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Abstract

The generalised computational model of term graph rewriting systems (TGRSs) has been used extensively as an implementation vehicle
for a number of, often divergent, programming paradigms ranging from the traditional functional programming ones to the (concurrent) logic
programming ones and various amalgamations of them, to (concurrent) object-oriented ones. More recently, the relationship between TGRSs
and process calculi (such as the w-calculus) as well as linear logic has also been explored. In this paper we describe our experience in using
the intermediate compiler target language Dactl based on TGRSs for mapping a variety of programming paradigms of the aforementiones!
types onto it. In particular, we concentrate on some of the issues that we feel have played an important role in our work (in, say, affecting
performance, etc.), the aim being to derive a list of features that we feel every language model which intends to be used as an intermediate
representation between (concurrent) high-level languages and (parallel) computer architectures must have. © 1997 Elsevier Science B.V.,

Keywords: Compiler target languages; Intermediate representations; Parallel and distributed computing; Language embeddings; Term graph

rewriting systems

1. Introduction

The concept of deriving a generalised computational
model able to act as an interface between a variety of
high-level languages and computer architectures is as old
as (postwar) computer science itself and it is best envisaged
by Steel’s paper on the mythical Universal Computer
Language (UNCOL) [40]; see Fig. 1.

There are a number of advantages in having such an
intermediate computational model, namely: (i) reduction
of the number of implementations for M languages and
N machine architectures from M X N 1o M + N; (ii)
decoupling of language development from architecture
development; (iii) exploitation of the intermediate formal-
ism to act as a two-way interface between different
languages and architectures, thus effectively offering multi-
linguality and (loose) multistyle machine integration; (iv)
from the software engineering point of view, different
research and development groups can concentrate at their
level of expertise (language design, architecture design,
compilation techniques, etc.) without the need to be aware
of and familiar with the technical details of the work done at
other levels not directly related to theirs.
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Furthermore, from the language design point of view,
there are some more specific advantages, namely: (i) easy
and fast modification of prototype implementations of some
language onto a (high-level) intermediate formalism and
ability to effectively assess the usefulness and correct design
of new language features or extensions; (ii) use of the inter-
mediate formalism as a common basis for comparing dif-
ferent language models but also as a means of enhancing
one language with features of others (amalgamation of
languages).

The introduction of such an intermediate level of compu-
tation is not, of course, without its problems and dilemmas,
some of them being some overhead incurred from the addi-
tional level of code mapping, whether the intermediate
formalism should be closer to the languages’ level or the
machine level, whether it should constitute a concrete
language or a set of ‘add on’ primitives, and, finally, how
to resolve successfully the issue of temporal vs. spatial
segregation [29].

In designing such an intermediate formalism some of the
things that must be considered are the following: (i) infor-
mation necessary to generate efficient code for a wide
variety of machines must be represented in or be accessible
to the intermediate formalism while the latter should exploit
this information to generate ‘reasonably efficient’ code
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(meaning that the benefits gained from using the inter-
mediate formalism outweigh the overhead incurred in the
extra implementation level introduced); (ii) the intermediate
formalism should be based on some abstract model of com-
putation which is expressive enough to accommodate the
needs of developing software.

From this rather general discussion on intermediate form-
alisms, it becomes immediately apparent that if a particular
formalism is to be successful in playing the role of UNCOL,
it must concentrate on specific language and architecture
families. Some well-known intermediate formalisms and
associated abstract computational models that have been
proposed are Linda’s tuple space [1], Compositional
Programming [10], the Program Composition Notation
[14] and the model by Bisiani and Forin (8] but, in a way,
also the A-calculus, the SKI (and other) combinators and the
highly successful Warren Abstract Machine (WAM) [42]. A
collection of such intermediate formalisms (which is nowa-
days rather out of date) can be found in [11] and [32].

In this paper we will describe our experiences in using
such an intermediate formalism and we will derive a set of
features which we feel are essential and must be supported
by this formalism. The computational model in question
which acts as an interface between languages and machine
architectures is that of term graph rewriting systems [6] and,
more to the point, its associated compiler target language
Dactl [17-19]. The rest of the paper is organised as follows:
the next section introduces briefly TGRSs, the language
Dactl and its role as an intermediate formalism and the
following one discusses those features of the language that
we judge to have played an important role in the success of
Dactl as an intermediate compiler target language; the paper
ends with some conclusions and discussion on related work.

