A Multiply Hierarchical Automaton Semantics
for the IWIM Coordination Model

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk)

F. Arbab
(Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands
farhad@cwi.nl)

G. A. Papadopoulos
(Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cyprus
george@cs.ucy.ac.cy)

J. R. W. Glauert
(School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.K.
J.Glauert@sys.uea.ac.uk)

Abstract: The drawbacks of programming coordination activities directly within the applica-
tions software that needs them are briefly reviewed. Coordination programming helps to separate
concerns, making complex coordination protocols into standalone entities; permitting separate
development, verification, maintenance, and reuse. The IWIM coordination model is described,
and a formal automata theoretic version of the model is developed, capturing the essentials of the
framework in a fibration based approach. Specifically, families of worker automata have their
communication governed by a state of a manager automaton, whose transitions correspond to
reconfigurations. To capture the generality of processes in IWIM systems, the construction is
generalised so that process automata can display both manager and worker traits. The relation-
ship with other formalisations of the IWIM conception of the coordination principle is explored.
Keywords: Coordination, IWIM, Automata, Fibration.

Categories: C.2.4,D.1.3,D.2.6, D.3.3, F.1.1.

1 Introduction

The massively parallel systems that can be built today require programming models that
explicitly deal with the concurrency of cooperation among large numbers of entities in
a single application. Today’s concurrent applications typically use ad hoc templates to
coordinate the cooperation of their components, and this is symptomatic of a lack of
proper coordination frameworks for describing complex cooperation protocols in terms
of simple primitives and structuring constructs.

In most real applications, there is no paradigm in which we can systematically talk
about cooperation of active entities, and in which we can compose cooperation scenar-
ios such as client-server, workers pool, etc., out of a set of more basic concepts. Con-
sequently, applications programmers must deal directly with the lower-level communi-
cation primitives that instantiate the cooperation model of a concurrent application.
These primitives are generally scattered throughout the source code, interspersed with
non-communication application code, and the cooperation model never manifests itself

in a tangible form. Thus it is not an identifiable piece of source code that can be de-
signed, developed, debugged, maintained, and reused, in isolation from the rest of the
application. This inability to deal with the cooperation model of a concurrent applica-
tion explicitly, contributes to the difficulty of developing working concurrent applica-
tions containing large numbers of actively cooperating entities.

Despite the fact that the implementation of complex protocols is often the most dif-
ficult part of a development, the end result is typically so nebulous that it cannot be rec-
ognized as a commodity in its own right. This makes maintenance and modification of
the cooperation protocols much more difficult than necessary, and their reuse next to im-
possible.

The two most popular models of communication within highly concurrent applica-
tions are shared memory and message passing. In the shared memory model, interproc-
ess synchronisation primitives play the dominant role, with interprocess communica-
tion subordinate, whereas in the message passing model, interprocess communication
is dominant, and synchronisation subordinate. The latter makes the message passing
model somewhat more flexible than the shared memory model and, therefore, it is the
dominant model used in concurrent applications. However, both paradigms are too low-
level to serve as a proper foundation for systematic construction of cooperation proto-
cols as explicit, tangible pieces of software.

Such observations have led in recent years to an upsurge in activity in so-called co-
ordination frameworks and languages. An early survey is [Malone and Crowston
(1994)] which characterisies coordination as an emerging discipline. Various approach-
es with roots in eg. the actor model [Agha (1986)], or in logic programming [Shapiro
(1989)], were instrumental in establishing coordination as an independent discipline.
See [Ciancarini and Hankin (1996), Garlan and Le Metayer (1997), Papadopoulos and
Arbab (1998), Ciancarini and Wolf (1999), Porto and Roman (2000), Omicini et al.
(2002)] for representative contemporary work. A number of higher level perspectives
have emerged. Among these are the tuple based approaches such as Linda [Gelernter
(1985), Carriero and Gelernter (1989)], and by contrast, the connection control based
approaches amongst which we find the IWIM (Ideal Worker Ideal Manager) model. It
is with this model that this paper is concerned.

