
Putting Context in Context: The Role and Design of Context Management in a
Mobility and Adaptation Enabling Middleware

Marius Mikalsen
Jacqueline Floch

Erlend Stav
 SINTEF ICT

 Norway
{mariusm,jacf,sta}@sintef.

no

Nearchos Paspallis
George A. Papadopoulos
 Department of Computer

Science
University of Cyprus

{nearchos,
george}@cs.ucy.ac.cy

Pedro Antonio Ruiz
Integrasys
Esquillo

Spain
pedro.ruiz@integrasys.es

Abstract

The operating context of mobile applications and
services is constantly changing. In order to achieve
higher levels of usability, mobile applications and
services need to adapt to changes in context. This
paper argues the need for adaptation enabling
middleware that simplifies the development of context
aware adaptive applications, and makes it
economically and practically feasible to develop such
applications. We claim that the traditional approach of
simply providing contextual information to
applications and let them handle the adaptation can be
ineffective. We suggest a holistic approach where
context management is an integral part of a more
comprehensive adaptation enabling middleware. This
paper describes the role and the design of the context
management component in such a middleware
architecture. The feasibility of the approach is
demonstrated in a scenario where proof-of-concept
implementations have been developed and evaluated.

1. Introduction

Smaller computing devices, increasing computing
power, and proliferating mobile networks encourage
users to bring their computers everywhere they go.
This leads to diverse operating conditions, and in order
to optimise their usability, systems should be able to
adapt to the changing conditions [1], [2]. Although the
utility of adaptive and context aware systems has
already been demonstrated [3], the ubiquitous
computing paradigm suggested by Weiser [4], is yet to
come. This is partly due to the high complexity which
characterizes the development of such systems, and the
lack of generic tool support for the development
process [5].

To encourage the proliferation of adaptive and
context aware applications and services, cost-effective
development methods and tools must be available. This
work presents a mobility and adaptation enabling
middleware (MADAM) with focus on the context
management part of an architecture that aims at
providing modelling and tool support for the
development of context aware applications. The
context manager is a central component, as it is the
eyes and ears of the middleware, enabling it to sense
the operating conditions in the environment, and
choose appropriate adaptation strategies.

In the middleware, architecture models are used as
the basis for middleware based adaptation [1], [2], [6].
Floch et al [6] argue that middleware based solutions
are preferable to other approaches (e.g. using
programming features, such as conditional expressions,
parameterization, and exceptions), have drawbacks.
This is mainly due to the high degree of complexity
introduced by the intertwining of the adaptation and
the application behaviours. Furthermore, such
approaches typically scale poorly when multiple
adaptations are triggered. Finally, the inter-mixing of
the adaptation and application code renders the
software evolution significantly harder. This is inline
with Mascolo et al [7].

The MADAM middleware uses architecture models
of application variants to reason about, and implement
adaptation at runtime. The application variant’s
metadata provides information about the feasibility of
the variant in a given context. The middleware can
then find the best application variant for a given
context, and implement it (e.g. by reconfiguring the
constituent components of the variant). The
middleware has three main functions [6]:

• Detect relevant context changes

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

• Reason about these changes, and make decisions
about which adaptations maximize the utility of
the current applications or services

• Implement the adaptation choices

The need for high quality context information is
evident as it forms the basis upon which the adaptation
component of the middleware can do its reasoning. We
argue that having context management as an integral
part of such a generic and reusable adaptation enabling
middleware is preferable over approaches that require
custom context management for their applications, as
pointed out by Lei et al in [8]. We further claim that
building standalone context management services that
deliver context information to applications do not
suffice. This claim is in line with the argument for
middleware support presented above.

This paper is organised as follows. Section 2
presents the foundations of our work. The research
projects we include in this section are chosen to
illustrate how our approach builds on established
foundations in context research. These works also
illustrate how our approach differs, as we see context
management as an integral part of a more holistic,
adaptation enabling middleware. In section 3 we
explain the essence of this middleware approach,
where the context manager is one of the three core
components. In section 4 we introduce the context
manager, and explain its design in light of the
requirements put upon it from the surrounding
middleware. We also point out how earlier context
work relates to this design. Section 5 contains an
example that demonstrates our approach, and presents
results that justify the approach. In section 6 we
discuss our approach in light of related work and
explain what directions we see for the future of this
research. Finally, in section 7 some closing remarks
conclude the paper.