2. TGRSs and the compiler target language Dactl

Term graph rewriting systems [6,39], and in general
rewriting systems [22], offer a powerful computational
model for declarative languages. It can be shown that a
functional program can be mapped onto an equivalent cano-
nical rewriting system. However, logic programs can also be
seen as sets of equivalence preserving rewrite rules. It
follows that a language based on rewriting theory has the
potential of being an intermediate language for a number of
declarative languages. A number of languages based on
TGRSs have been designed and implemented but here we
will concentrate on one of them, namely Dactl [17-19],
which we believe is the most flexible of all. Dactl was
essentially the target language of the Flagship project
[27], part of the Alvey [37] and EDS [13] programmes,
the purpose of which was the design and implementation
of a parallel computing system able to support different
declarative (logic, functional and object-oriented) program-
ming paradigms.

As an illustrative example we can view the evaluation of
the following expression as rewriting of terms or trees,
which are restricted forms of graphs:

2+ (3 %4 - 2 +12 - 14
+ + 14

2 * 2 12
3 4

The usefulness of graph representation is revealed if we
have a call to a function square which is evaluated lazily:

square (2+3) - (243) * (243) — 5+5 - 25

SQHIIE <:>
2 / \3 2 / \3

* 25

In the Dactl representation of these computations, even
primitive arithmetic operations are represented as functions.
A possible encoding of the above functions is the following:

MODULE ExprEx;

IMPORTS Arithmetic;

RULE

INITIAL = #IAdd[ 2 *IMul[ 341 ],
ENDMODULE ExprEx;

MODULE SquareEx;

IMPORTS Arithmetic;

SYMBOL REWRITABLE Square;
RULE

Square[ n | = #IMul[ *n n [;
INITIAL = *Square[ [Add[ 23] J;
ENDMODULE SquareEx;
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The symbols *, # and are used to control the order of
evaluation as explained in detail below. For now it suffices
to say that the symbol * is a spark indicating the next
expression to be reduced. It is necessary to make the control
of evaluation explicit in Dactl since the notation will be used
to model computations requiring a range of different
evaluation strategies.

The sequence of evaluation in these cases is as follows
(where INITIAL denotes the first rule in a Dactl program
to be rewritten):

*INITIAL — #IAdd[ 2 *IMul[34]] —
#IAdd[ 2 *12] — *IAdd[212] — *14

*INITIAL — *Squaref IAdd[23]] —
#Mul[ *n:JIAdd[ 23 1n] — #IMul[ *n:5n] —
*[Mul[ n:5n] — *25

Note the use of the identifier n to indicate the sharing of
the sub-expression TAdd[2 3].

In Dactl it is possible to program with state where
variables involved in a computation can have mutable
values. The language SML, for instance, uses the concept
of reference values which capture the concept in a way
which can be modelled by graph rewriting. A function
ref creates reference values with an initial value; the
operator : = is a function which assigns a new value to a
reference and returns the unit value. The operator ! is used
for dereferencing.

We model reference values as nodes whose contents can
change during evaluation. Consider the expression:

let val r = ref (4)
mr.=6;Ir+2
end

Sequencing of evaluation ensures that r holds the value 6
by the time the value is dereferenced:

+

7\

6 2

AN AN

ref ref

| |
£

4

The corresponding Dactl code for this program could be
the following:

MODULE RefEx;

IMPORTS Arithmetic;

SYMBOL CREATABLE Unit;
SYMBOL OVERWRITABLE Ref;
SYMBOL REWRITABLE Assign;
LetRes;

RULE

INITIAL = #Seq[ *Assign[r 6] LetRes[ r ] ], r: Ref[4];
LetRes[r] = #IAdd[ *DeRef[r] 2 ;

Assign[r:Ref[o] n] = *Unit, r: = Ref[n];
DeRef[Ref[v]] = *v;

DeRef; Seq;

Seq[ Unit b] = *b;
ENDMODULE RefEx;

The novel feature is in the rule for assignment. The
Assign node is rewritten to a unit value, but at the same
time, the first argument, a Ref node, is overwritten with a
new Ref node with different contents. Other parts of the
graph with pointers to this node will now find a different
value if they apply the dereferencing operation to the node.
LetRes represents the computation required after the first
statement of the sequence has completed.