The rest of this paper contains the following. In [Section 2] we survey the IWIM
model informally. With this motivation covered, in [Section 3] we develop a theoretical
automaton-based model for IWIM, which we call the IWIM systems model. This is de-
veloped gradually, as it is a fairly complicated construction, aiming to reflect the essen-
tials of IWIM in a credible manner. The underlying idea is that families of worker au-
tomata perform their tasks under the supervision of a manager automaton. Change of
state of the manager corresponds to reconfiguration, whereupon a different family of
worker automata shoulders the burden. This basic idea is elaborated to enable arbitrar-
ily complex hierarchies to be modelled. Although our model is reasonably involved, it
falls short of trying to capture everything about IWIM or any specific implementation
of the IWIM idea, such as is to be found in the formal specification of the MANIFOLD
language [Arbab et al. (1993), Bonsangue et al. (2000)]. In particular we abstract away
from the ability of workers to continue with internal actions on their own, which in the
full IWIM model they can do irrespective of the attentions of any manager. One prin-

cipal purpose of this work could be seen as exploring the viability of fibration based ide-
as in the arena of reconfiguration problems.

In [Section 4] we discuss how the instantaneous reconfiguration aspect of our
IWIM systems can be generalised to model the asynchronous event based reconfigura-
tions characteristic of real IWIM frameworks. In [Section 5] we show how the model
of Arbab, de Boer and Bonsangue [Arbab et al. (2000a)], a model featuring aspects of
reconfiguration, can be expressed by IWIM systems; and in [Section 6] we show how
the model of Katis, Sabadini and Walters [Katis et al. (2000)], a significantly different
theoretical account, can also be captured within IWIM systems. These two enterprises
support the other principal purpose of this work, which is to explore how the IWIM idea
may be formalised in a manner that vividly highlights the special nature of the relation-
ship between managers and workers in IWIM, and to compare such a formalization with
models that do not do so. One aspect of IWIM systems not covered in this paper is the
issue of their algebraic properties. The highly structured IWIM systems model has a
rich algebraic theory. However an in depth account would almost double the size of this
paper; see [Banach et al. (2002)]. [Section 7] concludes.

2 The IWIM Model

In this section we review the generic coordination framework known as the Ideal Work-
er Ideal Manager (IWIM) model [Arbab (1995), Arbab (1996), Arbab et al. (1998)].
The basic concepts in the IWIM model are processes, events, ports, and channels. A
process is a black box with well defined ports of connection through which it exchanges
units of information with the other processes in its environment. A port is a named
opening in the bounding walls of a process through which units of information are ex-
changed using standard I/O primitives such as read and write; we assume that each port
is used for the exchange of information in only one direction: either into the process (in-
put port) or out of the process (output port).

The interconnections between the ports of processes are made through channels. A
channel connects a port of a producer process to a port of a consumer process. Inde-
pendent of the channels, there is an event mechanism for information exchange in
IWIM. Events are broadcast by their sources into their environment, yielding event oc-
currences. In principle, any process in an environment can pick up a broadcast event
occurrence. In practice, usually only a few processes pick up occurrences of each event,
because only they are tuned in to the relevant sources.

The IWIM model supports anonymous communication: in general, a process does
not, and need not, know the identity of the processes with which it exchanges informa-
tion. This concept reduces the dependence of a process on its environment and makes
processes more reusable; it also makes the protocols governing such communication
more reusable.

A process in IWIM can be regarded as a worker process or a manager (or coordi-
nator) process. The responsibility of a worker process is to perform a task. A worker
process is not responsible for the communication that is necessary for it to obtain the
proper input it requires to perform its task, nor is it responsible for the communication
that is necessary to deliver the results it produces to their proper recipients. In general,
no process in IWIM is responsible for its own communication with other processes. It

is always the responsibility of a manager process to arrange for and to coordinate the
necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers, in an
application. In the IWIM model, an application is built as a (dynamic) hierarchy of
worker and manager processes on top of this layer. Aside from the atomic workers, the
categorization of a process as a worker or a manager process is subjective: a manager
procesgrocthat coordinates the communication among a number of worker processes,
may itself be considered as a worker process by another manager process responsible
for coordinating the communication pfoc with other processes.

In IWIM, a channel is a communication link that carries a sequence of bits, grouped
into units. A channel represents a reliable, directed, and perhaps buffered, flow of in-
formation in time. Here, reliable means that the bits placed into a channel are guaran-
teed to flow through without loss, error, or duplication, and with their order preserved;
and directed means that there are always two identifiable ends in a channel: a source and
a sink. Once a channel is established between a producer process and a consumer proc-
ess, it operates autonomously and transfers the units from its source to its sink.