2. Foundations

Our work on the context management component of
the adaptation enabling middleware is funded in the
research tradition of context-aware computing. Already
in 1994, Schilit and Theimer [9] coined the phrase
context-aware to describe their work where location,
and the identification of nearby people and objects
where in focus. Since then, context-aware computing
has received a lot of attention covering many topics,
beyond the original notion of location. In the
following paragraphs we concentrate on three
approaches; the Context Toolkit by Dey [10], [11] the
Reflective Middleware Solution by Capra et.al. [12],
and finally, the Adaptive Middleware Framework by
Huebscher et.al. [13].

 The Context Toolkit introduced the context
widget, which is responsible for acquiring a certain
type of context information, and to make this
information available to applications. The applications
access the widget by using poll and subscribe methods.
Context widgets operate independently from the
applications that use them. Context widgets facilitate
the use of context sensing devices in the architecture,
in a way which makes them transparent to the context-
aware applications.

The context interpreter provides interpretation
functionality, which tries to predict future actions or
intentions of the users. The interpreter accepts one or
more context entities, and produces a single piece of
context. For example, an application can get the
context from all widgets in a conference room, and
determine that a meeting is taking place. Finally,
context aggregators are used to aggregate or collect
context information, i.e. they are responsible for all the
context of a single entity (such as a person).

Another approach for aggregating context has been
developed by Capra et al [12] which use reflection and
meta-data to build the system that supports context
aware applications. Applications pass metadata to the
middleware. This metadata constitutes a policy as to
how the applications want the middleware to behave as
a result of a specific context occurrence. As context
and application needs change continuously, one cannot
assume that the metadata are static. Therefore,
applications also use the reflection mechanisms offered
by the middleware to inspect their own metadata, and
possibly alter it according to the changing needs. The
metadata format is standardised using XML Schemas.

In a recent work, Huebscher et al [13] present an
adaptive middleware framework for context-aware
applications. They refer to adaptation as adaptive
delivery of context information to context aware
applications. Additionally, adaptation is essential for
the middleware itself, as it is used to optimise the
quality of context information. The middleware adapts
itself, but not the applications.

Huebscher et al’s middleware framework has 4-tier
architecture. The bottom layer consists of sensors,
typically physical devices, such as wireless sensor
networks, RFID tags etc. These sensors provide raw
data. In the next layer, context providers apply sensor
logic to produce context types as services. In the third
layer, context services retrieve context information
from the context providers on behalf of the
applications, and deliver this information to the
applications. This abstraction layer is important,
because if a different context provider is better for an
application than the one currently in use, the context
service adapts, and switches to the best alternative
without having to involve the application. The fourth

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

and final layer is the application layer. In this layer, the
applications are able to select and utilise the best
context information available, in order to achieve their
context aware behaviour.

3. The mobility and adaptation enabling
middleware architecture

The goal of the MADAM project is to provide
developers of mobile applications with a middleware
platform in support of the development of adaptive
applications. Influenced by the work of Szyperski [14],
we use component frameworks as a means to build
both applications and middleware that are capable of
being adapted by reconfiguration. As described by
Hallsteinsen et al [1, 2], and by Floch et al [6],
components are annotated with properties. Properties
are used to qualify the services offered or needed by a
component. A user interface may for example, support
hands-free operation (offered) if Bluetooth is available
(needed). Applications are composed of components
that provide particular properties. The middleware
platform recognizes and uses these properties in order
to reconfigure and adapt the application, in accordance
to context changes.

Figure 1 – The MADAM middleware architecture

The overall middleware architecture is shown in
Figure 1 above. The core provides the fundamental
platform-independent services for the management of
applications, components and component instances.
The core relies on the basic mechanisms for
instantiation, deployment and communication provided
by the distributed computing environment.

The adaptation middleware offers three core
services:
• The Context manager which monitors the user and

the execution context for detection of relevant
changes.

