem, that
of the existence of pure Nash equilibria in the general case of our model. Furthermore, we consider
appropriate notions for the social cost and the price of anarchy and obtain upper bounds for the latter.
With respect to fully mixed Nash equilibria, we propose a method to compute them and show that,
when they exist, they are unique. Finally, we prove that the fully mixed Nash equilibrium maximizes
the social welfare.
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1 Introduction

In their pioneering work, Koutsoupias and Papadimitriou [12] introduce a non-cooperative weighted con-
gestion game (named in the literature as the KP-model) where n selfish users wish to route their un-
splitable traffic onto m parallel links from a source to a destination. In this class of games, each link
has a certain capacity representing the rate at which the link processes traffic, and users have complete
knowledge of the system’s parameters such as the link capacities and the traffic of other users. Fur-
thermore, users choose how to route their traffic based on a common payoff function, which essentially
captures the delay to be experienced on each link. However, modern non-cooperative systems, such as
computer networks and the Internet, which have motivated the study of games such as that of [12],
present incomplete information on various aspects of their behavior. For example, it is often the case,
that network users have incomplete information regarding the link capacities. Such uncertainty may be
caused if the network links are complex paths created by routers which are constructed differently on
separate occasions according to the presence of congestion or link failures.

In this paper we introduce an extension of the KP-model that captures these more realistic network
scenarios. We consider a model where the network links may present a number of different capacities and
each user’s uncertainty about the capacity of the links is modelled via a probability distribution over all
the possibilities. We assume that users may have different sources of information regarding the network
and, therefore, take their probability distributions to be distinct from one another. This gives rise to
a model with user-specific payoff functions, where each user uses its distinct probability distribution to
take decisions as to how to route its traffic.

We may see that our model subsumes the KP-model since, in the case of users assigning probability
one to the same capacity for each link, the two models coincide. Moreover, our model turns out to be an
instance of weighted congestion games with user-specific functions studied by Milchtaich in [16].

We are interested in algorithmic problems related to Nash equilibria for the routing game we consider,
that is, steady states in the game where no user has an incentive to unilaterally change its strategy. For
example, we are interested in deciding whether and when Nash equilibria exist in our model, and, if so,
determine efficiently the users strategies that give rise to these equilibria. We are concerned with both
pure and mixed Nash equilibria, that is, equilibria where the strategy of each user is a single link, or a
probability distribution over links, respectively. Furthermore, we study two notions for the social cost
of the game and associated notions for the price of anarchy or coordination ratio [12] which capture the
performance degradation in the game due to the lack of coordination among the users.

Prior Work. Congestion games were first introduced by Rosenthal [22] and studied extensively there-
after. Rosenthal showed that these games admit pure Nash equilibria by using the notion of potential
functions. Subsequent related work (e.g. [17, 3]) characterized games that admit potential functions
as potential games. The problem of computing pure Nash equilibria was studied for congestion games
in [3] and for weighted congestion games in [6]. The KP-Model [12] and its Nash Equilibria were studied
extensively in the last years; see, for example, [2, 6, 4, 11, 14, 15] and [5] for a survey. Feldmann et al. [4]
and Gairing et al. [7] propose algorithms to transform any user strategy to a Nash equilibrium without
increasing the maximum congestion. Fully mixed Nash equilibria for the KP-model were first studied
in [15]. The fully mixed Nash equilibrium conjecture, stating that the fully mixed Nash equilibrium has
the worst social cost among all Nash equilibria, was first formulated in [7] and it was verified in [13] for
a social cost defined as the sum of the users latencies.

The notion of the price of anarchy was first introduced and studied in the KP-Model [12]. Subse-
quently, tight bounds were proposed for it in [2, 11] for identical links, in [2] for related links, and in [1]
for congestion games with linear latency functions.

Gairing et al. [8] were the first to consider an extension of the KP-model with incomplete information.
Their model considers a game of parallel links with incomplete information on the traffics of the users,
which makes it complementary to our work. The payoff functions employed by the users, which are
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universal and not user specific, take into account probabilistic information on the user traffics. Based
on the seminal work by Harsanyi [10], the authors show that their model always admits a pure Nash
equilibrium and propose an algorithm for computing such equilibria for some special cases. Also they
show that the fully mixed Nash equilibrium maximizes the social cost for special cases of their model
and that, in the general case, more than one fully mixed Nash equilibrium may exist. Finally, they show
asymptotically-tight upper bounds on the coordination ratio.

Milchtaich [16] studied congestion games in which the payoff function associated with each user is
not universal but user-specific. He shows that these games do not admit a pure Nash equilibrium in the
general case, but are guaranteed to exhibit such equilibria in special cases, such as the case of unweighted
users. Our work is closely related to [16] since our game is an instance of that model. Thus we inherit the
positive results obtained therein. However, we show that the negative results of [16] do not necessarily
apply for our model.

Contributions. The contributions of our work are summarized as follows:

• We present an interesting new model that captures the idea of the uncertainty of the network state
by defining appropriate user-specific payoff functions.

• We propose polynomial-time algorithms for computing some special cases of pure Nash equilibria
and we demonstrate that the counter-example presented in [16], showing that pure Nash equilibria
do not exist in the general case, does not apply in our model. Thus, we identify an interesting open
problem in this area, that of existence of pure Nash equilibria in the general case.

• We identify and employ two different expressions for the social cost and the associated notions for
the price of anarchy. We obtain upper bounds for the latter in the general case and for special
instances.

• We compute the fully mixed Nash equilibrium and show that when it exists it is unique. Also we
show that for certain instances of the game fully mixed Nash equilibria assign all links to all users
equiprobably.

• Finally, we verify the fully-mixed NE conjecture in our model, by proving that the fully mixed Nash
equilibrium maximizes the social welfare.

Document Structure. The paper is organized as follows. In Section 2, we introduce our model. In
Section 3, we consider questions of existence and computation of pure Nash equilibria for special cases
of our model and we state our conjecture for the existence of pure Nash equilibria in the general case.
In Section 4, we study fully mixed Nash equilibria and we give some upper bounds for the coordination
ratio. Finally, we conclude in Section 5.

2 Model and Definitions

In this section we present the model and definitions we use throughout the paper.

Network. For all k ∈ N, denote [k] = {1, 2, . . . k}. We consider a network consisting of a set of m

parallel links 1, 2, . . . ,m, or simply links, from a source to a destination, and n network users 1, 2, . . . , n,
or simply users, who wish to route their traffic along a link from the source to the destination. We assume
that n > 1 and m > 1. (Throughout, we will be using subscripts for users and superscripts for links.)
We denote by wi > 0 the traffic of user i ∈ [n]. We define w as the n× 1 vector containing the traffics of
all users.
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States. In our model, we assume that there exists uncertainty regarding the capacity of the network
links. Thus, we define a state to be an m × 1 vector, 〈c1, c2, . . . , cm〉 where, for all ℓ ∈ [m], cℓ > 0
represents the capacity of link ℓ. The state space of the network, denoted by Φ, is defined as the set
containing all the possible states the network may realize. We let φ range over Φ and we write cℓ

φ for the
capacity of link ℓ according to state φ.

Beliefs. Each user, based on some private knowledge, may have a different belief regarding the capacity
of the network links. We assume that this knowledge is probabilistic and it has the form of a proba-
bility distribution function over the set of all states. In general, we write b ∈ ∆(Φ) to denote a belief
probability distribution over all states, and bi for the belief of user i ∈ [n]. Furthermore, we write b(φ)
for the probability assigned to state φ by belief b. We define the belief profile B to be the n × 1 vector
〈b1, b2, . . . , bn〉 containing the beliefs of all users.