If we make no assumptions about the internal operation of the producer and the
consumer of a channe| we must consider the possibility thaimay contain some
pending units. The pending units of a channate the units that have already been de-
livered toc by its producer, but not yet delivered byo its consumer. The possibility
of the existence of pending units in a channel gives it an identity of its own, independent
of its producer and consumer. It makes it meaningful for a channel to remain connected
at one of its ends, after it is disconnected from the other. The full details of the IWIM
model codify a number of variations on this theme, but for our purposes, a channel will
stay alive as long as one end or another is connected to a process.

Worker processes have two means of communication: via ports, and via events.
The communication primitives that allow a process to exchange data through its ports
are conventional read and write primitives. A process can attempt to read data from one
of its input ports. It hangs if no data is presently available through that port, and con-
tinues once data is made available. Similarly, a process can attempt to write data to one
of its output ports. It hangs if the port is presently not connected to any channel, and
continues once a channel connection is made to accept the data.

It is worth mentioning at this point that the interaction of all the ideas sketched in
the preceding paragraphs conspires to make the notion of port quite intricate, as the for-
mal models of subsequent sections show. The fact that an individug petbngs to
a specific worker (which may also be engaged in management activities, but none in-
volving p), but has its connectivity controlled by a different process, whose interest in
p may wax and wane depending on the state of the computation, requires careful mod-
elling to ensure that there are ‘no bits left dangling’. Thus various aspects of a port’s
functionality end up attached to different parts of the formal model, the whole being
subject to a number of carefully constructed invariants.

Besides reading and writing over ports, a progass can also broadcast an event
eto all other processes in its environment by raising that event. The identity of the event
etogether with the identity of the procegc comprise the event occurrence. A proc-
ess can also pick up event occurrences broadcast by other processes and react to them.

Certain events are guaranteed to be broadcast in special circumstances; for example, ter-
mination of a process instance always raises a special event to indicate its death. Our
formal model in the rest of the paper will be quite limited in that we only model recon-
figuration events. Even then, for simplicity, the modelling will be synchronous, a defect
we address later.

A manager process can create new instances of processes (including itself) and
broadcast and react to event occurrences. It can also create and destroy channel con-
nections between various ports of the process instances it knows, including its own.
Creation of new process instances, as well as installation and dismantling of communi-
cation channels are done dynamically. Specifically, these actions may be prompted by
event occurrences it detects. Each manager process typically controls the communica-
tions among a dynamic family of process instances in a data-flow like network. The
processes themselves are generally unaware of their patterns of communication, which
may change in time, according to the decisions of a coordinator process.

In our formal model, again for reasons of simplicity, we eschew the full generality
of these concepts. Our process networks will turn out to be statically defined, though
the execution trajectory through this stucture will be dynamically determined. As such
they may be viewed as the static unwinding of an implicit but more succinct syntactic
specification of dynamic behaviour, and the unwinding enables us to restrict discussion
to the semantic level alone, a welcome simplification.

3 IWIM Automata

In this section, we distil the essentials of the ideas just described, to create the model
which will serve as the basis for the semantics of IWIM in the rest of the paper. We
build the model up in two steps. The first is based on a fibration-inspired strategy, to
reflect the way that IWIM events tear down and rebuild interconnections between fam-
ilies of processes. Accordingly, elementary IWIM automata will have in the base a
manager automaton, describing how the manager part of an elementary IWIM system
moves, and above each state of the manager automaton, there will be a collection of
worker automata, connected together according to the prescription contained in the
manager state. The various worker collections are then integrated into a single elemen-
tary IWIM system using an ‘above’ relation describing how workers relate to states of
the manager, a construction inspired in essence by the Grothendieck construction. As
a result of this, each configuration of the overall automaton can be projected down onto
the relevant state of the manager in the manner of a fibtation

The capacity of IWIM systems to reconfigure themselves via events that provoke
managers into reconfiguration activities, is here modelled by mappings of certain work-
er moves (that represent the raising of the event) to manager moves (that represent the
reception and processing of the event, resulting in reconfiguration). Unlike genuine
IWIM systems, this is a synchronous activity in our model, but we will show in Section
4 that the asynchronous aspects can be recaptured within our framework.

[Fig. 1] illustrates in pictures what we have just described in words for elementary
IWIM automata. It shows a collection of worker automats B, C, D, E, S} sitting

1. The projection oriented nature of fibrations explains why we say ‘above’ and not ‘below’, cf.
Proposition 3.4 and Proposition 3.8 below.

above a managéfan, forming an elementary IWIM system. The statedtaini.e. {l,

m, n}, each map to communication networks consisting of directed graphs of ports and
channels. The ports of these networks correspond bijectively to input and output ports
in the workers, who are ignorant of whence come their input messages and where their
output messages are destined. Input ports are shown solid, while output ports are hol-
low. Furthermore these bhijections in large part mimic the substructuring of individual
ports in IWIM into their private and public parts. Also, following these bijections up to
the workers reveals which workers are above which management states. Note that
workerB is above more than one management state. This means thatemanakes

a transition froml to m, B is unaffected and continues to work as before. Attached to
each channel is a queue of messages, illustrated for just one chaniniel fioe figure.

