Chapter 20
Predicting Video Virality on Twitter

Irene Kilanioti and George A. Papadopoulos

20.1 Introduction

The diffusion of video content is fostered by the ease of producing online content via
media services. It mainly happens via ubiquitous Online Social Networks (OSNs),
where social cascades can be observed when users increasingly repost links they
have received from others. Twitter is one of the most popular OSN’s with its core func-
tionality centered around the idea of spreading information by word-of-mouth [16].
It provides mechanisms such as retweet (forwarding other people’s tweets), which
enable users to propagate information across multiple hops in the network.

If we knew beforehand when a social cascade will happen or to what range it will
evolve, we could exploit this knowledge in various ways. For example, in the area
of content delivery infrastructure, we could prefetch content by replicating popular
items and subsequently spare bandwidth. The knowledge of the evolution of social
cascades could lead to reduction schemes for the storage of whole sequences of large
social graphs and the reduction of their processing time.

Towards this direction, in this work we present a model for efficiently calculating
the number of retweets of a video. The number of retweets is associated with a
score depicting the influence of its uploader in the Twitter dataset, the increasing or
decreasing trend the score depicts as well as the distance of content interests among
users of the YouTube and Twitter community.
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20.1.1 Contributions

Our work focuses on video virality over an OSN. Study of social cascades is active
aiming at the prediction of the aggregate popularity of a resource or the individual
behaviour of a user. Few works, however, combine detailed information both of the
OSN and the media service with a small and easily extracted feature set. Our study
proposes a prediction model that performs better than methods like support vec-
tor machines (SVM), stochastic gradient descent (SGD) and K-Nearest Neighbours
(KNN), among others, and we, furthermore, proceed to incorporate our prediction
model into a mechanism for content delivery with substantial improvement for the
user experience.

The remainder of this paper is organized as follows. Section 20.2 reviews previous
related work. Section20.3 formally describes the addressed problem. Section20.4
provides an outline of the methodology, followed by the preparation of the employed
datasets. Our main findings are presented in Sect. 20.5, where also a validation is con-
ducted. Section 20.6 investigates the incorporation of the proposed model into a con-
tent delivery mechanism. Section20.7 concludes the work and discusses directions
for future work.

20.2 Related Work

The field of predicting social virality is active [2, 5, 6, 13, 15, 17, 22], etc. Many
studies focus on the prediction of the amount of aggregate activities (e.g. aggregate
daily hashtag use [14]), whereas others focus either on the prediction of user-level
behaviour, like retransmission of a specific tweet/URL [7, 15] or on the prediction
of growth of the cascade size [5].

Although our work focuses solely on video sharing, we identify the following
methods for virality prediction in general. Feature-based methods and time series
analysis methods. They are both based on the empirical observation of social cas-
cades. Our approach falls into the first category.

Feature-based methods are based on content, temporal and other features, and
the learning algorithms schemes they use are based on simple regression analysis
[5, 18], regression trees [2], content-based methods [19], binary classification
[8, 9, 12] etc. They do not focus, though, on the underlying network infrastruc-
ture, and often encounter difficulty in extracting all the necessary features due to the
large volume of accommodated graphs.

Time-series analysis works [20, 21], on the other hand, argue that patterns of a
resource’s growth of popularity are indicative for its future retransmissions.

Finally, we should mention that one branch of virality research is based on study of
the evolution of cascades during a specific time-window [12, 14, 19], whereas there
exist works that examine the cascades continuously over their entire duration [5].
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20.3 Problem Description

We consider a directed graph G () = (V (¢), E(t)) representing a social network that
evolves through time, consisting at time ¢ of V vertices and E edges. Edges between
the nodes of the graph denote friendship in case of a social network (e.g. for Twitter
B is a follower of A if there is an edge between B and A pointing at A).

Our problem is stated as follows (Table 20.1). We want to predict the number of
retransmits of a video link by auser v € V after u € V has transmitted the link. User
v is a follower of u.

