
Reliably Executing Tasks in the Presence of Untrusted Entities∗

Antonio Ferńandez†

LADyR, GSyC,
Universidad Rey Juan Carlos,

28933 Ḿostoles, Spain.
anto@gsyc.escet.urjc.es.

Chryssis Georgiou‡

Dept. of Computer Science,
University of Cyprus,
75 Kallipoleos Str.,

P.O. Box 20537, CY-1678,
Nicosia, Cyprus.

chryssis@ucy.ac.cy

Luis López∗

llopez@gsyc.escet.urjc.es.
Agust́ın Santos∗

asantos@gsyc.escet.urjc.es.

Abstract

In this work we consider a distributed system formed
by a master processor and a collection ofn processors
(workers) that can execute tasks; worker processors are
untrusted and might act maliciously. The master assigns
tasks to workers to be executed. Each task returns a bi-
nary value, and we want the master to accept only correct
values with high probability. Furthermore, we assume that
the service provided by the workers is not free; for each
task that a worker is assigned, the master is charged with
a work-unit. Therefore, considering a single task assigned
to several workers, our goal is to have the master computer
to accept the correct value of the task with high probabil-
ity, with the smallest possible amount of work (number of
workers the master assigns the task). We explore two ways
of bounding the number of faulty processors: (a) we con-
sider a fixed boundf < n/2 on the maximum number of
workers that may fail, and (b) a probabilityp < 1/2 of any
processor to be faulty (all processors are faulty with prob-
ability p, independently of the rest of processors).

Our work demonstrates thatit is possibleto obtain high
probability of correct acceptance with low work. In par-
ticular, by considering both mechanisms of bounding the
number of malicious workers, we first show lower bounds
on the minimum amount of (expected) work required, so
that any algorithm accepts the correct value with proba-
bility of success1 − ε, whereε � 1 (e.g.,1/n). Then we
develop and analyze two algorithms, each using a different
decision strategy, and show that both algorithms obtain the

∗This work is supported in part by the IST Program of the European
Union under contract number IST-2005-015964 (AEOLUS). Preliminary
results of this work have been announced in [9].

†Partially supported by the Spanish MEC under grant TIN2005-09198-
C02-01 and the Comunidad de Madrid under grant S-0505/TIC/0285.

‡Partially supported by funds at the University of Cyprus.

same probability of success1 − ε, and in doing so, they
require similar upper bounds on the (expected) work. Fur-
thermore, under certain conditions, these upper bounds are
asymptotically optimalwith respect to our lower bounds.

1 Introduction

Problem and Motivation. The demand for processing
large amounts of data has increased over the last decade.
As traditional one-processor machines have limited compu-
tational power, distributed systems consisting of hundreds
of thousands of cooperating processing units are used in-
stead. An example of such a massive distributed coopera-
tive computation is the SETI@home project [17]. As the
search for extraterrestrial intelligence involves the analysis
of gigabytes of raw data that a fixed-size collection of ma-
chines would not be able to effectively carry out, the data
are distributed to millions of voluntary machines around the
world. A machine acts as a server and sends data (aka tasks)
to these client computers, which they process and report
back the result of the task computation. However, these
client computers are not trustworthy and might act mali-
ciously. This gives rise to a crucial problem:how can we
prevent malicious clients from damaging the outcome of the
overall computation?

In this work we abstract this problem in the form of a
distributed system consisting of amasterfail-free proces-
sor M and a collection ofn (powerful) processors, called
workers, that can execute tasks; worker processors might
act maliciously, that is, they are Byzantine [20]. Since each
task returns a value, we want the master to accept only cor-
rect values with high probability. Namely, ifε � 1 is the
probability of accepting an incorrect value, we want aprob-
ability of successof at least1− ε (e.g.,1− 1/n). However,
we assume that the service provided by the workers is not

free (as opposed to the SETI@home project). For each task
that a worker is assigned, the master computer is charged
with awork-unit. Furthermore, processors can be slow, and
messages can get lost or arrive late; in order to introduce
these assumptions in the model, we consider that there is a
known probabilityd (which may depend onn) of M receiv-
ing the reply from a given worker on time. We also consider
two types of known bounds on the number of malicious
workers: we either consider a fixed boundf < n/2 on the
maximum number of workers that may fail, or a probability
p < 1/2 of any processor to be faulty (f andp may depend
onn). Given the above model, and considering a single task
(which returns a binary value) assigned to several workers,
our goal is to have the master computer to accept the correct
value of the task with probability of success at least1 − ε,
and with the smallest possible amount ofwork (number of
workersM assigned the task). (The problem and model are
presented in detail in Section 2.)

Observe that a trivial solution to the above problem when
d = 1 (all messages are delivered on time) and there are
no more thanf < n/2 malicious workers is to haveM
assign the task to2f + 1 workers. This guarantees that
the correct value is accepted (with probability1). Note,
however, that iff = Θ(n), then the work is linear onn
(which is not desired). Furthermore, ifd < 1, there are less
than2f + 1 workers available to execute the task, or we
consider a probabilistic model of failures (each processor is
faulty with probabilityp < 1/2), then it is not so obvious
how to fully guarantee that a correct value is accepted with
high probability. In this work, we develop two non-trivial
algorithms for this problem and we show that it is in fact
possible to obtain high probability of success with low work
(for example, in the above case ofd = 1 and linearf , if ε =
1/n, processorM accepts the correct value with probability
at least1− 1/n and with worklogarithmiconn instead of
linear). Furthermore, we provide lower bound results on the
work required to achieve high probability of success.

Prior/Related Work. The problem we consider in this
work is clearly related to thevoting problems(e.g., [4, 21,
18]). In these problems there is a set of entities or “vot-
ers,” some of which can be faulty. Each voter proposes a
value (usually obtained from some computation) to a de-
ciding agent, such that non-faulty voters always propose the
correct value, while faulty voters can have different behav-
iors. From the set of proposed values, the agent uses a strat-
egy to choose a value that it believes to be the correct one.
The purpose of a good strategy is to maximize the proba-
bility of choosing the correct value. The main difference
of these problems with the problem studied in this paper is
that they usually assume that all the entities in the system
propose a value (implicitly they assume that proposing a
value involves no cost), and only the probability of a bad
choice has to be minimized. In our model this probability
is chosen a priori and the cost, measured as the number of
entities involved, is minimized.

Additionally, differences exist between the models con-
sidered and our model. For instance, both Blough and Sul-
livan [4] and Paquette and Pelc [21] assume that the values
proposed by non-faulty voters are always received by the
deciding agent, and that there is a priori knowledge of the
probability of each possible value to be correct. Also, in
[4] it is assumed a priori knowledge of the probability for a
faulty entity to propose each possible value (faulty entities
are not really Byzantine). In [21], Byzantine failures are
considered and the authors are concerned with the compu-
tational cost of the strategy, proposing strategies with linear
cost on the number of voters.