Some of the channels can be external, such as the external input channel foestdte

Fig. 1: A manager Man with some workers above it. Broken vertical lines show the
correspondence between worker and manager ports, bijective for each manager state.

the external output channel far these allow connection to and exchange of informa-

tion with the outside world. Note however that external input can only take place when

| is the current management state, and external output can only take placa isltea

current management state. The management transitions must specify what happens to
the message queues. These are mapped by additional data illustrgtedthe figure

and merged into the destination queues.

Worker C shows a typical worker output transition; there are similar worker input
transitions. The port of workeé® shows that ports are really quite general purpose con-
cepts in IWIM, able to accomodate several incoming and outgoing channels. V¥orker
itself can be seen as providing a serialisation servic&fde, D. WorkerD shows a
reconfiguration event transition. The thick line from the transition to the manager illus-
trates that the atomic transition lalvet is mapped to the manager transition framio
n. In this manner the workers can provoke reconfigurations implemented by the man-
ager.

In the second step of the two step strategy for building our IWIM system model,
the elementary IWIM system construction just described is generalised to take account
of the more flexible nature of real IWIM systems. Now, processes may manifest both
manager and worker roles, worker processes may enjoy the attentions of more than one
manager, and manager processes may enjoy the benefits of more than one worker. To
cope with this, we define IWIM worker-manager automata as asynchronous products of
individual worker and manager automata. Also the relation connecting workers and
managers becomes global. In this manner we get unrestricted IWIM systems. The pre-
viously mentioned properties continue to hold. In particular, configurations of an unre-
stricted IWIM system can be projected down onto configurations of their mangers.

Let us illustrate all this in another figure. [Fig 2] shows four worker-manager au-
tomataW, X, Y, Z. These are drawn as rectangles with the dashed horizontal line rep-
resenting the division between the worker and manager facets, the manager facet being
uppermost. The worker structure is suppressed in all cases, and the fact that the man-
ager parts ofM andX are empty is intended to indicate that these automata are atomic
workers, with trivial manager facets. The arrows emanating from manager states point
to the worker facets under their control. [Fig 2] illustrates that (almost) completely gen-
eral management relationships are permitted between worker-manager automata. In
fact the only restriction is that an automaton’s manager facet cannot manage it's own
worker facet. Of course in realistic settings, the kind of contorted and cyclic dependen-
cies occurring in [Fig. 2] do not really arise. Far more plausible, are regularly structured
hierarchies with atomic workers in the bottommost layer.

3.1 Elementary IWIM Systems

Definition 3.1 An IWIM manager automaton is a tripl&i(m;, R), whereM is a set of
management statesy [M is an initial state, and is a set of reconfiguration transi-
tions. These components are further stuctured as follows. Each managemantstate
itself the name of a pail,, C,), whereP,, is a set of port names, ari@}, is a set of
channel names. There are two partial functigfd,y,: C;y = Py Which map channels

to source and target port names, wheneygor t,, are defined. They satisfy dogy)

0 dom¢,,) = C,, i.e. each channel is connected to at least one port — channels not in

dom(s,, are called external input channels, and channels not intiprmae called ex-
ternal output channels; channels in both dgghéind domt,,) are called internal chan-
nels. In a reconfiguration transition, writtem-r-> n, ther is shorthand for a partial in-
jection on the channel namgg,, : Cy, - C,,. Also for each management stabewe
have an identity transitiom-id,-> min which thex, ,, partial injection is a total iden-
tity.

The above definition characterises states of the manager automaton as connection net-
works in which the ports do not have a unique orientation (as input or output ports). Dif-
ferent statesn, n may refer to the same connection network. Reconfigurations identify
some channels of the source state with some channels of the target.