Variables in conventional languages correspond to the
references of SML considered above. Variables in logic
programming languages have a very different meaning,
but similar graph rewriting techniques may be used.

Also, Dactl control markings are used to synchronise com-
putation. If a goal can neither succeed nor fail until a variable
has been instantiated, the computation suspends waiting for
the variable to be given a value by output unification in some
other goal. When this takes place, the original computation is
reactivated and will be able to make further progress.

The example below, the unavoidabie append program,
serves to illustrate some of the techniques used in modelling a
concurrent logic program [38] as a set of graph rewriting rules:

append([HIT1,Y,Z) :- true | Z = [HIZ1],
append(T,Y,Z1).

append([], Y,Z) :- true | Z =Y.

?- append(P,Q,Ans), P = {1], Q = [2].

The corresponding Dactl code for this program could be
the following:

MODULE Append;

SYMBOL CREATABLE Ans; Cons; Nil;
SYMBOL REWRITABLE Append;
SYMBOL OVERWRITABLE Var;

RULE

INITIAL = Ans[ans:Var], *Append[p q ans],
p:Cons[1 Nil], q:Cons[2 Nil].

Append[Cons[h t] y z:Var] — z: = *Cons[h zz:Var],
*Append[t y zz];

Append[Nil y z:Var] — z: = *y;
Append[l:Var y z] — #Append[l y z];
ENDMODULE Append;

There follows a graphical representation of the execution
behaviour of the above program:
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In general, a Dactl rule is of the form

Pattern — Contractum, X = y,....X{i = ¥,

KiZy.. BiZ;



514 G.A. Papadopoulos/Microprocessors and Microsystems 20 (1997) 511-520

where after matching the Pat tern of the rule with a piece
of the graph representing the current state of the computa-
tion, the Contractum is used to add new pieces of graph
to the existing one and the redirections x;: = vy, ..., X;:
= vy are used to redirect a number of arcs (where the arc
pointing to the root of the graph being matched is usually
also involved) to point to other nodes (some of which will
usually be part of the new ones introduced in the Con-
tractum); the last part of the rule pu,z,...p52; specifies
the state of some nodes (idle, active or suspended).

The Contractumis also a Dactl graph where however the
definitions for node identifiers that appear in the Pattern
need not be repeated. So, for example, the following rule

r:F[x:(ANY-INT) y:(CHAR + STRING) v1:REWRI-
TABLE v2:REWRITABLE]

— ans:True, d1:1, d2:2, r: = *ans, vl: = *dl, v2: =
*d2;

will match that part of a graph which is rooted at a (rewri-
table) symbol F with four descendants where the first
matches anything (ANY) but an integer, the second either
a character or a string and the rest overwritable symbols.
Upon selection, the rule will build in the contractum the new
nodes ans, d1 and d2 with patterns True, 1 and 2 respec-
tively; finally, the redirections part of the rule will redirect
the root F to ans and the sub-root nodes v1 and v2 to 1 and
2 respectively. The last two non-root redirections model
effectively assignment. A number of syntactic abbreviations
can be applied which lead to the following shorter presenta-
tion of the above rule

F[x:(ANY-INT) y:(CHAR + STRING) v1:REWRITA-
BLE v2:REWRITABLE] = *True, vl: = *1, v2: = *2;

where = is used for root overwriting and node identifiers
are explicitly mentioned only when the need arises. Finally,
note that all root or sub-root overwritings involved in a rule
reduction are done atomically. So in the above rule the root
rewriting of F and the sub-root rewritings of v1 and v2 will
all be performed as an atomic action.

The way computation evolves is dictated not only by the
patterns specified in a rule system but also by the control
markings associated with the nodes and arcs of a graph. In
particular, * denotes an active node which can be rewritten
and #” denotes a node waiting for n notifications. Notifica-
tions are sent along arcs bearing the notification marking.
Computation then proceeds by arbitrarily selecting an active
node t in the execution graph and attempting to find a rule
that matches at t. If such a rule does not exist (as, for
instance, in the case where t is a constructor) notification
takes place: the active marking is removed from t and a
‘notification’ is sent up along each -marked in-arc of t.
When this notification arrives at its (necessarily) #"-marked
source node p, the mark is removed from the arc, and the n
in the #" marking of p is decremented. Eventually, #° is
replaced by *, so suspended nodes wake when all their
subcomputations have notified.