To our knowledge, the work on voting closest to our
model is that of Kumar and Malik [18], since they define a
reliability level that has to be achieved and try to minimize
the cost of achieving it. However, they still assume that the
deciding agent gets proposals from all the entities. More
importantly, they assume that each entity has associated a
cost versus reliability curve that defines the cost that has to
be invested in that entity in order to have a given probabil-
ity of the entity proposing the correct value. Then, under
this model the strategies are able to tune the failure proba-
bility of each voter to optimize the total cost. In our model,
the failure probability is given, the master gets to choose
how many entities are asked to propose, and the cost is the
number of entities chosen.

A real system that is very related to the model presented
in this paper is the Berkeley Open Infrastructure for Net-
work Computing (BOINC) [2, 3]. This system allows vol-
unteers to provide free computational cycles to perform in-
tensive computation in a form similar to the one proposed
in this paper. In fact, the SETI@home project now runs
over BOINC. With BOINC, an application can submit to
the system a task to be executed. Then, instances of the task
are dispatched to several clients and a validation process is
used to decide which returned value to accept as correct
output of the task. In BOINC the number of instances of
a task executed and the validation procedure is application
dependent: the application has to provide the number of in-
stances, a function to compare the received results, a func-
tion to validate, and the minimum number of received re-
sults in order to start validating. Once this latter minimum
is reached, the validation process is invoked with the set of
received responses, after each new response is received, un-
til some value is accepted. If an instance does not respond
by some given time another instance is started.

Like in the original SETI@home system, and unlike in
our model, applications in BOINC are not restricted on
the number of instances of a task they request and are not
charged for the computational power they use. This could
be dangerous if applications act selfishly and start a large
number of instances. On the other hand, application pro-
grammers may not have enough information to be able to
appropriately tune up the number of instances and the val-
idation mechanism. The theoretical model and algorithms

proposed in this paper could be adapted by BOINC design-
ers to incorporate the validation mechanism as part of the
system, and letting the applications simply ask for a certain
level of reliability. The results of this paper could be used
to derive the number of instances that have to be started for
a task, and the validation strategy to be used.

Another problem related to the problem we consider in
this work is theDo-Allproblem, in which a collection of
k processors need to cooperatively performt independent
tasks in the presence of failures (e.g., [5, 14, 15, 12]). Re-
cently, this problem was studied under Byzantine proces-
sors [8]. Several deterministic lower and upper bound re-
sults were introduced on the complexity of solving theDo-
Allproblem in asynchronousdistributed system where up
to f nodes might behave maliciously. Although the idea of
reliably executing tasks in the presence of malicious proces-
sors is the same, both the model and the problem we con-
sider here are different. For example, in the aboveDo-All
paper, processors attempt to collectively decide whether a
task has been correctly performed without in fact having to
learn the result of the task, as opposed to our problem where
a single processor must decide the validity of a task result
(and of course obtain that value).

Finally, there is an interesting connection between the
problem considered in this work and the problems of re-
liably computing Booleank-variable functions with noisy
Boolean circuits (e.g., [22, 10]), noisy Boolean decisions
trees (e.g., [22, 16, 7, 6]), and noisy broadcast (e.g., [11,
13, 19]). Also, the fact that the master has to decide upfront
the number of queries connects our model with the model of
staticnoisy Boolean decision trees. In particular, our prob-
lem can be viewed as the problem of reliably computing
the trivial function of one variable (F (x) = x) with a noisy
static Boolean decision tree. However, we have identified
several differences between our model and the models con-
sidered in the literature for these problems. For example,
in their models, a query of a bit always returns an answer
(0 or 1) as opposed to our model in which it is possible
not to get a reply for a query (either a malicious worker
chooses not to reply at all or a message is not received on
time). Recent work [23] investigated the reliable compu-
tation of Booleank-variable functions assuming that` p-
faulty copies of each input bit are received. However, it is
assumed that̀ is fixed as opposed to our model where the
number of received replies is not fixed.

Differences exist also in the complexity measures con-
sidered. In noisy circuits and decision trees, upper and
lower bounds are usually given as functions of either (a)
thesensitivitys (or the critical number) of a function (num-
ber of bits that are critical for the correct computation of
the function), or (b) simply the number of variablesk of
the function. Moreover, it is assumed that the probability
p of a bit to be given incorrectly and the probabilityε that
the function is computed incorrectly are constants (we do
not impose this restriction in our model). Therefore, the

asymptotic bounds presented, especially the lower bounds
(e.g.,Ω(s lg s) or Ω(k lg k)) are meaningless in our model,
sinces = k = 1 (it is worth mentioning that their an-
alytical results leading to the asymptotic expressions are
usually not dependent onp andε). In fact, in this work,
we present a new lower bound on the depth required by
noisy static Boolean decision trees for the reliable compu-
tation of the trivial function thatdependsonp andε. In the
noisy broadcast model, bounds are given as functions of the
number of broadcasts needed to compute a given function.
Again, these bounds do not apply to our model, since in
our model we have a single convergecast (from the work-
ers to the Master) and not multiple broadcasts between the
workers.

Contributions. We study an interesting variation of the
voting problem under a model that captures realistic sys-
tems of distributed computation. To the best of our knowl-
edge, the problem and model as presented here have not
been studied in prior work. Our work demonstrates thatit
is possibleto execute tasks reliably in the presence of ma-
licious processors with high probability and with low cost.
In particular,

• We present lower bounds on work, considering both
mechanisms of bounding the number of malicious
workers (maximum number of malicious workersf <
n/2, probability of each worker failingp < 1/2). Par-
ticularly, we identify lower bounds on the minimum
amount of (expected) work required, so that any al-
gorithm accepts the correct value with probability of
success1 − ε. Furthermore, we derive a new lower
bound on the depth ofnoisy static Boolean decision
trees[22] required for the reliable computation of the
1-variable trivial function (F (x) = x); the bound is
expressed as a function ofp andε.

• We develop two algorithms: (a) theMajority Based
Algorithm (MBA) which is a simple and natural algo-
rithm whereM decides on the majority of received
responses, and (b) theThreshold Based Algorithm
(TBA) in which if M receives a certain number of
responses with equal value (threshold) it makes a de-
cision, otherwise it decides on the majority of the re-
ceived responses. Algorithm TBA isearly-terminating
as opposed to MBA that always waits for a timeT and
then makes a decision on the value to accept.

