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Abstract. The ability to cooperate on common tasks in a dis-
tributed setting is key to solving a broad range of computa-
tion problems ranging from distributed search such as SETI
to distributed simulation and multi-agent collaboration. Do-
All, an abstraction of such cooperative activity, is the problem
of performing N tasks in a distributed system of P failure-
prone processors. Many distributed and parallel algorithms
have been developed for this problem and several algorithm
simulations have been developed by iterating Do-All algo-
rithms. The efficiency of the solutions for Do-All is measured
in terms of work complexity where all processing steps taken
by all processors are counted. Work is ideally expressed as a
function of N , P , and f , the number of processor crashes.
However the known lower bounds and the upper bounds for
extant algorithms do not adequately show how work depends
on f . We present the first non-trivial lower bounds for Do-All
that capture the dependence of work on N , P and f . For the
model of computation where processors are able to make per-
fect load-balancing decisions locally, we also present match-
ing upper bounds. We define the r-iterative Do-All problem
that abstracts the repeated use of Do-All such as found in typ-
ical algorithm simulations. Our f -sensitive analysis enables
us to derive tight bounds for r-iterative Do-All work (that are
stronger than the r-fold work complexity of a single Do-All).
Our approach that models perfect load-balancing allows for
the analysis of specific algorithms to be divided into two parts:
(i) the analysis of the cost of tolerating failures while perform-
ing work under “free” load-balancing, and (ii) the analysis of
the cost of implementing load-balancing. We demonstrate the
utility and generality of this approach by improving the anal-
ysis of two known efficient algorithms. We give an improved
analysis of an efficient message-passing algorithm. We also
derive a tight and complete analysis of the best known Do-All
algorithm for the synchronous shared-memory model. Finally
we present a new upper bound on simulations of synchronous
shared-memory algorithms on crash-prone processors.
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1 Introduction

Performing a set of tasks in a decentralized setting is a funda-
mental problem in distributed computing. This is often chal-
lenging because the set of processors available to the com-
putation and their ability to communicate may dynamically
change due to perturbations in the computation medium. An
abstract statement of this problem is referred to as the Do-All
problem:

P fault-prone processors perform N independent tasks,

and it is one of the standard problems in the research on
the complexity of fault-tolerant distributed computation [9,
18]. Variations of this problem have been studied in shared-
memory models (Write-All ) [17,20,25], in message-passing
models [7,9,11], and in partitionable networks (Omni-Do) [8,
14,23]. Solutions for Do-All must perform all tasks efficiently
in the presence of specific failure patterns. The efficiency is as-
sessed in terms of work, time and communication complexity
depending on the specific model of computation.

In the design of practical distributed/parallel programs one
needs to ensure good performance and dependability under un-
predictable load patterns caused by deviations from synchrony
or by the failures of some processors to complete tasks on time.
Here again, a common challenge is to perform N independent
tasks on P processors. Such tasks could be copying a large
array, searching a collection of data, or applying a function to
all elements of a matrix [15].

In this paper we focus on the work complexity of the Do-
All problem in the presence of arbitrary failure patterns im-
posed by an adversary. The processors are synchronous and are
assumed to be fail-stop [27] (stop-failures are detectable, and
in synchronous settings stop-failures are the same as crashes).
The notion of work complexity reflects the total number of pro-
cessing steps expended by an algorithm [17]. A distinguishing
feature of our results is that the complexity is expressed in
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terms of the number of processor crashes f in addition to P
and N .

Until very recently, an unsatisfactory landscape existed
with respect to the understanding of how the bounds on work
depend on f , the number of failures. That is, work was typ-
ically given as a function of N and P , but it was either not
elucidated how f impacts work, or, when f was a part of
the equation, it was primarily due to the nature of a specific
algorithm, and not due to the inherent properties of the Do-
All problem. For example, the work of the best known syn-
chronous shared-memory algorithm is given as a function of
N and P [18]. This is also the case with the best known asyn-
chronous shared-memory algorithm [1]. Similarly, the best
known lower bound for shared-memory models [20] and the
best known lower bound applicable to message-passing mod-
els [3] do not involve f . The work of message-passing algo-
rithms, e.g., [7,11], typically does include f , but this is due
to the use of single coordinators, which means that for f co-
ordinator failures the work necessarily includes an additive
term f · P . A message-passing algorithm using multiple co-
ordinators [4] avoids this inefficiency and includes a term that
depends on log f (but as we show in this paper, that anal-
ysis involves f in a somewhat superficial way). Thus prior
lower/upper bound results for Do-All do not teach adequately
how the work complexity depends on the number of failures
f .

When considering synchronous shared-memory comput-
ing with failure-prone processors the impact of imprecise anal-
ysis of work complexity is especially significant. Approaches
such as [21,28] use the iterative Do-All approach to execute
synchronous parallel (pram) algorithms on failure-prone pro-
cessors by simulating the parallel steps of ideal processors with
the help of some chosen Do-All algorithm (see also related
work below). It was shown that the execution of a single N -
processor step on P failure-prone processors does not exceed
the complexity of solving a N -size instance of Do-All using P
failure-prone processors. Thus if WN,P is the complexity of
solving a Do-All instance of size N using P processors, and
the parallel-time×processor product of the given synchronous
N -processor, τ -time algorithm is τ ·N , then the algorithm can
be deterministically simulated with work O(τ · WN,P ). If the
analysis does not accurately reflect the impact of the number
of failures f , then we shall see that the resulting upper bound
is needlessly inflated.

Contributions. In this work we study the work complexity
of deterministic Do-All in the presence of arbitrary dynamic
patterns of crashes. Let N be the size of the Do-All problem,
P the number of processors, and f the number of crashes
(0 ≤ f < P ). We present the first complete analysis of
Do-All work complexity under the perfect load-balancing as-
sumption by proving matching upper and lower bounds as
functions of N , P and f . This is for the model of compu-
tation where the computation is fully abstracted away from
the low-level shared-memory and message-passing issues,
and where a worst-case omniscient dynamic adversary can
cause up to f crashes. This also establishes the first non-
trivial lower bound for Do-All for moderate number of failures
(f ≤ P/ log(min(N, P ))).

An important contribution of this work is the definition
and analysis of the r-iterative Do-All problem that models the
repetitive use of Do-All algorithms (such as found in algorithm
simulations).

We demonstrate the utility and generality of our results by
showing new bounds on work for fault-tolerant simulations of
arbitrary pram algorithms on crash-prone processors, and by
improving the analyses of two known algorithms. We derive a
new and complete failure sensitivity analysis of the best known
algorithm for the synchronous shared-memory model (algo-
rithm W [18]). We also give an improved analysis of the work
and message complexity for an efficient message-passing al-
gorithm (algorithm AN [4]). Finally, our results yield insight
about the bounds on task execution redundancy incurred when
a central authority repeatedly allocates tasks to crash-prone
processors.

We give a detailed summary of the complexity results in
Sect. 2.

Related work – algorithm simulations. Solutions for the Do-
All problem can be used iteratively to simulate parallel al-
gorithms formulated for synchronous failure-free processors
in deterministic and probabilistic settings [21,20,24,26,28].
This commonly requires that (i) the individual processor steps
are made idempotent (since they may have to be performed
multiple times due to failures or asynchrony), and that (ii) each
simulated processor is provided with a fixed number of aux-
iliary shared memory cells to be used as a “scratchpad" and
to store intermediate results. While the former can be solved
with the help of an automated tool, e.g., a compiler, the lat-
ter requires sophisticated solutions because of the difficulty of
(re)using the auxiliary memory due to “late writers" (i.e., pro-
cessors that are slow and that unknowingly write stale values
to memory). Examples of randomized solutions addressing
these problems include [2,19]. Another important aspect of
algorithm simulations is the use of an optimistic approach,
where the computation may proceed for several steps assum-
ing that all tasks assigned to active processors are successfully
completed, e.g., [20]. In some deterministic models optimal
simulations are possible (cf. [28]), however randomized so-
lutions are able to achieve optimality (with high probability)
for broader ranges of models and algorithms. An example of
a practical implementation is discussed in [6].

Structure of the paper. The rest of the paper is structured as
follows. In Sect. 2 we summarize the results. In Sect. 3 we
give models and definitions. In Sect. 4 we present the bounds
under the perfect load-balancing assumption. We give new
upper bounds for the message-passing model in Sect. 5, and
for the shared-memory model in Sect. 6. We conclude in
Sect. 7.

Preliminary versions of the results in this paper appeared in
extended abstracts [12,13].

2 Grand tour of the results

We let Do-All(N, P, f) stand for the Do-All problem for N
tasks, P processors and up to f failures. We let Do-AllO
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(N, P, f) denote the Do-All(N, P, f) problem that is solved
with the use of an oracle O that makes available to the pro-
cessors a deterministic function of the global history of the
computation: in particular, the oracle may be used to as-
sist the processors to load-balance and terminate (but un-
like the oracle’s Delphian colleague, it cannot predict the fu-
ture). The oracle assumption is used as a tool for studying the
work complexity patterns of any fault-tolerant algorithm: (i)
of course, any lower bound developed for this strong model
applies equally well to message-passing or shared memory
models as the oracle may make available to each processor
the message or memory-read history it would have observed,
(ii) any algorithm in the oracle model may be simulated in a
message-passing or shared memory model by suitably simu-
lating the oracle. As most Do-All algorithms use communi-
cation to load-balance and detect termination, this framework
allows for the complexity analysis of specific algorithms to
be divided into two parts: (1) the analysis of the cost of toler-
ating failures while performing work assuming perfect load-
balancing, and (2) the analysis of the cost of implementing
perfect load-balancing. We use exactly this approach to de-
rive new f -sensitive upper bounds for message-passing and
shared-memory models.