Games. We consider the routing game G = (n,m,w,B) where n is the number of users, m is the
number of links, w is a traffic vector and B a belief profile. A special instance of this model is the
KP-model [12]. This arises whenever, for some φ ∈ Φ, bi(φ) = 1 for all i ∈ [n].

Strategies. For the remainder of the section let us fix a game G = (n,m,w,B). A pure strategy for a
user i ∈ [n] is the selection of some link ℓ ∈ [m]. A pure strategies profile is an n-tuple 〈ℓ1, ℓ2, . . . , ℓn〉 ∈
[m]n of pure actions, one for each user, where ℓi is the selection of user i ∈ [n]. A mixed strategy for a
user i ∈ [n] is a probability distribution ∆([m]) over pure strategies, that is, over the set of links. We
denote the probability assigned by user i ∈ [n] to link ℓ ∈ [m] by pℓ

i . A mixed strategies profile is an
n × m probability matrix P, where P [i, ℓ] = pℓ

i is the probability that user i chooses link ℓ. The support
of the mixed strategy for user i is the set {ℓ ∈ [m] | pℓ

i > 1}.

Latency. For a pure strategies profile σ = 〈ℓ1, ℓ2, . . . , ℓn〉, the latency cost of user i ∈ [n] in state φ,
denoted by λi,φ(σ), is

∑

k:ℓk=ℓi
wk

cℓi

φ

.

On the other hand, the expected latency cost over all states of user i ∈ [n] with belief bi, denoted by
λi,bi

(σ) is
∑

φ∈Φ

bi(φ) · λi,φ(σ) .

For a mixed strategies profile P, denote W ℓ the expected traffic on link ℓ ∈ [m], W ℓ =
∑n

i=1 pℓ
i · wi.

Denote W as the m × 1 matrix containing the expected traffics on each link. Furthermore, the expected
latency cost for user i ∈ [n] with belief bi on link ℓ ∈ [m], denoted by λℓ

i,bi
(P), is the expectation over all

possible states and over all random choices of the remaining users, of the latency cost for user i when its
traffic is assigned to link ℓ. Thus,

λℓ
i,bi

(P) =
∑

φ∈Φ

bi(φ) ·
wi +

∑n
k=1,k 6=i p

ℓ
kwk

cℓ
φ

=
∑

φ∈Φ

bi(φ) ·
wi − pℓ

iwi +
∑n

k=1 pℓ
kwk

cℓ
φ

=
∑

φ∈Φ

bi(φ) ·
(1 − pℓ

i)wi + W ℓ

cℓ
φ

.
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For each user i ∈ [n], with belief bi, the minimum expected latency cost λi,bi
(P) is the minimum, over all

links ℓ ∈ [m], of the expected latency cost for user i of belief bi on link ℓ:

λi,bi
(P) = min

ℓ∈[m]
λℓ

i,bi
(P) (1)

When P is inferred from the context we simply write λℓ
i,bi

, λi,bi
.

For simplicity, we employ the notation cℓ
i = 1

∑

φ∈Φ
bi(φ)

cℓ
φ

. Now the expected latency cost of user i can

be written as

λℓ
i,bi

=
(1 − pℓ

i)wi + W ℓ

cℓ
i

.

Solving for pℓ
i we have that for every user i ∈ [n] and link ℓ ∈ [m]

pℓ
i =

W ℓ + wi − cℓ
iλi,b

wi

. (2)

Nash Equilibrium. The notion of a Nash equilibrium [19, 20] is defined for our model in the usual
way. Specifically, a probability matrix P is a Nash equilibrium (often abbreviated as NE), if, for all users
i ∈ [n] and for all links ℓ ∈ [m]:

λℓ
i,bi

{

= λi,bi
, if pℓ

i > 1
≥ λi,bi

, if pℓ
i = 0

Thus, each user assigns its traffic with positive probability only on links for which its expected latency
cost is minimized. This implies that there is no incentive for a user to unilaterally deviate from its strategy
to improve its expected latency cost. We refer to probabilities in a Nash equilibrium as Nash probabilities.

Social Cost and Coordination Ratio. Associated with a routing game G = (n,m,w,B) and a mixed
probability matrix P is the Social Cost denoted by SC (G,P). Since every user’s belief for the capacities
of the network differs, there is no objective value for the latency of a link or for the exact congestion of
the network. Thus, we are forced to depart from the standard definition of the social cost employed in
the literature (the expected maximum congestion), and we consider two social cost definitions that take
into account the subjective user beliefs as follows:

• the sum of their individual cost: SC1 (G,P) =
∑n

i=1 λi,bi
(P)

• the maximum of their individual cost: SC2 (G,P) = maxi∈[n] λi,bi
(P)

Similarly, we give two definitions for the Social Optimum, or simply the Optimum, associated with a
routing game G = (n,m,w,B), denoted by OPT (G), as the minimum over all pure assignments of

• the sum of their individual cost: OPT1 (G) = min
σ∈[m]n

∑n
i=1 λi,bi

(σ)

• the maximum of their individual cost: OPT2 (G) = min
σ∈[m]n maxi∈[n] λi,bi

(σ)

The above notions give rise to two definitions for the Coordination Ratio for our model:

CRi = max
G,P

SCi(G,P)

OPTi (G)
, for i ∈ {1, 2}.
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3 Pure Nash Equilibria

In this section we consider the problem of existence of pure Nash equilibria for our model. It is well
known ([22, 3]) that any unweighted congestion game has a pure Nash equilibium. Furthermore, in the
KP-model pure NE exist and can be efficiently computed [6]. On the other hand, in [16] it is shown that
weighted congestion games with user-specific functions do not always possess a pure NE. Specifically, a
counter-example with three users and three resources (links) is given. For our model, a special case of
the games of [16] and an extension of [21], we inherit the positive results of [16]. However, we show that
the counter-example of [16] is not valid for our model, since it can be shown that for games with three
users pure NE always exist. In this section, we present polynomial-time algorithms for computing pure
Nash equilibria for a number of special cases and we conclude with the conjecture that pure NE exist in
the general case in our model.

3.1 Polynomial-Time Algorithms for Special Cases

The case of m = 2 links

First we consider the case of an arbitrary number of users n and m = 2 links. In fact, our algorithm
solves the more general problem of existence of pure NE in the case where the links have some initial
traffic t = 〈t1, t2〉, where ti is the initial traffic of link i ∈ [m]. First, we have a useful definition.

Definition 3.1 Consider a game G = (n, 2,w,B) with initial traffic t = 〈t1, t2〉. We define the
tolerance of user i for link j as the value α

j
i which satisfies

tj + α
j
i

c
j
i

=
tj⊕1 + T − α

j
i + wi

c
j⊕1
i

where T =
∑

i∈[n] wi and a ⊕ b = (a + b)mod 2.

Thus, given a two-link game with an associated load T to be assigned on the two links, the tolerance
of user i for a link j, α

j
i , is the maximum fragment of the load T the user can tolerate on link j while

routing its traffic on it. This implies that, if link j has load α
j
i (and consequently link j ⊕ 1 has load

T − α
j
i ), user i, with pure strategy j, has no incentive to change its strategy. We have the following

lemma:

Lemma 3.2 Consider a strategy 〈ℓ1, . . . , ℓn〉 in the game G = (n, 2,w,B) and suppose ℓ1 = 1. Then,
user 1 satisfies the NE condition

t1 +
∑

ℓi=1 wi

c1
1

≤
t2 +

∑

ℓi=2 wi + w1

c2
1

if and only if
∑

ℓi=1 wi ≤ α1
1.