• We analyze the algorithms using Chernoff bounds.
Both algorithms obtain the same probability of suc-
cess1 − ε and we derive similar upper bounds on
the (expected) work required in doing so, expressed
as functions ofε, d, and eitherp or f . Furthermore,
for the cases wherep is a constant orf is linear both
algorithms achieve the sameasymptoticupper bounds
on (expected) work, which areasymptotically optimal
with respect to our lower bounds; in this case the work

complexity isΘ((− lg ε)/d).

Paper Organization. The rest of the paper is organized
as follows. In Section 2 we present the model and def-
initions. In Section 3 we present lower bounds on work
in order to achieve high probability of correct decision in
the model we consider. In Section 4 we present algorithms
MBA and TBA and show that they achieve the desired prob-
ability of correct decision while maintaining low work. Fi-
nally, in Section 5 we discuss and compare our two algo-
rithms and the lower bounds and identify interesting future
research directions.

2 Model and Definitions

We study execution of tasks in a system in which the
processors can behave maliciously, i.e., are Byzantine [20].
We assume there is a fail-freemasterprocessorM which
has a task to be executed. This task returns a binary value,
which M wants to reliably obtain. ProcessorM is not ca-
pable of executing the task itself, so a setP of n (powerful)
processors,P = {1, ..., n}, that can execute the task, is
made available toM . We refer to these processors aswork-
ers. The workers are continuously waiting forM to assign
them a task to execute, they execute a task if they are as-
signed one, and return the computed value (as depicted in
Figure 1).

The workers are not considered to be trustworthy and in
fact, they might act maliciously (e.g., they might send an
incorrect value, send no value, etc.). However, we assume
that a malicious processor, that is a faulty processor, cannot
impersonate another processor and cannot modify nor re-
move other processors’ messages (includingM). Clearly,
in order to be able to do anything useful, the number of
processors that may fail has to be bounded. We consider
two kinds of mechanisms to bound the number of malicious
processors. We either assume that (i) there is a fixed bound
f < n/2 on the maximum number of processors that fail,
or (ii) there is a probabilityp < 1/2 of any processor to be
faulty (each processor is faulty with probabilityp, indepen-
dently of the rest of processors). We assume that the set of
faulty processors is fixed beforeM assigns the task to the
workers and it does not change during the execution. We
also assume thatM knowsa priori the corresponding value
f or p, but has no a priori knowledge of which processor
can be faulty.

We further assume that processors are asynchronous
with respect to each other and the communication between
them is not reliable. Therefore, processors can be slow, and
messages can get lost or arrive late. In order to incorpo-
rate these assumptions in the model, we consider that there
is a known non-decreasing probabilityd of M receiving
the reply from a given worker (that is willing to reply) on
time. This probability is identically distributed and inde-
pendent for each worker. The reply may not arrive on time

due to several reasons: the worker never receives the mes-
sage fromM , M never receives the reply from the worker,
or the whole process takes too much time and the reply is
simply late. Note that we do not differentiate whether the
worker is faulty or not.

Then, under this model we assume thatM is given a
task, whose correct output value isv, and a probabilityε �
1 (e.g.,1/n), andM must acceptv with success probability
of at least1 − ε and low cost. By success probability we
mean the probability ofM deciding the correct value that
the task returns. To attempt to decide the correct value,M
must assign the execution of the task to a set of workers
(not necessarily all of them), wait for replies from them,
and decide from the replies obtained. We refer to the above
procedure as around. Note that we do not allow a second
round to take place;M must accept a value at the end of the
first (and only) round. This guarantees fast termination of
algorithms. Note also that onceM accepts a value, it is not
allowed to change its decision and choose a different value.
For each workerM assigned the task,M is charged with
onework-unit.Given a task assignment, its cost, orwork, is
defined as the total number of work-units thatM is charged
for, that is, the total number of workers thatM assigned the
task. Then, the objective is to minimize the (expected) work
of the assignment while obtaining a success probability of
at least1− ε.

Finally, we assume thatM has noa priori knowledge
of the correct value to be computed by the task. LetV be
the set of possible values returned by the task to be exe-
cuted. This means thatM has no information on the prob-
ability that each of the values inV has to be the solution
of the task. In this work we consider only cases where
V = {0, 1}. Note that sinceM decides in one round, it
makes sense to assume that faulty workers prefer to reply
to M with an incorrect value rather than to choose not to
reply at all (of course their message might be lost or de-
layed). During the rest of the paper we will assume that
this is always the case: a faulty worker always replies with
the incorrect value. The faulty workers can obtain the incor-
rect value either by collaborating, or by simply computing
the task (ifv is the result, then they respond with1− v).

3 Lower Bounds on Work

In this section we give lower bounds on the (expected)
work of any algorithm with success probability no less than
1 − ε. To do so, we lower bound the minimum number
of repliesM must have in order to decide with the desired
success probability. Since we have two different ways to
characterize processor failures,p andf , we have different
bounds for each case.

We begin with the following lemma, which states that
the algorithms that accept the most received value among
the replies have the maximum success probability.

Processori ∈ P , does:
1 Wait to receive fromM a task to be executed
2 Execute the task
3 Send toM the computed valuev

Figure 1. Algorithm executed by any worker processor.

Lemma 3.1 If an algorithmA has success probability1−
ε, then there is an algorithmA′ with success probability no
less than1− ε that always accepts the most frequent value
among the received replies.

Proof: Due to lack of space, this proof is given in the
Appendix.

Then, for the lower bounds we only need to consider al-
gorithms that accept the most replied value. The following
theorem, for the case when workers fail with probabilityp,
shows that any algorithm must have runs in which the same
task is assigned to a minimum number of workers.

Theorem 3.2 If workers fail with probabilityp, for anyd,
any algorithm must have runs in which it assigns the task to
at least2 lg ε

lg p−2 workers in order to decide with probability
of success at least1− ε.

Proof: Suppose that the algorithm uses majority to decide
and always assigns the task to less than2 lg ε

lg p − 2 workers.

This implies that in each runM getsr < 2 lg ε
lg p − 2 =

2 logp ε− 2 replies. Then, the probability that a majority of
them come from faulty processors is∑

c>r/2

(
r

c

)
pc(1− p)r−c ≥ p

r
2+1 > plogp ε = ε.

If this happens, a majority of replies come from faulty
processors which return the same incorrect value1−v, and
M will decide incorrectly. Then, the success probability
of the execution is below1 − ε. Since this happens for all
runs, the success probability of the majority algorithm is
below1− ε. This and Lemma 3.1 completes the proof.

The above Theorem leads to a new non-trivial lower
bound result on the depth ofnoisy static Boolean decision
trees[22].

Corollary 3.3 Any noisy static Boolean decision tree for
the functionF (x) = x when the error probability isp and
the probability of a correct answer is at least1−ε has depth
at least2 lg ε

lg p − 2.

The following theorem presents a similar lower bound
for the case when at mostf workers can fail. For this bound
to hold we needf to be large enough.