We express this number, intuitively, as a combination of the following features:
the Score(u, t) of node u, dScore(u, t)/dt of node u, and content distance between
the content interests of the involved users both in the OSN and the media service. The
validity of the predictors is analyzed in this paper. The intuition for their selection
is based on the notion, that, the higher influence score a node depicts, the more
influence it is expected to exert on other nodes of the social graph. Moreover, the
dScore/dt(u, t) expresses the popularity rise/fall of the node, and, lastly, the content
distance associates the resource with the user context.

Denoting the output, the predicted output and the total number of predicted values

by A2y, m and M, we aim to find the values «, B, Y, so that:

d Score(u, t)

Ay, = a xScore(u,t) +p XT + Y xcontent_dist (20.1)
and
1y
7 2 (A — Auny)? (20.2)
i=1
is minimum.

Table 20.1 Notation overview

G()=(V(), E(1)) OSN graph G at time ¢ of V vertices and E
edges

Aoy Number of actions where u influenced v

A/u; Predicted output

M Total number of predicted values

o, B, Y Coefficients of feature set variables

U Vector of YouTube interests of user u

\%4 Vector of Twitter interests of user v

Features set

Score(u,t) Score of node u at time ¢

dScore = dScore(u,t)/dt Derivative of Score of node u at time ¢

content_dist Content distance




422 I. Kilanioti and G.A. Papadopoulos

20.4 Proposed Methodology

20.4.1 Dataset

Interests of users were analyzed in [1] against directory information from http://
wefollow.com, a website listing Twitter users for different topics, including Sports,
Movies, News & Politics, Finance, Comedy, Science, Non-profits, Film, Sci-Fi/
Fantasy, Gaming, People, Travel, Autos, Music, Entertainment, Education, Howto,
Pets, and Shows.

The activity of Twitter users was quantified, and a variety of features were
extracted, such as the number of their tweets, the fraction of tweets that were retweets,
the fraction of tweets containing URLSs, etc. Aggregated features of YouTube videos
shared by a user in the dataset include the average view count, the median inter-event
time between video upload and sharing, etc.

A sharing event in the dataset is defined as a tweet containing a valid YouTube
video ID (with a category, Freebase topic and timestamp). We augmented the pro-
vided dataset with Tweet content information about the 15 million video sharing
events included in the dataset, as well as information about the followers of the 87
K Twitter users.

20.4.2 User Score Calculation

A user score is calculated combining the number n of its followers, reduced by a
factor of 1000 to compensate the wide range of followers in the dataset from zero
to more than a million, a quantity b catering for users with reciprocal followership,
calculated by taking an average of number of a user’s followers to the number of users
he follows, as well as the effect e of a user’s tweet, measured by multiplying average
number of retweets with number of user’s tweets and normalizing it to correspond
to the total number of tweets. The distribution of these combined metrics depicts
large variance and we have applied a logarithmic transformation in order to avoid
the uneven leverage of extreme values.

Score = log (n + ((l—go) X n) + e) (20.3)

20.4.3 Content Distance

The content distance content_dist expresses a measure of similarity of user’s u
YouTube and his follower’s v Twitter interests. Content distance is calculated using


http://wefollow.com
http://wefollow.com
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cosine similarity between vectors of user’s # YouTube and user’s v Twitter video
interests, as follows:

Uu-v
UV

content_dist =1 —

(20.4)

20.5 Experimental Evaluation

By combining user ids, followership information, user features and tweet context we
build a measure of A,,,, expressing the number of times a user’s u tweet is retweeted
by his followers v. We aim to associate the independent variables of the features set
(X dataframe) with the series depicting A2, (y) (Table20.2).