Now suppose the rule indeed matches at active node t.
Then the RHS of that rule specifies the new markings that
will be added to the graph or any old ones that will be
removed. In the example above, for instance, the new
nodes ans, d1 and A2 are activated. Since no rules exist
for their patterns (True, 1 and 2 are ‘values’), when their
reduction is attempted, it will cause the notification of any
node bearing the # symbol and its immediate activation.
This mechanism provides the basis for allowing a number
of processes to be coordinated with each other during their,
possibly concurrent, execution.

It should be apparent by now that TGRSs are a powerful
generalised computational model able to accommodate the
needs of a number of languages, often with divergent opera-
tional semantics, such as lazy functional languages [24,28],
‘eager’ concurrent logic languages [20,33], or combinations
of them [21]. Furthermore, recent studies have shown that
TGRSs are able to act as a means for implementing
languages based on computational models such as Linear
Logic [5], w-calculus [3,16] and OOP [34]. In addition, the
implementation of TGRSs themselves on a variety of (data-
flow and graph rewriting) machines such as Alice [12],
Flagship [27,43], and GRIP [35] has been extensively
studied. Fig. 2 is a modification of the previous one for
Dactl. For more information on TGRSs the reader is advised
to consult [36,39] whereas for Dactl appropriate references
are [17-19].

In the following section we discuss those features of Dactl
which we feel have played an important role in the success
of the language to act as an interface between (concurrent)
declarative languages and parallel machine architectures.
Bearing in mind the wide applicability of the language we
feel that these features are general enough and so funda-
mental that all similar intermediate compiler target

CP family HOPE ML 00 lang

GHC/F TRS

Linear

GHC Logic

PARLOG T calculus

Dactl Computational Model
(Term Graph Rewriting Systems)

|

FLAGSHIP ALICE GRIP

Sequential
Interpreter

Fig. 2. Dact]l as UNCOL.
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languages should possess them. We should probably stress
the point here that the assessments made in this paper are
based on a personal perspective and may not necessarily be
shared by the designers of the language or anyone else that
participated in the Flagship project.

3. Essential features of a CTL for parallel machines
3.1. Language embedding

The notion of language embedding [38] is essential in
understanding the importance of the points raised in this
section. In comparing two languages L1 and L2 we say
that L1 is more expressive or more general or stronger
than L2 if: (i) L1 supports certain programming techniques
in a ‘better’ way than L2 does and (ii) L2 can be ‘naturally’
embedded in L1.

Since all languages are trivially Turing equivalent we
should be aware of the fact that notions such as ‘better’ or
‘naturally’ are essentially ad hoc. However, regarding the
second point, we can say that a language L2 can be naturally
embedded into another language L1 if the main features of
L2 can be supported directly by L1 and there is no need to
‘program them around’. In other words, an implementation
of L2 in L1 should be able to absorb L2’s main features
rather than reify them. A typical example is pattern match-
ing; consider the following pieces of code written in some
functional language and its translation to Dactl:

F—lang . p(H : T,g(X))— q(H, T, X).
Dactl : P[Cons[h t] G[x]]= *Q[h t x];

We note that in the equivalent Dactl rule the pattern match-
ing is completely absorbed by Dactl’s computational model.
However, the same cannot also be said about the following
case where the initial rule is a Prolog-type clause:

Prolog : p(HITD) : — a(H,T).

Dactl: P[Cons[h t]]= *Q[h t];

Plv : var] = *Q[h t],
v : = *Conslh : Var t : Var];

Since Dactl supports only pattern matching (one-way uni-
fication) and not full (two-way) unification, there is a need
to work around the case where P is called with an uninstan-
tiated argument (a variable).

So, what are precisely the essential features that a com-
piler target language should possess such that the mapping
of some user-level language onto the CTL is natural and
most of the language’s functionality is absorbed by that of
the CTL (rather than being reified)? Our experience from
implementing a number of languages (logic, functional and
object-oriented) in Dactl indicates that a CTL should: (i)
have operational semantics flexible enough to accommodate

in a genuine (as opposed to simulated by ‘programming
around’) way the, often divergent, needs of various pro-
gramming models (e.g. eager vs. lazy evaluation); (ii) be
fine grain enough so that the CTL code produced when some
language is mapped onto it can be ‘fine tuned’ to be ren-
dered more efficient; (iii) be flexible as to what constitutes a
‘variable’ since the concept of a variable differs signifi-
cantly from one language to another; (iv) support some
degree of atomicity so that one can reason about the
CTL’s behaviour at run-time by mapping concurrent
activities to serialisable actions, but not to an extent that
implementing the CTL would demand unacceptably high
locking overhead.

