
A Utility-based Adaptivity Model for Mobile Applications

Mourad Alia
Simula Research Laboratory
Martin Linges v. 17, Fornebu

1325 Lysaker, Norway
mouradal@simula.no

Viktor S. Wold Eide
Simula Research Laboratory
Martin Linges v. 17, Fornebu

1325 Lysaker, Norway
viktore@simula.no

Nearchos Paspallis
Dept. of Computer Science

University of Cyprus
1678 Nicosia, Cyprus
nearchos@cs.ucy.ac.cy

Frank Eliassen
Dept. of Informatics
University of Oslo

P.O.Box 1080, Norway
frank@ifi.uio.no

Svein O. Hallsteinsen
Dept. of SE, Safety and Security

SINTEF ICT, Norway
S.P. Andersens 15 b, Trondheim
Svein.Hallsteinsen@sintef.no

George A. Papadopoulos
Dept. of Computer Science

University of Cyprus
1678 Nicosia, Cyprus
george@cs.ucy.ac.cy

Abstract

Mobile environments are characterized by resource fluc-
tuations and limitations, and variations in user preferences.
Therefore mobile applications need to be adaptive to re-
tain usability, usefulness and reliability. In our approach to
support adaptivity, we combine context awareness, reflec-
tion and component composition planning. The planning is
done by generic middleware and supports dynamic discov-
ery, utility-based and context-aware evaluation, and selec-
tion of the best implementation alternative of a given mobile
application. In this paper we present a formal model of our
approach and use this model to show the expressiveness of
utility-based adaptation policies. To demonstrate the feasi-
bility and expressiveness of our approach we include a case
study based on a real adaptive application built using our
model and middleware.

1. Introduction

With the proliferation of mobile and pervasive com-
puting the typical operating environment for software is
increasingly characterized by heterogeneity and unpre-
dictable fluctuations in both computing resources, environ-
mental contexts, and user needs and preferences. In this
setting, adaptivity becomes crucial and there is an increas-
ing need for development methods to construct adaptive
systems able to continuously and autonomously ensure the
safety of mobile applications. In our context, the term safety
refers to the requirement of retaining theusability, useful-
nessand reliability of the user applications with regard to

dynamic variations of the mobile environment.
Generally, adaptive systems are context-aware systems

in the sense that adaptations are always performed in re-
sponse to context changes. Typically, adaptation is han-
dled by an adaptation control loop that senses the relevant
context information, makes decisions on the adaptations
to be made, and implements these decisions by dynami-
cally reconfiguring the system. To overcome the complex-
ity of building such adaptation loops, component-based ap-
proaches combined with reflection mechanisms have been
widely adopted in many systems [2, 6, 11, 12, 14]. Us-
ing software components and reflection enables introspec-
tion of the structure, behaviour and context dependencies of
the system and thereby supports dynamic reconfiguration.

However, the decision making component of the adapta-
tion loop is still a challenge. The aim of decision-making is
to choose carefully among possibly many alternative appli-
cation configurations where only one or a limited number
of them can be applied in a given context. The decision
is made according to certain user-provided adaptation poli-
cies that allow the adaptation engine to automatically search
and select the appropriate configuration in the whole search
space of configurations. The implementation of such de-
cisions may involve to dynamically replace components or
compositions or to tune component parameters, resource re-
allocation, etc.

In our earlier work, we have mainly discussed the over-
all architectural issues related to the design of a planning
based middleware that implements the adaptation control
loop [11, 2] by using software components and by follow-
ing the separation of concerns principle. We have also con-
sidered the scalability issue of the planning process that im-
plements the decision-making [1]. In this paper, we rather

focus on the expressiveness of the adaptation policies sub-
sumed in our previous works. These policies are specified
according to what we call the adaptivity model. Basically,
this model combines component composition and context
awareness and associates different application component
composition variants to context states. It uses utility as a
function of application level properties, user preferences
and system level state to select the best application con-
figuration. The viability and usability of our model as a
generic approach to handle adaptivity in mobile environ-
ments has been validated through the experience gained by
implementing several running adaptive applications in two
research projects using planning-based middleware, namely
the QuA1 and MADAM2 projects.