20.5.1 Selection of Predictors

The regression summary of Table 20.3 shows that coefficients of all predictors are
significant (P > [¢| is significantly less than 0.05). Therefore, Score, dScore and
content_dist can be considered as good predictors. We note that ¢ here refers to t —
statistic, denoting the quotient of the coefficient of dependent variable divided by
coefficient’s standard error. P refers to the P — value, a standard statistical method
for testing an hypothesis. P — value < 0.05 means we can reject the hypothesis
that the coefficient of a predictor is zero, in other words the examined coefficient is
significant (Table 20.4).

Table 20.2 Regression results (i)

Dep. variable Aoy R-squared 0.396

Model OLS Adj. R-squared 0.396

Method Least squares F-statistic 1.570e+04

Prob (F-statistic) 0.00 Log-likelihood —8576.9

No. observations 71952 AIC 1.716e+04

Df residuals 71949 BIC 1.719e+04

Df model 3 Covariance type nonrobust
Table 20.3 Regression results (ii)

Coef Std err t P > |t 95 % Conf. int.

Score 5.79e-05 3.78e-06 15.300 0.000 5.05e-05 6.53e-05
dScore 4.36e-05 4.51e-06 9.667 0.000 3.48e-05 5.25e-05
con_dist 0.389 0.002 213.060 0.000 0.386 0.393
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Table 20.4 Regression results (iii)
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Omnibus 2091.840 Durbin-Watson 1.723
Prob(Omnibus) 0.000 Jarque-Bera (JB) 2323.421
Skew 0.408 Prob(JB) 0.00
Kurtosis 3.333 Cond. No. 746

The selection of the above predictors comes as a result of comparing the P —
values of various metrics in the dataset and the combination of those with the lowest
P — value. The metrics included the number of distinct users retweeted, fraction of
the users tweets that were retweeted, average number of friends of friends, average
number of followers of friends, number of YouTube videos shared, the time the
account was created, the number of views of a video, etc., among many others.

20.5.2 Effect of Outliers

The regression plots for each predictor in Fig.20.1 show the effect of outliers on
the estimated regression coefficient. Regression line is pulled out of its optimal
tracjectory due to the existent outliers. The detailed regression plots for individual
predictors (Score, dScore and content_dist) appear in Figs.20.2, 20.3, and 20.4
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Fig. 20.5 Fitted values of A, versus Score

respectively. The fitted (predicted) values of A, and the prediction confidence for
each independent variable appear in Figs.20.5, 20.6, and 20.7. We observe that fitted
values are quite close to the real values of A,», with the exception of the outliers. This
suggests that removal of outliers would yield a better estimate, since it is obvious
that the plot is skewed due to their presence.
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A rough estimate of detecting outliers can be based on the quantile distributions
of each independent variable in Table 20.5. Observing Table 20.5 with an overview
of data distribution we surmise that we could take values of Score and d Score only
upto 10 and 5, respectively. The quantiles appearing on the table are calculated when
data is rearranged in ascending order and divided into four equal sized parts. Thus,
interpreting the second quantile we notice that 50 % of Score values are less than
2.562232. In the table, we notice that we have huge maximum values for Score and
dScore, but 75 % of the data are below 6.902750 and 2.308805, respectively. Thus,
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Table 20.5 Outliers thresholds
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Score dScore Content_dist

Count 71952.000000 71952.000000 71952.000000
Mean 21.227703 15.880803 0.459111

Std 349.102908 292.727717 0.315837

Min 0.000000 -1610.253490 0.000000

25 % 0.787060 0.000140 0.172534

50% 2.562232 0.526050 0.415394

75 % 6.902750 2.308805 0.724986

Max 43262.678131 30235.027960 1.000000
Table 20.6 Regression results without outliers (i)

Dep. variable Ay R-squared 0.629

Model OLS Adj. R-squared 0.629

Method Least Squares F-statistic 3.072e+04

Prob (F-statistic) 0.00 Log-Likelihood 13947

No. Observations 54473 AIC —2.789e+04

Df Residuals 54470 BIC —2.786e+04
Df Model 3 Covariance Type nonrobust
Table 20.7 Regression results without outliers (ii)

Coef Std err t P > |t 95 % Conf.Int.