In the rest of this section we show that Dactl supports
these features, we discuss cases where such support could
possibly improve and we illustrate how an implementation
of some language onto Dactl can benefit from exploiting the
availability of these features to derive more efficient Dactl
code.

3.2. Flexible operational semantics

The operational semantics of Dactl which we described in
the previous section are fine grain and rather universal.
Thus, they allow the direct modelling of more concrete
operational semantics as we find them in user-level
languages. The following definition in Dactl of an append
function illustrates the above points:

Append[Nil y] = *yl
Append{Conslh t] y] = #Cons[h *Append[t y]];

Note that the second rule is applicable when the first
argument of Append is a Cons, in which case Append
is overwritten to a new Cons node bearing the suspension
marking # whose second argument is a recursive call to
Append. This call is activated using *, and the notification
marking on the argument causes the Cons node to be
reactivated when the result has been calculated. Hence,
the original caller of Append will be notified of completion
only when the argument to Cons has been fully evaluated.
The above code could be generated if the original program
was written in, say, a functional language with strict opera-
tional semantics. Nevertheless, the second rule can also be
written instead as follows:

Append{Cons[h t] y] = *Cons[h *Append[t y]];

This rule specifies an eager evaluation strategy where the
partial result of the reduction of Append is made available
to its caller while the recursive call is executed in parallel.
Furthermore, it is also possible to generate the following
encoding:

Append[Cons[h t] y] = *Cons{h Append(t y1];

This rule corresponds to a lazy version; the recursive
Append will remain dormant until the original caller acti-
vates it again. This code could be generated if the original
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program was written in a functional language with lazy
operational semantics.

To help the reader appreciate the significance of this
feature, we recall that in eager languages lazy evaluation
can only be simulated. In concurrent logic languages [38]
this is achieved by means of reversing the producer—
consumer relationship; the consumer now produces initially
a list of variables (the number of variables signifying the
amount of work the producer should produce) and the vari-
ables are then bounded by the producer. If the consumer
needs further data from the producer, it produces a new
list of uninstantiated variables which is then sent to the
producer, and so on. This technique, however, is both
cumbersome to program (such programs are difficult to be
read and understand) but also inefficient (since both the
producer and the consumer are continuously active pro-
cesses consuming machine resources, while the whole con-
cept of lazy evaluation is for producers to remain dormant
until needed). Table 1 illustrates the above points.

We have run two Dactl programs producing in a lazy
fashion the first 50 Hamming numbers, the first version
with simulated lazy evaluation using the above described
techniques and the second version using the true lazy evalu-
ation features as supported by the language. The table
presents some important statistics as produced by the
Dact]l implementation. It is clear that the second version is
nearly twice as fast compared to the first version.

3.3. Ability to fine-tune the produced compiler target
language code

Translating a program written in any (concurrent logic or
functional) language to Dactl requires bridging the gap
between the high-level operational semantics of the
involved language and the ‘medium’ level one of Dactl.
This necessitates applying a number of suitable transforma-
tions (and optimisations) to the original program aiming at
producing the most efficient Dactl code. The question that
arises here is whether those transformations should be done
at the level of the language in question or at the Dactl level.
Our experience has shown that provided the intermediate
representation does not adhere to a specific operational
semantics (as it is indeed the case for Dactl) the transforma-
tions should be done at the level of the intermediate repre-
sentation. A typical example is the case of guarded clauses
in concurrent logic programs or similar guarded functions in
functional programs:

Table 1

Program version R? PC AvP MxP
Simulated lazy 3471 1098 4.98 30
Truly lazy 1202 736 2.60 9

*R: rewrites; PC: parallel cycles performed; AvP: activations processed
per cycle (mean value); MxXP: activations processed per cycle (peak value).

Concurrent logic language :

H(...) : —G1(...),...,Gn(...)| B(...).
Functional language :

H(...)—B(...) if G1(...) and ... and Gn(...);

Bearing in mind that Dactl has no concept of guards, the
concurrent logic clause (the same argument applies also to
the guarded function) could be translated to an equivalent
set of Dactl rewrite rules in either of two ways.

