Component-Based Development of Dynamic Workflow
Systems Using the Coordination Paradigm

George A. Papadopoulos and George Fakas

Department of Computer Science
University of Cyprus
75 Kallipoleos Street, P.O. Box 20537, CY-1678, Nicosia, CYPRUS
{george, fakas}@cs.ucy.ac.cy

Abstract. We argue for the need to use control-based, event-driven and state-
defined coordination models and associated languages in modelling and
automating business processes (workflows). We propose a two-level
architecture of a hierarchical workflow management system modelled and
developed in such a state-of-the-art coordination language. The main advantage
of a hierarchical, coordination-based architecture is that individual workflow
entities can be easily replaced with others, without disrupting the overall
workflow process. Each individual workflow entity exhibits a certain degree of
flexibility and autonomy. This makes possible the construction of workflow
systems that bring further improvements to process automation and dynamic
management, such as dynamic (re-) allocation of activities to actors, reusability
of coordination (collaboration) patterns, etc. A case study is presented to
demonstrate the use of our approach.

Keywords: Component-Based Systems; Coordination Models and Languages;
Workflow Systems; Dynamic (Re-) Configurable Systems; Collaborative
Environments.

1 Introduction

Workflow management is concerned with the coordination of the work undertaken by
a number of parties. It is usually applied in situations where processes are carried out
by many people, possibly distributed over different locations. A workflow application
automates the sequence of actions and activities used to run the processes. Such an
ensemble of cooperative distributed business processes requires coordination among a
set of heterogeneous, asynchronous, and distributed activities according to given
specifications.

Therefore, it is not surprising that a number of researchers have proposed
workflow models, where the notion of coordination plays a central role in the
functionality of their frameworks. Typical examples are DCWPL ([7]), a coordination
language for collaborative applications, ML-DEWS ([8]), a modelling language to
support dynamic evolution within workflow systems, Endeavors ([10]), a workflow
support system for exceptions and dynamic evolution, OPENflow ([20]), a CORBA-
based workflow environment, and the framework proposed in [11]. A notable

V. Malyshkin (Ed.): PaCT 2003, LNCS 2763, pp. 304-315, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Component-Based Development of Dynamic Workflow Systems 305

common denominator in all these proposals is the fact that they take seriously issues
of dynamic evolution and reconfiguration. Interestingly, another notable common
denominator is the fact that the line of research they pursue seems to be quite
independent from similar research pursued in Component-Based Software
Engineering (CBSE), particularly within the subfield of coordination. It is precisely
this relationship between coordination in CBSE and workflow systems that we
explore in this paper.

More to the point, we have seen a proliferation of the so-called coordination
models and associated programming languages ([17]). Coordination programming
provides a new perspective in constructing software programs. Instead of developing
a software program from scratch, the coordination model allows the gluing together of
existing components. Whereas in ordinary programming languages a programmer
describes individual computing components, in a coordination language the
programmer describes interrelationships between collaborating but otherwise
independent components. These components may even be written in different
programming languages or run on heterogeneous architectures.

Coordination as a science of its own whose role goes beyond software
composition, has also been proposed ([11, 12]). However, using the notion of
coordination models and languages in modelling workflows, the so-called
coordination language-based approach to groupware construction ([6]), is a rather
recent area of research. Using such a coordination model and language has some clear
advantages, i.e. work can be decomposed into smaller steps which can be assigned to
and performed by various people and tools, execution of steps can be coordinated
(e.g. in time), and coordination patterns that have proved successful for some specific
scenario can be reused in other similar situations. Furthermore, this approach offers
inherent support for reuse, encapsulation and openness, distribution and
heterogeneous execution. Finally, the coordination model offers a concrete modelling
framework coupled with a real language in which we can effectively compose
executable specifications of our coordination patterns.