The rest of this paper is organized as follows. Section 2
discusses the context and the scope of adaptation targeted
by our model in the mobile setting. Section 3 proposes and
formalizes the adaptivity model subsumed by the planning
process that selects the best application variant. Section4 is
devoted to validating our model through presenting a run-
ning application. Subsequently, section 5 provides an anal-
ysis of our model with regard to the state of the art before a
conclusion is provided in section 6.

2. Mobility and adaptation scope

In this paper, we assume that the adaptation decisions
are taken with the goal of maximizing the user benefit of
the applications or services. The proposed taxonomy of
adaptation aims at providing a more precise meaning to the
adaptation term through a set of adaptation types that may
potentially be composed to form different adaptations use
cases and scenarios.

• User interface delegation— transferring (some of) the
UI functionality to another device or peripheral. For
example, a driver uses the car computer to establish
hands-free interaction with her handheld device.

• Functional richness— extending the functionality of
an application by providing access to new hardware or
newly discovered services.

• Network availability— selecting between different
network technologies, or switching to and from the of-
fline mode.

• User-Interface presentation— tuning of the corre-
sponding UI device, so that the experience delivered
to the user is optimized.

• User and application session redeployment— rede-
ploying components and/or applications to different
devices to improve efficiency.

1Quality of Service Aware Component Architecture:
http://www.simula.no/departments/networks/projects/QuA

2Mobility and ADaptation enAbling Middleware: http://www.ist-
madam.org/consortium.html

• Data richness— changing the quality of some data.
As an example, when the bandwidth available for a
video conference session varies, changing the video
compression might be required to ensure that the best
quality possible is preserved.

• Security— adjusting the security mode, for example
to compensate for changes in the device’s context and
especially the networking infrastructure.

• Software mode— switching between different modes
of operations that correspond to different software
architecture alternatives in different contexts. It is
assumed that the application developers make these
modes available.

As the purpose of the adaptations is to maintain the high-
est level of user satisfaction, the decisions on which adapta-
tions to perform are taken based on context.

Environmental and computing resourcechanges are the
most important factors considered by the adaptation pro-
cess. Computing resource changes include events such as
fluctuations in their properties (e.g. network bandwidth or
memory capacity), discovery of new resources (e.g. a new
network) or existing resources becoming unavailable. En-
vironmental context changes cover physical factors such as
noise, light, location, etc.

Apparently, the perception of utility depends on user
preferences. Thereforeuser preferencesconstituting the
second important factor must also be considered when mak-
ing adaptation decisions. User preferences are not static but
may evolve either because of changes in user mood or oc-
cupation, or simply because of a change of mind.

Another important adaptation trigger is theavailability
of component implementations. When applications evolve,
new components may be added in order to cover new func-
tionality or improve existing ones. Also, when users move,
new service providers may come into reach and others may
disappear. These changes imply that additional component
implementations, even ones not existing at development
time, may become available while the system is running and
thereby creating opportunities for improvement.

Finally, starting and stopping applicationschanges the
demand for resources which obviously may have a serious
effect on the behaviour of other running applications.

3. Adaptivity model

The objective of our work on adaptivity modelling is to
provide a reusable approach and methodology for construct-
ing adaptive systems based on software components and
composition paradigms. The model provides a methodol-
ogy for the designer (or developer) to express the adaptiv-
ity policies that drive the adaptation control loop. These
policies embody the different parameters that influence

decision−making

affect

affect

&
Adaptivity model

User Preferences

memory, battery, cpu, screen, network, etc.
Computing resources:

Environmental contexts:
location, noise, light, etc.

Contexts

Useraffect

Application component
framework model:

types, properties, parameters

Application

Figure 1. Adaptivity Model: User, Applica-
tions and Contexts

the adaptation, namely the user requirements, the differ-
ent computing and environmental context information and
constraints for a given application. As depicted in figure 1,
the adaptivity model should consider the complex inter re-
lationship between the context elements that affect both the
user (noise, light, etc.) and the application configurations,
and the user needs that also affects the application configu-
ration variants to be chosen during adaptation.