• The Adaptation Manager which reasons about the
impact of the changes and decides about

appropriate adaptations based on architectural
description of component properties.

• The Configurator which reconfigures the
application variant to put the decided adaptations
into effect.

Run-time representations of the application
framework and the application instances are available
to the MADAM Middleware, enabling adaptation
reasoning and reconfiguration. The context model
describes the context elements which are relevant for
adaptation.

The context manager mainly provides services to
the adaptation manager. When an application is started,
the adaptation manager analyses the property
annotations in the application run-time models in order
to identify context information of interest. The
adaptation manager then subscribes to relevant context
information. New context sensors and reasoners are
plugged-in, if necessary. Conversely when an
application is terminated, some context information
(and sensors) may no longer be needed.

The adaptation manager uses all relevant context
information, and tries to find the most suitable
application variant. Adaptation will occur in two cases.
First, at application start-up, when an initial application
configuration is initiated. Second, adaptation will occur
when there are sufficient relevant context changes
(reconfiguration).

 In the following, we introduce the context manager,
which is the component that provides the adaptation
manager with the contextual information required for
adaptation reasoning and reconfiguration.

4. Context management

As we have already stated, our approach to context
management extends the research tradition in context
awareness. One interesting aspect of the following
context management architecture is that it is an integral
part of a more holistic adaptation enabling middleware.
Therefore, this section provides insight into what
features are needed of context managers, in order to
fulfill their role in such environments. We start by
describing requirements that the surrounding
middleware puts on the context manager, and continue
by investigating the MADAM context model and
context manager architecture to show how they are
designed to meet the requirements.

4.1 Context management requirements

In order for the MADAM Middleware to be able to
adapt applications, the context manager must meet the
following requirements (this list of requirements has

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

been derived as the result of a scenario-based
requirement engineering process, part of the MADAM
project):

Define context representations that the
middleware can use. Our middleware approach
intends to be domain independent. This implies that the
context model maintained by the context manager must
make no assumptions on what is context in specific
domains (e.g. network context might be extremely
important in one domain, but less important in
another). Instead the context model should define a
structure which allows developers to express their
domain-dependent context, while at the same time
remain applicable to other components of the
middleware.

Support context sensing. The context manager
should provide support for the definition of context
sensors [10, 13, 15] enabling the sensing of
information (e.g. user activity, user environment,
mobile device resources, availability of various
networks, network service quality and cost, and system
infrastructure.) Again, since the MADAM platform is
domain and platform independent, we can not assume
domain specific sensors, and rather design the
architecture to allow for domain specific plug-ins

Support context reasoning: In order to reduce
context noise, the context manager should allow the
creation and deployment of context reasoning
mechanisms. Context reasoning can be used to derive
higher level context information (e.g. a meeting is
taking place) from lower level context information
(such as GPS coordinates, or number of persons in the
room). It should be easy for other middleware
components to specify what particular context
information they are interested in, and what changes in
context are relevant to them. Other middleware
components should not be aware of the internal process
in the context manager for obtaining and managing this
information. As pointed out by Austaller et al [15], in
order to be useful, context management services need
to implement strategies for reducing context noise.

These requirements are not exhaustive. Depending
on the nature and the goals of the target application,
additional features might also be required, to enable,
for example, inter-operability between devices, as it is
argued in section 6. In the following sections, we show
how these requirements have influenced the design of
the MADAM context model, and the context manager
architecture.

4.2 The MADAM context model

We have adopted Dey’s widely used definition of
context [10]: “Context is any information that can be

used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant
to the interaction between a user and an application,
including the user and application themselves.”

The definition intends to be domain independent (as
opposed to definitions that include specific context
parameters, such as location). The goal of the context
model is to provide a generic structure for defining
context elements and their properties that are usable by
the middleware as a whole.

Building on the work described in [5] and [16], we
suggest the simple context model depicted in figure 2.
The context information is encompassed in Context
Elements. The context elements can be composite (i.e.
elements within elements). Context elements extend
the Entity of Interest component. The MADAM
middleware conceives a software system and its
context to be a set of interacting components. Entities
of interest (for the middleware) are then either software
entities or context entities.