The rest of the paper is organised as follows. In the next section we present a
specific coordination model and associated language, namely IWIM and Manifold.
This is followed by the presentation of a hierarchical workflow coordination
architecture, where we show how this can be used as the main paradigm for modelling
workflow activities. We then validate the proposed architecture by using a case study.
We end with some conclusions and description of related and further work.

2 The Coordination Model IWIM and the Manifold Language

In this section we describe a framework for modelling workflows in the coordination
language Manifold (and its underlying coordination model IWIM). As will be
explained in the next section, Manifold plays the role of the execution environment
for the workflow model presented there. The IWIM model ([3]) belongs to the class
of the so-called control-oriented or event-driven coordination models. It features a
hierarchy of processes, playing the role of either computational processes or
coordinator processes, the former group performing collectively some computational

306 G.A. Papadopoulos and G. Fakas

activity in a manner prescribed by the latter group. Both types of processes are treated
by the model as black boxes, without any knowledge as to the constituent parts of
each process or what precisely it does. Processes communicate by means of well-
defined input-output interfaces connected together by means of streams.

Manifold is a direct realisation of IWIM. In Manifold there exist two different
types of entities: managers (or coordinators) and workers. A manager is responsible
for setting up and taking care of the communication needs of the group of worker
processes it controls (non-exclusively). A worker on the other hand is completely
unaware of who (if anyone) needs the results it computes or from where it itself
receives the data to process. Manifold possess the following characteristics:

* Processes. A process is a black box with well defined ports of connection
throughwhich it exchanges units of information with the rest of the world.

* Ports. These are named openings in the boundary walls of a process through which
units of information are exchanged using standard I/O type primitives.

» Streams. These are the means by which interconnections between the ports of
processes are realised.

* FEvents. Events are broadcast by their sources in the environment, yielding event
occurrences.

Activity in a Manifold configuration is event driven. A coordinator process waits to
observe an occurrence of some specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain state and perform some actions. These
actions typically consist of setting up or breaking off connections of ports and
channels. It then remains in that state until it observes the occurrence of some other
event which causes the preemption of the current state in favour of a new one
corresponding to that event. Once an event has been raised, its source generally
continues with its activities, while the event occurrence propagates through the
environment independently and is observed (if at all) by the other processes according
to each observer’s own sense of priorities.

More information on IWIM and Manifold can be found in [3, 5, 15, 16, 17] and
another paper by the first author in this proceedings volume.

3 A Hierarchical Workflow Coordination Architecture

The motivation behind our approach lies in the observation made in [10] that
»traditional approaches to handling [problems related to the dynamic evolution of
workflow systems] have fallen short, providing little support for change, particularly
once the process has begun execution®. Intelligent process management is a key
requirement for workflow tools. This is catered for in our approach as agents of the
underlying coordination model are able to manage themselves. In particular,
workflow processes are modelled and developed in a number of predefined
interrelated entities which together form a meta-model i.e. process, activity, role, and
actor. We propose a hierarchical architecture where the individual workflow entities
can be easily replaced with others, without disrupting the overall workflow process.

Component-Based Development of Dynamic Workflow Systems 307

Each individual workflow entity exhibits a certain degree of flexibility and autonomy.
This makes possible the construction of workflow systems that bring further
improvements in process automation and dynamic management, for example dynamic
(re-) allocation of activities to actors. In that respect, we advocate the approach
proposed in [8] which involves a two-level hierarchy: the upper level is the
specification environment which serves to define procedures and activities, whereas
the lower level is the execution environment which assists in coordinating and
performing those procedures and activities. In this section we describe the top level
(itself consisting of a number of sublayers), whereas in section 4 we show how it can
be mapped to the lower (execution) level, realized by the coordination language
Manifold. Figure 1 below visualises the layered co-ordination workflow architecture.
Agents of each layer utilise (trigger) agents from the layer below. The hierarchical
nature of the architecture allows flexible workflow systems to be designed in a
modular way.