Definition 3.2 An IWIM worker automaton is a tripld (O, A), wherel is a set of input
ports,O is a set of output ports, aidandO are disjoint. A = (St, Init, Tr) is an autom-
aton with state$t, of whichInit O Stis an initial state, andr 0 Stx Act x Stis a tran-
sition relation, wherd\ctis a set of actions of the forim?v or outlv or rec. In the first

two kinds of actionjn O I, out 0 O, and we assume that there is a global alphabet of
valuesVal containingv. In the last kindyecis just a name (intended to be the name of
a reconfiguration transition as in Definition 3.1). Where convenient below, we will
write transitions using the notatian-in?v-> b or a -outlv-> b or a -rec-> b. We define

Fig. 2: A schematic illustration of a network of worker-manager automata. Arrows
from manager states to other automata show the ‘above’ relation of the system. N.B.
The fact that Y manages Z and Z also manages Y is legitimate in the IWIM model.

Tr ={a-inn->b0OTr}, Trog={a-outv->bOTr}, Trr={a-rec>b O Tr}, sothatTr =
Tr) O Trg O Trg, the union being evidently disjoint. Additionally we defiRec={rec|
a -rec»> b 0 Tr} the alphabet of reconfiguration events of the worker.

So far, workers are automata of a fairly standard kind. Now we show how workers and
managers are glued together.

Definition 3.3 An elementary IWIM systenian, Wor) consists of an IWIM manager
automatorMan, an elementary workforc@/or, and ancillary data to be described be-
low. Woris a set of worker names together with a magy, which yields for each work-
erw [0 Wor, an IWIM worker automatowor(w). Furthermore we have:

(1) There is a relation » betweéflor and the management statesM¥éin. We write
w*mto say that a workew is abovea management stateif the pair is in the re-
lation.

(2) If aworkerwis above a management statethen there is a mag,, from therec
actions ofwor(w), into reconfiguration transitioms -r-> n of Man.

(3) For each management stael] Man, there is a total bijectioi, : Py, — 10,
wherelO,, is the disjoint union of all of the input and output ports of all workers
abovem; i.e.10m, = Hin{i [i O lyorgel B Hin{ 010 0 Opgrgl-

(4) Associated to each channel C,,, (wherem is a management state), there is a
queue of messages which we writéug, uq, Eachy;isinVal. The front of
this queue isig.

A configuration of an elementary IWIM systeM&n, Wor) consists of:
(1) a statem of Man;
(2) aseests={ay | a U Styor), k T Wor} of statesay one for each workeg

(3) asegs={c:q.|c:0;=c:[ug, Uy, ...], cOC,, n O M} of queues of messageq u,
uy, ...] one for each channel of each management state.

Note that in the abovestsmay equivalently be viewed as the range of a function which
maps each worker to one of its states, so #as formally an ordered pair. Since we

are overwhelmingly concerned with the states and how they change, we will not use the
more cumbersome functional apparatus. Similar remarks appsthtmugh here some

of the indexing information is routinely suppressed.

A configuration of an elementary IWIM systeén, Wor) is initial iff: mis initial,
thea, are also all initial, and the queues associated with all channels are empty.

A transition of an elementary IWIM systeriviéan, Wor) in state (n, ests qs) is one
of the following six kinds:

(ENVI) The environment adds a value to the input end of a queue whose source end
is not attached to any port (an external input channel’s queue).

(ENVO)

(IN)

(OUT)

(FOR)

c dom@,) ,
c O dom¢,) ,

OSest=0ds—{c[... , Uy}
m—m,

ests—> ests,

as— Qsestt {C[..., Up, U]}

The environment removes a value from the output end of a queue whose
target end is not attached to any port (an external output channel’'s queue).

cOdom¢,y) ,
cOdomG,y) ,

OSest=09s—{C[u, uy, ... [}

m—m,
ests— ests,
as— dsestl {C:[uy, ... I}

A worker automaton performs an input on one of its input ports, removing
the front element from an input queue attached to the port, of which there
must be at least one.

k*m , a, O ests, a -i?u-> by,
Am(P) =1 0 lyory - tm(©) =P,
est$est= ests— {a} ,
OSest=as—{c:[u, ug, ... |}

m—m,
ests—> estsegtd {by |
0S— OSestt {C[Ug, ... I}

A worker automaton performs an output on one of its output ports, adding
a value to the end of any output queue attached to the port, of which there
must be at least one.

k*m, a O ests, g -0lu-> by,

Am(P) =0 U Opork) »

0 # Out={d|sy(d) =p},

est$est= ests— {a} ,

OSest= S~ {d ... , Ugn) |d 0 Out

m—m,
ests—> estsegi 0 {by} |
as—> QSestU {d[... , Uy Ul [d T Outt

A port performs a forwarding action, removing the front element from
an input queue attached to the port and inserting (a copy of) it to all output
gqueues attached to the port, of which there must be at least one.

tm(c) =p,

0 # Out={d | s(d) =p} ,

0Sest=0s— ({c:[u, uqg, ... I} O {d] ... ’Ud,nd] | d O Out})
m-—m,

ests—> ests,

as— QSest0 {C:[ug, ... I} O{d:[... , ugp, Ul [d O Outt

NB. The above notation is intended to include the case th&but,
whereupon the front messagectsf queue is moved to its tail.