Proof. First suppose that
∑

ℓi=1 wi ≤ α1
1. We have

t1 +
∑

ℓi=1 wi

c1
1

≤
t1 + α1

1

c1
1

=
t2 +

∑

i∈[n] wi − α1
1 + w1

c2
1

≤
t2 +

∑

i∈[n] wi −
∑

ℓi=1 wi + w1

c2
1

=
t2 +

∑

ℓi=2 wi + w1

c2
1
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as required. To prove the other way round, suppose
∑

ℓi=1 wi > α1
1. We have

t1 +
∑

ℓi=1 wi

c1
1

>
t1 + α1

1

c1
1

=
t2 +

∑

i∈[n] wi − α1
1 + w1

c2
1

>
t2 +

∑

i∈[n] wi −
∑

ℓi=1 wi + w1

c2
1

=
t2 +

∑

ℓi=2 wi + w1

c2
1

which completes the proof. 2

Figure 1 presents the Algorithm Atwolinks which, given a game and an initial traffic vector, computes
a pure NE in time in O(n2). It behaves greedily by selecting the user, k, with the highest tolerance
over the two links, and it assigns k on the specific link, ℓk. It then proceeds to recursively construct an
assignment for the remaining users in the same network, but where the initial load on link ℓk is increased
by wk. Hereafter, for σ = 〈ℓ1, . . . , ℓx〉, we write σ[k 7→ ℓ], for 〈ℓ1, . . . , ℓk−1, ℓ, ℓk, . . . , ℓx〉.

Algorithm Atwolinks(G, t)

Input: A game G = (n, 2,w,B) and a traffic vector t = 〈t1, t2〉.
Output: A pure NE σ.

1. Let σ = 〈〉 and T =
∑

k∈[n] wk.

2. Compute cℓ
i for every user i ∈ [n] and every link ℓ ∈ [m].

3. For every user u ∈ [n] do:

(a) For every link j ∈ [m] do:

Compute αj
u =

c1

uc2

u

c1
u+c2

u

(

tj⊕1+T+wu

c
j⊕1

u

− tj

c
j
u

)

(b) Let ℓu = max(α1
u, α2

u).

4. Let k ∈ [n] be the user where aℓk

k = maxu∈[n] α
ℓu
u , and

let σ = 〈ℓk〉 and tℓk
= tℓk

+ wk.

5. if n = 1 then return σ

else

(a) Let w′ = 〈w1, . . . , wk−1, wk+1, . . . , wn〉,
B′ = 〈b1, . . . , bk−1, bk+1, . . . , bn〉,
G

′ =
(

n − 1, 2,w′,B′
)

and let t′ be the new initial traffic vector.

(b) return Atwolinks (G′, t′)[k 7→ ℓk].

Figure 1: Algorithm Atwolinks

We proceed to prove the correctness of the algorithm.

Theorem 3.3 For any game G = (n, 2,w,B), the algorithm Atwolinks computes a pure Nash equilibrium
in time O(n2).

Proof. We will prove the theorem by induction on n. Clearly, for n = 1 the claim holds. Assume that the
claim holds for any game with n = ν. We will show that it holds for n = ν +1. Consider the execution of
the algorithm with input a game G with n = ν + 1, and an initial traffic vector t. The algorithm returns
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the strategy σν+1 = σν [k 7→ ℓk], where σν is the strategy returned by the recursive call Atwolinks(G
′, t′).

By the induction hypothesis, since G
′ has n = ν, σν is a pure NE for Gν and t′. We have to show that

σν+1 is a pure Nash equilibrium for game Gν+1 and initial vector t. First note that, all users in Gν

satisfy the NE condition for game Gν+1 and initial vector t. It remains to show that this assignment is
also acceptable for user k. Let N1, N2 be the sets of users playing on links 1 and 2, respectively, in game
σν . Two cases exist:

• If Nℓk
= ∅, then the claim follows trivially by observing that a

ℓk

k ≥ wk and Lemma 3.2.

• On the other hand, if Nℓk
6= ∅ and j ∈ Nℓk

tℓk
+ wk +

∑

u∈Nℓk
wu

c
ℓk

j

≤
tℓk⊕1 +

∑

u∈Nℓk⊕1
wu + wj

c
ℓk⊕1
j

,

which implies, by Lemma 3.2, that α
ℓk

j ≥
∑

u∈Nℓk
wu + wk. Since α

ℓk

k ≥ α
ℓk

j , by Lemma 3.2,

tℓk
+ wk +

∑

u∈Nk
wu

c
ℓk

k

≤
tℓk⊕1 +

∑

u∈Nℓk⊕1
wu + wk

c
ℓk⊕1
k

which completes the proof that σν+1 is a pure Nash equilibrium.

Finally, we may see that the complexity of the above algorithm is given by the recursive equation T (n) =
T (n − 1) + 8n whose solution is in O(n2). 2

The case of symmetric users

In this section we consider the case of symmetric users, that is, the case where all users have identical
weights, and we provide an O(n2m) algorithm for finding a pure NE for the model. Our algorithm,
Asymmetric, shown in Figure 2, follows along the lines of the constructive proof of [16] for the same
problem, for user-specific congestion games. The contribution of our work is a simplification in the
correctness proof.

We will be using the following definitions and notations.

• Given a strategy σ = 〈ℓ1, . . . , ℓn〉, ℓi ∈ [m], we define the state induced by the strategy as s =
〈N1, . . . , Nm〉, where Ni = {j ∈ [n] | ℓj = i} is the set of users assigned to link i by σ.

• A user is a defecting user in a state s if he does not satisfy the NE property in s.

• We define the game graph of a game as the graph whose nodes are all possible states of the game and
there exists an edge between states s and s′ if s = 〈N1, . . . ,Nm〉 and s′ = 〈N1, . . . ,Ni −{u}, . . . Nj ∪

{u}, . . . , Nm〉, where u is a defecting user in s but not in s′. We write s
u

−→ s′.

To prove the correctness of the algorithm we use the following lemma:

Lemma 3.4 Consider state 〈N1, . . . , Nm〉 where i ∈ Nj and suppose that user i satisfies the NE property,
that is, for all k 6= j:

|Nj |

c
j
i

≤
|Nk| + 1

ck
i

.

Then, for any state 〈L1, . . . , Lm〉 satisfying |Lk| ≥ |Nk| for k 6= j and |Lj| ≤ |Nj|, user i continues to
satisfy the NE property.
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Algorithm Asymmetric

Input: A game G = (n, m, 〈w, . . . , w〉,B).
Output: A pure NE σ.

1. Let |Nℓ| = 0 for all ℓ ∈ [m] and σ = 〈〉.

2. Compute cℓ
i for every user i ∈ [n] and every link ℓ ∈ [m].

3. For every user i ∈ [n] do:

(a) Let ℓ ∈ [m] be a link such that |Nℓ|+1

cℓ
i

≤ |Nj|+1

c
j
i

, ∀j 6= ℓ

(b) Assign user i on link ℓ and set |Nℓ| = |Nℓ| + 1.

(c) while there exists user k with ℓk = ℓ and

ℓ′ ∈ [m] such that ( |Nℓ|

cℓ
k

>
|Nℓ′ |+1

cℓ′

k

)do:

move user k from link ℓ to link ℓ′, update σ and set
|Nℓ| = |Nℓ| − 1, |Nℓ′ | = |Nℓ′ | + 1 and ℓ = ℓ′

Figure 2: Algorithm Asymmetric

Proof. In the new strategy we have for any k 6= j:

|Lj |

c
j
i

≤
|Nj |

c
j
i

≤
|Nk| + 1

ck
i

≤
|Lk| + 1

ck
i

which establishes the claim.
2

We proceed to prove the correctness of the algorithm.