Figure 2 - The MADAM context model

Elements have Values. The value is the information

available in the element. Every value instance
encapsulates the actual data. An element can have
several values. For example, the WLAN element above
can have two values corresponding to bandwidth (e.g.
1Mbit) and cost (e.g. 1 EURO/Mbit)

In their simplest form, a context element consists of
an identifier, and a value entry. The context elements
must be uniquely identifiable, so that the adaptation
manager can map application variants need for context
information, to context elements administered by the
context manager.

Values are also associated with metadata that
functions as Quality of Context parameters. Such
metadata is important when performing reasoning on
context information. In the model above, four types of
metadata are suggested in accordance to MADAM
needs; these are the timestamp (when created), source

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

(who created it), probability (trustworthiness) and user
rating (how the user rates the importance of the
element). Other research, such as Buckholtz et al [22],
suggests to use precision, probability of correctness,
trust-worthiness, resolution and up-to-dateness as
important Quality of Context parameters.

4.3 Context manager architecture

Our context manager architecture (see figure 3) can
conceptually be mapped to the multi-tier architectures
of Dey [10, 11] and Huebscher et al [13] in that the raw
context data flows into the lower tiers of the
architecture (in our case the resource sensors) and are
aggregated and reasoned upon up through the layers. In
our architecture, we frame aggregation and reasoning
tasks in the context sensors and context reasoners.

As suggested by Lei [8], the context manager
considers entities that need context information to be
context clients, while it considers entities providing
context as context sources. In MADAM, the primary
client is the adaptation manager, while sources are
context sensors and context reasoners. A context
source can also be a context client (e.g. a context
reasoner which requires context information from other
sources in order to aggregate new context information).

Figure 3 - The context manager architecture

The context manager provides two important
interfaces to context clients, the context listener and the
context access. The clients can either request to be
notified of certain events using the context listener
interface (push), or they can use the context access
interface to explicitly query context information (pull).

Context repository. The context repository is the
main entry point for clients to the context manager.
The primary tasks of the context repository are to
maintain a context model, register and notify listeners,
give access to context elements, and keep registry of
available components (sensors, reasoners and storage).
In order to get access to a specific context element, a
context client (such as the adaptation manager) either

registers as an observer to that element, or directly
accesses it via the context access interface. These
interfaces are similar to the context services described
by Huebscher et al [13] and Dey’s [10] context
aggregators.

Context sensors. The context sensors are
components which provide context information to the
context repository (a type of context source). Sensors
can be wrappers around specialized hardware drivers,
or legacy code used for monitoring context, such as
battery, memory, and network information.

Context reasoners. Context reasoners extend
context sensors, and have additional functionality such
that they can produce one or more context elements
using other context elements as input. It is an important
task for the context manager to reduce context noise
[15], by filtering out unnecessary context information,
which is not relevant for adapting applications. The
adaptation manager should only be notified when a
significant change occurs in context. Consequently, the
context reasoners need to implement filtering
mechanisms. These mechanisms can vary from very
simple, rule-based logic, to more advanced techniques.
In the MADAM architecture the goal is that reasoners
are “plug and play” in order to make it possible to
target reasoners according to different needs and
domains. For example, the applications can provide the
context manager with Quality of Context (QoC)
requirements, such as precision and refresh rate, as
shown by Huebscher [13]. Another approach is
introduced by Kofod-Petersen and Mikalsen [5], where
case-based reasoning enabled intelligent agents are
used to implement context filtering.

Context storage. Keeping track of historical
context information is often required in order to
determine trends in context data (for example trends in
user behaviour, network stability, etc). The need for
storage mechanisms was shown in Dey [10], where
context widgets stored all context information they
sensed, and in Kofod-Petersen and Mikalsen [5] where
a context space, along with a context history
abstraction was demonstrated.