One may study the complexity of Do-AllO(·) in conjunc-
tion with a variety of different oracles. When we prove lower
bounds, we consider arbitrary oracles that may make avail-
able, for example, the entire global history of the computa-
tion on every processor. When we prove upper bounds, we
use the load-balancing oracle, OL, described next. During
each synchronous iteration of the computation, the oracle OL

makes available to each processor Pi two values: Oracle-
complete, a Boolean which takes the value true if and only if
all tasks were completed at the beginning of this iteration, and
Oracle-taski, an integer whose value is a task identifier with
the property that the identifiers associated to the live proces-
sors are split evenly among the tasks. In particular, if proces-
sors i1, . . . , ik ∈ {1, . . . , P} are alive and tasks j1, . . . , j� ∈
{1, . . . , N} are incomplete at the beginning of the iteration,
then Oracle-taskis = jt, where t = (s − 1 mod �) + 1.

It was previously known that Do-AllO(N, P, f) can be
solved with work O(N +P log P/ log log P ) where f < P ≤
N . A matching lower bound was also established for the spe-
cific case where f = P/ log log P +O(P/(log log P )2)) [18].
This meant that as long as the adversary can cause at least
P/ log log P failures, Do-AllO(N, P, f) has matching upper
and lower bounds of Θ(N + P log P/ log log P ). Finally, the
upper bounds on work of the iterative use of Do-All were com-
puted as the product r · W (N, P, f), where r is the number
of iterations and W (N, P, f) is the Do-All upper bound, even
though fewer than f failures may be “available" to the adver-
sary per iteration when r > 1.

Thus prior to our current results: (i) no non-trivial lower
bounds were known for f < P/ log log P , (ii) no f -sensitive
analysis was available for the upper bounds in the range
1 < f < P/ log log P , and (iii) no precise iteration-sensitive
bounds were known for r-iterative Do-All. Yet practical con-
cerns would be well served by the knowledge of what happens
in Do-All when the number of failures is moderate and when
the Do-All algorithms are used iteratively. In particular, it is
important to understand the behavior of the best algorithms
for the entire range of failures f and iterations r.

The contributions in this work are as follows.1

I. We provide upper bounds (Sect. 4.1) and matching lower
bounds (Sect. 4.2) that are f -sensitive, specifically we give
a complete analysis of Do-AllO(N, P, f) for the entire range
of f . The bounds on work W (N, P, f) are:2

(a) W (N, P, f) = Θ
(
N + P + P log(min(N,P ))

log(P/f)

)
when f ≤ P

log(min(N,P )) ,

(b) W (N, P, f) = Θ
(
N + P + P log(min(N,P ))

log log(min(N,P ))

)
when f > P

log(min(N,P )) .

(1)

The lower bounds of course apply to algorithms in weaker
models (e.g., a message passing or shared memory model).

In the rest of the paper we use a shorthand notation used
to combine the statements such as (1)(a) and (1)(b) above.
We define the quantity Λr

N,P,f , where r is the number of Do-
All iterations (for r-iterative Do-All), and where N , P , and f
appear in their usual roles, as follows.

Λr
N,P,f =


 log

(
Pr
f

)
when f ≤ Pr

log(min(N,P )) ,

log log(min(N, P )) when f > Pr
log(min(N,P )) .

For a single instance Do-All, i.e., when r = 1, we sim-
plify this by defining ΛN,P,f = Λ1

N,P,f . Thus the result (1) is
succinctly given by the following.

W (N, P, f)=Θ
(
N+P +P log(min(N, P ))/ΛN,P,f

)
. (2)

We use our bounds (2) (or equivalently (1)) to derive new
bounds for algorithms where the extant analyses do not in-
tegrate f adequately. This is done by analyzing how load-
balancing is implemented by the algorithms, e.g., by using
coordinators or global data-structures. We show the follow-
ing.

II. In Sect. 5.1 we provide new analysis of algorithm AN of
Chlebus et al. [4] for Do-All in the message-passing model
with crashes (P ≤ N). This algorithm has best known work
for moderate number of failures. We show the complete analy-
sis of work W (N, P, f) and message complexity M(N, P, f):

W (N, P, f) = O
(
log f

(
N + P log P/ΛN,P,f

))
,

M(N, P, f) = O
(
N + P log P/ΛN,P,f + Pf

)
.

1 In this paper, we define the asymptotic notation with multiple
variables as follows: the expression g(x, y, z) = O(f(x, y, z)), for
variables x, y, z taking values in N, means that there exist positive
constants b and c so that if x, y, z ≥ b then g(x, y, z) ≤ c·f(x, y, z).
The Θ and Ω notations are defined similarly.
All logarithms are to the base 2 unless explicitly specified otherwise.

It is understood, that when f = 0, then X/ log(Y/f) = 0, for any
X �= 0 and Y �= 0. Also, when log(X) appears in the results, it is
understood that X is sufficiently large, so that log(X) ≥ 1 (espe-
cially since we are dealing with asymptotic analysis); note however
that when we give the proofs of our results, we explicitly state the
value of X .

2 We use Θ notation to specify upper and lower bounds in conjunc-
tion with the work function W (N, P, f) defined to be the minimum
over all algorithms and oracles of the maximum work caused by all
adversaries.
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III. In Sect. 6.1 we give a complete analysis of the work
complexity W (N, P, f) of the algorithm of Kanellakis and
Shvartsman [18] that solves the Write-All problem in syn-
chronous shared-memory systems (shared memory Do-All)
with processor crashes (P ≤ N ):

W (N, P, f) = O
(
N + P log N log P/ΛN,P,f

)
.

Note that the two algorithms [4,18] are designed for dif-
ferent models and use dissimilar data and control structures,
however both algorithms make their load-balancing decisions
by gathering global knowledge. By understanding what work
is expended on load-balancing vs. the inherent work overhead
due to the lower bounds (1), we are able to obtain the new
results, and to demonstrate the utility and the generality of our
approach. (We restrict our attention to the case P ≤ N for
consistency with [4,18].)

Do-All algorithms have been used in developing simula-
tions of failure-free algorithms on failure-prone processors,
e.g., [21,28]. This is done by iteratively using a Do-All al-
gorithm to simulate the steps of the N failure-free “virtual"
processors on P failure-prone “physical" processors (here the
usual case is that the number of physical processors does not
exceed the number of virtual processors, i.e., P ≤ N ). In this
paper we abstract this idea as the iterative Do-All problem as
follows:

The r-iterative Do-Allproblem, denoted r-Do-All
(N, P, f), is the problem of using P processors to
solve r instances of N -task Do-All with the added re-
striction that every task of the ith instance must be
completed before any task of the i + 1st instance is
begun.

The oracle version r-Do-AllO(N, P, f) is defined analo-
gously. An obvious solution for this problem is to run a Do-All
algorithm r times. If the work complexity of Do-All in a given
model is W (N, P, f), then the work of r-Do-All is clearly no
more than r ·W (N, P, f). This does not take into account the
fact thatf crashes occur throughout the r iterations.We present
a substantially better analysis of work, denoted W (r, N, P, f),
for crash-prone processors:

IV. In Sect. 4.3 we show matching upper and lower bounds on
work for r-Do-AllO(N, P, f), where f < P ≤ N , for specific
ranges of failures.

W (r, N, P, f) = Θ
(
r ·
(
N + P log P/Λr

N,P,f

))
. (3)

The improvement in the bounds (3) are twofold. First, the
derivation of the bounds reflects our improved failure-sensitive
analysis for a single Do-All. Additionally, we have Λr

N,P,f ≥
ΛN,P,f for any r, moreover ΛN,P,f is a constant with respect
to r. The result is that our bounds (3) are asymptotically better
than those obtained by computing the product of r and the
(non-iterated) Do-All bounds (1) (for P ≤ N ).

V. In Sect. 5.2 we show how to solve r-Do-All(N,P,f)
(P ≤ N ) on synchronous message-passing processors with
the following work W (r, N, P, f) and message complexity
M(r, N, P, f).

W (r, N, P, f)=O

(
r · log

(
f

r

)
·
(
N + P log P/Λr

N,P,f

))
,

M(r, N, P, f)=O
(
r ·
(
N + P log P/Λr

N,P,f

)
+ fP

)
.

VI. In Sect. 6.2 we use r-Do-All(N, P, f) (P ≤ N ) to show
that P crash-prone processors can simulate any synchronous
N -processor, r-time shared-memory algorithm (pram) with
work:

W (r, N, P, f) = O
(
r ·
(
N + P log N log P/Λr

N,P,f

))
.

This last result shows a failure-sensitive improvement over
the previously known deterministic bounds of O(r · (N +
P log N log P/ log log N)) for deterministic parallel algo-
rithm simulations using the Write-All algorithm [18] (the best
known to date) together with the simulation techniques such
as [21,28].

3 Models and definitions

We define the models, the abstract problem of performing N
tasks in a distributed environment consisting of P synchronous
processors that are subject to crashes, and the work complexity
measure.

Distributed setting. We consider a distributed system consist-
ing of P processors; each processor has a unique processor
identifier (pid) from the set [P ] = {1, 2, . . . , P}. We assume
that P is fixed and is known to all processors. Processors carry
out their activities by executing steps. The exact nature of a
step depends on the model of computation, and specifically
on whether communication is by message-passing or access-
ing shared memory, as discussed later in this section under
Communication. Note that the upper and lower bounds pre-
sented in Sect. 4 are abstracted away from any communication
concerns.

Tasks. We define a task to be a computation that can be per-
formed by any processor in at most one step; its execution does
not depend on any other task. The tasks are also idempotent,
i.e., executing a task many times and/or concurrently has the
same effect as executing the task once.Tasks are uniquely iden-
tified by their task identifiers, tids. The set T of tids is totally
ordered. When we consider the Do-All problem, we simply
assume that T = [N ]. We shall also consider sequences of
task-sets T1, . . . , Tr, where each Ti, for 1 ≤ i ≤ r, is a set
of N totally ordered tasks, and the execution of any task in
Ti must be delayed until all tasks in Ti−1 are complete. In all
cases we assume that the tasks are initially known to all the
processors.