To be able to balance this multitude of concerns, we in-
troduce utility functions that automate the decision-making
process. Utility functions allow the automatic selection of
an appropriate application configuration among all possible
application configurations. Formally, the adaptivity model
AM is defined as

AM = (A, X, Q, T, U)
whereA represents the component framework model of the
adaptive application,X represents context dimensions,Q
represents the set of considered adaptivity QoS dimensions,
T represents user preferences, andU the utility function.

3.1. Application component framework
model

Adaptive applications are designed as component frame-
works with explicit variability. A component framework
specifies roles and interfaces, and regulates the interaction
between componentsplugged intothe framework. These
frameworks are designed and implemented using minimal
reflective and hierarchical component models, such as Frac-
tal [4] and OpenCom [8], enriched with property annota-
tions. The application is then decomposed into a set of com-
posed component types where each type identifies a varia-
tion point. Obviously, this design depends on the applica-
tion to be adapted and depends on a preliminary analysis of
its adaptive behavior before specifying the different compo-
nent types.

Each component type is associated with a set of required
and provided properties. These properties cover varying
aspects of the component behavior. It is distinguished be-
tween properties that are related to resources and those that
are independent from resources consumption. E.g., a com-
ponent that displays graphics could be annotated with a pro-
vided property related to the luminance of the image. The
role of properties that are related to resources is twofold.On
the one hand, they are exploited during the planning in or-
der to select only the configuration variants that can be sat-
isfied with the available amount of resources. On the other
hand, they are used to derive and calculate the adaptivity
QoS needs (reliability, load, etc.) as described in the next
section.

Formally, the application component frameworkA for a
given application is defined as:

A = (G, P)
whereG represents the graph of components that compose
the application (edges correspond to composition depen-
dencies between components):

G = {c1, c2, . . . cn}
andP represents a set of properties:

P = {p1, p2, . . . pm}
The set of propertiesP is the union of all properties pro-
vided by each individual component of the composition.

For each application component framework there are as-
sociatedproperty predictor functions. These functions are
used to predict the property values resulting from the com-
position of component properties. For each propertypi of
P is associated a function that takes as input the set of com-
posed component properties and returns the value ofpi:

pi = ξi(p
c1

i , pc2

i , . . . pcn

i)
where: pck

i represents the propertyi of the componentk
of the composition. For example, the predictor function of
the memory consumption of the application can be realized
as the sum of memory consumption of each selected com-
ponent. It is not an easy task to generalize this function
because it depends on the target component programming
model and application domain. However, models and algo-
rithms such as those presented in [5], may be adopted in our
case as it is also argued in [13].

Finally, regarding parameterized components, the de-
signer definesparameters to propertiesfunctions that sim-
ply associate the different value configurations of the pa-
rametersa1, a2, . . . ar of a parameterized componentk to a
corresponding set of property values.

ηck(a1, a2, . . . ar) = {p1, p2, . . . pm}
The different variants are then considered as different im-
plementation alternatives of the same component type.

3.2. Context dimensions

By context, we refer to any information which relates
to a particular interaction between a user and an applica-
tion. Computing contextrefers to any information which
describes the state of the hosting device, such as battery ca-
pacity and available memory.Physical contextrepresents
any information which describes the physical properties of
the interactions, such as the geographical location, the tem-
perature, and the weather.

Finally, user context informationdescribes the state of
the relevant user, such as whether she is sleeping, driving,
attending a lecture, or even the mood of the user such as
happy and sad. In our model, a context is modelled by
a multi-dimensional space in which each dimension corre-
sponds to an individual context aspect:

X = R ∪ E ∪ I
whereR represents a set of resource properties of the exe-
cution platform,E is a set of environmental properties, and
I represents a set of user context properties.

Under this assumption, points in such a space corre-
spond to context states and a context change is defined as
the transition from one context state to another. Assuming
this abstraction, adaptive systems are designed so that the
most suitable configuration is dynamically selected when-
ever there is a transition from one context point to another.

Within an adaptive system, the above context model is
instantiated and monitored through a context management
component which is tightly related to the decision-making
process. Such a context management system would be re-
sponsible not only for sensing and encoding the context in-
formation, but also to further process it and to filter out
any irrelevant data (i.e. noise). Furthermore, it is impor-
tant that advanced context management mechanisms are in
place with the aim of deriving more refined information,
releasing the adaptation decision-making mechanism from
the burden of ruling out irrelevant context change events.