Score 0.1460 0.001 145.244 0.000 0.144 0.148
dScore 0.0200 0.001 25.819 0.000 0.018 0.022
con_dist 0.1656 0.003 65.690 0.000 0.161 0.171
Table 20.8 Regression results without outliers (iii)

Omnibus 10848.216 Durbin-Watson 1.966
Prob(Omnibus) 0.000 Jarque-Bera (JB) 22428.486
Skew 1.183 Prob (JB) 0.00

Kurtosis 5.070 Cond. No. 5.19

we select 10 and 5 as values to take most of the data and exclude data points with
extremely large out of general range values (outliers).

Results of regression model on data obtained after removing outlier data points
appear in Tables 20.6, 20.7, and 20.8. The results show considerable improvement
with respect to regression with presence of outliers (Tables20.2, 20.3 and 20.4).
Also, Durbin—Watson statistic close to 2 confirms normality assumption of residu-



20 Predicting Video Virality on Twitter 429

als, verifying the normality of error distribution, one of the assumptions of linear
regression.

Figure 20.10 plots reinforce the argument that after removing outliers we get a
better fit of regression line on each independent variable. Namely, the removal of
outliers leads to better alignment of the path of regression line to the optimal path.

20.5.3 Tenfold Cross-Validation

We performed a tenfold cross validation on the dataset, fitting the regressor to 90 %
of the data and validating it on the rest 10 % for the prediction of A,,, dependent
variable from Score, dScore and content — dist independent variables. Predictive
modeling was conducted after removing outliers from the data. The results of the
predictive modeling using linear regression show that we achieve a root mean squared
error of 0.1873 (across all folds), which means that our prediction varies by 0.1873
from the real values of A,,,. This shows a considerable improvement in prediction
error compared to modeling with original data, where a root mean squared error
of 0.2728 across all folds was achieved. Plots in both cases appearing in Figs.20.8
and 20.9 depict how close our predictions are to the real values of the dependent
variable (Fig.20.10).

20.5.4 Classification and Comparison with Other Models

We predict a user popularity as follows. If A, crosses a threshold, e.g. 30 %, i.e.,
if more than 30 % tweets of user u are retweeted by others users, then user # can be
considered as a popular user.

Fig. 20.8 tenfold 1.0
cross-validation of A, =Yy
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Fig. 20.9 tenfold cross-validation of A, without outliers
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Fig. 20.10 Regression plots for each independent variable

Classification was conducted initially with three different methods: Linear
Regression, i.e., the Predictive Model we present in this study, Random Forest and
Naive Bayes methods. Area Under the Curve (AUC) is a score that computes aver-
age precision (AP) from prediction scores. This average precision score corresponds
to the area under the precision-recall curve and the higher AUC represents better
performance. Plots in Fig.20.11 correspond to computed precision-recall pairs for
different probability thresholds and the AUC score computes the area under these
curves. Best performance is achieved by Linear Regression (0.699), followed by
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Fig. 20.11 Comparison with other models

Naive Bayes (AUC:0.608) and Random Forest (AUC:0.608). Complementary meth-
ods tested were support vector machines (SVM), stochastic gradient descent (SGD)
and K-Nearest Neighbours (KNN).

SVM is a supervised learning model with associated learning algorithm that ana-
lyzes data used for classification and regression analysis. Given a set of training
examples, each marked to belong to one of the two categories (popular/non-popular
user), the SVM training algorithm builds a model that assigns new examples into
each of the categories, acting as a non-probabilistic binary linear classifier.

Next classification model was stochastic gradient descent (SGD), a gradient
descent optimization method for minimizing an objective function written as a sum of
differentiable functions. It encompasses a popular algorithm for training a wide range
of models in machine learning, including linear support vector machines, logistic
regression and graphical models. Its use for training artificial networks is motivated
by the high cost of running backpropagation algorithm over the full training set, as
SGD overcomes this cost and still leads to fast convergence.