(i) Translate the clause into an equivalent clause in flat form:

H(...):- New_GI{(...,Status1), New_G2(...,Status2),
control(Status1,Status2,Status), commit(Status,...).

control(true,true,Status):- Status = true.
control(false,_,Status):- Status = false.
control(_,false,Status):- Status = false.

commit(true,...):- B(...).
commit(false,...):- false.

The transformation of the above flat version to Dactl is
straightforward:

H[...] = *New_Gl1[... statusl:Var], New_G2
[... status2:Var],
*Control[status1 status2 status], *Commit[status ...];

Control[True True status:Var] = *True, status: =
*True;

Control[pl:(ANY-False) p2:(ANY-False) st] =
#Control[pl p2 st];

Control[ANY ANY status:Var] = *True, status: =
*False;

Commit[True ...] = *B[...]|
Commit[False ...] = *Falsel
Commit[status:Var ...] = #Commit[status ...];

The problem with the above piece of code is that it is
more complicated than it need be. For instance the Con-
trol process need not commence execution until both the
New_G1 and New_G2 processes have terminated execu-
tion; the same can be said about the Comm1 t process. How-
ever, it is not possible to express this functionality at the
level of the concurrent logic programming language since
function composition, which is effectively what is required,
is not truly supported by that formalism.

(ii) Alternatively, the transformations can be done at the Dactl
level by examining the structure of the original clause and
generating a particular kind of rule set for each different case
[33]. For the above clause the generated rule set is as follows:

HI[...] = #Control[*G1[...] *G2[...] ...];
Control[True True ...] = *B[...];
Control[pl:(ANY-False) p2:(ANY-False) ...] =
#Control[pl p2 ...];

Control[ANY ANY ...] = *False;
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Table 2

Program version R? PC AvP MxP
Language level transform 300 79 6.04 36
Dactl level transform 92 37 381 11

* See Table 1 for abbreviations.

Note the reduced number of processes that are generated
compared with the previous version. In more complicated
cases the gains in code size and number of process reduc-
tions are more significant. A number of other optimisations
in pattern matching, etc. can also be performed [33].

Again, the reader can appreciate the significance of this
feature by noting how efficient is the mapping of a program
finding the Nth element in a binary tree.

The first version was produced by performing the
required transformations at the level of the user’s language
(in this case a typical concurrent logic language such as
Parlog [23] or GHC [44]). The second version was produced
by performing the required transformations at the Dactl
level. It is obvious that the second version is significantly
faster than the first one (Table 2).

3.4. Variable representation

We consider the issue of what exactly constitutes a vari-
able at the level of an intermediate representation as being
of paramount importance in the successful design of such a
formalism. In TGRSs and, indeed, languages based on them
such as Dactl, a ‘variable’ is simply any node which is over-
writable, i.e. it can be rewritten with a sub-root redirection.
Our experience in dealing with concurrent logic, functional
and, more recently, object-oriented and linear logic based
languages has shown that the representation of a ‘variable’
object can range from a simple graph node to a small sub-
graph rooted at such an overwritable node and comprising
some very useful information particular to the semantics and
characteristics of the language or formalism in question. For
instance, to represent variables in languages like Parlog [23]
or Strand [15] a simple overwritable graph node suffices.
However, in GHC ([44]) a variable in a guard cannot be
instantiated by any unify operations other than the ones
invoked within the guard. So in the following clause

p(X) : —aX, )| r(¥,2).

a unify operation invoked in g can instantiate the variable Y
created in g’s environment but not the variable X which was
imported4rom p’s environment. So every time at run-time a
unification is about to be performed, the environment of this
operation must be checked against the environment where
the variable(s) involved in the unification was (were)
created. A number of serious problems exist in implement-
ing GHC’s run-time safety test [44] and it was eventually
dropped from the definition and implementation of the
language.