Typically, the interaction between the adaptation
decision-making component and the context manager is car-
ried through an interface which allows the former to regis-
ter for notifications of very specific events. In this way, one
only needs to detect the critical context changes (i.e. those
which can trigger an adaptation), and register for the corre-
sponding context change events only.

3.3. Adaptivity QoS dimensions

Adaptivity QoS dimensions provide a first stage of map-
ping and an understandable level of adaptation reasoning for
the user. The QoS dimensions represent higher level repre-
sentative properties as perceived by the user. For a given
adaptivity model, the adaptivity QoS dimensionsQ are de-
fined by a vector ofl adaptivity property dimensions:

Q = [q1, q2, . . . ql]
Some of these properties are atomic in the sense that they
are a subset of the different properties of the application
component model (response time, network latency, etc.) or
part of the context model dimensions (e.g. light and noise).
Some others are composite properties in the sense that they
define more high level QoS properties, such as availability,
reliability, operability, etc. that are calculated from lower
level properties. For example, the operability dimension of
a mobile user depends on light and noise sensitivity, hands
occupation, etc. Such dimensions may be quantified using
dimensional utility functions (see section 3.5).

3.4. User preferences

User preferences are a collection of predicates or func-
tions that express user constraints and needs that should
be fulfilled by the adaptation. Generally, user preferences
should be understood as wishes whose chance of satisfac-
tion should be maximized, but which cannot always be
completely fulfilled. Within the adaptivity scope targeted
by this paper, the adaptivity model allows the user to ex-
press at least two kinds of preferences namely inter adap-
tivity QoS dimensions and inter application preferences:
T = (W q, WA)

By considering the targeted set of adaptivity QoS dimen-
sionsQ, the inter adaptivity QoS dimensionspreferences
allows the user to express the level of importance of each
individual adaptivity QoS dimension, as well as tradeoffs
among these dimensions. User satisfaction of a given QoS
dimension is usually expressed as a utility function that
maps the value or the ranges of values of this QoS dimen-
sion to a value that represents the degree of satisfaction of
the user for different QoS values in this dimension. The
tradeoff between the different adaptivity QoS dimensions is
expressed using weights that the user associates relatively
to each dimension. For each adaptivity QoS dimension
from Q respectivelyq1, q2, . . . ql is associated a correspond-
ing weightW q1 , W q2 , . . .W ql . For example, these prefer-
ences allow expressing the tradeoff between the choice of
video quality and the network cost, assuming that networks
with high bandwidth are more expensive than those with
low bandwidth. Richer examples are given in section 4.

The inter applicationspreferences allow the user to ex-
press his preferences among the different running applica-
tions. As in the case of inter adaptivity QoS dimension pref-
erences, the user can simply assign relative weights for each
application. Fort applicationsA1, A2, . . . At are assigned
respectively the following weightsWA1 , WA2 , . . . WAt .

Note that additional preferences models such as those
related to the user choices and constraints upon requested
services may be needed to express inter services user’s re-
quirements. This kind of preferences may be handled earlier

during component discovery and querying before the plan-
ning process and therefore is out of the scope of our model.

3.5. Aggregated utility functions

The aim of the utility function is to express the quality of
the adaptation for a given user. It takes as input adaptivity
QoS dimensions and user preferences and selects the appli-
cation variants that best satisfy the user within the current
context state including the available resources.

Utility functions are in generaln-dimensional functions
taking values from ann-dimensional QoS space from the
vectorQ as argument. In our model, we adopt a simpler ap-
proach, also adopted in [3], which is to define overall utility
as a weighted sum of a set of dimensional utility functions.
A dimensional utility function measures user satisfactionin
one QoS-dimension only. The weights of the overall utility
functions usually correspond to the relative level of impor-
tance of each QoS-dimension as preferred by the user. Util-
ity functions normally map the degree of satisfaction into
a real number, often in a given bound range[a, b], where
a indicates that the corresponding quality of the service is
below the minimum required by the user, whileb indicates
that the corresponding quality is at or above the required
maximum quality level.