(REC) A worker automatoi, performs aec actiongy, -rec-> by, provoking a re-
configurationm -r-> n of the elementary IWIM system, given by the function
'eam The manager automaton makes a transition to the new state. Worker
automatork, completes its transition. Worker automata other tkamho are
above both the old and new manager state remain as before. Worker automata
above the old but not the new manager state go into suspension. Worker au-
tomata not above the old but above the new manager state are awakened. The
queues of channels above the old manager state which are reassigned via
the channel reconfiguration data are moved according to that data, being
merged with the existing queues at target channels and leaving the queues
at originating channels empty. The queues at other channels remain as before.

k"m, a O ests, a -rec> by,
Neam(red) =m-r->n=xmn:Cp - Cy,
estgest= ests—{ag} ,
ael = {C:qc | cl Cm7 cd dom«m,n)} U {d:qd | a0 Cna dd mg(Xm,n)})
ASest= 4S—0Yel »
Aiom = {C:[] ¢ O Cyp,, ¢ O domK)}
OSmerge= {d:0cq | €:0c, € O Crp, ¢ U dOMm),
d:dgs Xmn(€) =d 0 Cy,, d O rngmn),
Oeq U mergede, ag)}

m—n,
ests—> estgegi U {by}
aS—> QSestl dSiom U ASmerge

This transition system has some features that deserve comment. Note firstly that input/
output and forwarding activities are completely decoupled. For this reason it makes lit-
tle sense for the manager to connect up a port to use simultaneously as a broadcasting
device, and as an input device to the relevant worker, since the input messages and for-
warded messages are necessarily disjoint. Thus since even forwarding ports have to be-
long to some worker, it is best to invent special purpose dummy workers just for the pur-
pose, such as work&in [Fig. 1].

A second issue concerns the creation and destruction of processes. IWIM is entire-
ly virtuous regarding matters of life and death: there is no murder, only suicide. The
most that managers can accomplish is anasthesia. When a reconfiguration transition
takes a worker out of the current configuration because that worker is not above the new
current management state, the worker sleeps, because being above the current manage-

ment state is a hypothesis of all six transition types. When the current management state
once more becomes one which the worker is above, it wakes and is able to participate
in worker transitions again. It is the worker’s own responsibility to enter a state out of
which no transitions emerge if it wishes to die.

Thirdly there arises the issue of queue management during reconfiguration transi-
tions. We have elected to merge assigned queues with existing ones (for given source
and target ports) as representing an abstraction of the potential presence of several in-
dependent queues from the source to the target. The latter would require a more com-
plex notion of reconfiguration transition than we wish to get embroiled in.

Let EConf¢gMan, Wor) be the set of all configurations dfian, Wor). Equipping it
with the transitions just described makes it into a transition system. We regard this tran-
sition system as unlabelled, it being the case that the kind of step involved is always de-
ducible from the pair of configurations in question.

A run of (Man, Wor) is, in the normal manner, a sequence of contiguous transitions
of EConfgMan, Wor), starting with an initial configuration:

(m, ests q9 —> (N, ests, gs) — (M, ests, gs’) —> ...

Let Mngr(Man, Wor) be the set of manager states of configurationE@onf¢Man,
Wor). These are given by a functiomg,,where &t,,,{m, estsqs) = m. The setMn-
gr(Man, Wor) can be equipped with transitions derived from {R&C) transitions of
EConfgMan, Wor). Thus to the transitiom(, ests qs) —> (M, ests, gqs) corresponds
theMngr(Man, Wor) transition &t,,,{m, ests qs) —> e, 5 (N, ests, gs), i.e.m—>m,
(we regard these transition as unlabelled too). We also add an identity tramsition
mto each manager stateNmgr(Man, Wor).

Now although a particular worker may be above several manager states, making
problematic the definition of a projection from the static structure of the elementary
IWIM system to its manager, the same is not true of the set of configurations of the el-
ementary IWIM system and its transition systdagonfgMan, Wor), as it relates to the
set of manager states. EConf¢Man, Wor), some specific manager state always index-
es any worker state that forms part of a configuration, and so we obtain the following
result.