5. The janitor scenario

This scenario addresses a janitor company
responsible for the maintenance of a variety of
technical installations geographically spread. The
scenario is relevant as it addresses mobile users that are
relying on the mobile terminal in their work, and are
experiencing continuous context changes. The scenario
therefore addresses a concrete need for adaptation.
Several adaptations could occur as a result of context
change. First, consider that the janitor is arriving at the

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

customer’s location (sensed using GSM positioning).
An appropriate application is launched by the
middleware. Second, the janitor is in reach of the
customer’s WLAN network. This is sensed by the
network sensor, and the application’s networking
component is adapted from GPRS to WLAN, and
relevant information is downloaded. Finally, the work
has lasted for some time, and the battery level
decreases rapidly as a result of WLAN usage. The
middleware senses this from the battery sensor, and
reconfigures the application to a self-reliant client that
only periodically synchronise data with the server.

The above scenario involves all three of the
middleware components. First, the context manager
notifies the adaptation manager that the janitor is
approaching a particular location. The adaptation
manager finds the most feasible application variant
(component framework) for this context, and let the
configurator to start the application. As the application
starts, the adaptation manager registers context
listeners with the context manager based on the
application variant’s contextual needs (in the example
above battery status and WLAN coverage). Second, the
context manager notifies the adaptation manager that
WLAN is in range. The adaptation manager knows
from the architectural description of the application,
that one variant of it has the possibility for WLAN
communication. The configurator adapts the
application by switching its GPRS network
communication component with a WLAN component.
Finally, the context manager senses that battery power
is decreasing. The adaptation manager finds that the
application variant with the highest utility in this case,
is one where the application is self-reliant, and where
network communication is reduced to periodically
synchronising data. The configurator implements the
adaptation.

The middleware is implemented as a prototype, and
is also used in two industrial pilots. The evaluation so
far has demonstrated that the context management
provides good support for accessing and identifying
context elements, and works well as a manager for
context information. The framework supports context
dependencies so that only changes in relevant context
elements will lead to application reconfiguration. Some
of the suggested improvements are that there should be
standardised rules in the framework as to how the user
needs and preferences influence the relative
importance of other context information. There is a
clear need for a kind of library of reasoning
mechanisms that accept some context information as
input, and provides new context information as output.
Another finding is that there should always be possible
for the user to override context sensing, and explicitly
state what is the context. The evaluation has also

identified the need for more support for interoperability
with third party context sensors. The implications of
this are discussed in the next section.

We are currently working to make the prototype
implementation and source-code available under an
open source middleware initiative such as ObjectWeb
(http://www.objectweb.org).

6. Discussion and future work

Several approaches have implemented multi-tier
architectures in an effort to provide client applications
with abstraction layers, thus freeing them from
concerns related to the details of context management.
Dey [10, 11] describes a system where context
information flows from sensors, through context
widgets, and interpreters to context aggregators that
gather all context information about an entity (e.g. a
person). Lei et al [8] have introduced a similar
architecture where dispatchers route application
requests to appropriate context drivers. Each context
driver handles one type of context information, and
encapsulates the details of interaction with context
sources (sensors). The same idea is reflected in
Huebscher et al [13], where context flows from sensors
through context providers and context services, to the
client applications. Common for all these approaches is
that they do not explicitly address the adaptation of
applications, but rather focus on providing the best
possible context information to the applications in
order for themselves to implement adaptive behavior.
Capra et al [12] explicitly state that “the application…
can normally make more efficient and better quality
decisions based on application-specific information”.
We, on the other hand, believe that providing
applications with high quality context information,
managing context sensors, aggregating and reasoning
on context, is not sufficient. We claim that in addition
to these, adaptation enabling middleware should
provide support for the adaptation itself (that is;
creating the context aware behavior), and that context
management realizes its potential better as an integral
part of such middleware functionality. We should aim
to avoid the complexity introduced when we intertwine
core application functionality with adaptive behavior
[6].

Middleware support for tasks that are possible to
generalize across several applications yields the
possibility for optimized middleware implementations.
This is comparable to modern database systems.
Today, no one would prefer to have application logic
implementing the algorithms required for searching
within large data-structures. Instead we leave the

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

responsibility for this task to internal, reusable, and
dedicated database mechanisms.