Theorem 3.5 Given a game G = (n,m, 〈w, . . . , w〉,B), the algorithm Asymmetric computes a pure Nash
equilibrium in time O(n2m).

Proof. Without loss of generality, we assume that wi = 1, for all i ∈ [n]. We will prove the theorem by
induction on n. Clearly, for n = 1 the claim holds. Assume that the claim holds for n = ν − 1. We will
show that it holds for n = ν. By the induction hypothesis, at the end of the (ν−1)th iteration, ν−1 users
have been assigned on links and the assignment induced for this game, say σν−1, is a Nash equilibrium.
In the νth iteration, user ν assigns its traffic on link j which minimizes its latency (step 3(b)). Then one
or more users may wish to deviate from link j to another link. To prove the claim we will show that
σν−1 can be transformed into a NE in O(ν) moves (step 3(c)).

Let s0 = 〈N1, . . . , Nm〉 be the state induced by σν−1. Suppose that, given this state, user Pν chooses
to route its traffic on link 1, giving rise to state

s1 = 〈N1 ∪ {ν},N2, . . . ,Nm〉 .

Suppose that this placement results in a sequence of moves

s1
u2−→ s2

u3−→ s3
u4−→ . . .

where si = 〈N1
i , N2

i , . . . , Nm
i 〉. We may prove that for all i, there exists ji such that

1. |N ji

i | = |Nji
| + 1, and |N j

i | = |Nj |, for j 6= ji,

2. the defecting user ui+1 ∈ N
ji

i , and
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3. all u ∈ N
j
i , j 6= ji, satisfy the NE criterion.

We may prove this by induction on i. For the base case consider i = 1. Clearly, s1 satisfies property (1),
with j1 = 1. While all users in {ν} ∪ N2 ∪ . . . ∪ Nm can be seen to continue to satisfy the NE criterion
in this new state, it is possible that some user u ∈ N1

1 is no longer satisfied, that is the defecting user, if
one exists, is some u ∈ N1

1 .
Suppose now that the claim holds for i = k and consider i = k + 1. We observe, by the induction

hypothesis, that, if we pick jk+1 to be the new strategy of the defecting player uk+1, sk+1 satisfies
property (1). In addition, user uk+1 is satisfied in sk+1, and so are all users in N

q
k+1, q 6= jk+1, which

completes the induction.
Now consider users u1 = ν, u2, . . ., in the execution above. We may see that, since user ui satisfies

the NE criterion in state si, by Lemma 3.4, he will continue to satisfy it in every subsequent step. Thus,
user ui, will not defect in any of the moves following state si, which implies that any user may defect at
most once. In other words, the execution is finite and will converge to a NE in at most ν steps. This
completes the proof that σν is a pure NE.

To establish that the algorithm is in O(n2m) it is sufficient to note that in the ith iteration of the
algorithm we may have at most i−1 defecting players, which amounts to a total of O(n2) defecting steps.
The candidate users for defection may be identified in a single pass over all players, proceeding step(3(c)),
in time O(nm). This completes the proof. 2

The case of uniform user beliefs

We now turn to the model of uniform user beliefs, that is, games where each user believes all links to have
equal capacity. We propose an algorithm that computes a pure NE for the model in the case where the
links have some initial traffic t = 〈t1, . . . , tm〉, where ti is the initial traffic of link i ∈ [m]. Our algorithm,
Auniform, presented in Figure 3, is a slight modification of the algorithm of [6] (which in turn can be
viewed as a variant of Graham’s Longest Processing Time (LPT) algorithm [9]) to reflect the needs of
our model. Essentially, the algorithm constructs a pure NE in a greedy fashion by processing the users
in decreasing order of their weights, and, for each user k, it assigns the user on its preferred link ℓk and
proceeds with the remaining users in the network where the initial load of link ℓk has increased by wk.

Algorithm Auniform(G, t)

Input: A game G = (n, m,w,B) and a traffic vector t = 〈t1, . . . , tm〉.
Output: A pure NE σ.

1. Write ci = c1
i (= cℓ

i , for all ℓ) for every user i ∈ [n].

2. Let σ = 〈〉.

3. Sort the users in decreasing order of weights.

4. For every user i ∈ [n] do:

(a) Let ℓk be a link such that
wk+tℓk

ck
≤ wk+tj

ck
, ∀j 6= ℓk.

(b) Assign user k on link ℓk and update σ accordingly.

(c) Let tℓk
= tℓk

+ wk.

Figure 3: Algorithm Auniform

We proceed to prove the correctness of the algorithm.
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Theorem 3.6 Given a game G = (n,m,w,B) under the model of uniform user beliefs, the Algorithm
Auniform computes a pure Nash equilibrium in time O(n(log n + m)).

Proof. We will prove the theorem by induction on n. Clearly, for n = 1 the claim holds. Assume that
the claim holds for any game with n = ν − 1. We will show that it holds for n = ν. By the induction
hypothesis, at the end of the (ν−1)th iteration, ν−1 users have been assigned on links and the assignment
induced for this game, say σν−1, is a Nash equilibrium. In the νth iteration, user ν, the user with the
smallest weight amongst the ν users, assigns its traffic on link ℓν which minimizes its latency (step 4(b)).
We need to show that the users in [ν − 1] remain satisfied after this placement. This clearly affects only
the users on link ℓν . Suppose σν−1 = 〈ℓ1, . . . ℓn−1〉, and let Wj =

∑

ℓu=j wu, for each link j. Two cases
exist:

• If Wℓν
= wν , that is ν is the only user on ℓν , the claim follows.

• If Wℓν
> wν and k ∈ [ν − 1] is a user with ℓk = ℓν , then, since user ν is in a Nash equilibrium,

Wℓν
+ tℓν

cν

≤
wν + Wj + tj

cν

for all j 6= ℓν , which implies that Wℓν
+ tℓν

≤ wν + Wj + tj, for all j 6= ℓν . Since wk ≥ wν ,
Wℓν

+ tℓν
≤ wk + Wj + tj and, consequently,

Wℓν
+ tℓν

ck

≤
wk + Wj + tj

ck

for all j 6= ℓν . Thus, user k does not have an incentive to change strategy, which implies that the
assignment σν is a pure Nash equilibrium.

Finally, the complexity of the algorithm is in O(n(log n + m)). 2

The case of n = 3

We have shown that any game with three users has a pure NE. The proof employs the notion of a
best-response cycle which is a cycle in the game graph where defecting users move to the strategy that
minimizes their latency. Specifically, the proof establishes in an exhaustive way that the game possesses
no best-response cycles, which implies that a pure NE exists.

3.2 Existence of Pure Nash Equilibria (Conjecture)

The existence of pure Nash equilibria for this model in the general case remains open. Work for answering
this question has been carried out in various directions. In particular, we have shown that the game as
defined in this work is not an exact potential game [17] (see the Appendix for the proof) and therefore
it does not admit an exact potential function. Further, our game is neither an ordinal potential game,
since it has been shown that the state space of an instance of the game contains a cycle. This interesting
observation is due to B. Monien [18]. Therefore, potential functions [17], a popular method for proving
existence of NE, cannot be used for our model.

It turns out that the problem of existence of pure NE in our model is a non-trivial problem. Our
efforts in applying graph-theoretic methods and inductive arguments have not been successful so far.
The arguments end up failing mainly due to the arbitrary relation between the different user beliefs on
the capacity of the network links (unlike the special cases presented before where beliefs are related or
additional information is present). Naturally, and given the non-existence result on weighted congestion
games with user specific payoff-functions [16], we attempted to disprove the existence of NE in our model.
Typically, simple counter-examples considering a small number of resources (links) and users are used
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for such purposes (for example, in [16], the counter example involves 3 users and 3 resources, a scenario
for which the existence has been proved in our model). This appears not to be the case for our model as
simulations ran on numerous instances of the game (dealing with small number of users and links) suggest
the existence of pure NE. Given the lack of a simple counter-example, the polynomial-time algorithms
for special cases, and our intuition we conjecture that

Conjecture 3.7 For any game G = (n,m,w,B) there is at least one pure Nash equilibrium.