Model of failures and synchrony. We assume the fail-stop pro-
cessor model [27]. A processor may crash at any moment
during the computation (including within a step) and once
crashed it does not restart. The processors are synchronous.
This means that the activity of processors is governed by a
common clock. A processor that has not crashed takes one
clock tick to execute one step (recall that the precise activities
within a step depend on the specific model of computation).
The steps are sequentially enumerated using natural numbers
according to the common clock.
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We let an omniscient adversary determine when to impose
crashes, and we use the term failure pattern to denote the set
of the events, i.e., crashes, caused by the adversary. Follow-
ing [17], we define a failure pattern F as a set of triples 〈crash,
pid, t〉 where crash is the event caused by the adversary, pid
is the identifier of the processor that crashes, and t is the step
of the computation in which the adversary forced processor
pid to crash. We require that any failure pattern F contain at
most one triple 〈crash, pid, t〉 for any pid, i.e., if processor pid
crashes, the step t during which it crashes is uniquely defined.

When a computation occurs in the presence of a failure
pattern F , we say that processor pid ∈ [P ] survives step i, if
for all steps j ≤ i, 〈crash, pid, j〉 �∈ F .

For a failure pattern F , we define its size |F | to be the
number of crashes. For the purpose of this paper we consider
only the failure patterns with |F | < P , that is we require
that the adversary leaves at least one processor operational
to ensure computational progress. Then, we define the failure
model F to be the set of all failure patterns F with |F | < P .
We assume that the processors have neither knowledge of F
nor of any bounds on |F |. Indeed, the algorithms discussed in
this paper are correct for any failure pattern F ∈ F .

The Oracle model. In Sect. 4 we consider computation where
processors are assisted by a deterministic omniscient oracle.
The introduction of the oracle serves two purposes.

1. The oracle strengthens the model by providing the pro-
cessors with, for example, load-balancing and termination
information. For our upper bounds, we shall concentrate
on the load-balancing oracle OL (discussed in Sect. 2):
it informs the processors whether or not the computation
is completed via the boolean Oracle-complete, and if not,
what task to perform next via the integer value Oracle-
task. For our lower bounds, the processors may use the
oracle to glean any information about the history of the
computation. Of course, the lower bounds established for
the oracle model also apply to any weaker model.

2. The oracle abstracts away any concerns about communi-
cation that normally dominate specific message-passing
and shared-memory models. This allows for the most gen-
eral results to be established and it enables us to use these
results in the context of specific models by understanding
how the information provided by an oracle is simulated in
specific algorithms.

For convenience, when we consider Do-All algorithms
where processors are permitted to interact with an oracle O,
we consider the computation to be divided into a sequence of
iterations. Each iteration consists of two phases. In the first
phase, each live processor may query the oracle any number
of times and, based on this information, must select a task
to complete next. In the second phase, each processor com-
pletes the task it has just selected. As we wish to prove lower
bounds for the strongest possible model, we do not place any
restriction on the computation which takes place during the
first phase; indeed, when we measure work, we only count
processing dedicated to completing tasks. On the other hand,
upper bounds which use the load-balancing oracle OL actually
perform only O(1) computation during this first phase.

Communication. In Sects. 5 and 6 we deal with more spe-
cific message-passing and shared-memory models of compu-
tation. For computation in the message-passing model, we
assume that there is a known constant upper bound on mes-
sage delays. Specifically, within a step, a processor can send
messages to other processors and receive messages from other
processors sent to it in the previous step. A crash may occur
at any point during a step. Any sends and receives preceding
the crash complete correctly (and no sends or receives follow-
ing the crash occur). We further assume that when a processor
explicitly multicasts a message to a group of processors then
the multicast is reliable [16]: either all messages are delivered
to (non-crashed) processors, or no messages are delivered.
(Communication complexity is defined in Sect. 5.)

When considering computation in the shared-memory
model (Sect. 6) we assume that reading or writing to a mem-
ory cell takes one time unit. Thus a constant number of reads
and writes can take place during a step. Reads and writes can
be concurrent; when two or more processors simultaneously
write to the same memory cell, either common or arbitrary
concurrent write discipline is observed. This follows the con-
ventions established for the Parallel Random Access Machine
(pram) [10]: for the common writes it is assumed that all val-
ues concurrently written to a memory location are the same,
and for the arbitrary writes it is assumed that the concurrent
writes to the memory location are arbitrarily ordered. Finally,
a crash can occur at any point during a step. Any reads and
writes preceding the crash complete correctly (and no reads
or writes following the crash occur).

Do-All problems. We define the Do-All problem as follows:

Do-All: Given a set T of N tasks, perform all tasks us-
ing P processors, in the presence of any failure pattern
F in the failure model F .

We let Do-All(N, P, f) stand for the Do-All problem for N
tasks, P processors, and any pattern of crashes F such that
|F | ≤ f < P . We let Do-AllO(N, P, f) stand for the Do-
All(N, P, f) problem with the oracle O. In this work we con-
sider an instance of the Do-All problem to be solved when all
N tasks have been performed and when at least one processor
knows this.

We define the iterative variation of the Do-All problem as
follows:

Iterative Do-All: Given a sequence T1, . . . , Tr of r sets
of N tasks, perform all r ·N tasks using P processors,
in the presence of any failure pattern F in the failure
model F , with the added restriction that every task in
Ti must be completed before any task in Ti+1 is begun.

We denote such r-iterative Do-All by r-Do-All(N, P, f). The
oracle version r-Do-AllO(N, P, f) is defined similarly.

In the shared-memory model the Do-All problem is known
as the Write-All problem. The main difference is that in Do-
All the tasks may be supplied to the processors from some
external sources, while in Write-All the tasks are stored in
shared-memory accessible to all processors. In the context of
this work we abstract away from the sources and the nature
of the tasks and we treat Do-All and Write-All as the same
problem. We refer to Write-All explicitly only when we apply
our results in the shared-memory model.
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Measuring efficiency. We are interested in studying the com-
plexity of Do-All measured as work (cf. [18,9,7]). We assume
that a single step of a processor corresponds to a unit of work
(recall that a single task can be performed in a single step, thus
performing a task corresponds to a unit of work). Our defini-
tion of work complexity is based on the available processor
steps measure [17]. Let F be the failure model. For a compu-
tation subject to a failure pattern F ∈ F , denote by Pi(F ) the
number of processors surviving step i of the computation.

Definition 1. Given a problem of size N and a P -processor
algorithm that solves the problem in the failure model F , if
the algorithm solves the problem for a pattern F in F , with
|F | ≤ f , by step τ(F ), then the work complexity W of the
algorithm is:

WN,P,f = max
F∈F, |F |≤f


 ∑

i≤τ(F )

Pi(F )


 .

Note that idling processors that survive a step are charged
for a unit of work even though they do not contribute to the
computation. Definition 1 does not depend on the specifics of
the target model of computation, e.g., whether it is message-
passing or shared-memory. (Communication complexity is de-
fined similarly in Sect. 5.)

4 The bounds with perfect load-balancing

In this section we give the complete analysis of the upper
and lower bounds for the Do-AllO(N, P, f) and r-Do-AllO
(N, P, f) problems for the entire range of f crashes (f < P ).

4.1 Do-All upper bounds

To study the upper bounds for Do-All we give an oracle-based
algorithm in Fig. 1. The oracle OL (see Sect. 2) performs the
termination and load-balancing computation on behalf of the
processors.

for each processor pid = 1..P begin
global T [1..N ];
while not Oracle-complete

perform task T [Oracle-task(pid)]
end

Fig. 1. Oracle-based algorithm

Lemma 1. [17] The Do-AllOL(N, P, f) problem can be solv-
ed for any pattern F of crashes with |F | ≤ f < Pand P ≤ N
using work

W = O

(
N + P

log P

log log P

)
.

Lemma 2. The Do-AllOL(N, P, f) problem can be solved for
any pattern F of crashes with |F | ≤ f < P and P ≥ N using
work

W = O

(
P

log N

log log N

)
.

Proof. Let ρ = P/N , and for simplicity assume that P
mod N = 0. We first divide the P processors into N groups
of processors, each group consisting of ρ processors. We then
assign the same processor id to all the processors in the same
group. Due to the synchrony of the system, the processors
with the same id will exhibit the same behavior under the
oracle OL.3 So, we view each group of processors as a vir-
tual processor with an id taken from the set [N ]. Each virtual
processor represents ρ physical processors. By doing that, we
translate the problem into one where N processors need to
perform N tasks. Hence, by applying Lemma 1 to this new
version of the problem, we see that the total work is

W = ρ · O(N + N log N/ log log N)
= O(ρN + ρN log N/ log log N).

The result now follows from the fact that ρN = P . �

Note that Lemmas 1 and 2 do not show how, if at all, work
depends on f .

Lemma 3. The Do-AllOL(N, P, f) problem can be solved for
any pattern of crashes with f ≤ P/ log(min(N, P )), using
work

W = O
(
N + P + P log P

f
(min(N, P ))

)
.

Proof. For an iteration of the oracle-based algorithm (Fig. 1),
let ∆f denote the number of processor crashes in this iteration.
(∆f can be different for each iteration, though the sum of these
for all iterations cannot exceed f .) We set b = b(P, f) =
P
2f , and we define W (N, P, f) to be the work required to

solve Do-AllOL(N, P, f). Our goal is to show that for all U ,
P and f , the work W (U, P, f) is no more than 16P + U +
P log P

2f
(min(U, P ))(= O(P + U + P log P

f
(min(U, P )))),

where U ≤ N denotes the number of undone tasks. The proof
proceeds by induction on U .