Layer 1 (highest) Coordinates Layer 4 (lowest)

>

signs work to Allocates work to

Process > Activity Role > Actor

Fig. 1. A Hierarchical Workflow Management Architecture

3.1 Process

A process is a collection of coordinated activities that have explicit and/or implicit
relationships among themselves in support of a specific process objective. A process
is responsible for coordinating the execution of activities. Its main functionality
therefore is to manage, assist, monitor and route the workflow. Process objects are
able to manage the execution of the workflow:

* Via alerting using deadlines. A deadline is assigned for every activity. If the
activity is not completed before the deadline, the process is responsible to send an
alert message to the activity.

* By prioritising. Every activity is characterised by a priority level relative to other
activities. This knowledge is used by the Process object for more efficient task
allocation and scheduling.

* By real-time monitoring. The process keeps track of parameters related to its
execution such as Total Running Time, Current Activity and its status (Waiting
Time, Deadline, Role and Actor Selected), etc. This information is useful to trace
any bottlenecks in the process.

* By estimating the time and resources required for execution. The process is
capable of estimating the total duration of the execution and the resources required.
It achieves this by interrogating the activity objects ,which in turn may query role
objects and so on.

The following table summarizes the events that trigger a process and its states.

308 G.A. Papadopoulos and G. Fakas

Process
Event State

Start process Triggers the process activities. Process is
responsible for coordinating activities and the
sequence and rules of activities execution.

Process administrator Process reports current state; i.e. Total Running
examines process status Time, Current Activity and its status (Waiting
Time, Deadline, Role and Actor Selected), etc.

3.2 Activity

An activity is a single step within a process definition that contributes to the
achievement of the objective. It represents the smallest grain of abstracted work that
can be defined within the workflow management process. Every activity is related to
a role (which is going to perform the work) and to in/out data. An activity instance
monitors the execution of the work over time by maintaining information about the
activity such as: deadline, priority, estimated waiting time or execution time. The
following table summarizes the events that trigger the activities and their states.

Activity
Event State
Process triggers activity Receives in in-tray activity input and then assigns

the work to the relevant role; then waits until activity
deadline expires or executed.

Actor executes activity Finished, put output in out-tray.
Activity deadline expires Every activity is associated with a deadline; when
this expires the activity asks the corresponding role to

examine the actors workload and take the appropriate
actions.

3.3 Role

It is important to define roles independently of the actors who carry out the activities,
as this enhances the flexibility of the system. Roles assign activities to actors. If an
actor is unavailable (e.g. an employee is ill) then somebody else is chosen to carry out
the activity. Role objects have the following features and responsibilities:

Allocation of activities to actors. It is the role’s responsibility to allocate activities to
actors. Its aim is to make an optimized allocation of work which is dynamic by taking
into account parameters such as:

* The actor’s level of experience. Actors have different levels of experience
(novice, expert or guru) in performing an activity. Typically, an activity will be
allocated to actors with the highest level of expertise available.

Component-Based Development of Dynamic Workflow Systems 309

e The actor’s workload. Actors with a heavy workload are less preferable when
activities are allocated by roles.

* Allocation by role-base reference. In the case of process loops, roles can allocate
iterated activities either to the same actor or to a different one.

Report Actors Overload. The role examines the actors’ workload and if none of the
actors are able to execute the activity before its deadline because they are overloaded,
then the role notifies the activity.

If the role discovers an actor that will not be able to execute any of the activities
allocated to it before their deadlines then the role might try to reallocate the work. For
reallocation of work, the same criteria are used (i.e. taking into account the actor’s
level of experience, workload, use of role-based references, etc.).

The following table summarizes the events that trigger the roles and their states.

Role
Event State
Activity assigns work Role checks its actors’ workloads. If none of the actors is
or deadline expires able to execute the current activity before its deadline
because they are overloaded then the role deals with
overload.
Role assigns work to Receives in in-tray activity input and then assigns the
actor work (and associated input) to an actor according to some

criteria: actor’s level of experience, actor’s workload and
role-based reference, and then waits until work is executed or
reassigned to another actor.
Deadline expires and The role is checking up whether it is preferable to reassign
actors are not overloaded the activity to a different actor less busy to perform it or just
alert the user responsible for it.