4 Fully Mixed Nash Equilibria

In this section we compute the probabilities of the fully mixed Nash equilibria for our model, in the case
that such equilibria exist. Furthermore, we illustrate that if a fully-mixed NE exists in some game, it is
unique and it maximizes the social cost. Finally we show bounds on the Price of Anarchy (Coordination
Ratio) that hold in our model.

4.1 Existence and Uniqueness of Fully Mixed Nash Equilibria.

We begin with the following result.

Lemma 4.1 For a game G and a fully mixed Nash Equilibrium P, for every user i ∈ [n], the minimum
expected latency cost λi,bi

is,

λi,bi
=

1
∑

j∈[m] c
j
i



(m − 1)wi +
∑

k∈[n]

wk



 .

Proof. For every user i ∈ [n] it holds that

∑

ℓ∈[m]

pℓ
i = 1

(2)
⇔
∑

ℓ∈[m]

(

W ℓ + wi − cℓ
iλi,bi

wi

)

= 1 ⇔
1

wi

∑

ℓ∈[m]

W ℓ + m −
λi,bi

wi

∑

ℓ∈[m]

cℓ
i = 1

⇔
λi,bi

wi

∑

ℓ∈[m]

cℓ
i =

1

wi

∑

ℓ∈[m]

W ℓ + m − 1 ⇔ λi,bi

∑

ℓ∈[m]

cℓ
i = (m − 1)wi +

∑

ℓ∈[m]

W ℓ

⇔ λi,bi

∑

ℓ∈[m]

cℓ
i = (m − 1)wi +

∑

ℓ∈[m]

∑

k∈[n]

pℓ
kwk = (m − 1)wi +

∑

k∈[n]

wk

∑

ℓ∈[m]

pℓ
k

⇔ λi,bi

∑

ℓ∈[m]

cℓ
i = (m − 1)wi +

∑

k∈[n]

wk ⇔ λi,bi
=

1
∑

ℓ∈[m] c
ℓ
i



(m − 1)wi +
∑

k∈[n]

wk



 .

2

Lemma 4.2 For a game G and a fully mixed Nash Equilibrium P, for any ℓ ∈ [m] we have

W ℓ =
1

n − 1

n
∑

i=1

(

(m − 1)
cℓ
i

∑

j∈[m] c
j
i

+

n
∑

k=1

cℓ
k

∑

j∈[m] c
j
k

)

wi.
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Proof. In the fully mixed case we have that for every link ℓ ∈ [m],

W ℓ =
∑

k∈[n]

pℓ
kwk

(2)
=

n
∑

k=1

(W ℓ + wk − cℓ
kλk,b) =

n
∑

k=1

W ℓ +

n
∑

k=1

wk −
n
∑

k=1

cℓ
kλk,bk

W ℓ = n · W ℓ +
n
∑

k=1

wk −
n
∑

k=1

cℓ
kλk,bk

⇔ (1 − n)W ℓ =
n
∑

k=1

wk −
n
∑

k=1

cℓ
kλk,bk

W ℓ =
1

n − 1

(

n
∑

k=1

cℓ
kλk,bk

−
n
∑

k=1

wk

)

.

By substituting Lemma 4.1 we get

W ℓ =
1

n − 1

(

n
∑

k=1

cℓ
kλk,bk

−
n
∑

k=1

wk

)

=
1

n − 1

n
∑

k=1

cℓ
kλk,bk

−
1

n − 1

n
∑

k=1

wk

W ℓ =
1

n − 1

n
∑

k=1

cℓ
k

∑

j∈[m] c
j
k

(

(m − 1)wk +

n
∑

k=1

wk

)

−
1

n − 1

n
∑

k=1

wk

W ℓ =
1

n − 1

n
∑

k=1

(m − 1)wkcℓ
k

∑

j∈[m] c
j
k

+
1

n − 1

n
∑

k=1

cℓ
k

∑

j∈[m] c
j
k

n
∑

k=1

wk −
1

n − 1

n
∑

k=1

wk

W ℓ =
1

n − 1

n
∑

i=1

(

(m − 1)
cℓ
i

∑

j∈[m] c
j
i

+

n
∑

k=1

cℓ
k

∑

j∈[m] c
j
k

− 1

)

wi ,

as needed. 2

Lemma 4.3 Consider a game G and a fully mixed Nash Equilibrium P. Then, for all users i ∈ [n] and
links ℓ ∈ [m] we have

pℓ
i = 1 −

(m − 1)cℓ
i

∑m
j=1 c

j
i

−
1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

+
(n − 1)cℓ

i
∑m

j=1 c
j
i

)

− (m − 1)
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

]

.

Proof. It follows by substituting the results from Lemma 4.1 and Lemma 4.2 in equation (2).

pℓ
i= 1 +

1

wi

1

n − 1

(

−1 +

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

)

n
∑

k=1

wk +
1

wi

m − 1

n − 1

(

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

)

−
cℓ
i

wi

1
∑m

j=1 c
j
i

(

(m − 1)wi +

n
∑

k=1

wk

)

= 1 +
1

wi

1

n − 1

(

−1 +
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

)

n
∑

k=1

wk +
1

wi

m − 1

n − 1

(

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

)

−
cℓ
i(m − 1)
∑m

j=1 c
j
i

−
cℓ
i

wi

1
∑m

j=1 c
j
i

n
∑

k=1

wk

= 1 −
1

wi

1

n − 1

n
∑

k=1

wk

(

1 −
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

+
cℓ
i(n − 1)
∑m

j=1 c
j
i

)

−
(m − 1)cℓ

i
∑m

j=1 c
j
i

+
1

wi

m − 1

n − 1

(

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

)

⇔
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pℓ
i = 1 −

(m − 1)cℓ
i

∑m
j=1 c

j
i

−
1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

+
(n − 1)cℓ

i
∑m

j=1 c
j
i

)

− (m − 1)
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

]

as needed. 2

Remark 4.1 Lemma 4.3 holds for every probability matrix P where pℓ
i 6= 0 and

∑m
ℓ=1 pℓ

i = 1.

We now relate the probabilities calculated in Lemma 4.3 with Nash probabilities.

Lemma 4.4 If for every i ∈ [n] and every ℓ ∈ [m]

pℓ
i = 1 −

(m − 1)cℓ
i

∑m
j=1 c

j
i

−
1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

+
(n − 1)cℓ

i
∑m

j=1 c
j
i

)

− (m − 1)

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

]

∈ (0, 1),

then in the fully mixed case these probabilities are Nash probabilities.

Proof. Since we consider the fully mixed case then for every user i ∈ [n], λℓ
i,b = λi,b for all links ℓ ∈ [m].