Base Case: Observe that when U ≤ 16, W (U, P, f) ≤ 16P <
16P + U + P logb(min(U, P )), for all P and f .

Inductive Hypothesis: Assume that we have proved the theo-
rem for all U < Û (Û ≤ N ) and all P and f .

Inductive Step: Consider U = Û . We investigate two cases:

Case 1: P ≤ Û (in particular, min(Û , P ) = P ). In this case
each processor is assigned to a unique task, hence

W (Û , P, f) ≤ P+ max
0≤∆f≤f

W (Û−P+∆f, P−∆f, f−∆f).

As P − ∆f > 0, Û − P + ∆f < Û and, by the induction
hypothesis,

W (Û , P, f) ≤ P + max
0≤∆f≤f

[
16(P − ∆f) + (Û − P + ∆f)

+ (P − ∆f) logb(P−∆f,f−∆f)(min(Û− P + ∆f, P − ∆f)
]
.

3 Alternatively, one can modify oracle OL so that it divides pro-
cessors into groups by treating the processors in the same group as
if they had the same id.
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Now, b(P − ∆f, f − ∆f) ≥ b(P, f), and

logb(P,f)(min(Û −P +∆f, P −∆f) ≤ logb(P,f)(P −∆f),

so that

W (Û , P, f) ≤ 16P + Û + P logb(P,f) P

= 16P + Û + P logb(P,f)(min(Û , P )),

as desired.

Case 2: P > Û (in particular, min(Û , P ) = Û ). In this case,
by assumption we have

W (Û , P, f) ≤ P + max
0≤∆f≤f

W (γÛ , P − ∆f, f − ∆f),

where γ = γ(Û , P, ∆f) is the ratio of the number of the
remaining tasks to Û (0 ≤ γ < 1).

Let φ = ∆f/P ≤ f/P < 1, the fraction of processors which
fail during this iteration; then φ/2 < γ < 2φ.

(
To see this,

observe that

φP

�P/Û�Û
=

φP/�P/Û�
Û

≤ γ ≤ φP/	P/Û

Û

=
φP

	P/Û
Û
.

Let P = cÛ , c > 1. Then

c

�c�φ =
φcÛ

�c�Û
≤ γ ≤ φcÛ

	c
Û
=

c

	c
φ.

Now observe that 1 ≤ c
�c� < 2 and 1/2 < c

�c� ≤ 1, ∀c > 1,

and hence, φ/2 < γ < 2φ, as desired.
)

Then,

W (Û , P, f) ≤ P + max
φ∈[0,f/P ]

W (γÛ , (1 − φ)P, f − φP ).

As γÛ < Û , we may apply the induction hypothesis:

W (Û , P, f) ≤ P + max
φ∈[0,f/P ]

[
16(1 − φ)P

+ γÛ + (1 − φ)P logb′(min(γÛ , (1 − φ)P ))
]
,

where b′ = b(P − φP, f − φP ). As above, b′ ≥ b(P, f) and
min(γÛ , (1 − φ)P )) ≤ γÛ , so that

W (Û , P, f) ≤ P + max
φ∈[0,f/P ]

[
16(1 − φ)P

+ γÛ + (1 − φ)P logb(P,f)(γÛ)
]
.

To complete the proof, it suffices to show that for all φ ∈
[0, f/P ], 15P + P logb(P,f) Û − (1 − φ)P logb(P,f)(γÛ) ≥
16(1 − φ)P − Û(1 − γ).
Upper bounding 16(1 − φ)P − Û(1 − γ) with 16(1 − φ)P
and dividing through by P , it is sufficient to show that

15 + logb(P,f) Û − (1 − φ) logb(P,f)(γÛ) ≥ 16(1 − φ),

or, equivalently,

logb(P,f) Û − (1 − φ) logb(P,f)(γÛ) ≥ 1 − 16φ.

We now focus on the left hand side of the above equation:

logb(P,f) Û − (1 − φ)
[
logb(P,f) γ + logb(P,f) Û

]
=

φ logb(P,f) Û + (1 − φ) logb(P,f) γ−1.

Since f ≤ P
log(min(Û,P ))

= P
log Û

, for any Û > 16 we have

that P
2f > 2. Observe that,

φ logb(P,f) Û +(1−φ) logb(P,f) γ−1 ≥ (1−φ) logb(P,f) γ−1

since Û ≥ P/f > P/2f . (Note that if Û < P/f , then all
tasks are completed in this iteration.)
Recall that γ−1 ≥ (2φ)−1 and φ < f/P . Therefore,

(1 − φ) logb(P,f) γ−1 ≥ (1 − φ) logb(P,f)(2φ)−1 ≥ 1 − 16φ.

Evidently,

W = O(N + P + P log P
f
(min(N, P ))),

as desired. �

Recall that ΛN,P,f is log(P/f) when

f ≤ P/ log(min(N, P ))

and log log(min(N, P )) when

f > P/ log(min(N, P )) .

We now give our main upper-bound result.

Theorem 1. Do-AllOL(N, P, f) can be solved for any pattern
of crashes using work

W = O
(
N + P + P log(min(N, P ))/ΛN,P,f

)
.

Proof. This follows from the definition of ΛN,P,f and Lem-
mas 1, 2 and 3. �

4.2 Do-All lower bounds

We now develop the lower bounds for Do-AllO(N, P, f); these
bounds match the upper bounds presented in Sect. 4.1. Note
that the results in this section hold also for the Do-All(N, P, f)
problem (without the oracle).

The following mathematical facts (from [18]) are used in
the proofs.

Fact 1 If a1, a2, . . . , am (m > 1) is a sorted list of non-
negative integers, then for all j (1 ≤ j < m) we have(
1 − j

m

)∑m
i=1 ai ≤

∑m
i=j+1 ai.

Fact 2 Given N ∈ N, κ ∈ R, such that N · κ > 1, κ ≤ 1
2 ,

and σ ∈ N such that σ < log N
log(κ−1) − 1, then the following

inequality holds: 	. . . 		N · κ
 · κ
 . . . · κ
︸ ︷︷ ︸
σ times

> 0.
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Proof. To show the result it suffices to show that, after drop-
ping one floor and strengthening the inequality:

(	. . . 		N · κ
 · κ
 . . . · κ
︸ ︷︷ ︸
σ−1 times

· κ) − 1 > 0 ,

or that

	. . . 		N · κ
 · κ
 . . . · κ
︸ ︷︷ ︸
σ−1 times

>
1
κ

.

Applying this transformation for σ − 1 more steps, we
see that it suffices to show that N > 1

κσ + 1
κσ−1 + . . . + 1

κ ,
or, using geometric progression summation, that

N >
(κ−1)σ+1 − (κ−1)

(κ−1) − 1
.

We observe that

(κ−1)σ+1 >
(κ−1)σ+1 − (κ−1)

(κ−1) − 1

for κ ≤ 1
2 , thus it is enough to show that N > (κ−1)σ+1.

After taking logarithms of both sides of the inequality, log N >
(σ +1) log(κ−1), and so it suffices to have σ < log N

log(κ−1) − 1.
�

We now define a specific adversarial strategy used to de-
rive our lower bounds. Let A be an iterative algorithm that
solves the Do-All problem. Let Pi be the number of proces-
sors remaining at the end of the ith iteration of A and let Ui

denote the number of tasks that remain to be done at the end
of iteration i. Initially, P0 = P ≥ N = U0. The strategy of
the adversary is defined for each iteration of the algorithm.
Based on a variable κ, defined in the interval (0, 1/2), the ad-
versary determines which processors will be allowed to work
and which will be stopped in a given iteration. We call this
adversary A.

Adversary A:

Iteration 1: The adversary chooses U1 = 	κU0
 tasks with
the least number of processors assigned to them. This can
be done since the adversary is omniscient; it knows all
the actions to be performed by A (as well as any advice
provided by the oracle). The adversary then crashes the
processors assigned to these tasks, if any.

Iteration i: Among Ui−1 tasks remaining after the iteration
i − 1, the adversary chooses Ui = 	κUi−1
 tasks with the
least number of processors assigned to them and crashes
these processors.

Termination: The adversary continues for as long as Ui > 1.
As soon as Ui = 1, the adversary allows all remaining
processors to perform the single remaining task, and A
terminates.

We now study the adversarial strategy A and derive lower
bound results.

Remark 1 Relationship between N and κ: If κ is chosen so
that κ · N ≤ 1 then by the strategy of A, an algorithm solving
Do-All may be able to solve it in a constant number of iterations
(namely two) with workO(P ). This is becauseU1 = 	κU0
 ≤
κN ≤ 1. Henceforth we consider κ to be such that κ ·N > 1.

�

Lemma 4. For adversary A, if at the iteration i the number
of remaining tasks is Ui−1 > 1, then

(a) Ui = 	. . . 		N · κ
 · κ
 . . . · κ
︸ ︷︷ ︸
i times

, and

(b) Pi ≥ (1 − κ)i
P0.

Proof. Part (a) is immediate from the definition of A. To ex-
press the number of surviving processors Pi for part (b), we
use Fact 1 with the following definitions:

Let m = Ui−1, and let a1, . . . , am be the quantities of
processors assigned to each task, sorted in ascending order. Let
am also include the quantity of any un-assigned processors,
i.e., a1 is the least number of processors assigned to a task, a2
is the next least quantity of processors, etc. (In other words,
a1 ≤ a2 ≤ . . . ≤ am.) Let j = Ui. Thus the adversary stops
exactly

∑j
i=1 ai processors.At the beginning of iteration i, the

number of processors Pi−1 =
∑m

i=1 ai, therefore, the number
of surviving processors Pi =

∑m
i=j+1 ai.