In such a framework a Dactl variable now is of the form
Var[env] where env is a pointer to the environment
where the variable was created in the first place [20]; also,
every unify operation itself carries a pointer to the environ-
ment in which it was invoked. Thus, when unification is
about to be performed a pointer comparison of the two
environments is performed:

Unify[env v : Var[env] value] = * True, v : = * value;
{perform unification
Unify[env1 v : Var[env2] value] = Unify[envl *v value];

{else suspend

Here we should explain the fact that when the same node ID
appears more than once in the LHS of some Dactl rule, it is
considered to denote a test for pointer equality. So in the
above rule the instantiation of the variable Var will be
performed if its environment env is the same as the
environment where the Unify operation is invoked (the
first argument of Uni fy). Compatibility of the two environ-
ments is modelled simply as a pointer equality between the
two env nodes, which if they point to the same node causes
the selection of the first rule. Note that any parallel machine
that supports graph rewriting {12,35,36,39,43] implements
pointer equality efficiently since graph sharing is a funda-
mental concept in this computational model.

In GHC/F [21], an extension of GHC with functional
capabilities including handling of infinite data structures
and lazy evaluation, the graph apparatus modelling a vari-
able is further extended with the variable’s defining function
as for instance in

LHSI...] = *f:Lazy_Producer]... v:Var[env f] ...],
*Eager_Consumer|[... v ...]J;

Eager_Consumer]... v:Varfenv f] ...] =
#Eager_Consumer]... v ...], *f;

In the above example an ‘eager’ consumer predicate is
waiting to receive as input argument the value of a variable
which must be instantiated by a lazy function. This is a
typical problem in any logic—functional language with con-
current capabilities and introduces deadlock which is
usually resolved by means of static analysis techniques
which try to detect at compile-time the producer of every
variable and generate suitable code. In GHC/F the deadlock
is resolved more effectively at run-time by simply firing
the lazy producer of the variable. This is possible because
the variable itself holds a pointer to its defining function
thus providing a window connecting the consumer with
the producer.

Furthermore, an overwritable node can play the role of a
metavariable by being instantiated to a function application
rather than a data structure. The following piece of code
implements a nondeterministic ‘commit’ operation using
such overwritable nodes.
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Fire_Commit[...] = commit:Var,
*Guard1[... commit], *Guard2[... commit];

Guardi[successful_match_etc commit:Var] =
*True, commit: = *Bodyl[...];
Guardi[unsuccessful_match_etc commit:Var] =
*False;

In the above piece of code both guard processes are exe-
cuted concurrently and one of them nondeterministically
will assign the metavariable commit to the corresponding
body. These sorts of rule systems arise when programs writ-
ten in some concurrent logic or functional programming
language are translated to the more restrictive than Dactl
computational model MONSTR [2]. It is for these reasons
that overwritable nodes in TGRS based languages are often
referred to as stateholders [2,4,5].

3.5. Atomicity of rewrites

We recall that all rewritings specified in a Dactl rule are
performed atomically, so in the following example

Test_and_Set{vl:Var v2:Var] =
*True, vl: = *1, v2: = *2;

either both v1 and v2 have the pattern Var and are instan-
tiated at the same time or either of them has already been
instantiated in which case the matching should fail. This is a
very powerful concept and it can be used to model atomic
unification supported mainly by the Concurrent Prolog
family of languages [38]. However, implementing such a
scheme is quite expensive and computational models like
MONSTR restrict atomicity to the case of only a single
overwritable node. Although for languages that endorse
the so-called eventual publication of unification such as
Strand [15] not even atomicity of a single overwritable
redirection is required, to model nondeterminism effectively
we need to guarantee the support of atomic updating of such
a single overwritable node at the Dactl or MONSTR level;
otherwise, there is no guarantee that the rule system of
Fire_Commit in the previous example will behave as
expected.

Furthermore, by supporting some degree of atomicity, it
is possible to reason about the correctness of the language
for the CTL (in this case Dactl or MONSTR) translation and
the program’s behaviour at run-time, an ability that we feel
is quite important for any CTL to possess.

4. Conclusions and related work

In mapping a variety of computational models and lan-
guages to an intermediate compiler target language based on
TGRSs for parallel machines we have identified a number of
features which we believe every such CTL formalism
should possess, namely:

¢ Flexibility of operational semantics. In particular, the
operational semantics should be fine grain, universal
and be based on a minimum set of primitive actions.
The more concrete operational semantics (lazy, eager,
strict, parallel, even sequential) of some high-level
language can then be directly supported by the CTL.