Role reassigns work to The role reallocates those activities to other actors.

a different actor Reallocation of work considers the same criteria as initial
allocation of work does. When finished, put output in out-
tray.

Role alerts actor The role alerts the actor responsible for performing the
activity.
Actors are overloaded Deal with actors’ overload by either extending the

activity’s deadline, allocating more actors to the process, or
changing the activities’ priorities

3.4 Actor

An actor can be either a person or piece of machinery (software application, etc.).
Actors can perform and are responsible for activities. Actor workflow objects have
the capability to schedule their activities. Activity scheduling is done using policies
such as the earliest due job is done first, the shortest job is done first, etc.

The following table summarizes the events that trigger the actors and their states.

310 G.A. Papadopoulos and G. Fakas

Actor
Event State
Role assigns a work Receives work in in-tray
Actor schedules his work The way the actor schedules his work i.e.: FIFO,
Shorter First and etc.
Executes work Executes work and puts output in out-tray
Reports overload The actor can manually report overload and then the

corresponding role will try to solve it

4 A Case Study

The expenses claim process has been used to validate our approach. It is a very
common administrative process where an employee is claiming his/her expenses back
from the company. The employee fills in a claim form and then sends it to an
authorized person for approval. An authorized person could be the head of the
department’s secretary. In case where the amount claimed is over 1,000 pounds, it
must be approved by the head of the department. If the authorized person does not
approve the employee’s claim, then (s)he sends a rejection message back to the
employee; otherwise (s)he sends a message to the company’s cashier office to issue a
cheque. Finally, the cashier issues and sends a cheque to the employee.

The following table shows how the above scenario is modelled in IWIM. The
Expenses Claim Process is a manager entity and the rest are worker ones.

Expenses Claim Workflow Process

Activity Role Actor
Claim (employee) Employee Actor AP1
Approve (Authorized Person) Authorized Person Actor HP1
Approve (Head of Dept) Head of Dept Actor C1
Pay (Cashiers) Cashiers Actor C2

The following coding shows the process logic that contains the process activities
and is activated when the process starts. We use a user-friendly pseudo-Manifold
coding which is more readable and dispenses us with the need to provide a detailed
description of how we program in this language, something we would rather avoid
due to lack of space. This pseudo-code however is directly translatable to the
language used by the Manifold compiler. Every time a user wishes to start a claim
process, an instance of the process and its activities are constructed. When the user
finishes with the putClaim() activity then the next activity will be called.
Assuming that the claim is less than 1000 pounds then the approve () activity by
the authorized person is called. Then authorisedPerson role is assigning the
work to an actor. The role, before assigning the work, examines all actors workload
(i.e. checks whether any actor can perform the activity before its deadline). If all the
actors of a role are overloaded and are not able to perform extra work, then the role
has to deal with the actors overload (DealWithActorsOverload state) and solve

Component-Based Development of Dynamic Workflow Systems 311

the overload problem either by extending the activity’s deadline or by allocating more
workers to the process; otherwise, the role assigns the work to an actor. The activity is
in a waiting state until either the actor assigned the work performs it or the activity’s
deadline expires. If the activity deadline expires before the actor performs it, then the
role examines again whether to reassign the work to a different actor or just send an
alert message.

Eventually, when the activity is executed, the process proceeds to the next activity,
i.e. cashier issues Cheque () (if authorised person approves payment). Again, all
these activity actions are taken dynamically to manage the process execution.

Manifold Process (port in, port out).

Manifold Activity (port in,port in, port out, port
out) .

Manifold Role (port in, port in, port out, port out).
Manifold Actors (port in, port out).

Manifold ClaimForm, ApproveForm, PaySlip.