Using Fact 1, we have Pi ≥
(

1 − Ui

Ui−1

)
Pi−1, and after

substituting for Ui = 	κUi−1
 we have

Pi ≥
(

1 − 	κUi−1

Ui−1

)
Pi−1 ≥ (1 − κ) Pi−1 ≥ (1 − κ)i

P0,

as desired. �

Lemma 5. Given any algorithm solving the Do-AllO
(N, P, f) problem under any oracle O, adversary A will cause
the algorithm to cycle through at least log N

log(κ−1) −1 iterations.

Proof. Let τ be the earliest iteration when the last task is
performed. We use Fact 2 with σ the largest integer such that
σ < log N/ log(κ−1)−1. Then Uσ = �. . . ��N · κ� · κ� . . . · κ�

︸ ︷︷ ︸
σ times

> 0, and so τ must be greater than σ because Uτ = 0. Thus,

τ ≥ log N

log(κ−1)
− 1 > σ. �

Lemma 6. Given any algorithm A that solves Do-AllO
(N, P, f) under any oracle O, with P ≥ N and f < P ,
then adversary A with κ = 1

log N causes work

W = Ω

(
P

log N

log log N

)
.

Proof. We first assume that N > 4 (we aim to establish
an asymptotic result, and this eliminates uninteresting cases).
Since κ = 1/ log N , we have that κ ∈ (0, 1/2) when N > 4.
From Lemma 4(a) and Lemma 5 we see that A will cause al-
gorithm A to iterate at least τ = (log N/ log log N)−1 times.
Now observe that the work must be at least Pτ ·τ , where Pτ is
the number of surviving processors after A terminates. From
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Lemma 4(b) we have that Pτ ≥ (1−κ)τP0 = (1− 1
log N )τP .

Therefore,

Pτ ≥ P

(
1 − 1

log N

) log N
log log N −1

≥ P

(
1 − 1

log N

) log N
log log N

≥ P

(
1 −

(
1

log N

)
·
(

log N

log log N

))
= P − P

log log N
.

Let fτ denote the actual number of crashes caused by the
adversary. Then, fτ = P − Pτ ≤ P − P + P

log log N =
P

log log N < P . Hence, A when using this specific κ does not
exceed the allowed number of crashes. Now, the work caused
by A is:

W = Ω(Pτ · τ) = Ω

((
P − P

log log N

)
·
(

log N

log log N
− 1
))

= Ω

(
P

log N

log log N

)
.

This completes the proof. �

Note that the above lower bound result generalizes the
result given in [17,12]. There, the bound was given for the
special case of P = N .

Corollary 1. Given any algorithm A that solves Do-AllO
(N, P, f) under any oracle O, with f < P ≤ N , then there
exists an adversary that causes work

W = Ω

(
N + P

log P

log log P

)
.

Proof. Note that W = Ω(N) because all tasks must be per-
formed. From Lemma 6 we know that Do-AllO(P, P, f) re-
quires Ω(P log P/ log log P ) work. Given that work is non-
decreasing in N (as follows from Definition 1) we obtain the
desired result by combining the two bounds. �

Observe that Lemma 6 and Corollary 1 do not show how,
if at all, work depends on f .

Lemma 7. Given any algorithm A that solves Do-AllO
(N, P, f) under any oracle O, with P ≥ N , then adversary
A with (κ−1) log(κ−1) = P log N

f and f ≤ P
log N causes work

W = Ω
(
P + P log P

f
N
)

.

Proof. We assume that N > 4 (we aim to establish an asymp-
totic result, and this eliminates uninteresting cases). From
(κ−1) log(κ−1) = P log N

f , f ≤ P
log N , and N > 4 we see

that log(κ−1) > 4κ. This implies that κ ∈ (0, 1/2). Hence,
from Lemma 5 we have that A will cause algorithm A to iterate
at least τ = (log N/ log(κ−1)) − 1 times.
Now observe that the work must be at least Pτ ·τ , where Pτ is
the number of surviving processors after A terminates. Recall
from Lemma 4(b) that Pτ ≥ (1 − κ)τP0. Therefore,

Pτ ≥ P (1 − κ)τ ≥P (1 − κ)
log N

log(κ−1)
−1≥P (1 − κ)

log N

log(κ−1)

≥ P

(
1 − κ· log N

log(κ−1)

)
=P

(
1 −
(

κ

log(κ−1)

)
log N

)

= P

(
1 −

(
f

P log N

)
log N

)
= P − f.

Let fτ denote the actual number of crashes caused by the
adversary. Then, fτ = P −Pτ ≤ P −(P −f) = f . Hence, A
when using this specific κ does not exceed the allowed number
of crashes (f ≤ P/ log N ).

Recall that (κ−1) log(κ−1) = P log N
f , therefore, (κ−1) =

Θ

(
P log N

f

log( P log N
f )

)
. From this we obtain

log(κ−1) = Θ

(
log
(

P log N

f

)
− log log

(
P log N

f

))

= Θ

(
log
(

P log N

f

))
.

Then, noting that Pτ ≥ P − f ≥ P − P/ log N = Θ(P ) and
that κ · N > 1 (see Remark 1), we assess the work W caused
by A as follows:

W = Ω(Pτ · τ) = Ω

(
P · log N

log(κ−1)

)

= Ω

(
P + P

log N

log(P log N
f )

)
.

Now recall that P/f ≥ log N . Hence, for any N > 4 we
have that P/f > 2 and that log((P log N)/f) = log(P/f)+
log log N = Θ(log(P/f)). From the above,

W = Ω

(
P + P

log N

log(P
f )

)
= Ω

(
P + P log P

f
N
)

.

This completes the proof. �

Corollary 2. Given any algorithm A that solves Do-AllO
(N, P, f) for P ≤ N and under any oracle O, there exists
an adversary that causes f ≤ P

log P crashes, and work

W = Ω
(
N + P log P

f
P
)

.

Proof. Note that W = Ω(N) because all tasks must be per-
formed. From Lemma 7 we know that Do-AllO(P, P, f) re-
quires Ω(P log P

f
P ) work, for f ≤ P/ log P . Given that work

is nondecreasing in N we obtain the desired result by com-
bining the two bounds. �

We now give our main lower-bound result.

Theorem 2. Given any algorithm A that solves Do-AllO
(N, P, f) under any oracle O, there exists an adversary that
causes work

W = Ω
(
N + P + P log(min(N, P ))/ΛN,P,f

)
.

Proof. We consider two cases.

Case 1: P ≤ N .
For the range of failures f ≤ P/ log P , per Corollary 2, the
work is Ω(N + P logP/f P ). From Corollary 2 we also ob-
tain the fact that when f = P/ log P then work must be
Ω (N + P log P/ log log P ). Note that this is the worst case
work for any f (see Corollary 1). Therefore, for the range
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P/ log P < f < P , the adversary establishes this worst case
work using the initial P/ log P failures.

Case 2: P ≥ N .
For the range of failures f ≤ P/ log N , per Lemma 7,
the work is Ω(P + P logP/f N). From Lemma 7 we also
obtain the fact that when f = P/ log N then work must
be Ω (P log N/ log log N). Note that this is the worst case
work for any f (see Lemma 6). Therefore, for the range
P/ log N < f < P , the adversary establishes this worst case
work using the initial P/ log N failures. The result now fol-
lows by combining the two cases and the definition of ΛN,P,f .

�

4.3 Iterative Do-All

Do-All algorithms have been used in developing simulations
of failure-free algorithms on failure-prone processors. This
is done by iteratively using a Do-All algorithm to simulate
the steps of the failure-free processors. We study the iterative
Do-All problems to understand the complexity implications
of iterative use of Do-All algorithms.

In studying simulations, a Do-All(N, P, f) solution ab-
stracts the setting where P physical crash-prone processors
simulate N virtual processors, such that each task i among
the N tasks in Do-All represents a single step of the virtual
processor i. In this setting it is customary to consider the case
with P ≤ N , that is when the number of physical processors
does not exceed the number of virtual processors. The iter-
ative Do-All then models the simulation of multiple steps of
the virtual processors. In this section we therefore assume that
P ≤ N . (We note however, that it is possible to extend the
results for iterative Do-All for the cases when P > N , using
similar arguments as in the case of P ≤ N .)

In principle r-Do-All(N, P, f) can be solved by running
an algorithm for Do-All(N, P, f) r times. For example, r-
Do-AllO(N, P, f) can be solved by running the oracle-based
algorithm in Fig. 1 in r iterations. If the work of a Do-All
solution is W , then the work of the r-iterative Do-All is at
most r · W . However we show that it is possible to obtain a
finer result that takes into account the diminishing number of
failures “available" to the adversary. We refer to each Do-All
iteration as a round of r-Do-AllO(N, P, f).

Theorem 3. The r-Do-AllOL(N, P, f) problem for P ≤ N
can be solved with work

W = O
(
r · (N + P log P/Λr

N,P,f )
)

Proof. Let ri denote the ith round of the iterative Do-All. Let
Pi be the number of active processors at the beginning of ri

and fi be the number of crashes during ri. Note that P1 = P ,
where r1 is the first round of r-Do-AllOL(N, P, f) and that
Pi ≤ P . We consider two cases:

Case 1: f > Pr
log P . Consider a round ri. From Theorem 1 we

see that the work for this round is O
(
N + Pi logPi/fi

Pi

)
when fi ≤ Pi/ log Pi and O (N + Pi log Pi/ log log Pi) oth-
erwise. However in this case, we can have fi = Θ (P/ log P )
for all ri without “running out" of processors. Thus,

W1 = O

(
r ·
(

N + P
log P

log log P

))
.