The availability of tool support for standardized
tasks (such as the MADAM middleware), also speeds
software development, and makes for fewer errors.
Consider, for example, the class loader and garbage
collector mechanisms of the Java Runtime
Environment. Removing such tedious and relatively
complex tasks from the software developers
contributes to more efficient software development,
and fewer runtime errors. Our goal is to provide similar
tool support for the development of mobile and context
aware applications.

Our results demonstrate that it is feasible to develop
applications using the approach described in this work.
Several challenges are still ahead and in particular the
issue of interoperability. In our middleware we have
suggested a context management structure that allows
for plugging in domain specific context sensors and
reasoners. This gives developers the possibility to use
3rd party context management components (such as
Dey’s context toolkit). There is however no guarantee
that such context management components use context
representations that are exploitable by the middleware.
We need to investigate strategies that enable
middleware frameworks such as MADAM to utilize
context from several context management systems. In
[18], Carney et al list generic interoperability
strategies, which we believe can be applied
successfully to this challenge. Two that are particularly
promising to context aware computing are the
Semantic Web and Service oriented Architectures. The
Semantic Web studies the possibilities of linking up
information across the web in such a way such as to be
easily process-able by machines on a global scale [20].
To enable such inter-operability, descriptive ontology
languages such as RDF and OWL have been
introduced. They act as a means for knowledge sharing
between context aware applications. COBRA-ONT is
an ontology which was introduced by Chen et al [19]
to specifically target context-aware pervasive
environments.

SoA has been suggested for use in context aware
computing (see for example the Service-Oriented
Context-Aware Middleware, SOCAM, by Gu et al
[21]). A promising application of these technologies
could for example involve the formation of ad-hoc
networks between context manager services, enabling
sharing of relevant information. SoA in isolation does
not accomplish this, as it needs better ways of
describing services behavior and the Quality of Service
(QoS). Additionally, further work is required to
guarantee the semantics of the data used by the service.
Although Ontologies and SoA have their limitations,
they both appear to be promising approaches for

context management in the area of adaptation enabling
middleware solutions. Their usefulness is particularly
illustrated when we consider collaborative context
management, among distributed peers, forming ad-hoc
networks.

7. Closing remarks

In this work, we have argued that context
management should be an integral part of a holistic
middleware approach, thus enabling the development
and support of context-aware, adaptive applications.
We have argued that in earlier works a lot of focus has
been on standalone context management modules,
which perform context sensing and aggregation, but
leave the responsibility for adaptation to the
applications. Unlike these approaches, we have
introduced the MADAM middleware and focused on
how context management is an integral part of such a
holistic approach to adaptation. Furthermore, we have
shown how this context management service builds on,
and utilizes previous work on context management.

Our vision is to move away from context-aware
applications towards partially context-unaware
applications, in the sense that applications will be
capable of being adapted to context without being
aware of the context changes, and the corresponding
adaptations per se. Application developers should only
need to describe the functional requirements and needs
(some of them contextual), and leave context sensing,
context reasoning, as well as most of the adaptation to
middleware tools. We expect this to be the natural
evolutionary step. As the mobile and context-aware
computing paradigm matures, middleware tools will
support standardized tasks, much the same way
databases perform standard data management today.
We have shown that such an approach is feasible, by
developing and evaluating two pilot applications.
Experimenting with the approach, we have identified
ontologies and service oriented architectures as
relevant approaches in relation to adaptation enabling
middleware.

8. Acknowledgements

This work was funded by the EU commission as
part of the IST MADAM project (6th framework
programme, contract number 4169). http://www.ist-
madam.org/

9. References

[1] Hallsteinsen, S., Stav, E., and Floch, J. Self-Adaptation
for Everyday Systems. In Proceedings of ACM SIGSOFT

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

Workshop on Self-Managed Systems(WOSS '04), Oct 31-
Nov 1, 2004 Newport Beach, CA, USA

[2] Hallsteinsen, S., Floch, J., and Stav, E. A Middleware
Centric Approach to Building Self-Adapting Systems. In
Proceedings of Software Engineering and Middleware
(SEM 2004) 20-21 September 2004, Linz, Austria.