Theorem 3.4 If f > − lg ε workers fail, for anyd, any
algorithm must have runs in which it assigns the task to

more than2 lg ε

lg f+lg ε
n

− 2 workers in order to decide with

probability of success at least1− ε.

Proof: Suppose that the algorithm uses majority to decide
and always assigns the task to no more than2 lg ε

lg f+lg ε
n

− 2

workers. This implies thatM getsr ≤ 2 lg ε

lg f+lg ε
n

− 2 =
2 log f+lg ε

n
ε−2 replies. Then, sinceM did not have knowl-

edge of which processors are faulty when assigning the
task, and all selected processors have the same probability
of getting their replies through, the probability that a major-
ity of the replies come from faulty processors is at least

f(f − 1) · · · (f − br/2c)
n(n− 1) · · · (n− br/2c)

≥
(

f − r/2
n

) r
2+1

>(
f + lg ε

n

) r
2+1

≥
(

f + lg ε

n

)log f+lg ε
n

ε

= ε,

where the second inequality follows from the fact that
lg ε < 0, which implies that(f + lg ε)/n < f/n < 1/2.
Then,lg f+lg ε

n < −1 and hencer/2 < − lg ε.
Then, if this happens, a majority of the replies will

return the same incorrect value1 − v, andM will decide
incorrectly. Then, the success probability of the execution
is below1 − ε. Since this happens for all runs, the success
probability of the majority algorithm is below1 − ε. This
and Lemma 3.1 complete the proof.

The above bounds show the existence of runs with a min-
imum number of processors assigned to a task, but do not
give conditions on the distribution of these assignments.
The following results give lower bounds on the expected
number of workers to which any algorithm assigns a task.
These bounds are very close to the above bounds.

Theorem 3.5 If ε ≤ 1/2 and workers fail with probability
p, the expected number of workers to which any algorithm
assigns a task must be more than1

d (lg(2ε)
lg p − 1) in order to

decide with probability of success at least1− ε.

Proof: Suppose that the algorithm uses majority to de-
cide and assigns on average the tasks to no more than
1
d (lg(2ε)

lg p −1) workers. This implies thatM gets on average

R ≤ d(1
d (lg(2ε)

lg p − 1)) = logp(2ε)− 1 replies. LetR be the
random variable of number of replies obtained byM , us-
ing Markov’s inequality we have thatPr

[
R ≥ 2R

]
≤ 1/2.

Then, we can lower bound the probability that in any runM
gets less than2R replies and a majority of then return the

same incorrect value1−v as follows. LetX be the number
of incorrect replies. Then,

Pr
[
(R < 2R)

]
Pr

[
X > R/2|R < 2R

]
≥

1
2

Pr
[
X = bR/2c+ 1|R < 2R

]
≥

1
2
pbR/2c+1 >

1
2
pR+1 ≥ ε.

Then,M will decide incorrectly if this happens, and hence
the success probability of the majority algorithm is smaller
than1− ε. This and Lemma 3.1 complete the proof.

Theorem 3.6 If f > − lg(2ε) workers fail andε ≤ 1/2,
the expected number of workers to which any algorithm as-
signs a task must be more than1

d (lg(2ε)

lg
f+lg(2ε)

n

− 1) in order

to decide with probability of success at least1− ε.

Proof: Suppose that the algorithm uses majority to de-
cide and assigns on average the tasks to no more than
1
d (lg(2ε)

lg
f+lg(2ε)

n

− 1) workers. This implies thatM gets on

averageR ≤ d(1
d (lg(2ε)

lg
f+lg(2ε)

n

− 1)) = log f+lg(2ε)
n

(2ε) − 1

replies. LetR and X be random variables as defined
in the proof of the previous theorem, again we have that
Pr

[
R ≥ 2R

]
≤ 1/2. Then, we have that

Pr
[
(R < 2R)

]
Pr

[
X > R/2|R < 2R

]
≥

1
2

(
f −R/2

n

)bR
2 c+1

>
1
2

(
f + lg(2ε)

n

)bR
2 c+1

>

1
2

(
f + lg(2ε)

n

)R+1

≥ 1
2

(
f + lg(2ε)

n

)log f+lg(2ε)
n

(2ε)

= ε,

where the second inequality follows from the fact that
lg(2ε) ≤ 0, which implies that(f + lg(2ε))/n ≤
f/n < 1/2. Then, lg f+lg(2ε)

n < −1 and hence

R/2 < R ≤ lg(2ε)

lg
f+lg(2ε)

n

− 1 < − lg(2ε). Then,M will

decide incorrectly if this happens, and hence the success
probability of the majority algorithm is smaller than1 − ε.
This and Lemma 3.1 complete the proof.

Note that the above lower bounds do not restrict the as-
signments nor the decision policy of the algorithm. Fur-
thermore, the workers assigned to the same task can be so
at different times. In all cases, the bounds give the total
number of workers that must be assigned to a task until ac-
cepting a value.

4 Proposed Algorithms

In this section we present two algorithms that the master
processorM can run in order to solve the proposed prob-
lem. The first algorithm, calledMajority Based Algorithm
(MBA for short) is a simple and natural algorithm where

M decides on the majority of received responses. In the
second algorithm, calledThreshold Based Algorithm(TBA
for short), ifM receives a certain number of responses with
equal value (threshold) it makes a decision, otherwise it de-
cides on the majority of the received responses.

Both algorithms operate under a time restriction, that is,
M needs to decide by some timeT . More precisely, the
valueT determines how longM will wait for replies from
the worker processors. Algorithm TBA might terminate
before timeT , that is, the algorithm isearly-terminating.
Following the definitions given in Section 2,d denotes the
probability of M receiving a reply from a worker (that is
willing to reply) within timeT . Clearly,M can choose this
parameterT to tune the probabilityd.

The exact analyses of the algorithms give exact values
for the probability of success. However, the expressions
found are hard to handle in order to find the most appro-
priate parameters of the algorithms thatM can use in each
case. Even attempts for computing and plotting these values
failed, as the computations require a big degree of floating
point accuracy and range of arithmetic values. Therefore,
we perform looser analyses with Chernoff bounds. These
analyses allow us to obtain much simpler expressions to
find suitable values for the parameters of the algorithms,
and are easy to compute. The Chernoff bounds we choose
to use for the analyses of the two algorithms are the follow-
ing:

Lemma 4.1 ([1]) Let Z1, Z2, ..., Zn be n independent
Bernoulli distributed random variables withPr[Zi = 1] =
pi andPr[Zi = 0] = 1−pi, then it holds forZ =

∑n
i=1 Zi

andµ = E[Z] =
∑n

i=1 pi that

(α) Pr[Z ≥ (1 + δ)µ] ≤ e
−µδ2

3 for all 0 < δ ≤ 1, and

(β) Pr[Z < (1− δ)µ] ≤ e
−µδ2

2 for all 0 < δ ≤ 1.