Manifold main
{
event processMonitoring, assignActivityToRole,
deadlineExpires.
auto process ClaimExpenses is Process.
auto process startClaim, ApproveAuthPer,
ApproveHeadDep, Pay is Activity.
auto process Employee, AuthorisedPerson,
HeadOfDept, Cashiers is Role.
auto process ActorAPl, ActorHPl, ActorCl, ActorC2 is
Actor.

begin: (ClaimExpenses -> ApproveHeadDep ->
AuthorisedPerson
-> ActorAPl, ClaimExpenses -> Pay ->
Role -> (-> ActorCl, ->
ActorC2).
deadlineExpires.ActorCl: ClaimExpenses ->
ApproveHeadDep -> AuthorisedPerson ->
Pay -> Role -> (-> ActorCl, -> ActorC2).
}

Manifold Process (port in empty form, port out
completed form)
{
begin: //contains the process definition
(raise startClaim.AssignActivityToRole.
IF ClaimForm.ClaimAmount < 1000
raise Approve.AssignActivityToRole
ELSE raise Approve.AssignActivityToRole.
IF ApprovalForm.Approoved==YES raise

312 G.A. Papadopoulos and G. Fakas

Pay.AssignActivityToRole.
)

ProcessMonitoring ().

}

Manifold Activity (port in empty form, competed form
port out empty form, competed form)

{
AssignActivityToRole:
(raise role.AssignActivityToActor) .
deadlineExpires:
(IF AreActorsOverloaded()=YES raise
role.DealWithActorsOverload
ELSE IF ReassignYN==TRUE raise
role.ReassignActivityToActor
ELSE raise AlertActor.
)
ActivityExecuted: // activity finished
{ out in outtray the output form }
}
Manifold Role (port in empty form, competed form
port out empty form, competed form)
{
assignActivityToActor:
(raise ExamineActorWorkload
IF NOT Overloaded raise AssignActivityToActor
ELSE raise DealWithActorOverload
waits.
)
ReassignActivityToActor:
(raise reAssignActivityToAcotr
waits.
)
ExamineRoleActorsWorkload: ()
DealWithActorsOverload:
(extend deadline
allocate more workers
change activity priorities
)
AlertActor: ()
ShallIReassign: ()
}
We end this section by visualizing the framework in Visifold ([5]), Manifold’s
visual interface. Figure 2 below shows how the Process coordinates the allocation
of activities to actors through Roles and how dynamic reallocation of work occurs

when ActorCl is not able to perform allocated work on time.

Component-Based Development of Dynamic Workflow Systems 313

< Activity:
l Approve ‘

¥ Activity:
&S Approve S

g

Cashier

&5 Actor > Actor: 5 {_ > Actor: J <> Actor o,
Actor AP1 Actor C1 Actor C2 ‘Actor AP1

Fig. 2. Hierarchical Allocation and Reallocation of work to actors

5 Discussion; Related and Further Work; Conclusions

In a recent paper, Andrade and Fiadeiro ([2]) argue that Coordination Technologies,
as these are understood in the field of Component-Based Software Engineering and
Parallel/Distributed Programming, have a contribution to make, in terms of concepts
and techniques, to the development of agile Information Systems. The first author of
this paper has also argued along the same lines in [15]. Here we elaborate further on
the model described in [16] by presenting a two-level hierarchical workflow
coordination model. In the process, we have argued for the need to use control-based,
event-driven and state-defined coordination programming to model and develop
dynamic workflow management systems. We have explained its benefits compared
with other approaches that have been used so far, and illustrated its capabilities by
means of a specific, if rather simple scenario.

In the short space of a conference paper it would be impossible to describe in detail
all the characteristics of our model or compare them in detail with other related
approaches. For instance, we have said nothing about examining types of values
transmitted via streams (sometimes it may be desirable to know of the data’s
structure, if not content), etc. This and other issues can be adequately addressed by
our model. In particular, our model supports almost all of the functionalities that an
adaptive workflow system must exhibit, as those are defined in [10]. More to the
point, it supports run-time dynamism, dynamic (re-) configuration, logical
decomposition, reusuability, and event monitoring.