The dimensional utility function associated to the QoS
dimensionqi which depends onj properties is:

F(qi) = f(x1, . . . xj) where xi ∈ P ∪ X

Then, the utility function related to a given applicationA
qualified by the Adaptivity QoS dimensionsQ is:

U(A) =

l∑

i=1

W qi .F (qi) (1)

This function is an objective function that should be max-
imized during component variants selections. In the pres-
ence of many applications, this utility functionF is

U =

t∑

i=1

WAi .U(Ai) (2)

In both cases, the amount of resources needed by the se-
lected variants must not exceed the available computing re-
sources:

t∑

i=1

R(Ai) ≤ R (3)

In order to improve the performance of the planning pro-
cess, the utility function evaluation is the ultimate stageof
the decision making process after an early filtering. The ob-
jective of this filtering is to reduce the search space. This
includes:

• Discarding the non recommended component variants
(or services) following the userinter servicespref-
erences. This may for example exclude some ser-
vice providers based on user preferences (e.g language
choices).

• Discarding all the unfeasible application variant com-
positions. This includes component composition con-
straints related to the semantics of the application. For
example, a given encoding component should match
the decoding component within an application variant.
These composition constraints cover also the version-
ing problem.

• Discarding the variants that could not be satisfied with
the amount of available resources. The planner checks
through the needed properties of a given component
variant alternative if its required resource properties
could be fulfilled.

4. Validation

The adaptivity model has been validated through differ-
ent applications uses cases that include commercial prod-
ucts, in the context of the QuA and the MADAM projects.
Roughly, both MADAM and QuA middleware architectures
follow the IBM autonomic element architecture3 applied to
components and component frameworks. This architecture
implements the adaptation control loop in which the con-
text manager senses the different relevant context informa-
tion and notifies the adaptation manager to select the best
composition variant which in turn communicates the new
configuration to the configurator component which is re-
sponsible to derive the reconfiguration tasks that transform
the system to the new adapted state. In the following, we
have selected the QuAPMS(Personal Media Service) case
study. For more different adaptation use cases, we invite the
reader to consult the MADAM deliverable D1.2.

4.1 The Personal Media Service

The Personal Media Service (PMS) can be viewed as an
in-house personal proxy service for the delivery of multi-
media content. Any media content accessible from home
is made by the PMS accessible from anywhere, assuming
Internet connectivity. The PMS adapts the content of me-
dia streams to the capabilities of the client device and the
quality of the network connection, while taking user pref-
erences into account. The PMS application was developed
to support a user watching a live video while on the move.

3An Architectural Blueprint for Autonomic Computing:
http://www.ibm.com/autonomic

Being self-adaptive, the PMS was designed to continuously
monitor variations innetwork availabilityand to adapt itself
in order to maintain the best possible user experience.

With respect todata richness, the PMS may manipu-
late the video quality in a number of different quality di-
mensions before sending the stream to a client device, ex-
ploiting the data richness to accommodate the current band-
width availability. While on the move, a user may choose to
change the device used for accessing media streams. E.g.,
a user may take advantage of a home cinema display to re-
ceive a stream from the PMS in high quality. When leaving
home, the user may prefer the session to continue uninter-
rupted and therefore to hand over the ongoing session to
a mobile device. This illustrates the need foruser inter-
face delegation, where the streaming session is transferred
from a client device to another. Such handover may also re-
quireuser and application session redeployment. The PMS
is designed to support this kind of adaptation, even in the
middle of a session. Data richness is also necessary for sup-
porting client devices ranging from PDAs (tiny displays and
scarce bandwidth resources) to workstations (huge displays
and high speed networks). With respect tosoftware modes,
the PMS switches between different architectures at runtime
in response to contextual changes, while trying to meet the
user requirements.

4.1.1 Adaptivity QoS dimensions

The PMS software takes advantage of multi-dimensional
scalable video streaming [10]. Scalability is realized by a
layering scheme. A base layer provides the lowest quality.
Several enhancement layers, each building on the layers be-
low, allow for fine grained selectivity of the quality received
and the bandwidth needed to carry the video data.