Then,

λℓ
i,b =

wi +
∑n

k=1,k 6=i p
ℓ
kwk

cℓ
i

=
wi

cℓ
i

+
1

cℓ
i

n
∑

k=1,k 6=i

pℓ
kwk

By substituting the Nash probabilities from Lemma 4.3 we get

=
wi

cℓ
i

+
1

cℓ
i

n
∑

k=1,k 6=i



1 −
(m − 1)cℓ

k
∑m

j=1 c
j
k

−
1

n − 1

1

wk





n
∑

k
′=1

wk
′



1 −
n
∑

k
′=1

cℓ

k
′

∑m
j=1 c

j

k
′

+
(n − 1)cℓ

k
∑m

j=1 c
j
k





−(m − 1)

n
∑

k
′
=1

cℓ
k
′

∑m
j=1 c

j
k ′

wk
′







wk

=
wi

cℓ
i

+
1

cℓ
i

n
∑

k=1,k 6=i



1 −
(m − 1)cℓ

k
∑m

j=1 c
j
k

−
1

n − 1

1

wk

n
∑

k
′=1

wk
′ +

1

n − 1

1

wk

n
∑

k
′=1

wk
′

n
∑

k
′=1

cℓ

k
′

∑m
j=1 c

j

k
′

−
1

wk

cℓ
k

∑m
j=1 c

j
k

n
∑

k
′
=1

wk
′ +

m − 1

n − 1

1

wk

n
∑

k
′
=1

cℓ
k
′

∑m
j=1 c

j
k ′

wk
′



wk

=
wi

cℓ
i

+
1

cℓ
i





n
∑

k=1,k 6=i

wk − (m − 1)

n
∑

k=1,k 6=i

cℓ
k

∑m
j=1 c

j
k

wk −
1

n − 1





n
∑

k
′=1

wk
′





n
∑

k=1,k 6=i

1

wk

wk

+
1

n − 1





n
∑

k
′
=1

wk
′









n
∑

k
′
=1

cℓ
k
′

∑m
j=1 c

j

k
′





n
∑

k=1,k 6=i

1

wk

wk

−





n
∑

k
′=1

wk
′





n
∑

k=1,k 6=i

1

wk

cℓ
k

∑m
j=1 c

j
k

wk +
m − 1

n − 1





n
∑

k
′=1

cℓ

k
′

∑m
j=1 c

j

k
′

wk
′





n
∑

k=1,k 6=i

1

wk

wk




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=
wi

cℓ
i

+
1

cℓ
i





n
∑

k=1,k 6=i

wk − (m − 1)

n
∑

k=1,k 6=i

cℓ
k

∑m
j=1 c

j
k

wk −
n − 1

n − 1





n
∑

k
′
=1

wk
′





+
n − 1

n − 1





n
∑

k
′=1

wk
′









n
∑

k
′=1

cℓ

k
′

∑m
j=1 c

j

k
′





−





n
∑

k
′
=1

wk
′





n
∑

k=1,k 6=i

cℓ
k

∑m
j=1 c

j
k

+
m − 1

n − 1
(n − 1)





n
∑

k
′
=1

cℓ
k
′

∑m
j=1 c

j

k
′

wk
′









=
wi

cℓ
i

+
1

cℓ
i





n
∑

k=1,k 6=i

wk − (m − 1)

n
∑

k=1,k 6=i

cℓ
k

∑m
j=1 c

j
k

wk −
n
∑

k
′=1

wk
′

+





n
∑

k
′
=1

wk
′









n
∑

k
′
=1

cℓ
k
′

∑m
j=1 c

j

k
′



−





n
∑

k
′
=1

wk
′





n
∑

k=1,k 6=i

cℓ
k

∑m
j=1 c

j
k

+ (m − 1)

n
∑

k
′
=1

cℓ
k
′

∑m
j=1 c

j

k
′

wk
′





=
wi

cℓ
i

+
1

cℓ
i

(

−wi +
cℓ
i

∑m
j=1 c

j
i

n
∑

k=1

wk +
(m − 1)cℓ

iwi
∑m

j=1 c
j
i

)

=
wi

cℓ
i

−
wi

cℓ
i

+
1

cℓ
i

cℓ
i

∑m
j=1 c

j
i

n
∑

k=1

wk +
1

cℓ
i

(m − 1)cℓ
iwi

∑m
j=1 c

j
i

=
(m − 1)wi
∑m

j=1 c
j
i

+
1

∑m
j=1 c

j
i

n
∑

k=1

wk

=
mwi
∑m

j=1 c
j
i

+
1

∑m
j=1 c

j
i

n
∑

k=1,k 6=i

wk =
1

∑m
j=1 c

j
i



mwi +

n
∑

k=1,k 6=i

wk



 ,

which by Lemma 4.1 is the minimum expected latency cost functions λi,b for a user i ∈ [n] in the fully
mixed case. Therefore every pℓ

i probability yields the minimum expected latency for every user i ∈ [n]
and is then a Nash probability as needed. 2

By Lemma 4.3 and Lemma 4.4 we establish:

Theorem 4.5 (Existence and Uniqueness of Nash Equilibria) Consider the fully mixed case. Then
for every user i ∈ [n] and every link ℓ ∈ [m],

pℓ
i = 1 −

(m − 1)cℓ
i

∑m
j=1 c

j
i

−
1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

+
(n − 1)cℓ

i
∑m

j=1 c
j
i

)

− (m − 1)

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

wk

]

∈ (0, 1)

if and only if there exist a Nash equilibrium which must be unique and the pℓ
i ’s are its associated Nash

probabilities.

Theorem 4.5 implies the following.

Corollary 4.6 The fully mixed Nash equilibrium when it exists can be calculated in O(nm) time.

From Theorem 4.5 and Lemma 4.3 we get the following result for the model of uniform user beliefs.

Theorem 4.7 Under the model of uniform user beliefs, for any game G, let F be the fully mixed Nash
equilibrium. Then for any user i ∈ [n] and any link ℓ ∈ [m] pℓ

i = 1
m

.
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Proof. By substituting cℓ
i = ci according to the definition of uniform user beliefs in Lemma 4.3 we get

pℓ
i = 1 −

(m − 1)ci
∑m

j=1 ci

−
1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n
∑

k=1

ci
∑m

j=1 ci

+
(n − 1)ci
∑m

j=1 ci

)

− (m − 1)

n
∑

k=1

ci
∑m

j=1 ci

wk

]

= 1 −
m − 1

m
−

1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n
∑

k=1

1

m
+

n − 1

m

)

− (m − 1)

n
∑

k=1

1

m
wk

]

= 1 −
m − 1

m
−

1

n − 1

1

wi

[

n
∑

k=1

wk

(

1 −
n

m
+

n − 1

m

)

−
m − 1

m

n
∑

k=1

wk

]

= 1 −
m − 1

m
−

1

n − 1

1

wi

[

n
∑

k=1

wk

(

m − n + n − 1

m

)

−
m − 1

m

n
∑

k=1

wk

]

= 1 −
m − 1

m
−

1

n − 1

1

wi

[

m − 1

m

n
∑

k=1

wk −
m − 1

m

n
∑

k=1

wk

]

=
m − m + 1

m

=
1

m

as needed. 2

4.2 Worst Case Equilibrium and Price of Anarchy

We show that the fully mixed Nash equilibrium maximizes the social cost. Since both social costs are
based on the individual costs of every user i ∈ [n], we first extend a known relation previously shown in
other related models [13, 8].

Lemma 4.8 Take any game G, a (mixed) Nash Equilibria P and the fully mixed Nash equilibrium F,
Then for any user i ∈ [n], λi,bi

(P) ≤ λi,bi
(F)

Proof. Let pℓ
k and f ℓ

k for every user k ∈ [n] and for every link ℓ ∈ [m], be the probabilities of the mixed and

fully mixed Nash equilibrium respectively. Then since
∑m

ℓ=1

(

∑m
k=1,k 6=i p

ℓ
kwk

)

=
∑m

k=1,k 6=i

(

wk

∑m
ℓ=1 pℓ

k

)

=
∑m

k=1,k 6=i wk and
∑m

ℓ=1

(

∑m
k=1,k 6=i f

ℓ
kwk

)

=
∑m

k=1,k 6=i

(

wk

∑m
ℓ=1 f ℓ

k

)

=
∑m

k=1,k 6=i wk it follows that

m
∑

ℓ=1





n
∑

k=1,k 6=i

pℓ
kwk



 =

m
∑

ℓ=1





n
∑

i=1,k 6=i

f ℓ
kwk



 . (3)

Therefore, there exists a link ℓ0 ∈ [m] such that
∑n

k=1,k 6=i p
ℓ
kwk ≤

∑n
k=1,k 6=i f

ℓ
kwk. By adding wi on

both sides and by dividing with the believed capacity cℓ0
i of user i on link ℓ0 we get that λℓ0

i,bi
(P) ≤ λℓ0

i,bi
(F).