Over the past few years a number of coordination models and languages have been
developed such as Linear Objects (LO), TAO, Gamma and the Chemical Abstract
Machine ([17]). However, the first such model, which still remains the most popular
one, is Linda ([1]). Although Linda is indeed a successful coordination model, when it
is evaluated from the point of view of acting as a framework for modelling human and
other activities in information systems, it has some potentially serious deficiencies.
The most important deficiency is that it is data-driven i.e. the state of some agent is
defined in terms of what kind of data it posts to or retrieves from the Tuple Space.
However, there are many cases where we are not interested in the data itself that is
being handled; indeed, for security reasons we may not want to allow the examination
of data but only coordinate the workflow processes. The issue of security is also
relevant in that the medium of communication between processes (the Tuple Space) is
an open forum where anyone can post or retrieve tuples. Thus, there is the possibility

314 G.A. Papadopoulos and G. Fakas

of a process either accidentally or deliberately forging, intercepting or stealing

information. This has led to the development of models that provide the required

security, at the unavoidable cost of increasing the complexity of the model ([14]).
Other related to Linda models are Sonia ([4]) which features the notion of Agora

([13]), LAURA ([18]) where the shared space (referred to as service-space) is used by

agents to post to or retrieve from forms, and finally Ariadne ([9]) where the shared

workspace is used to hold tree-shaped data and access to them is performed by means
of record templates.

Our model on the other hand has some clear advantages over the traditional Linda
approach and related models:

e Every worker agent is only concerned with getting workload from its input port(s),
performing the required work for which it is responsible, and putting the outcome
to its out port(s). Such a worker has no need (or way!) to know the environment in
which operates and can therefore be substituted with another one without affecting
the operation of the rest of co-workers involved.

e Every manager agent is only concerned with making sure that the output produced
by some worker agents are sent to some other worker agents that require it. The
manager has no need (or way!) of knowing the exact data being transmitted
between the worker processes. Thus, security is preserved.

e All entities comprising an activity are treated homogeneously. This makes the
model very flexible; for instance, new agents can come and go dynamically, some
processes may be devices while others may be software programs or humans, etc.
The workflow apparatus of our model is not concerned with the nature of the
processes being coordinated, only with their input-output inter-dependencies.

We are currently developing a full version of the model as described in this paper,
particularly suited to modelling and coordinating activities in distributed information
systems, using both a visual ([5]) and textual representation.

References

1. S. Ahuja, N. Carriero, D. Gelernter: Linda and Friends, IEEE Computer 19 (8) (Aug.
1986), 26-34

2. L. F. Andrade, J. L. Fiadeiro: Coordination Technologies for Managing Information
System Evolution, CAiSE 2001, Interlaken, Switzerland, LNCS, Vol. 2068. Springer
Verlag (4-8 June 2001), 374-387

3. F. Arbab: The IWIM Model for Coordination of Concurrent Activities, First International
Conference on Coordination Models, Languages and Applications (Coordination’96),
Cesena, Italy, LNCS Vol. 1061. Springer Verlag (15-17 April 1996), 34-56

4. M. Banville: Sonia: an Adaptation of Linda for Coordination of Activities in
Organizations, First International Conference on Coordination Models, Languages and
Applications (Coordination’96), Cesena, Italy, LNCS, Vol. 1061, Springer Verlag (15-17
April, 1996), 57-74

5. P.Bouvry, F. Arbab: Visifold: A Visual Environment for a Coordination Language, First
International Conference on Coordination Models, Languages and Applications
(Coordination’96), Cesena, Italy, LNCS Vol. 1061. Springer Verlag (15-17 April, 1996),
403-406

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Component-Based Development of Dynamic Workflow Systems 315