[3] Bristow, H. W., Baber, C., Cross, J. and Wooley, S.
(2002) Evaluating contextual information for wearable
computing. In Proceedings of the Sixth International
Symposium on Wearable Computers, New York: IEEE
Computer Society.

[4] Weiser, M.: Some computer science issues in ubiquitous
computing. Communications of the ACM 36 (1993)

[5] Kofod-Petersen, A. and Mikalsen, M.(2005) Representing
and Reasoning about Context in a Mobile Environment.
Revue d'Intelligence Artificielle (RIA), vol 19, no. 3, pp 479-
498.

[6] Floch, J. Hallsteinsen, S. Stav, E. Eliassen, F. Lund, K.
Gjørven, E. ”Beyond design time: using architecture models
for runtime adaptability” To appear in: IEEE Software
Volume 23, Issue No. 2. 2006.

[7] Mascolo, C., L. Capra, and W. Emmerich. “Mobile
computing middleware” in Advanced Lectures on
Networking. NETWORKING 2002 Tutorials. 19 24 May
2002 Pisa, Italy. 2002: Springer-Verlag, Berlin, Germany.

[8] Lei H., Sow D. M., Davis J. S. I., Banavar G., Ebling M.
R., “The design and applications of a context service”,
Mobile Computing and Communications Review, 6(4): 44–
55, 2002. ACM SIGMOBILE.

[9] Schilit B. N., Theimer M. M., “Disseminating active map
information to mobile hosts”, IEEE Network, 8(5):22–32,
September/October 1994.

[10] Dey A. K., Providing Architectural Support for Building
Context-Aware Applications, PhD thesis, College of
Computing, Georgia Institute of Technology, December
2000.

[11] Dey A. K., “Understanding and using context.”,
Personal and Ubiquitous Computing, 5(1):4–7, 2001.

[12] Capra L., Emmerich W., Mascolo C., “Reflective
middleware solutions for contextaware applications”, In A.
Yonezawa and S. Matsuoka, editors, Metalevel Architectures
and Separation of Crosscutting Concerns - Proc. of
Reflection 2001, pages 126–133. Springer Verlag.

[13] Huebscher, M. C., McCann, J. A. An adaptive
middleware framework for context-aware applications,
Personal and Ubiquitous Computing, Volume 10, Issue 1,
Feb 2006, Pages 12 – 20.

[14] Szyperski, C., “Component Software: Beyond Object-
Oriented Programming”, Addison Wesley, 1997 (2nd ed.
2002, ISBN 0-201-74572-0).

[15] Austaller, G., J. Kangasharju, et al. (2004). Using Web
Services to build Context-Aware Applications in Ubiquitous
Computing. Web Engineering: 4th International Conference
(ICWE 2004). Munich, Germany, Lecture Notes in Computer
Science.

[16] Göker, A., Myrhaug, H.I.: User context and
personalisation. In: Workshop proceedings for the 6th
European Conference on Case Based Reasoning (2002).

[17] Garlan, D., et al., Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. Computer, 2004.
37(10): p. 46-54.

[18] Carney, D., Fisher, D., Morris, E., Place, P. Some
current approaches to Interoperability. Carnegie Mellon
University Technical Note. CMU/SEI-2005-TN-033. 2005.

[19] Chen, H., Finin, T., Joshi, A. “An ontology for context-
aware pervasive computing environments” The Knowledge
Enginnering Review. Cambridge University Press. Vol 18:3.
pp 197-207. 2004.

[20] Asunción Gómez-Pérez, Jérôme Euzenat, Editors, 2nd

European Semantic Web Conference (ESWC2005), Springer
Verlag LNCS Vol. 3532, Heraclion, Greece, 2005.

[21] Gu, T., Pung, H. K., and Zhang, D. Q. 2005. A service-
oriented middleware for building context-aware services.
Journal of Network and Computer. Appications. 28, 1 (Jan.
2005), 1-18.

[22] T. Buchholz, A. K¨upper, and M. Schiffers. Quality of
Context: What It Is and Why We Need It. In 10th Workshop
of the HP OpenView University Association (HPOVUA’03),
Geneva, Switzerland, July 2003.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