The QoS dimensions supported aretemporal quality, lu-
minance quality, andchrominance quality, denoted byt, y,
andc respectively. The PMS also extends the adaptive be-
havior provided by the scalable video coding scheme by in-
troducing so-calledtime-shiftcapability.

The time-shift capability allows the PMS to cover
the case when the available bandwidth is insufficient for
streaming even the lowest quality acceptable to the user
by pausing until the network becomes usable. During a
pause, the frames are buffered by the PMS in order to re-
sume streaming once the connection is reestablished. Such
buffering introduces delay, atime-shift. However, the delay
may get steadily reduced by streaming the video slightly
faster from the buffer compared to the buffer arrival rate.
Such time scalingresults in somewhat increased playout
rate at the client device, while catching up with the stream
arriving at the PMS.

Users may have different preferences regarding such
time-shiftbehavior. In order to handle the behavior in a user

Table 1. Dimensional weights

User 1 User 2 User 3
W t W y W c W d,r W t W y W c W d,r W t W y W c W d,r

0.6 0.2 0.1 0.1 0.1 0.5 0.3 0.1 0.25 0.25 0.25 0.25

specific way, we introduce two additional QoS dimensions,
namelytemporal displacementand time scale ratio. The
temporal displacement dimension represents the number of
seconds introduced by time-shifting, while the time scale
ratio is the speed of the presented video relative to the speed
of the original stream, denoted byd andr respectively.

Different time-shift configurations are supported, some
having time scale ratio less than1.0 and others greater than
1.0. This allows streaming to continue in situations where
bandwidth availability drops below what is necessary for
live streaming, by using a time scale ratio less than1.0.
Some users may prefer such a slowdown for a shorter pe-
riod of time, instead of a pause.

4.1.2 Utility functions and application variants

In the PMS case, utility is defined as a weighted sum of
dimensional utility functions:

U(t, y, c, d, r) = W tF (t) + W yF (y) + W cF (c) + W d,rF (d, r)

Table 1 illustrates how different users may specify the rel-
ative importance of the different quality dimensions by as-
signing weights to each dimension. E.g., the first user re-
gards temporal quality as most important. The second user
perceives luminance quality most important, while the third
user regards the different dimensions as equally important.

Table 2 illustrates the dimensional utility functions for
the three different users, defined as a set of coefficient val-
ues. Each coefficient specifies the utility value for a quality
layer of a QoS-dimension. Both the first and the second user
accept quality degradation in thetemporal-, luminance-,
andchrominance qualitydimensions. In contrast, the third
user does not accept reduced frame rate and only slightly
reduced luminance and chrominance quality. Note that the
temporal dimension cannot be omitted, while either the lu-
minance or chrominance part of the video signal can. Ta-
ble 3 illustrates the dimensional utility for thetemporal dis-
placementand thetime scale ratiodimensions. As can be
seen from the table, these dimensions are dependent. Users
may specify that they prefer to increase thetime scale ra-
tio if they fall behind the original stream. E.g, the first
user prefers no time scaling in the live streaming case and
speedup in the time-shift case, while the second user does
not accept any slow down or speed up. The third user ac-
cepts a slow down in order to reduce the risk of pauses. If
such a pause is introduced due to insufficient network band-
width, the third user prefers a speed up in order to catch up
with the original stream (and even more so as the temporal
displacement increases).

Table 2. Dimensional utility functions (t, y, c)
User 1 User 2 User 3

Layers F (t) F (y) F (c) F (t) F (y) F (c) F (t) F (y) F (c)
+3 0.9 0.7 0.4 0.4 0.9 0.7 0.9 0.7 0.7
+2 0.8 0.6 0.3 0.3 0.8 0.6 0.0 0.6 0.6
+1 0.7 0.5 0.2 0.2 0.7 0.5 0.0 0.0 0.0
base 0.6 0.4 0.1 0.1 0.6 0.4 0.0 0.0 0.0
null 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Dimensional utility functions (r, d)
User 1 User 2 User 3

d r r r
0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2

0 0.0 1.0 0.0 0.0 1.0 0.0 0.4 1.0 0.0
< 0 − 10] 0.0 0.0 1.0 0.0 1.0 0.0 0.3 0.7 0.9

< 10 − 60] 0.0 0.0 1.0 0.0 1.0 0.0 0.2 0.6 0.9
< 60− 0.0 0.0 1.0 0.0 1.0 0.0 0.1 0.5 1.0

The PMS is realized by means of three different architec-
tures, live-streaming, storage, and time-shifted streaming,
illustrated in Figures 2, 3, and 4.