Case 2: f ≤ Pr
log P . First observe that any reasonab-

le adversary would not kill more that Pi/ log Pi pro-
cessors in round ri, since it would not cause more
work than O(N + Pi log Pi/ log log Pi) (which is achieved
when fi ≥ Pi/ log Pi). Therefore, we consider fi ≤
Pi/ log Pi for all rounds ri. Hence, the work in every round
ri (per Theorem 1) is O (N + Pi log Pi/ log(Pi/fi)) =
O (N + P log P/ log(P/fi)).
Let W (N, P, f) be this one-round upper bound.As f =

∑
fi,

an upper bound on r-Do-AllOL(N, P, f) can be given by max-
imizing

∑
i W (N, Pi, fi) over all such failure patterns. As

W (·, ·, ·) is monotone in P , we may assume that Pi = P
for the purposes of the upper bound. We show that this maxi-
mum is attained at f1 = f2 = . . . = fr. For simplicity, treat
fi as a continuous parameter and consider the factor in the
single round work expression (given above) that depends on
fi : c/ log( P

fi
), where c is the constant hidden by the O(·)

notation.
The first derivative over fi is

∂

∂fi

(
c/log

(
P

fi

))
= c/fi(log P − log fi)2,

and its second derivative is

∂2

∂f2
i

(
c/log

(
P

fi

))
= 2c/f2

i (log P − log fi)3

− c/f2
i (log P − log fi)2.

Observe that the second derivative is negative in the domain
considered (assuming P > 16). Hence the first derivative is
decreasing (with fi). In this case, given any two fi, fj where
fi > fj , the failure pattern obtained by replacing fi with fi−ε
and fj by fj + ε (where ε < (fi − fj)/2) results in increased
work. This implies that the sum maximized when all fis are
equal, specifically when fi = f/r.

As the above upper bound on the sum
∑

i W (N, Pi, fi) is
valid over all fi in this range, it holds in particular for the
choices made by the adversary which must, of course, cause
an integer number of faults in each round. Therefore,

W2 = O

(
r ·
(

N + P
log P

log(Pr
f )

))
.

The result then follows from the definition of Λr
N,P,f by

combining the two cases. �

Theorem 4. Given any algorithm that solves r-Do-AllO
(N, P, f) for P ≤ N and under any oracle O, there exists
a crash adversary that causes work

W = Ω
(
r · (N + P log P/Λr

N,P,f )
)
.

Proof. Consider two cases:

Case 1: f > Pr
log P . In this case the adversary may

crash P/ log P processors in every round of r-Do-AllO
(N, P, f). Note that for this adversary Ω(P ) processors
remain alive during the first �r/2� rounds. Per Theo-
rem 2 this results in �r/2� · Ω (N + P log P/ log log P ) =
Ω (Nr + Pr log P/ log log P ) work.
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Case 2: f ≤ Pr
log P . In this case the adversary ideally would

crash f/r processors in every round. It can do that in the case
where r divides f . If this is not the case, then the adversary
crashes �f/r� processors in rA rounds and 	f/r
 in rB rounds
in such a way that r = rA + rB . Again considering the first
half of the rounds and appealing to Theorem 2 results in a

Ω
(
Nr + Pr logPr/f P

)
lower bound for work. Note that

we consider only the case where r ≤ f ; otherwise the work
is trivially Ω(rN).

The result then follows from the definition of Λr
N,P,f by

combining the two cases. �

Remark 2 Consider the setting where a central server re-
peatedly allocates tasks to crash-prone processors. When a
processor completes a task, it reports this to the server. If
a server detects processor failures, it must re-allocate the
tasks to other processors. Processor crashes might cause
some tasks to be executed more than once. Our results
obtained for Do-AllO(N, P, f) are relevant to the bounds
on task execution redundancy in such a setting. When the
server allocates N similar, independent and idempotent tasks
to P synchronous, crash-prone processors, then, per The-
orems 1 and 2, the total number of task executions is
Θ
(
N + P + P log(min(N, P ))/ΛN,P,f

)
, for f < P . �

5 New bounds for the message-passing model

In this section we demonstrate the utility of the complexity
results under the perfect load-balancing assumption by giving
a tight and complete analysis of the algorithm AN [4] and
establish new complexity results for the iterative Do-All in the
message-passing model.

The efficiency of message-passing algorithms is charac-
terized in terms of their work and message complexity. We
define message complexity similarly to Definition 1 of work:
For a computation subject to a failure pattern F ∈ F , denote
by Mi(F ) the number of point-to-point messages sent during
step i of the computation. For a given problem of size N , if the
computation solves the problem by step τ(F ) in the presence
of the failure pattern F , where |F | ≤ f , then the message
complexity M is:

MN,P,f = max
F∈F, |F |≤f


 ∑

i≤τ(F )

Mi(F )


 .

5.1 Analysis of algorithm AN

Algorithm AN presented by Chlebus et al. [4] uses a multiple-
coordinator approach to solve Do-All(N, P, f) on crash-prone
synchronous message-passing processors (P ≤ N ). The
model assumes that messages incur a known bounded delay
and that reliable multicast [16] is available, however messages
to/from faulty processors may be lost.

5.1.1 Description of the algorithm

We now give a brief description of the algorithm; additional
details are given in Appendix A (but to avoid a complete re-
statement, we refer the reader to [4]). Algorithm AN proceeds
in a loop which is iterated until all the tasks are executed. A
single iteration of the loop is called a phase. A phase consists
of three consecutive stages. Each stage consists of three steps.
In each stage processors use the first step to receive messages
sent in the previous stage, the second step to perform local
computation, and the third step to send messages. A processor
can be a coordinator or a worker. A phase may have multi-
ple coordinators. The number of processors that assume the
coordinator role is determined by the martingale principle: if
none of the expected coordinators survive through the entire
phase, then the number of coordinators for the next phase is
doubled. If at least one coordinator survives in a given phase,
then in the next phase there is only one coordinator. A phase
that is completed with at least one coordinator alive is called
attended, otherwise it is called unattended.

Processors become coordinators and balance their loads
according to each processor’s local view.A local view contains
the set of ids of the processors assumed to be alive. The local
view is partitioned into layers. The first layer contains one
processor id, the second two ids, the ith contains 2i−1 ids.

Given a phase, in the first stage, the processors perform a
task according to the load-balancing rule derived from their
local views and report the completion of the task to the co-
ordinators of that phase (determined by their local views). In
the second stage, the coordinators gather the reports, they up-
date the knowledge of the done tasks and they multicast this
information to the processors that are assumed to be alive. In
the last stage, the processors receive the information sent by
the coordinators and update their knowledge of done tasks and
their local views. Given the full details of the algorithm, it is
not difficult to see that the combination of coordinators and
local views allows the processors to obtain the information
that would be available from the oracle OL in the algorithm
in Fig. 1.

It is shown in [4] that the work of algorithm AN is
W = O((N + P log P/ log log P ) log f) and its message
complexity is M = O(N + P log P/ log log P + fP ), for
P ≤ N .

In the rest of this section we present the new analysis of
work and message complexity of algorithm AN. Throughout
we assume that the algorithm correctness is shown as in [4].

5.1.2 New analysis of work complexity

To assess the work W , we consider separately all the attended
phases and all the unattended phases of the execution. Let Wa

be the part of W spent during all the attended phases and Wu

be the part of W spent during all the unattended phases. Hence
we have W = Wa + Wu.

Lemma 8. [4] In any execution of algorithm AN with f <

P ≤ N we have Wa = O
(
N+P log P

log log P

)
and Wu =

O (Wa log f).

We now give the new analysis of algorithm AN.
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Lemma 9. In any execution of algorithm AN with P ≤ N we

have Wa = O
(
N + P log P

f
P
)

, when f ≤ P
log P .

Proof. Given a phase i of an execution of algorithm AN, we
define Pi to be the number of live processors and Ui to be
the number of undone tasks at the beginning of the phase
(P0 = P and U0 = N ). Let α1, α2, . . . ατ , denote all the
attended phases of this execution (ατ is the last phase of the
execution).

Observe that for all αi, 1 ≤ i ≤ τ − 1 it holds that

• Uai > Uai+1 , and
• Pai ≥ Pai+1 .

This follows from the construction of algorithm AN: Since
phase αi is attended, there is at least one coordinator, call it
c, alive in phase αi. c executes one task. Hence, at least one
task is executed and consequently at least one task is removed
from Uai . The number of processors can only decrease, since
we do not allow restarts.

In [4], Sect. 3.2, it is shown that if at the beginning of
phase ai, the processors have consistent information on the
number of surviving processors (Pai) and the number of re-
maining tasks (Uai), then the operational processors will have
consistent information on Pai+1 and Uai+1 at the beginning of
phase ai+1. And since the processors have consistent informa-
tion at a0, that means that at the beginning of every attended
phase, the surviving processors have consistent view of the
system. Hence, the processors in attended phases can perform
perfect load balancing, as in the case where the processors
are assisted by the oracle OL, in the oracle model. Therefore,
focusing only on the attended phases (and assuming that in
the worst case no progress is made in unattended phases), we
obtain the desired result by induction on the size of undone
tasks U , as in the proof of Lemma 3. �

Theorem 5. In any execution of algorithm AN with P ≤ N
we have

W = O
(
log f(N + P log P/ΛN,P,f )

)
.

Proof. This follows from Lemmas 8 and 9, the fact that W =
Wa + Wu and the definition of ΛN,P,f . �

5.1.3 New analysis of message complexity

To assess the message complexity M we consider separately
all the attended phases and all the unattended phases of the
execution. Let Ma be the number of messages sent during
all the attended phases and Mu the number of messages sent
during all the unattended phases. Hence we have M = Ma +
Mu.

Lemma 10. [4] In any execution of algorithm AN with P ≤
N we have Ma = O(Wa) and Mu = O(fP ).

Theorem 6. In any execution of algorithm AN with P ≤ N
we have

M = O
(
N + P log P/ΛN,P,f + Pf

)
.