4.1 The Majority Based Algorithm

We first present and analyze the Majority Based Algo-
rithm (MBA). In this algorithm, processorM first chooses
among the workers in setP a subsetS and assigns the task
to be executed to them. Then it waits for replies for a fixed
time T . After that, it decides the value by simple voting
(breaking ties at random). The workers inS are chosenuni-
formly at randomfrom those inP . We consider two ways
of choosing the subsetS: either (i)M fixes the sizes of S
and choosess processors uniformly at random fromP , or
(ii) M fixes a probabilityq and chooses each processor in
P independently with probabilityq. Hence,M can choose
either the sizes or the probabilityq. The formulation of the
MBA algorithm is shown in Figure 2.

We now show that algorithm MBA achieves high proba-
bility of success while restricting the amount of work.

Theorem 4.2 Algorithm MBA guarantees a success prob-
ability of at least1− ε with

ProcessorM does:
1 Choose a setS ⊆ P uniformly at random
2 Send the task to be executed to the workers inS
3 WaitT time for replies from the workers inS
4 Acceptv, wherev is the most frequently returned value

Figure 2. Majority based algorithm executed by master processor M .

(a) Expected WorkE[|S|] = nq = 18(ln 2−ln ε)p
(1−2p)2d when pa-

rametersp andq are considered,

(b) Expected WorkE[|S|] = nq = 18(ln 2−ln ε)f/n
(1−2f/n)2d when

parametersf andq are considered,

(c) Work |S| = s = d 18(ln 2−ln ε)p
(1−2p)2d e when parametersp

ands are considered, and

(d) Work|S| = s = d 18(ln 2−ln ε)f/n
(1−2f/n)2d e when parametersf

ands are considered.

For p < 1/4 and f < n/4 the values forp = 1/4 and
f = n/4 have to be used, respectively.

Proof: We denote byX the random variable that accounts
for the number of replies thatM gets from faulty workers
(that is, replies with the incorrect value) and byY the ran-
dom variable that accounts for the number of replies thatM
gets from non-faulty workers (that is, replies with the cor-
rect value by the end of periodT). DefineR = X +Y , and
let R = E[R] be its expectation. Then the probability of
the algorithm MBA making an incorrect decision (that is,
accepting the incorrect value) can be bounded as follows.

Pr [X ≥ Y] =
∑

c

Pr [R = c] Pr [X ≥ c/2|R = c] =∑
c<2R/3

Pr [R = c] Pr [X ≥ c/2|R = c] +

∑
c≥2R/3

Pr [R = c] Pr [X ≥ c/2|R = c] ≤

∑
c<2R/3

Pr [R = c] +
∑

c≥2R/3

Pr [R = c] Pr [X ≥ c/2|R = c] .

We now treat each term separately. The first term can be
bounded with the Chernoff bound of Lemma 4.1(β), fixing
δ = 1/3.∑

c<2R/3

Pr [R = c] = Pr
[
R < 2R/3

]
≤ e−R/18.

To bound the second term we need the following claim,
which trivially follows from p < 1/2 and f < n/2,
whichever the case.
Claim: Let c and c′ be two non-negative integers. If
c ≤ c′ thenPr [X ≥ c/2|R = c] ≥ Pr [X ≥ c′/2|R = c′].

From the Claim we have that,∑
c≥2R/3

Pr [R = c] Pr [X ≥ c/2|R = c] ≤

Pr
[
X ≥ R/3|R = 2R/3

] ∑
c≥2R/3

Pr [R = c] ≤

Pr
[
X ≥ R/3|R = 2R/3

]
.

We want to use now a Chernoff bound to bound this
probability. LetS be the set of chosen processors andF
be the set of faulty processors. If parameterp is used,
we define, for eachi ∈ S, the Bernoulli random variable
X

(1)
i = 1 if and only if processori is faulty and its

reply reachesM on time. Then it is easy to verify that
X =

∑
i∈S X

(1)
i and that these variables are independent.

If parameterf is used, we define, for eachi ∈ F ∩ S,
the Bernoulli random variableX(2)

i = 1 if and only if
processori’s reply reachesM on time. It is also easy to
verify thatX =

∑
i∈F∩S X

(2)
i and that these variables are

independent. Clearly, ifR = 2R/3 then the expected value
of X is X = E[X] = ϕ2R/3, whereϕ is eitherp or f/n.
Then, we can apply Lemma 4.1(α) with δ = 1

2ϕ − 1 as
long as1/4 ≤ ϕ < 1/2 (to guarantee0 < δ ≤ 1), and

obtain thatPr
[
X ≥ R/3|R = 2R/3

]
≤ e−

(1−2ϕ)2R
18ϕ . Now,

since (1−2ϕ)2R
18ϕ ≤ R/18, we can add both bounds and

obtain thatPr [X ≥ Y] ≤ 2e−
(1−2ϕ)2R

18ϕ . In order to keep
this value no larger thanε, it is enough to guarantee that
R ≥ 18ϕ(ln 2−ln ε)

(1−2ϕ)2 . Since eitherR = sd or R = nqd and
eitherϕ = p or ϕ = f/n, the four cases of the statement of
the theorem hold.

4.2 The Threshold Based Algorithm

We now present and analyze the Threshold Based Al-
gorithm. This early-terminating algorithm is described in
pseudocode in Figure 3.

As in algorithm MBA, processorM chooses subsetS ⊆
P uniformly at random and either by fixing the sizes of
by fixing the probabilityq of a processor being chosen (see
previous subsection). The threshold valueτ is the number
of equal replies (coming from workers inS) that will be
needed to accept a given valuev, before or on timeT . The
value ofτ has to be large in order to prevent faulty proces-
sors to driveM to make a wrong decision. On the other
hand, the value ofτ should not be too large, because other-

ProcessorM does:
1 Choose a setS ⊆ P uniformly at random
2 Send the task to be executed to the workers inS
3 Wait for replies from the workers inS
4 If there areτ replies with the same valuev on or before timeT
5 Acceptv
6 Else
7 Acceptv, wherev is the most frequently returned value

Figure 3. Threshold based algorithm executed by processor M .

wiseM will not get enough replies from correct processors
to accept the correct value quickly. If by timeT , M does
not receiveτ replies, then it follows the strategy of algo-
rithm MBA and accepts the most frequently returned value
v (breaking ties at random).

We now show that algorithm TBA achieves high proba-
bility of correct acceptance with low (expected) work.