The last classifier implemented here was K-Nearest Neighbours (KNN), a method
classifying objects based on closest training examples in the feature space. The input
consists of positive, typically small, integer —15 in our case—of closest training
examples in the feature space. In KNN classification, the outputis a class membership
(popular/non-popular user), whereas an object is classified by a majority vote of its
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neighbours, with the object being assigned to the class most common among its
K-Nearest Neighbours.

After plotting the results of computed precision-recall pairs for various probability
thresholds we observe that best performance is noticed in the case of our Predictive
Model, followed by Naive Bayes (AUC:0.608), Random Forest (AUC:0.608), SVM
(AUC:0.608), KNN (AUC:0.601), and, lastly, SGD (AUC:0.580).

20.6 Incorporation into Content Delivery Schemes

Content Distribution Networks (CDNs) aim at improving download of large data
volumes with high availability and performance. Content generated by online media
services circulates and is consumed over OSNs (with more than 400 tweets per
minute including a YouTube video link [3] being published per minute). This content
largely contributes to internet traffic growth [4]. Consequently, CDN users can benefit
from an incorporated mechanism of social-awareness over the CDN infrastructure.
In[10, 11] Kilanioti and Papadopoulos introduce a dynamic mechanism of preactive
copying of content to an existing validated CDN simulation tool and propose various
efficient copying policies based on prediction of demand on OSNs.

Rather than pushing data to all surrogates, they proactively distribute it only to
social connections of the user likely to consume it. The content is copied only under
certain conditions (content with high viewership within the media service, copied
to geographically close timezones of the geo-diversed system used where the user
has mutual social connections of high influence impact). This contributes to smaller
response times for the content to be consumed (for the users) and lower bandwidth
costs (for the OSN provider). Herein, we incorporate the proposed Predictive Model
in the suggested policy [11] and prove that it further improves its performance.

The proposed algorithm encompasses an algorithm for each new request arriving
in the CDN and an algorithm for each new object in the surrogate server (Table 20.9).
Internally, the module communicates with the module processing the requests and
each addressed server separately (Fig.20.12).

e For Every New Request in the CDN
Prinicipally we check whether specific time has passed after the start of cascade
and, only in the case that the cascade has not ended, define to what extent the object
will be copied. We introduce the time_threshold that roughly expresses the average
cascade duration. The main idea is to check whether specific time has passed after
the start of the cascade, and then define to what extent the object will be copied.
Initially, we check whether it is the first appearance of the object (Fig. 20.13). The
variable o.timestamp depicts the timestamp of the last appearance of the object in
arequest and helps in calculating the timer related to the duration of the cascade. If
it is the first appearance of the object, the timer for the object cascade is initialized
and o.timestamp takes the value of the timestamp of the request. If the cascade is
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Table 20.9 Content delivery verification—notation overview

G@) =V, E®)

Graph representing the social network

Vi) ={Vi@,..., Va@®)}

Nodes representing the social network users

E@) ={Eu@®),.... Ein(), ..., Ex(D)}

Edges representing the social network
connections, where E;; stands for friendship
between i and j

R=Ari,ra, ..., r¢} Regions set

N ={ni,ny,...,ny} The surrogate servers set. Every surrogate
server belongs to a region r;

Ci,ieN Capacity of surrogate server i in bytes

0 ={01,02,...,04} Objects set (videos), denoting the objects users
can ask for and share

Si,0i € O Size of object i in bytes

IT; Popularity of objecti,i € O

g =1{t,Vy,ox},<x <w, 1<y <n

Request i consists of a timestamp, the id of the
user that asked for the object, and the object id