Proof. It follows from Lemmas 8, 9 and 10, the fact that M =
Ma + Mu and the definition of ΛN,P,f . �

5.2 Analysis of Message-Passing Iterative Do-All

We now consider the message-passing r-Do-All(N, P, f)
problem, for P ≤ N .

Theorem 7. The r-Do-All(N, P, f) problem can be solved
on synchronous crash-prone message-passing processors with
work

W = O

(
r · log

(
f

r

)
·
(
N + P log P/Λr

N,P,f

))

and with message complexity

M = O
(
r ·
(
N + P log P/Λr

N,P,f

)
+ fP

)
.

Proof. The iterative Do-All can be solved by running algo-
rithm AN on r instances of size N in sequence. We call this
algorithm AN*. To analyze the efficiency of AN* we use the
same approach as in the proof of Theorem 3. In the current
context we base our work complexity arguments on the result
of Theorem 5, and we base our message complexity arguments
on the result of Theorem 6. �

6 New bounds for the shared-memory model

In the shared-memory models the Do-All problem is better
known as the Write-All problem: given an N -element shared
array, set each element of the array to 1 using P processors,
in the presence of any failure pattern in the failure model F .
Here the notion of a task is abstracted as writing to a specific
shared-memory location. Since we abstract away the nature
of the tasks as long as they can be performed in constant time,
we continue referring to the Do-All(N, P, f) and the r-Do-All
(N, P, f) problems so as not to introduce redundant terminol-
ogy. Here we give a new refined analysis of the most work-
efficient known algorithm for the shared-memory model, algo-
rithm W [18]. We also establish the complexity results for the
iterative Do-All and for simulations of synchronous parallel
algorithms on crash-prone processors.

6.1 Analysis of algorithm W

Algorithm W solves Do-All(N, P, f) in the shared-memory
model. Its work for any pattern of crashes is O(N +
P log N log P/ log log P ) for P ≤ N [18]. Note that this
bound is conservative, since it does not include f , the number
of crashes.

6.1.1 Description of the algorithm

We now give a brief description of the algorithm; additional
details are given in Appendix B (but to avoid a complete re-
statement, we refer the reader to [17]). Algorithm W is struc-
tured as a parallel loop through four phases: (W1) a failure de-
tecting phase, (W2) a load rescheduling phase, (W3) a work
phase, and (W4) a phase that estimates the progress of the
computation, the remaining work and that controls the paral-
lel loop. These phases use full binary trees with O(N) leaves.
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The processors traverse the binary trees top-down or bottom-
up according to the phase. Each such traversal takes O(log N)
time (the height of a tree). For a single processor, each iter-
ation of the loop is called a block-step; since there are four
phases with at most one tree traversal per phase, each block
step takes O(log N) time.

In algorithm W the trees stored in shared memory serve as
the gathering places for global information about the number
of active processors, remaining tasks and load-balancing. It is
not difficult to see that these binary trees indeed provide the
information to the processors that would be available from the
oracle OL, in the oracle model. The binary tree used in phase
W2 to implement load-balancing and phase W3 to assess the
remaining work is called the progress tree.

Here we use the parameterized version of the algo-
rithm with P ≤ N and where the progress tree has U =
max{P, N/ log N} leaves. The tasks are associated with the
leaves of this tree, with N/U tasks per leaf. Note that each
block-step still takes time O(log N).

6.1.2 New complexity analysis

We now give the work analysis. We charge each processor
for each block step it starts,regardless of whether or not the
processor completes it or crashes.

Lemma 11. [17] For any failure pattern with f < P , the
number of block-steps required by the P -processor algorithm
W with U leaves in the progress tree is

B = O

(
U + P

log P

log log P

)
.

Lemma 12. For any failure pattern with f ≤ P
log P , the num-

ber of block-steps required by the P -processor algorithm W
with U leaves in the progress tree is

B = O
(
U + P log P

f
P
)

.

Proof. It is not difficult to see, that the processor block-steps
are equivalent to the processor steps under the perfect load-
balancing assumption. Hence, the proof is the same as the
proof of Lemma 3. �

Theorem 8. Algorithm W solves Do-All(N, P, f) for P ≤
N , using work

O
(
N + P log N log P/ΛN,P,f

)
.

Proof. We consider the following two cases:

Case 1: P < N
log N . Here the number of leaves in the progress

tree is U = N/ log N and in the work phase W3 each pro-
cessor performs N/U = log N tasks. The cost of a single
block-step is C1 = O(log N) since each of the four phases
takes at most log N time. We consider two subcases:

(1a) f ≤ P
log P . Per Lemma 12, the number of blocks-steps

B1a for this case is:

B1a = O

(
U + P

log P

log P
f

)
= O

(
N

log N
+ P

log P

log P
f

)
.

Therefore,

W1a = B1a · C1 = O

(
N

log N
+ P

log P

log P
f

)
· O(log N)

= O

(
N + P log N

log P

log P
f

)
.

(1b) f > P
log P . Per Lemma 11, the number of block-steps

B1b for this case is:

B1b = O

(
U+P

log P

log log P

)
= O

(
N

log N
+ P

log P

log log P

)
.

Therefore,

W1b = B1b · C1 = O

(
N

log N
+ P

log P

log log P

)
· O(log N)

= O

(
N + P log N

log P

log log P

)
.

These two subcases together with the definition of ΛN,P,f

yield W1 = O(N + P log N log P/ΛN,P,f ).

Case 2: N
log N ≤ P ≤ N. Here the number of leaves in the

progress tree is U = P and in the work phase W3 each pro-
cessor performs �N/P � = O(log N) tasks. Thus the cost of
a single block-step is C2 = O(log N). We again consider two
subcases:
(2a) f ≤ P

log P . Per Lemma 12, the number of block-steps
B2a for this case is:

B2a = O

(
U + P

log P

log P
f

)
= O

(
P + P

log P

log P
f

)

= O

(
P

log P

log P
f

)
.

Therefore,

W2a = B2a · C2 = O

(
P

log P

log P
f

)
· O(log N)

= O

(
P log N

log P

log P
f

)
.

(2b) f > P
log P . Per Lemma 11, the number of block-steps

B2b for this case is:

B2b = O

(
P + P

log P

log log P

)
= O

(
P

log P

log log P

)
.

Therefore,

W2b = B2b · C2 = O

(
P

log P

log log P

)
· O(log N)

= O

(
P log N

log P

log log P

)
.

These last two subcases and the definition of ΛN,P,f yield
W2 = O(P log N log P/ΛN,P,f ). Combining Case 1 and
Case 2 we get that W = O(N + P log N log P/ΛN,P,f ),
for 1 ≤ P ≤ N. �
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6.2 Iterative Do-All and parallel algorithm simulations

We now consider the complexity of shared-memory r-Do-All
(N, P, f) and of PRAM simulations.

Theorem 9. The r-Do-All(N, P, f) problem can be solved on
P crash-prone processors (P ≤ N ), using shared memory,
with work

W = O
(
r ·
(
N + P log N log P/Λr

N,P,f

))
.

Proof. The iterative Do-All can be solved by running algo-
rithm W on r instances of size N in sequence. We call this
algorithm W*. To analyze the efficiency of W* we use the
same approach as in the proof of Theorem 3. In the current
context we base our work complexity arguments on the result
of Theorem 8. �

Now we state another main result in this paper.

Theorem 10. Any synchronous N -processor, r-time shared-
memory parallel algorithm (PRAM) can be simulated on P
crash-prone synchronous processors (P ≤ N ) with work

O
(
r ·
(
N + P log N log P/Λr

N,P,f

))
.

Proof. The complexity of simulating a single parallel step of
N ideal processors on P crash-prone processors does not ex-
ceed the complexity of solving a single Do-All(N, P, f) in-
stance [21,28]. The result then follows from Theorem 9. �

7 Conclusion

In this paper we give the first complete analysis of the Do-All
problem under the perfect load-balancing assumption. We in-
troduce and analyze the iterative Do-All problem that models
repeated use of Do-All algorithms, such as found in algorithm
simulations and transformations. A unique contribution of our
analyses is that they precisely describe the effect of crash fail-
ures on the work of the computation. We demonstrate the util-
ity of the analyses obtained with the perfect load-balancing
assumption by using them to analyze message-passing and
shared-memory algorithms and simulations that attempt to
balance the loads among the processors. Another recent work
that emphasizes failure-sensitive analysis for Do-All is [5].

Our results also yield insight about the bounds on task
execution redundancy incurred when a central authority re-
peatedly allocates tasks to crash-prone processors (cf. [22]).
In particular, when similar, independent and idempotent tasks
need to be performed, and the central authority has access to
synchronous processors prone to crashes, then the bounds on
the total number of task performed (counting redundant task
executions) are precisely the bounds we established in this
paper.

Acknowledgements. The authors thank Vassos Hadzilacos and the
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Appendix

A. Algorithm AN

The following information about algorithm AN is taken from
[4]. More information can be obtained there. The algorithm
proceeds in a loop which is repeated until all the tasks are
executed. A single iteration of the loop is called a phase. A
phase consists of three consecutive stages. Each stage consists
of three steps (thus a phase consists of 9 steps). In each stage
processors use the first step to receive messages sent in the
previous stage, the second step to perform local computation,
and the third step to send messages. We refer to these three
step as the receive substage, the compute substage and the send
substage.

Coordinators and workers. A processor can be a coordinator
of a given phase. All processors (including coordinators) are
workers in a given phase. Coordinators are responsible for
recording progress, while workers perform tasks and report
on that to the coordinators. In the first phase one processor
acts as the coordinator. There may be multiple coordinators in
subsequent phases. The number of processors that assume the
coordinator role is determined by the martingale principle: if
none of the expected coordinators survive through the entire
phase, then the number of coordinators for the next phase is
doubled. Whenever at least one coordinator survives a given
phase, the number of coordinators for the next phase is reduced
to one.