5. Discussion and related work

By adopting a general architectural approach, we have
proposed a domain independent adaptivity model in the
sense that it copes with different adaptation types presented
in section 2. This is true since we suppose that applications
are entirely designed using component frameworks and the
planning generates the whole application configuration that
fits the required adaptation (performance, disconnections,
. . .). Furthermore, our approach does not disturb the modu-
larity and reusability properties when building adaptive ap-
plications. The scope of reuse here is not only from a func-
tional viewpoint but also from a quality viewpoint. Indeed,
some property predictor functions are application depen-
dent, while others are general and therefore may be reused
into different adaptation models (e.g. resource consump-
tion properties). Component parameter mapping functions,
however, are usually application logic dependent.

With regard to the state of the art, [16] distinguishes
three types of adaptation approaches namelyaction based,
goal basedand utility function based. Since goal based
approaches are generally considered to be less advanced
and are less popular than the other two, we concentrate our
discussion on action based and utility functions based ap-
proaches.

In action-based policies, rules expressed as condition-
action pairs are used to declare the system’s behavior and
establish the actions to be executed in response to context
changes. In most of policy-based middlewares [14, 6], it
is common to use action based approaches to express and
manage the dynamic reconfiguration of adaptive systems.
The management of the set of policies present in the sys-
tem, includes the resolution of conflict and incoherencies
before deriving the actions that adapt the application.

As in our approach, policy-based middlewares tend to

Receiver Sender

TransConfig

Trans

Figure 2. PMS live streaming configuration

Receiver BufferStorer

Figure 3. PMS storage configuration

provide general models that facilitate the development of
adaptive applications following the separation of concerns
principle using software components. However, while the
adopted action based policy is natural and simple to use, it
presents some drawbacks compared to our utility function-
based policy approach [16]. Indeed, this policy does not
consider mapping between different adaptivity QoS dimen-
sions and therefore does not offer any methodology that
allows reasoning on adaptivity dimensions composition.
Consequently, it provides less transparency to the developer
by reasoning in terms of reconfiguration (i.e. actions on
low-level details of system functions) instead of architec-
tural design (i.e. variability-based design).

Utility function-based approaches aim at delivering the
best possible decision rather than just a feasible one as is the
case of the goal-based adaptation. In this respect, [15] and
[13] are the closest approaches to ours in the sense that the
subsumed adaptivity model also considers the component
composition selection problem within a constrained envi-
ronment. The main differences between [15] and our ap-
proach is that the proposed adaptivity model does not con-
sider the composition of component properties when com-
posing components and it also does not consider contextual
information dimensions related to the mobile environment.
Concerning the QoS-oriented composition analysis model
presented in [13], the main difference is that it considers
only a class of adaptation types that are related to embedded
systems scope and therefore it does not take into account
either user needs and preferences or contextual information
dimensions.

While utility functions provide a rich model to express
the adaptation policies, it is generally complex and chal-
lenging to define and compute general utility functions [7].
Rather we believe a system architect should define these
functions for a given application. We think that some results
from the multi-attribute utility theory developed by the AI
research community may be exploited to overcome this dif-
ficulty, such as the usage of languages for composing utility
measures and construction of libraries of standard forms for
utility functions [9].

BufferStorerReceiver Retriever Trans

TransConfigRetrieverConfig

Sender

Figure 4. PMS time-shift configuration

6. Conclusions

This paper has reported on results from two related
projects both addressing adaptation middleware, focusing
on how to express adaptive behavior of an application in
terms of an adaptivity model. This model alleviates the
complex task of developing adaptive applications for a mo-
bile environment by clearly separating the adaptation con-
cern from the application logic, as well as separating differ-
ent aspects of adaptivity, such as adaptation decision mak-
ing, adaptation polices, context dependencies and user pref-
erences. Furthermore, it makes it possible to leave much of
the complexity of adaptivity to generic middleware lever-
aging the reflection principle. The backbone of the model
that binds the different aspects together, is a component ori-
ented view of the application architecture defining compo-
nent types and how components are connected to create the
application.