P = {PIZ, P13, ..., in}

User posts in the social network, where p;;
denotes that node i has shared object j in the
social network

ptsi, ptej, 1 <i <7t

Peak time start and peak time end for each
region in secs

0=1{q1,92,---,9¢}

Object requests from page containing the
media objects, where g; denotes a request for
an object of set O

Ohits Qrotal

Number of requests served from surrogate
servers of the region of the user/total number of
requests

X, Y €R

Closest timezones with mutual followers/with
highest centrality metric values

Prefetching Unit

/

Request Handler

. v

Fig. 20.12 The social-aware CDN mechanism

Predictive Model )

urrogate serveg
urrogate server 1

Servicing
Unit
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. if o.timestamp == 0 then

o.timer =0,

o.timestamp = request_timestamp;

: else if o.timestamp = 0 then
o.timer = o.timer + (request _timestamp - o.timestamp);
o.timestamp = request_timestamp;

end if

. if o.timer > time_threshold then

o.timer = 0;

10:  o.timestamp = 0;

11: else if o.timer < time_threshold and user.Score > Score_threshold then

12:  copy object o to surrogate that serves user’s V;(¢) timezone;

13: for all user V,(¢) that follows user V;(¢) do

AR

N

14: find surrogate server n; that serves ,,(7)’s timezone;
15: copy object o to n;;
16:  end for

17: else if o.timer < time_threshold then
18:  copy object o to surrogates n; that Subpolicy decides;
19: end if

Fig. 20.13 Algorithm for every new request (timestamp, V;(t), o) in the CDN

1:

2:

not yet complete (its timer has not surpassed a threshold), we check the importance
of the user applying its Score.

For users with Score surpassing a threshold (average value: 1.2943 in the dataset),
we copy the object to all surrogate servers of the user’s timezone and to the sur-
rogate servers serving the timezones of all user’s followers. Otherwise, selec-
tive copying includes only the surrogates that the subpolicy decides. Subpolicy
(Fig.20.14) checks the X closest timezones where a user has mutual friends and
out of them, the Y with the highest value of the combined feature set (Predictive
Model(Score, dScore, content_dist)) as an average. Copying is performed to
the surrogate servers that serve the Y timezones of highest combined feature set
value, according to the coefficients derived from our analysis. We note here that
variations of the Subpolicy include the replacement of the timezones depicting the
highest average values of Predictive Model(Score, dScore, content_dist), with
those being derived from the application of Naive Bayes, Random Forest, SVM,
SGD, and KNN schemes.

find X timezones where (user V;(¢) has mutual followers and they are closer to user’s V;(z)
timezone);

find the ¥ C X that (belong to X and depict the highest average values of Predictive
Model(Score, dScore, content _dist));

3: for all timezones that belong to ¥ do
4:
5
6

find surrogate server #; that serves timezone;
copy object o to n;;

: end for

Fig. 20.14 Subpolicy
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1: if o.size + current _cache_size < total_cache_size then

2 copy object o to cache of surrogate ny;

3: else if o.size + current _cache_size > total _cache_size then

4 while o.size + current_cache_size > total cache_size do

5: for all object o’ in current_cache do

6 if (current _timestamp - o' .timestamp) + o’ .timer > time_threshold then
7 copy o' in CandidatelList;

8

: end if
9: if CandidateList .size>0 and CandidateList .size |= total _cache_size then
10: find o’ that o’ .timestamp is maximum and delete it;
11: else if CandidateList .size==0 or CandidateList .size==total _cache_size then
12: use LRU to delete any object o € O;
13: end if
14: end for

15: end while
16:  put object o to cache of surrogate ry;
17: end if

Fig. 20.15 Algorithm for every new object o in the surrogate server ny

e For Every New Object in the Surrogate Server

Surrogate servers keep replicas of the web objects on behalf of content providers.
In the case that the new object does not fit in the surrogate server’s cache, we
define the time_threshold as the parameter for the duration that an object remains
cached. We check for items that have remained cached for a period longer than
the time_threshold and we delete those with the largest timestamp in the cascade.
In case there exist no such objects or all objects have the same timestamp, we
prune the least recently used items first. To ensure that least recently used items
are discarded, the algorithm keeps track of their usage (Fig.20.15).