If at least one processor acts as a coordinator during a
phase and it completes the phase without failing, we say that
the phase is attended, the phase is unattended otherwise.

Local views. Processors assume the role of coordinator based
on their local knowledge. During the computation each pro-
cessor w maintains a list Lw = 〈q1, q2, ..., qk〉 of supposed
live processors. We call such list a local view. The processors
in Lw are partitioned into layers consisting of consecutive sub-
lists of Lw: Lw = 〈Λ0, Λ1, ..., Λj〉. The number of processors
in layer Λi+1, for i = 0, 1, ..., j − 1, is the double of the
number of processors in layer Λi. Layer Λj may contain less
processors. When Λ0 = 〈q1〉 the local view can be visualized
as a binary tree rooted at processor q1, where nodes are placed
from left to right with respect to the linear order given by Lw.
Thus, in a tree-like local view, layer Λ0 consists of processor
q1, layer Λi consists of 2i consecutive processors starting at
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processor q2i and ending at processor q2i+1−1, with the excep-
tion of the very last layer that may contain a smaller number
of processors. Processors in a local view do not necessarily
appear in the order of processor identifiers.

The local view is used to implement the martingale prin-
ciple of appointing coordinators as follows. Let L�,w =
〈Λ0, Λ1, ..., Λj〉 be the local view of worker w at the begin-
ning of phase �. Processor w expects processors in layer Λ0

to coordinate phase �; if no processor in layer Λ0 completes
phase �, then processor w expects processors in layer Λ1 to
coordinate phase � + 1; in general processor w expects pro-
cessors in layer Λi to coordinate phase � + i if processors in
all previous layers Λk, � ≤ k < � + i, did not complete phase
� + k. The local view is updated at the end of each phase.

Phase structure and task allocation. The structure of a phase
of the algorithm is as follows. Each processor w keeps its local
information about the set of tasks already performed, denoted
Dw, and the set of live processors, denoted Pw, as known by
processor w. Set Dw is always an underestimate of the set of
tasks actually done and Pw is always an overestimate of the set
of processors that are “available" from the start of the phase.
We denote by Uw the set of unaccounted tasks, i.e., whose
done status is unknown to w. Sets Uw and Dw are related by
Uw = T \ Dw, where T is the set of all the tasks. Given a
phase � we use P�,w, U�,w and D�,w to denote the values of
the corresponding sets at the beginning of phase �.

Computation starts with phase 0 and any processor q has
all processors in L0,q and has D0,q empty. At the beginning
of phase � each worker (that is, each processor) w performs
one task according to its local view L�,w and its knowledge of
the set U�,w of unaccounted tasks, using the following load-
balancing rule. Worker w executes the task whose rank is
i mod |U�,w| in the set U�,w of unaccounted tasks, where i
is the rank of processor w in the local view L�,w. Then the
worker reports the execution of the task to all the processors
that, according to the worker’s local view, are supposed to
be coordinators of phase �. For simplicity we assume that a
processor sends a message to itself when it is both worker and
coordinator.

Any processor c that, according to its local view, is sup-
posed to be coordinator, gathers reports from the workers, up-
dates its information about P�,c and U�,c and broadcasts this
new information causing the local views to be reorganized.
In [4] it is shown that at the beginning of any phase � all live
processors have the same local view L� and the same set U� of
unaccounted tasks and that accounted tasks have been actually
executed. A new phase starts if U� is not empty. The detailed
description of a phase is given in Fig. 2.

Local view update rule. In phase 0 the local view L0,w of any
processor w is a tree-like view containing all P processors
ordered by their pids. Let L�,w = 〈Λ0, Λ1, ..., Λj〉 be the local
view of processor w for phase �. We distinguish two possible
cases.

Case 1. Phase � is unattended. Then the local view of proces-
sor w for phase � + 1 is L�+1,w = 〈Λ1, ..., Λj〉.

Case 2. Phase � is attended. Then processor w receives
summary messages from some coordinator in Λ0. Pro-
cessor w computes its set Pw as described in stage 3 (we
will see that all processors compute the same set Pw). The

Stage 1. The receive substage is not used. In the compute
substage, any processor w performs a specific task z
according to the load-balancing rule. In the send substage
processor w sends a report(z) to any coordinator, that
is, to any processor in the first layer of the local
view L�,w.

Stage 2. In the receive substage the coordinators gather
report messages. For any coordinator c, let z1

c , . . . , zkc
c

be the set of tids received. In the compute substage c sets
Dc ← Dc ∪⋃kc

i=1{zi
c}, and Pc to the set of processors

from which c received report messages. In the send
substage, coordinator c multicasts the message
summary(Dc, Pc) to processors in Pc.

Stage 3. During the receive substage summary messages are
received by live processors. For any processor w, let
(D1

w, P 1
w), . . . , (Dkw

w , P kw
w ) be the sets received in

summary messages. In the compute substage w sets
Dw ← Di

w and Pw ← P i
w for an arbitrary

i ∈ {1, . . . , kw} and updates its local view Lw as
described below. The send substage is not used.

Fig. 2. Phase � of algorithm AN

local view L�+1,w of w for phase � + 1 is a tree-like lo-
cal view containing the processors in Pw ordered by their
pids.

Finally, given an execution of algorithm AN, we enumer-
ate its phases as follows. We denote the attended phases of the
execution by α1, α2, . . . , etc. We denote by πi the sequence of
unattended phases between the attended phases αi and αi+1.
We refer to πi as the ith (unattended) period; an unattended
period can be empty. Hence the computation proceeds as fol-
lows: unattended period π0, attended phase α1, unattended
period π1, attended phase α2, and so on.

B. Algorithm W

The following information about algorithm W is taken from
[17, Sect. 3.3.1]; more information can be obtained there. Al-
gorithm W consists of the parallel loop through four phases.
W1: a failure detecting phase, W2: a load rescheduling phase,
W3: a work phase, and W4: a phase that estimates the work re-
maining and controls the parallel loop. The high level structure
of the algorithm is given in Fig. 3.

The entire algorithm is moderately involved, but fairly
modular. Phases W1 and W4 involve bottom-up traversal of
two different trees and phase W2 involves a top-down traversal
of these trees.

Input: Shared array x[1..N ]; x[i] = 0 for 1 ≤ i ≤ N .

Output: Shared array x[1..N ]; x[i] = 1 for 1 ≤ i ≤ N .

Data structures: The algorithm uses full binary trees to
(1) enumerate surviving processors, (2) allocate processors,
(3) perform work (modelled by x[i] := 1), and (4) mea-
sure progress. There are four full binary trees, each of size
2N − 1, stored as linear arrays in shared memory. The trees
are c[1..2N − 1] (for processor counting and allocation),
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forall processors pid=1..P parbegin

Phase W3: Perform work on the input data
at leaves based on pid

Phase W4: Traverse the d tree bottom up
to measure progress

while the root of the d tree is not N do

Phase W1: Traverse trees c and cs bottom-up
to enumerate processors

Phase W2: Traverse trees d, a, c top-down
to reschedule work

Phase W3: Perform rescheduled work on the
input data

Phase W4: Traverse the d tree bottom up
to measure progress

od
parend.

Fig. 3. A high level view of algorithm W

cs[1..2N − 1] (for counting step numbers), d[1..2N − 1] (for
progress counting) and a[1..2N − 1] (for top-down auxiliary
accounting). They are initially 0. The root of each tree is stored
at location 1 of the corresponding array. An interior node at
location i has its left child stored at location 2i and its right
child stored at location 2i + 1.

The input is in a shared array x[1..N ], where the N ele-
ments of this array are associated with the leaves of the trees
d and a. Element x[i] is associated with d[i + N − 1] and
a[i + N − 1], where 1 ≤ i ≤ N . Similarly processors are
initially associated with the leaves of the tree c, such that pro-
cessor pid is associated with c[pid+N − 1].

Each processor uses some constant amount of local mem-
ory. For example, this local memory may be used to perform
some simple arithmetic computations. Important local vari-
ables are pid, containing the initial processor identifier, and
pn, containing a dynamically changing processor number.

Control flow. Due to the omniscience of the adversary, we
employ an oblivious iterative approach in the sense that the
pool of the available processors is treated uniformly and is
assigned evenly to the tasks that need to be done. The basic
idea of the loop is: (a) For failure detection use bottom-up, fast
parallel summation to estimate the surviving processors and to
estimate the progress they have made. (b) For load reschedul-
ing use a top down, divide-and-conquer strategy based on the
estimate of progress made.

The algorithm consists of the parallel loop given in Fig. 3.
This loop is performed synchronously by all processors that
have not stopped. It consists of four phases of steps, and the
first time only part of it is executed (phases W3 and W4). Of
course, processors can crash at any time during the algorithm.
We now give a high level description of the phases.

Phase W1: Failure detection via processor enumeration. The
processors traverse bottom-up a full binary tree used for
processor counting starting with the leaves associated with
processor identifiers (pids) and finishing at the root. Pro-
cessor counting is implemented as a version of the standard
logarithmic time parallel summation algorithm.

Phase W2: Failure recovery via processor reallocation. The
processors use the full binary tree that represents the
progress of the algorithm, and traverse it starting with the
root and finishing at the leaves associated with the unfin-
ished work. The processors are allocated in a divide-and-
conquer fashion according to the hierarchy of the progress
tree.

Phase W3: The work phase. The processors now perform
work they find at the leaves they reached in phase W2.
(This work is a simple assignment in the case of Write-
All, and other specific tasks when the algorithm is used
for robust simulations or transformations.)

Phase W4: The progress measurement phase. The proces-
sors begin at the leaves of the progress tree where they
ended phase W3 and traverse bottom-up it to the root
to estimate the progress of the algorithm. The counting
of the number of leaves where the work of phase W3
was successfully done is implemented as a version of the
standard parallel summation algorithm.