The proposed approach has been analyzed and validated
experimentally through the development of adaptation mid-
dleware leveraging the adaptation model to perform adap-
tations in response to context changes and several adaptive
applications intended for mobile use. Our experience from
developing and testing these applications indicate that our
model is both viable and usable as a generic approach to
handle adaptivity in mobile environments.

Currently, we are extending our model so that to cover
distribution by considering the placement of applications
components on different available computing nodes as part
of the planning process. Both centralized and decentralized
adaptation alternatives are considered depending on the tar-
get environment properties and the scalability issue.

7 Acknowledgements

The authors would like to thank Eli Gjørven, J. A.
Michaelsen and the involved partners of the QuA and
MADAM projects, and acknowledge the partial funding of
the EU for the MADAM project, no. 4169.

References

[1] M. Alia, G. Horn, F. Eliassen, M. U. Khan, R. Fricke, and
R. Reichle. A component-based planning framework for
adaptive systems. In8th International Symposium on Dis-
tributed Objects and Applications (DOA). Springer Verlag,
2006.

[2] S. L. Amundsen, K. Lund, and F. Eliassen. Utilising alter-
native application configurations in context- and QoS-aware
mobile middleware. In6th International Conference on Dis-
tributed Applications and Interoperable Systems, Bologna,
Italy. Springer Verlag, 2006.

[3] S. Bowers, L. Delcambre, D. Maier, C. Cowan, P. Wagle,
D. McNamee, A.-F. L. Meur, and H. Hinton. Applying adap-
tation spaces to support quality of service and survivability.
In DISCEX ’00, volume 2, pages 271–283, Jan. 2000.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J. B.
Stefani. The fractal component model and its support in java:
Experiences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper., 36(1112):1257–1284, 2006.

[5] J. T. Buck. Scheduling dynamic dataflow graphs with
bounded memory. Technical report, Berkeley, CA, USA,
1993.

[6] L. Carpa, W. Emmerich, and al. Carisma: Context-aware re-
flective middleware system for mobile applications.IEEE
Transactions on Software Engineering, 29(10):929–945,
2003.

[7] S.-F. Chang and A. Vetro. Video Adaptation: Concepts,
Technologies, and Open Issues. InProceedings of the IEEE,
volume 93, pages 148–158, January 2005.

[8] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and
J. Ueyama. A component model for building systems soft-
ware. InProceedings of IASTED Software Engineering and
Applications (SEA’04), Cambridge MA, USA.

[9] J. Doyle and R. H. Thomason. Background to qualitative
decision theory.AI Magazine, 20(2):55–68, 1999.

[10] V. S. W. Eide, F. Eliassen, and J. A. Michaelsen. Exploit-
ing Content-Based Networking for Fine Granularity Multi-
Receiver Video Streaming. In S. Chandra and N. Venkata-
subramanian, editors,Proceedings of the Twelfth Annual
Multimedia Computing and Networking (MMCN ’05), San
Jose, California, USA, volume 5680, pages 155–166, Jan-
uary 2005.

[11] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjørven. Beyond design time: using architecture models
for runtime adaptability.IEEE Software, 2006.

[12] A.-C. Huang and P. Steenkiste. Building services using
service-specific knowledge. Inproceedings of the 14th IEEE
International Symposium on High Performance Distributed
Computing, July 2005, 2006.

[13] H. Ma, I.-L. Yen, J. Zhou, and K. Cooper. Qos analysis for
component-based embedded software: model and method-
ology. J. Syst. Softw., 79(6):859–870, 2006.

[14] P.-G. Raverdy and R. Lea. DART: A distributed adap-
tive run-time. InIn IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed Process-
ing (Middleware ’98), 1998.

[15] V. Poladian, J. Sousa, D. Garlan, and M. Shaw. Dynamic
configuration of resource-aware services. InProceedings of
the 26th International Conference on Software Engineering
(ICSE), 2004.

[16] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Util-
ity functions in autonomic systems. InProceedings of the
First International Conference on Autonomic Computing
(ICAC’04, 2004.