Theorem 4.3 Algorithm TBA guarantees a success proba-
bility of at least1− ε with

(a) Expected WorkE[|S|] = nq = 3(ln 2−ln ε)
(1−2p)2pd when para-

metersp andq are considered,

(b) Expected WorkE[|S|] = nq = 3(ln 2−ln ε)
(1−2f/n)2(f/n)d when

parametersf andq are considered,

(c) Work|S| = s = d 3(ln 2−ln ε)
(1−2p)2pd e when parametersp and

s are considered, and

(d) Work|S| = s = d 3(ln 2−ln ε)
(1−2f/n)2(f/n)de when parameters

f ands are considered.

Moreover, forp < 1/6 andf < n/6 the values forp = 1/6
andf = n/6 are used, respectively.

Proof: We first present a general analysis that is indepen-
dent of the specific parameters considered (p or f andq or
s) and then we derive the results for each case following the
general analysis. To simplify the analysis we assume that if
M would have gottenτ replies from malicious workers by
time T , it decides the incorrect value (this is like assuming
that bad replies reachM before the good ones). Moreover,
even ifM does not getτ bad replies, we assume that it de-
cides the incorrect value unless it gets at leastτ good replies
(that is, in Line 7 of Figure 3 the incorrect value is always
accepted). All these assumptions lead to a correct but pes-
simistic analysis.

We define the random variablesX and Y as in the
proof of Theorem 4.2. Our pessimistic view leads to
the following non-success property for algorithm TBA:
Pr [(X ≥ τ) ∨ (Y < τ)] ≤ ε.

To proceed we use the Chernoff bounds given in
Lemma 4.1. We define the appropriate Bernoulli vari-
ables later (when we consider each specific case). Denote
X = E[X] andY = E[Y]. We setτ = (1 + δ)X =

(1 − δ)Y , where0 < δ ≤ 1. From this, we obtain that
δ = Y−X

Y +X
and τ = 2XY

Y +X
. Note thatY > X, and hence

0 < δ ≤ 1. Then we can use Lemma 4.1 and obtain the
following

Pr [(X ≥ τ) ∨ (Y < τ)] ≤
Pr [X ≥ τ] + Pr [Y < τ] =

Pr
[
X ≥ (1 + δ)X

]
+ Pr

[
Y < (1− δ)Y

]
≤

e
−Xδ2

3 + e
−Y δ2

2 ≤ 2e
−Xδ2

3 ,

where the last inequality also follows from the fact thatY >
X.

Then, to bound the probability of non-success byε, we

force2e
−Xδ2

3 ≤ ε, which yields(
Y −X

Y + X

)2

X ≥ 3(ln 2− ln ε). (1)

We now show the results for each case (a)-(d) by defining
appropriate Bernoulli variables and replacing the values of
X andY on Eq. (1). We need to define a different set of
Bernoulli random variables for each case in order to ensure
their independence.

Case (a):parametersp and q. We define the following
Bernoulli random variables. For eachi ∈ P , the Bernoulli
random variableX(a)

i = 1 if and only if, simultaneously,
processori is faulty, chosen (i.e.,i ∈ S), and its (in-
correct) reply reachesM on time. Similarly, for each
j ∈ P , Y

(a)
j = 1 if and only if, simultaneously, proces-

sor j is correct, chosen, and its (correct) reply reachesM

on time. It is easy to verify thatX =
∑

i∈P X
(a)
i and

Y =
∑

j∈P Y
(a)
j , for the random variablesX andY , de-

fined above. In this case we have thatPr[X(a)
i = 1] = pqd

and Pr[Y (a)
j = 1] = (1 − p)qd, for any i and j. Then,

X = npqd andY = n(1 − p)qd. Plugging these values in
Eq. (1), we obtain the stated result for case (a).

Case (b):parametersf and q. Denote byF the set of
faulty processors. Then we define the following Bernoulli
random variables. For eachi ∈ F , the variableX(b)

i =
1 if and only if, simultaneously, processori is chosen
and its reply reachesM on time. Similarly, for each
j ∈ P \ F , Y

(b)
j = 1 if and only if, simultaneously,

processorj is chosen and its reply reachesM on time.

Again, X =
∑

i∈F X
(b)
i andY =

∑
j∈P\F Y

(b)
j . Then,

Pr[X(b)
i = 1] = Pr[Y (b)

j = 1] = qd, for any i ∈ F and

j ∈ P \ F , andX = fqd andY = (n − f)qd. From
Eq. (1), we obtain the stated result for case (b).

Case (c):parametersp ands. For this case, we only de-
fine Bernoulli random variables for the processors inS.
Then, for eachi ∈ S, the variableX(c)

i = 1 if and only
if, simultaneously, processori is faulty and its reply reaches
M on time. Similarly, for eachj ∈ S, the variableY (c)

j = 1
if and only if, simultaneously, processorj is correct and its
reply reachesM on time. Again, it is easy to verify that
X =

∑
i∈S X

(c)
i andY =

∑
j∈S Y

(c)
j . In this case we

have thatPr[X(c)
i = 1] = pd andPr[Y (c)

j = 1] = (1−p)d,

for any i, j ∈ S. Then,X = spd andY = s(1 − p)d.
Plugging these values in Eq. (1), we obtain the stated result
for case (c).

Case (d): parameters f and s. Finally, we define
the following Bernoulli random variables. For each
i ∈ F ∩ S, X

(d)
i = 1 if and only if processor

i’s reply reachesM on time. Similarly, for each
j ∈ (P \ F) ∩ S, Y

(d)
j = 1 if and only if processor

j’s reply reachesM on time. Observe once again that
X =

∑
i∈F∩S X

(d)
i andY =

∑
j∈(P\F)∩S Y

(d)
j . Then,

Pr[X(d)
i = 1] = Pr[Y (d)

j = 1] = d, for anyi ∈ F ∩ S and

j ∈ (P \ F) ∩ S, andX = fsd/n andY = (n− f)sd/n.
From Eq. (1), we obtain the stated result for case (d).

Finally, using basic calculus (derivatives) it is easily
shown that the equations for (expected) work for cases (a)
to (d) are minimized whenp = 1/6 or f = n/6. This com-
pletes the proof of the theorem.

5 Discussion

In this work we consider the problem of executing tasks
reliably in the presence of untrustworthy processors that
may act maliciously. We consider a model of a distributed
system with a master processorM and a set ofn untrust-
worthy workers. ProcessorM must assign a task to a subset
of the workers so that the probability of accepting the cor-
rect value of the task is high, while the amount of work
(number of workers assigned the task) required in doing
so is minimized. We bound the potential number of faulty
workers in two ways: either by considering a fixed bound
f < n/2 on the maximum number of processors that fail,
or by considering a probabilityp < 1/2 of any processor
to be faulty (all processors are faulty with probabilityp,
independently of the rest of processors). Additionally we
allow for unreliable and slow communications, including
in the model the probabilityd that the reply from a worker
reachesM on time.