Proposition 3.4 Let (Man, Wor) be an elementary IWIM system. LEConf¢Man,
Wor) be the associated transition system Btreyr(Man, Wor) be the corresponding set
of manager transitions. Then there is a projection:

Me : EConfgMan, Wor) — Mngr(Man, Wor)
which maps states by:

(m, estsq9) 1- M= €5 (M, ests g9
and which map¢REC) transitions by:

(m, ests q9) —> (M, ests, gs)
|—

m—> M = ey, (M, ests qs) — ey, (M, ests, gs)

and which mapg¢ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(m, ests g9 —> (M, ests, gs)
|—

m—m
Proof. Obvious.©

3.2 Unrestricted IWIM Systems

The previous section captures the essence of the process by which an individual man-
ager automaton manages a group of worker automata. However the IWIM model does
not restrict worker management to a single layer. Managers may themselves be workers
managed by others, in time honoured hierarchical fashion. We model this here by al-

lowing managers to themselves acquire a worker facet. The result is effectively a prod-

uct of the two preceding constructions.

Definition 3.5 An IWIM worker-manager automaton is the asynchronous product of
an IWIM worker automatonl(O, A) as in Definition 3.2, and an IWIM manager au-
tomaton M, m;, R) as in Definition 3.1. That is to say, an IWIM worker-manager au-
tomaton is of the forml(O, A)O (M, m;, R), where (, O, A) is called the worker facet

and M, m;, R) is called the manger facet. The set of states of the worker-manager au-
tomaton isStx M, with initial state (nit, m), and there are two kinds of transitions:
worker transitions, for exampla,(m) -w-> (b, m), wherea -w-> bis a transition of(, O,

A) (and the manager facetremains unchanged), and manager transitions, for example
(a, m) -r-> (a, n), wherem-r-> nis a transition of 1, m;, R) (and the worker faced re-
mains unchanged).

The following is evident.

Proposition 3.6 An IWIM worker-manager automaton for which the worker facet is a
single (initial) state IWIM worker automaton with empty transition relation is strongly
bisimilar to an IWIM manager automaton. Also an IWIM worker-manager automaton
for which the manager facet is a single (initial) state IWIM manager automaton whose
port and channel sets are empty, and with transition relation consisting of just the oblig-
atory (in this case empty) identity function, is strongly bisimilar to an IWIM worker au-
tomaton.

In view of this, we can refer to IWIM worker-manager automata with trivial worker fac-
ets as pure mangers, and to IWIM worker-manager automata with trivial manager facets
as pure workers.

Now that individual automata are capable of both worker and manager behaviour,
we can define an unrestricted IWIM system as a community of automata where the
manager facets of individual automata manage their individual workforces drawn from
the same community, and the worker facets of individual automata each do their jobs
coordinated by one or more manager facets, since we place no restriction on the number
of bosses any poor labourer might have. In keeping with the best industrial practice, no
worker is ever his own manager (no selfdetermination — no one sets their own salary,
nor signs off their own expense claims). Since the moves of the whole system are the

moves of the individual elements, we need no additional restrictions beyond the no self-
determination rule and the restrictions that apply to elementary IWIM systems, to have
consistency.

Definition 3.7 An unrestricted IWIM systenWM is a set of IWIM worker-manager
automaton names call&M, a subselnitial), O WM, together with ancillary data de-
scribed below. There are three map&rman wor, man where for eaclwm 00 WM,
wormar(wm) is an IWIM worker-manager automatomor(wm) is its worker facet, and
man(wm) is its manager facet. We writg,,,to say that statenis a state of a facet of
automatorwm, the facet intended being clear from the context; formaijy;, is an or-
dered pair, just as before. The states of a worker-manager automatare thus writ-
ten @ym Mym), Whereais the state of the worker facet armds the state of the manager
facet.

Moreover, other aspects of the notation for elementary IWIM systems acquire ad-
ditional subscripting to indicate what part of the unrestricted IWIM system they refer
to. Thus we havé®,, for the set of port names of state of the manager facet
mar(wm) of wnt likewiseC,,, is the corresponding set of channel names.