N. Carriero, D. Gelernter, S. Hupfer: Collaborative Applications Experience with the
Bauhaus Coordination Language, 30th Hawaii International Conference on Systems
Sciences (HICSS-30), Mauni, Hawaii, IEEE Press (7-10 Jan., 1997), 310-319

M. Cortes: A Coordination Language for Building Collaborative Applications, Computer
Supported Cooperative Work, Kluwer Academic Publishers 9 (2000), 5-31

C. Ellis, K. KeddarA: ML-DEWS: Modeling Language to Support Dynamic Evolution
Within Workflow Systems, Computer Supported Cooperative Work, Kluwer Academic
Publishers 9 (2000), 293-333

G. Florijn, T. Besamusca, D. Greefhorst: Ariadne and HOPLa: Flexible Coordination of
Collaborative Processes, First International Conference on Coordination Models,
Languages and Applications (Coordination’96), Cesena, Italy, LNCS Vol. 1061, Springer
Verlag (15-17 April, 1996), 197-214

P. T. Kammer, G. A. Bolcer, R. N. Taylor, A. S. Hitomi and M. Bergman: Techniques for
Supporting Dynamic and Adaptive Workflow, Computer Supported Cooperative Work,
Kluwer Academic Publishers 9 (2000), 269-292

M. Klein: Challenges and Directions for Coordination Science, Second International
Conference on the Design of Cooperative Systems, Juan-les-Pins, France (12-14 June
1996), 705-722

T. W. Malone, K. Crowston: The Interdisciplinary Study of Coordination, ACM
Computing Surveys 26 (1994), 87-119

M. Marchini, M. Melgarejo: Agora: Groupware Metaphors in OO Concurrent
Programming, Object-Based Models and Languages for Concurrent Systems, Bologna,
Italy, LNCS Vol. 924. Springer Verlag (5 July, 1994)

N. H. Minsky, J. Leichter: Law-Governed Linda as a Coordination Model, Object-Based
Models and Languages for Concurrent Systems, Bologna, Italy, LNCS Vol. 924. Springer
Verlag (5 July, 1994), 125-145

G. A. Papadopoulos, F. Arbab: Control-Based Coordination of Human and Other
Activities in Cooperative Information Systems, Second International Conference on
Coordination Models and Languages, Berlin, Germany, LNCS Vol. 1282. Springer
Verlag (1-3 Sept., 1997), 422-425

G. A. Papadopoulos, F. Arbab: Modelling Activities in Information Systems Using the
Coordination Language MANIFOLD, Thirteenth ACM Symposium on Applied
Computing (SAC’98), Atlanta, Georgia, U.S.A., ACM Press (27 Feb.—1 March, 1998),
185-193

G. A. Papadopoulos, F. Arbab: Coordination Models and Languages, Advances in
Computers, Vol. 46. Marvin V. Zelkowitz (ed.), Academic Press (August 1998), 329400
R. Tolksdorf: Coordinating Services in Open Distributed Systems With LAURA, First
International Conference on Coordination Models, Languages and Applications
(Coordination’96), Cesena, Italy, LNCS Vol. 1061. Springer Verlag (15-17 April, 1996),
386402

B. C. Warboys, R. M. Greenwood, P. Kawalek: Case for an Explicit Coordination Layer
in Modern Business Information Systems Architectures, IEE Proceedings Software, Vol.
146 (3) (June 1999), 160-166

S. M. Wheater, S. K. Shrivastava, F. Ranno: OPENflow: A CORBA Based Transactional
Workflow System, Advances in Distributed Systems, LNCS Vol. 1752. Springer Verlag
(2000), 354-374

	1 Introduction
	2 The Coordination Model IWIM and the Manifold Language
	3 A Hierarchical Workflow Coordination Architecture
	3.1 Process
	3.2 Activity
	3.3 Role
	3.4 Actor
	4 A Case Study
	5 Discussion; Related and Further Work; Conclusions
	References