By definition of λi,bi
(P) (since λi,bi

(P) is the minimum of all λℓ
i,bi

(P)) we get that λi,bi
(P) ≤ λℓ0

i,bi
(P) =

wi+
∑n

k=1,k 6=i p
ℓ0
k

wk

c
ℓ0
i

≤
wi+

∑n
k=1,k 6=i f

ℓ0
k

wk

c
ℓ0
i

= λℓ0
i,bi

(F) = λi,bi
(F)(since f ℓ0

i > 0 and F is a Nash Equilibrium)

as needed. 2

Corollary 4.9 In the case where the Fully Mixed Nash Equilibrium does not exist, then for any probability
matrix F that is derived from Remark 4.1, Lemma 4.8 still holds.

The following two theorems follow from Lemma 4.8 and the definition of the social costs.
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Theorem 4.10 The fully mixed Nash equilibrium maximizes the social cost SC1 (G,F).

Theorem 4.11 The fully mixed Nash equilibrium maximizes the social cost SC2 (G,F)

Corollary 4.9 and Theorems 4.7, 4.10 and 4.11 lead to the following two theorems (the first for the
model of uniform user beliefs and the second for the general case):

Theorem 4.12 Take any game G and any Nash equilibrium P under the model of uniform user beliefs,
then

(a)
SC1 (G,P)

OPT1 (G)
≤

(

cmax

cmin

)

m + n − 1

m
,

(b)
SC2 (G,P)

OPT2 (G)
≤

(

cmax

cmin

)

m + n − 1

m
,

where cmax = max
i∈[n], ℓ∈[m]

cℓ
i , and cmin = min

i∈[n], ℓ∈[m]
cℓ
i .

Proof. We now give the proof for part (a).
By Theorem 4.10 we know that SC1 (G,P) ≤ SC1 (G,F) where F is the fully mixed Nash equilibrium.

Also by Theorem 4.7, pℓ
i = 1

m
for every user i ∈ [n] and link ℓ ∈ [m]. Clearly

SC1 (G,P) ≤ SC1 (G,F) ≤
n
∑

k=1

wi +
∑n

k=1,k 6=i
1
m

wk

cmin

=
1

cmin

(

m + n − 1

m

) n
∑

k=1

wk.

Since OPT1 (G) is the least possible average over all pure strategies of the individual cost of all users, we
have that for any user i ∈ [n]

OPT1 (G) ≥
n
∑

i=1

∑n
k=1:ℓk=ℓi

wk

cmax

≥
1

cmax

n
∑

k=1

wk.

By combining the two inequalities the upper bound follows.
We continue with the proof of part (b). First we note that OPT2 (G) ≥ wi

cmax
. By Theorem 4.11

we have that SC2 (G,P) ≤ SC2 (G,F) where F is the fully mixed Nash equilibrium. Now consider user
i ∈ [n] such as λi,bi

(F) = SC2 (G,F). Since by Theorem 4.7, pℓ
i = 1

m
for every user i ∈ [n] and link

ℓ ∈ [m], then

λi,bi
(F) =

(1 − pℓ
i)wi +

∑n
k=1 pℓ

kwk

cmin

=
(1 − 1

m
)wi +

∑n
k=1

1
m

wk

cmin

=
(m − 1)wi

cmin · m
+

∑n
k=1 wk

cmin · m

By combining the two we get that

SC2 (G,P) ≤
cmax(m − 1)

cmin · m
OPT2 (G) +

cmax · n · OPT2 (G)

cmin · m
=

cmax

cmin

(

m + n − 1

m

)

OPT2 (G) ,

as desired. 2

Theorem 4.13 Take any game G and any Nash equilibrium P, then

(a)
SC1 (G,P)

OPT1 (G)
≤

(cmax)2

cmin

1
∑m

j=1 c
j
min

(m + n − 1),

(b)
SC2 (G,P)

OPT2 (G)
≤

(cmax)2

cmin

1
∑m

j=1 c
j
min

(m + n − 1),
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where cmax = max
i∈[n], ℓ∈[m]

cℓ
i , cmin = min

i∈[n], ℓ∈[m]
cℓ
i , cℓ

max = max
i∈[n]

cℓ
i , ℓ ∈ [m], and cℓ

min = min
i∈[n]

cℓ
i , ℓ ∈ [m].

Proof. We first present the proof for part (a).
By Theorem 4.10 and Corollary 4.9 we know that SC1 (G,P) ≤ SC1 (G,F) where F is probability

matrix that is derived from Lemma 4.3. Clearly, since λi,bi
(F) = λℓ

i,bi
(F) for all i ∈ [n] and all ℓ ∈ [m],

SC1 (G,F) =

n
∑

i=1

wi +
∑n

k=1,k 6=i p
ℓ
kwk

cℓ
i

≤
n
∑

i=1

wi +
∑n

k=1,k 6=i p
ℓ
kwk

cℓ
min

=
1

cℓ
min

n
∑

i=1



wi +
n
∑

k=1,k 6=i

pℓ
kwk



 =
1

cℓ
min

(

n
∑

i=1

wi + (n − 1)
n
∑

i=1

pℓ
iwi

)

.

By Lemma 4.2 we get that for any link ℓ ∈ [m]

Wℓ =
1

n − 1

n
∑

i=1

(

(m − 1)
cℓ
i

∑m
j=1 c

j
i

+

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

− 1

)

wi

=
1

n − 1

(

(m − 1)
n
∑

i=1

cℓ
i

∑m
j=1 c

j
i

wi +
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

n
∑

i=1

wi −
n
∑

i=1

wi

)

. (4)

By substituting (4) on the above upper bound of the social cost we get

SC1 (G,P) ≤
1

cℓ
min

(

n
∑

i=1

wi + (m − 1)

n
∑

i=1

cℓ
i

∑m
j=1 c

j
i

wi +

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

n
∑

i=1

wi −
n
∑

i=1

wi

)

=
1

cℓ
min

(

(m − 1)

n
∑

i=1

cℓ
i

∑m
j=1 c

j
i

wi +

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

n
∑

i=1

wi

)

≤
1

cℓ
min

(

(m − 1)
cℓ
max

∑m
j=1 c

j
min

n
∑

i=1

wi + n
cℓ
max

∑m
j=1 c

j
min

n
∑

i=1

wi

)

=
1

cℓ
min

cℓ
max

∑m
j=1 c

j
min

(m + n − 1)

n
∑

i=1

wi

≤
1

cmin

cmax
∑m

j=1 c
j
min

(m + n − 1)

n
∑

i=1

wi.

On the other hand OPT1 (G) is the least possible average over all pure strategies of the individual cost
of all users, thus for any user i ∈ [n],

OPT1 (G) = min
(ℓ1,ℓ2,...,ℓn)∈[m]n

n
∑

i=1

∑n

k=1:ℓk=ℓi
wk

cℓi

i

≥ min
(ℓ1,ℓ2,...,ℓn)∈[m]n

n
∑

i=1

∑n

k=1:ℓk=ℓi
wk

cℓi
max

≥
1

cmax

n
∑

i=1

wi.