We first present lower bounds on work for this model,

considering both mechanisms of bounding the number of
malicious workers. Particularly, we identify lower bounds
on the minimum amount of work required, so that any algo-
rithm accepts the correct value with probability of success
1 − ε, whereε � 1. Then, we develop and analyze two
algorithms: (a) algorithm MBA which is a simple and nat-
ural algorithm whereM decides on the majority of received
responses, and (b) algorithm TBA in which ifM receives
a certain number of responses with equal value (threshold)
it makes a decision, otherwise it decides on the majority of
the received responses. Both algorithms obtain the same
probability of success1 − ε and we derive similar upper
bounds on the work required in doing so. In particular, the
bounds for both algorithms only differ on a factor of6 · p2

or (6 · f/n)2 (depending on the mode of failures consid-
ered), that is, algorithm MBA requires less work than algo-
rithm TBA if p < 1/

√
6 or f < n/

√
6. Therefore, for the

cases wherep is a constant orf is linear both algorithms
achieve the same asymptotic upper bounds on work, which
are asymptotically optimal with respect to the lower bounds
obtained in this work; in this case the work complexity is
Θ((− lg ε)/d). Given the above discussion, andbased on
the analysis we obtained, we consider algorithm TBA to be
most preferable than algorithm MBA, since TBA isearly-
terminating(discussed in Section 4) as opposed to MBA
that always waits for timeT and then makes a decision on
the value to accept.

Figure 4 shows graphical comparisons of the two algo-
rithms and the lower bounds we obtain by plugging certain
values on the analytical expression we have derived. Ad-
ditionally, it presents the minimum value ofs that would
satisfy the desired success probability for MBA, obtained
by simulation. From the left plot it can be observed how
the work of MBA is below that of TBA whenp is smaller
than1/

√
6, that they match at this point, and it is above that

of TBA for larger values ofp. From the right plot it can be
observed the similar behavior of our upper and lower bound
results asε changes. As previously discussed in the paper,
performing an exact analysis of our algorithms proved to be
very difficult, mainly due to the complicated derived formu-
las that do not allow us to express the important parameters
of the model and algorithms in a meaningful way. There-
fore, we have chosen to analyze our algorithms using Cher-
noff bounds, which has enabled us to obtain closed-form
equations for these parameters. Additionally, to simplify
the analyses we had to make pessimistic assumptions. Not
surprisingly, it appears that in some cases there is a big gap
between our upper and lower bound results. We believe that
the gap can be decreased by improving both the analyses of
the lower bounds and of the algorithms. Especially for the
algorithms’ analyses, we believe that if we are able to use
less pessimistic assumptions or to avoid the use of Chernoff
bounds (or perhaps use/devise a more appropriate Chernoff
bound for our problem) then we should be able to improve
the bounds on work while maintaining the same probability

Probability of failure p

W
or

k

● ● ● ●
●

●

●

●

●

●

MBA
TBA
Lower Bound
Optimal

10

50

100

500

1000

5000

10000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Probability of incorrect decision ε

W
or

k

● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●
●●●●
●●
●
●

●

MBA
TBA
Lower Bound

2

5

10

20

50

100

200

500

0.1 0.099 0.097 0.093 0.086 0.074 0.052 0.013

Figure 4. Comparison of the bounds obtained when pa-
rametersp ands are considered. The plot on the left depicts
the works (y-axis) overp (x-axis), forn = 106, d = 0.9
andε = 1/n. The plot on the right depicts (in log scale) the
work s (y-axis) overε (x-axis), ford = 0.9 andp = 1/4.

of success.
Another interesting research direction is to relax the one-

round assumption of our model (which was used to guaran-
tee fast termination of algorithms) and allow forM to de-
cide in more than one round. For instance,M could start a
second round if it did not receive enough replies in the first
round. Intuitively, in such a case,M should be able to ob-
tain better probability of success or perhaps less expected
work. This gives rise to the following question: By how
much is the probability of success increased and how are
algorithm termination and the bounds on work affected?

Another direction is to consider the more general prob-
lem where there is a sequence of tasks whose valuesM
must reliably obtain while maintaining the overall work (re-
quired for all tasks) low. Our current algorithms provide

trivial bounds on work for this model (work as computed
in this paper times the number of tasks that must be exe-
cuted) with the same probability of success for each task
execution. These trivial bounds are possibly too loose and
one could improve them by taking into account the possi-
bility of avoiding re-using identified faulty processors in the
upcoming task executions. For that a mechanism for iden-
tifying or suspecting workers as faulty needs to be devised.

Finally, an interesting extension to this work would be
to consider the situation where it is possible for a task to
return more than two values (that is,|V | > 2). In the case
where the faulty processors can collaborate and agree on
the incorrect values they will return toM , then our analy-
sis trivially holds. However it would be very interesting to
study what happens in the case where faulty processors do
not collaborate or their collaboration is restricted. Ongoing
work is underway toward this direction.

References

[1] N. Alon and J.H. Spencer.The Probabilistic Method.J.
Wiley and Sons, Inc., Second Edition, 2000.

[2] David P. Anderson. BOINC: A system for public-
resource computing and storage. InProceedings of the5th

IEEE/ACM International Workshop on Grid Computing
(GRID 2004), pages 4–10, 2004.

[3] David P. Anderson, Eric Korpela, Rom Walton. High-
performance task distribution for volunteer computing. In
Proceedings of the1st IEEE International Conference on
e-Science and Grid Technologies (e-Science 2005), pages
196–203, 2005.

[4] D. Blough and G. Sullivan. A comparison for voting strate-
gies for fault-tolerant distributed systems. InProceedings of
the9th Symposium on Reliable Distributed Systems (SRDS
1990), pages 136–145, 1990.

[5] C. Dwork, J. Halpern, and O. Waarts. Performing work ef-
ficiently in the presence of faults.Siam Journal on Comput-
ing, 27(5):1457–1491, 1998.

[6] W. S. Evans and N. Pippenger. Average-case lower bounds
for noisy Boolean decision trees.SIAM Journal on Comput-
ing, 28(2):433–446, 1998.

[7] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Comput-
ing with noisy information.SIAM Journal on Computing,
23(5):1001–1018, 1994.

[8] A. Ferńandez, C. Georgiou, A. Russell, and A. Shvartsman.
The Do-All problem with Byzantine processor failures.The-
oretical Computer Science, 333(3):433–454, 2005.

[9] A. Ferńandez, C. Georgiou, L. Lopez, and A. Santos. Brief
Announcement: Reliably executing tasks in the presence of
malicious processors. InProceedings of the19th Interna-
tional Symposium on Distributed Computing (DISC 2005),
pages 490–492, 2005.