The nodes representing the surrogate servers, the origin server, and the users
requesting the object (Fig.20.16) in the simulated network topology are analyzed
in detail in [10]. To simulate our policy and place the servers in a real geographical
position, we used the geographical distribution of the Limelight network.

For the smooth operation of the simulator the number of surrogate servers was
reduced by a ratio of 10%, to ultimately include 423 servers. Depending on the
closer distance between the surrogate region defined by Limelight and each of the
timezones defined by Twitter (20 Limelight regions, 142 Twitter timezones), we
decided where the requests from each timezone will be redirected. The population of
each timezone was also taken into consideration. The INET generator [4] allowed us
to create an AS-level representation of the network topology. Topology coordinates
were converted to geographical coordinates with the NetGeo tool from CAIDA, a tool
that maps IP addresses and Autonomous System (AS) coordinates to geographical
coordinates, and surrogate servers were assigned to topology nodes. After grouping
users per timezone (due to the limitations the large dataset imposes), each group of
users was placed in a topology node. We placed the user groups in the nodes closer to
those comprising the servers that serve the respective timezone requests, contributing
this way to a realistic network depiction.

The heuristics applied in [11] are based on the observation that users are more
influenced by geographically close friends, and moreover by mutual followers, as
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We define the regions with surrogate servers (Limelight)

We define the number of surrogate servers in every region (Limelight — 10% reduction)

We assign surrogate servers for serving request in every time zone

We convert the topology coordinates into geographical coordinates (NetGeo)

We assign the surrogate servers to nodes in the topology

Fig. 20.16 Methodology followed

well as on the short duration of social cascades (about 80% of the cascades end
within 24 h, with 40 % of them ending in less than 3 h). In our prefetching algorithm,
we introduce varying time thresholds for the cascade effect and the time an object
remains in cache. Values given in the time threshold variable include thresholds
covering the entire percentage of requests.

We examine Mean Response Time (MRT), a client-side metric that indicates
how fast a CDN client is satisfied, for the most representative case of time threshold
covering all the examined requests of our dataset. The trade-off between the reduction
of the response time and the cost of copying in servers is expressed for all schemes
used (Linear Regression, Naive Bayes, Random Forest, SVM, SGD, KNN) with an
MRT decrease as the timezones increase and a point after which the MRT starts to
increase again (Fig.20.17). For the scheme augmented with our Predictive Model,
namely the Linear Regression, this shift occurs with approximately 6 timezones out
of the 10 used (for a fixed number of closest timezones with mutual followers). After
this point the slight increase in the MRT is attributed to the delay for copying content
to surrogate servers. The cost for every copy is related to the number of hops among
the client asking for it and the server where copying is likely to take place. We observe
that Linear Regression outperforms all the other schemes, depicting MRTs smaller
than their respective. We note here that timezones with highest average values for each
scheme, that Subpolicy defines, are precalculated, in order to reduce computational
burden in the simulations.
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Fig. 20.17 Effect of timezones used as ¥ on Mean Response Time for various schemes (X = 10
closest timezones with mutual followers)

20.7 Conclusions

We come to the conclusion that video sharings over an OSN platform can be pre-
dicted with a small set of features extracted from both the platform and the media
service. Despite the focused scope of this work and the limitations of its conduction
solely with Twitter and YouTube data, the scale of the medium allows us to make
assumptions for generalization across different OSNs and microblog platforms. We
plan to extensively analyze this generalization in the future. Future extensions also
include experimentation with variations of content distance interpretation among
users, with various score assignment formulas, as well as subsequent verification in
the realm of content delivery. We hope that our findings will broaden the view on the
spread of information in web today.
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