By combining the two inequalities we get that

SC1 (G,F) ≤
(cmax)2

cmin

1
∑m

j=1 c
j
min

(m + n − 1)OPT1 (G) ,

as needed.
Now we continue with the proof of part (b). First note that OPT2 (G) ≥ wi

cmax
for any user i ∈ [n].

By Theorem 4.11 we have that SC2 (G,P) ≤ SC2 (G,F) where F is probability matrix that is derived

17



from Lemma 4.3. Now consider user i where λi,bi
(F) = SC2 (G,F). Clearly

λi,bi
(F) =

wi +
∑n

k=1,k 6=i p
ℓ
kwk

cℓ
i

≤
wi +

∑n
k=1,k 6=i p

ℓ
kwk

cmin

=
1

cmin

(

wi +

n
∑

k=1

pℓ
kwk − pℓ

iwi

)

.

From equations (4) we get that the load on a link ℓ ∈ [m] when a user i ∈ [n] is excluded is

Wℓ − pℓ
iwi =

1

n − 1

n
∑

q=1,q 6=i

(

(m − 1)
cℓ
q

∑m
j=1 c

j
q

+

n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

− 1

)

wq

=
1

n − 1



(m − 1)
n
∑

q=1,q 6=i

cℓ
q

∑m
j=1 c

j
q

wq +
n
∑

k=1

cℓ
k

∑m
j=1 c

j
k

n
∑

q=1,q 6=i

wq −
n
∑

q=1,q 6=i

wq



 . (5)

By substituting (5) on the above upper bound for λi,bi
(F) we get

λi,bi
(F) ≤

1

cmin



wi +
m − 1

n − 1

n
∑

q=1,q 6=i

cℓ
q

∑m

j=1 c
j
q

wq +
1

n − 1

n
∑

k=1

cℓ
k

∑m

j=1 c
j
k

n
∑

q=1,q 6=i

wq −
1

n − 1

n
∑

q=1,q 6=i

wq





=
1

cmin

1

n − 1



(n − 1)wi + (m − 1)
n
∑

q=1,q 6=i

cℓ
q

∑m

j=1 c
j
q

wq +
n
∑

k=1

cℓ
k

∑m

j=1 c
j
k

n
∑

q=1,q 6=i

wq −
n
∑

q=1,q 6=i

wq





≤
1

cmin

1

n − 1



(n − 1)wi + (m − 1)
cℓ
max

∑m

j=1 c
j
min

n
∑

k=1,k 6=i

wk + n
cℓ
max

∑m

j=1 c
j
min

n
∑

k=1,k 6=i

wk −
n
∑

k=1,k 6=i

wk





=
1

cmin

1

n − 1



(n − 1)wi + (m + n − 1)
cℓ
max

∑m

j=1 c
j
min

n
∑

k=1,k 6=i

wk −
n
∑

k=1,k 6=i

wk





=
1

cmin

1

n − 1



(n − 1)wi +

(

(m + n − 1)
cℓ
max

∑m

j=1 c
j
min

− 1

)

n
∑

k=1,k 6=i

wk



 .

By combining all the above we get

SC2 (G,F) ≤
1

cmin

1

n − 1

(

(n − 1)cmax +

(

(m + n − 1)
cℓ
max

∑m

j=1 c
j
min

− 1

)

(n − 1)cmax

)

· OPT2 (G)

=
(cmax)

2

cmin

1
∑m

j=1 c
j
min

(m + n − 1) · OPT2 (G) ,

as needed. 2

5 Concluding Remarks

In this paper we introduce an extension of the KP-model where the network links may present a number of
different capacities and each user’s uncertainty about the capacity of the links is modeled via a probability
distribution over all the possibilities. This gives rise to a model with user-specific payoff functions, where
each user uses its distinct probability distribution to take decisions as to how to route its traffic.

We embark on a study of Nash equilibria and the price of anarchy in this new model. In particular,
we propose polynomial-time algorithms for computing some special cases of pure Nash equilibria and
we propose an interesting open problem in this area, that of the existence of pure Nash equilibria in
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the general case of our model. Furthermore, we consider appropriate notions for the social cost and the
price of anarchy and obtain upper bounds for the latter. With respect to fully mixed Nash equilibria, we
propose a method to compute them and show that when they exist they are unique. Finally we prove
that the fully mixed Nash equilibrium maximizes the social welfare.

Acknowledgments. We would like to thank Marios Mavronicolas and Burkhard Monien for several
insightful discussions.
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A Appendix

Proof that our game is not an exact potential game.

For a strategy vector L and a user i ∈ [n], denote L−i = 〈ℓ1, ℓ2, . . . , ℓi−1, ℓi+1, . . . , ℓn〉 to be the strategy vector
obtained by deleting user’s i strategy from L. A path in [m]n, is a sequence M = 〈L0, L1, . . . , Lr〉 such as for every
k ≥ 1 there exist a unique user i, such that Lk =

(

L−i
k−1, ℓ

)

for some ℓ ∈ [m], ℓ 6= ℓi where ℓi is user’s i strategy in
Lk−1. A path is closed if L0 = Lr.

A simple closed path is a sequence M = 〈L0, L1, . . . , Lr〉, if in addition Lj 6= Lk for every 0 ≤ j 6= r ≤ r − 1.
The length of a simple closed path is the number of distinct vertices in it. Therefore the length of M is r.

Theorem A.1 (Mondener et all [17])A game G = (n, m,w,B) is a potential game if and only if for every
i, j ∈ [n], for every u ∈ ([m]n)−{i,j}, and for every ℓi1 , ℓi2 ∈ [m] and ℓj1 , ℓj2 ∈ [m].

λ
ℓi2

i,bi
(ℓi2 , ℓj1 , u) − λ

ℓi1

i,bi
(ℓi1 , ℓj1 , u) + λ

ℓj2

j,bj
(ℓi2 , ℓj2 , u) − λ

ℓj1

j,bj
(ℓi2 , ℓj1 , u)

+

λ
ℓi1

i,bi
(ℓi1 , ℓj2 , u) − λ

ℓi2

i,bi
(ℓi2 , ℓj2 , u) + λ

ℓj1

j,bj
(ℓi1 , ℓj2 , u) − λ

ℓj2

j,bj
(ℓi1 , ℓj1 , u) = 0

Theorem A.2 Any game G = (n, m,w,B) with arbitrary user beliefs does not possess a potential function and
therefore G is not a potential game.

Proof. Consider a game G = (n, m,w,B) such that there are two users i, j ∈ [n] with wi = wj = 2 and beliefs
c1
i = 2, c2

i = 3, c3
i = 4 and c1

j = 4, c2
j = 4, c3

j = 2 on the first three links.
Let a simple closed path with length 4 be

(ℓ2, ℓ1, u) → (ℓ3, ℓ1, u) → (ℓ3, ℓ2, u) → (ℓ2, ℓ2, u) → (ℓ2, ℓ1, u).

Then by Theorem A.1 we compute that

(ℓ2, ℓ1, u) → (ℓ3, ℓ1, u) :

(

1

2
−

2

3

)

+

(ℓ3, ℓ1, u) → (ℓ3, ℓ2, u) :

(

1

2
−

1

2

)

+

(ℓ3, ℓ2, u) → (ℓ2, ℓ2, u) :

(

4

3
−

1

2

)

+

(ℓ2, ℓ2, u) → (ℓ2, ℓ1, u) :

(

1

2
− 1

)

=
1

6
6= 0

which gives a counterexample. Therefore the game G is not a potential game. 2
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