[10] P. Ǵacs and A. Ǵal. Lower bounds for the complexity of re-
liable Boolean circuits with noisy gates.IEEE Transactions
on Information Theory,40(2):579–583, 1994.

[11] R. G. Gallanger. Finding parity in simple broadcast net-
works. IEEE Transactions on Information Theory,34:176–
180, 1988.

[12] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Work-
competitive scheduling for cooperative computing with dy-
namic groups. SIAM Journal on Computing, 34(4):848–
862, 2005.

[13] N. Goyal, G. Kindler, and M. Saks. Lower bounds for the
noisy broadcast problem. InProceedings of the46th IEEE
Symposium on Foundations of Computer Science (FOCS
2005), pages 40–52, 2005.

[14] P. Kanellakis and A. Shvartsman.Fault-Tolerant Parallel
Computation. Kluwer, 1997.

[15] Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spirakis.
Combining tentative and definite executions for dependable
parallel computing. InProceedings of the23rd ACM Sym-
posium on Theory of Computing (STOC 1991), pages 381–
390, 1991.

[16] C. Kenyon and V. King. On Boolean decision trees with
faulty nodes.Random Structures and Algorithms,5(3):453–
464, 1994.

[17] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M.
Lebofsky. SETI@home: Massively distributed computing
for SETI. Computing in Science and Engineering, 3(1):78–
83, 2001.

[18] A. Kumar and K. Malik. Voting mechanisms in distributed
systems.IEEE Transactions on Reliability,40(5):593–600,
1991.

[19] E. Kushilevitz and Y. Mansour. Computation in noisy ra-
dio networks. SIAM Journal on Discrete Mathematics,
19(1):96–108, 2005

[20] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, 1982.

[21] M. Paquette and A. Pelc. Optimal decision strategies in
Byzantine environments. InProceedings of the11th Collo-
quium on Structural Information and Communication Com-
plexity (SIROCCO 2004), pages 245–254, 2004.

[22] R. Reischuk and B. Schmeltz. Reliable computation with
noisy circuits and decision trees – A generaln log n lower
bound. InProceedings of the32nd IEEE Symposium on
Foundations of Computer Science (FOCS 1991), pages 602–
611, 1991.

[23] M. Szegedy and X. Chen. Computing Boolean functions
from multiple faulty copies of input bits.Theoretical Com-
puter Science,321(1):149–170, 2004.

Appendix

Proof of Lemma 3.1

Let DA denote the value returned (i.e., decided) by algo-
rithm A, and letv denote the correct result of the task. We
first prove the following claim:
Claim: The success probability of A is
min(Pr [DA = 0|v = 0] ,Pr [DA = 1|v = 1]).
Proof: Let us assume, w.l.o.g., thatPr [DA = 0|v = 0] ≤
Pr [DA = 1|v = 1]. Note that in our model there
is no a priori restriction on the distribution of the
correct values. Hence, ifPr [v = 0] = 1, we have
that Pr [success] = Pr [DA = 0|v = 0] Pr [v = 0] +
Pr [DA = 1|v = 1] Pr [v = 1] = Pr [DA = 0|v = 0] . This

completes the proof of the claim.

Let S be the number of workers the algorithmA assigns
the task,R the number of workers whose reply the algo-
rithm receives before deciding, andZ the number of replies
with value0 among theR replies. We useDA(s, r, z) to de-
note the value decided by the algorithm whenS = s ≤ n,
R = r ≤ s, andZ = z ≤ r. We introduce the functionQA

as follows,

QA(i, s, r, z) = Pr [DA(s, r, z) = i|S = s,R = r, Z = z] ,

for i ∈ {0, 1}. Note thatQA is a characteristic of algorithm
A. Since in our model any algorithm must always decide,
we have that

QA(0, s, r, z) + QA(1, s, r, z) = 1. (2)

Additionally, we use the notation,B(z, i, s, r) =
Pr [Z = z|v = i, S = s,R = r] . With these definitions,
we have that, fori ∈ {0, 1},

Pr [DA = i|v = i] = (3)∑n
s=0 Pr [S = s]

∑s
r=0 Pr [R = r|S = s]

∑r
z=0 B(z, i, s, r)QA(i, s, r, z).(4)

Now, we have that whenv = 0 a correct worker always
returns0 and a faulty worker always returns1, while the
behavior is exactly the opposite whenv = 1. Then, for
z ≤ r ≤ s ≤ n,

B(z, 0, s, r) = B(r − z, 1, s, r). (5)

Additionally, sincep < 1/2 andf < n/2, we have that,
whenz < r/2,

B(z, 0, s, r) < B(r − z, 0, s, r), (6)

and
B(r − z, 1, s, r) < B(z, 1, s, r). (7)

Now we can show that the decision functions that decide
by majority voting among the received replies maximize
the success probability. In particular, we show that we can
derive fromA an algorithmA′ whose success probability
is no less than1 − ε with decision functionDA′ such that
QA′(0, s, r, z) = 0 and QA′(1, s, r, r − z) = 0, for all
r ≤ s ≤ n andz < r/2. Let us first observe, from Eq. (3),
that for eachr ≤ s ≤ n andz < r/2, Pr [DA = 0|v = 0]
andPr [DA = 1|v = 1] have the terms

Pr [S = s|v = 0] Pr [R = r|v = 0, S = s] ·
(B(z, 0, s, r)QA(0, s, r, z) + B(r − z, 0, s, r)QA(0, s, r, r − z)),

and

Pr [S = s|v = 1] Pr [R = r|v = 1, S = s] ·
(B(z, 1, s, r)QA(1, s, r, z) + B(r − z, 1, s, r)QA(1, s, r, r − z)),

respectively. Additionally, these are the only terms in
whichQA(0, s, r, z), QA(0, s, r, r− z), QA(1, s, r, z), and
QA(1, s, r, r − z) appear.

Let us design algorithmA′ to behave exactly likeA but
with a decision functionDA′ such thatQA′(0, s, r, z) = 0
andQA′(1, s, r, r − z) = 0. From Eq. (2) we have that
QA′(1, s, r, z) = 1 andQA′(0, s, r, r − z) = 1. We also
have, from Eqs. (6) and (7), thatB(z, 0, s, r) < B(r −
z, 0, s, r) andB(r − z, 1, s, r) < B(z, 1, s, r), and from
Eq. (5) thatB(z, 0, s, r) = B(r − z, 1, s, r) and B(r −
z, 0, s, r) = B(z, 1, s, r). Then, with this definition ofDA′

we have that

min(Pr [DA = 0|v = 0] ,Pr [DA = 1|v = 1]) = 1− ε ≤
min(Pr [DA′ = 0|v = 0] ,Pr [DA′ = 1|v = 1]),

and hence the success probability ofA′ is at least1 − ε.
This completes the proof.