¢ The CTL should have a liberal view of what constitutes
a variable so that different ways of accessing such a
variable can be implemented effectively, including
metaprogramming techniques. A variable apparatus
should therefore be viewed more like a control primitive
(the ‘stateholder’ point of view). The implementation
and use of these stateholders must be supported effi-
ciently by the underlying machine architecture.

s Atomicity should be supported at least up to the level of
updating a single elementary node. A stronger notion of
atomicity will be difficult to implement efficiently
(requiring extensive locking) and will not be needed
for many families of languages, but a weaker one will
also not be sufficient to model effectively and simply
important control concepts (such as semaphore handling
and the stateholder functionality). Banach [2] provides
an excellent discussion on this point which led to the
design of MONSTR, a subset of Dactl.

e The CTL should be based on some theoretically sound
computational model rather than being a possibly useful
but ad hoc set of add-on primitives as is sometimes the
case for some otherwise highly successful proposals
[1,10,14). One advantage here is that one can formally
prove the correctness of the translation scheme adopted
from some high-level language to the CTL [24,28].

Also, a related issue is at what level should source-to-
source transformations be done in order to assist most
effectively in the generation of efficient corresponding
intermediate code. Provided the intermediate representation
has no concrete operational semantics, the transformations
should be done at the level of the intermediate representa-
tion rather than at the level of the language that is being
mapped.

It is difficult to compare our work with similar research
since we are not aware of any other intermediate formalisms
sharing the same purposes as Dactl. Probably the closest
work we could consider is that by Levy and Shapiro
[30,31] on using Flat Concurrent Prolog as an implementa-
tion language for GHC and CFL, a new concurrent func-
tional language. It is precisely this type of work that brought
our attention to the issues discussed in our paper. In [30], the
mapping of GHC to FCP raises some problems: the specific
operational semantics of FCP does not allow the flexible
manipulation of the produced code; also GHC’s ‘clean’
pattern matching is translated into a set of notorious read-
only unifications. Even more important is the fact that what
is translated to FCP is only the safe subset of GHC for which
there is no need for the run-time test. In [31] a new con-
current functional language is designed and implemented on
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top of FCP. Although the language is non-trivial and useful,
its design is based on the features supported by an existing
underlying high-level abstract machine (the FCP language):
it does not support true lazy evaluation as most state-of-the-
art functional languages and, as is also the case for the GHC
mapping, it models pattern matching with read-only unifi-
cations. Although this particular argument is now only of
historical value since the subsequent version, FCP(:), does
support one-way unification [38], the rest of the problems
discussed in this paragraph have yet to be resolved in an
elegant and efficient way. Furthermore, by designing a new
language based on the features that some intermediate
formalism is offering and mapping the language down to
it, one is not able to show that the intermediate formalism is
universal in some sense, i.e. that it can effectively model and
implement a variety of computational models which where
designed independently of it.

Other languages that have played the role of an intermedi-
ate CTL are Lean [7], which is very close to the functional
subset of Dact] and is mainly targeted towards functional
languages, and AKL [25], which has aiso somewhat flexible
operational semantics within the framework of concurrent
logic languages and has been used as an intermediate CTL
for Prolog [9]. This work raises another interesting point in
the issue of using an intermediate formalism, this time from
the software engineering point of view: it may be worth
using an existing efficient implementation environment of
some language as the basis for providing a fast and
reasonably efficient implementation for another language,
especially if the programming environment of the former
language supports development tools, etc. Bueno and
Hermenegildo [9], for instance, translate a subset of
(sequential) Prolog onto (concurrent) AKL, thus exploiting
in an independent-AND fashion the concurrency of the
AKL model rather than having to design from scratch a
parallel WAM machine.

Another interesting dimension to the issue of using an
intermediate formalism is the employment of some compu-
tational model having some desirable features to act as a
‘glue’ for code written in other languages. Foster and Taylor
[15], for instance, use the concurrent language Strand to
glue together pieces of code implementing intensive com-
putations (such as scientific computing applications) written
in conventional languages such as C or Fortran. Thus Strand
plays a loose role of an intermediate formalism acting as a
synchronisation interface between sequential pieces of
code, possibly written in different languages, running and
communicating concurrently with each other. Foster et al.
[14] and Thornley [41] go even further and design modifi-
cations to existing languages which adhere to some general
computational formalism. In this latter case, the inter-
mediate formalism is not something concrete but rather an
enforced programming methodology.

At a lower level it is worth mentioning the work by
Kamperman [26] where the TGRS is not used as an inter-
mediate computational formalism but rather as a means of

representing data in a way that can be exchanged between
different applications and programming environments.
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