There is a binary above relation » whesei”m,,,, means that the worker facet
wor(wm) of automatorwnt is above staten of the nontrivial manger faceban(wm) of
automatorwm The no selfdetermination rule implies that whenewer~m,,, then
wnT Zwm The workforce fvmy, ... , wm,} of automata whose worker facets are above
states of the manager facetwmis refered to as an elementary IWIM subsystem of
WM, and is an elementary IWIM system in the sense of Definition 3.3 when we disre-
gard the manger facets of the workers and the worker facet of the managetdOFhs
is the set of input and output ports of the workforce abmyg, Specifically for an el-
ementary IWIM subsystem:

(1) The above relation is inherited from the global one, and we will assume henceforth
that no automaton is above the unique state of a trivial manager.

(2) There is a mapymyam,, Of therectransitions of worker facets into reconfiguration
transitions of the corresponding nontrivial manager facet.

(3) The total bijection property of manager ports to workforce input/output ports holds
via a map\y, Pmum = 1Omuns

(Note that the no selfdetermination rule is consistent with the asynchronous product
structure of the transitions for worker-manager automata. Otherwise SR8,
could force moves aimthat were worker and manager moves simultaneously.)
Let WMbe an unrestricted IWIM system. Then we defibf’ = {wmO WM |wm
has a nontrivial manager facet}.
A configuration $ts gs) of an unrestricted IWIM system consists of:

(1) asetsts={(aym Myn) | WmO WM} of states &, My ONe for each automaton
in WM;

(2) asegs={c.q;|c0Cy,, Has (aym Mym O stg of queues of messagequg, u;,
...] one for each channel 0 C, ., of each management stats,,, of each non-
trivial manager facetanwm).

As before, these configuration components are really the ranges of suitable functions.
A configuration éts g9 of an unrestricted IWIM syste/Mis initial iff: all states

in stsare initial in both facets, and all channel queuessiare empty.
Let (sts g9 be a configuration of an unrestricted IWIM syst&iM. Then we can

define the manager part oft§ qs) to beTt,5{StS = {Mym | Jaym* @wm Mym O Sts
wm O WM.

A transition of an unrestricted IWIM systedVM in configuration $ts q9) is one
of six kinds, patterned after elementary IWIM system transitions:

(ENVI)

(ENVO)

(IN)

(OUT)

The environment adds a value to the end of an external input queue.

¢ 0 LH{dom(Syyye) | Myt O Tinar(StS}
¢ O domty,,.) » Mym O ThadSts ,
OSest=as—{c[... , upl}

sts—> sts,

as—> Qsestt {C[..., Up, U}

The environment removes a value from the end of an external output queue.

¢ 0 LH{dom(tryye) | Myt O TinadStS}
¢ 0 domGy,,) » Mym O Tiyadsts ,
OSest=0as—{c:[u, uy, ...]}

sts—> sts,
gs— Qsestd {C:[Uy, ... I}

A worker facet of an automaton performs an input on one of its input ports,
of which there must be at least one.

KMMym s Mym U TiadSts

(ay, ny) O sts, (ax, n) -i2u-> (b, ny) ,
AmyrP) =i 0 IWor(k) @) =P,
St§est= Sts— {(a MW},
OSest=0ds—{c[u, uy, ... [}

Sts—> stgestH {(by, NW}
as—> dsestU {C:[ug, ... I}

A worker facet of an automaton performs an output on one of its output
ports, of which there must be at least one.

(& N O sts, (@, N -otu-> (b, Ny ,

0 # Out={d| Omym U TyaSty, p « K*mym,
Amur(P) = 0 0 Oorkyr Smun(d) = P}

Stgest= Sts— {(a, N},

OSest=ds—{d[..., Ugpyl | d O Out

Sts— St§est U {(b MW}
gs—> OSestD {d:[... , Uy, U] |d O Outt

(FOR)

(REC)

A port performs a forwarding action.

Kyt Myt O TinaSt9 | thy,(©) =P
O zO0ut={d| Omyy O T 4{St9, p * K "My,

Amur{P) =0 1 Oor(kys Smum(d) =P}
OSest=09s— ({c:[u, ug, ... [} O {d:[... ,ugp,] | d O Out)

sts—> sts,
as— QSestU {C:[ug, ... I} O{d:[..., ugp, Ul [d D Outt

NB. The above notation is intended to include the case th&but,
whereupon the front messagectsf queue is moved to its tail.

The worker facet of automatdq performs aec actionay, -rec-> by,

moving to statdy , and provoking reconfigurations of all the elementary

IWIM subsystems managed by manager facets above a current state

of whichk; sits. All these manager facets move to their respective new
management states. The queues of the channels managed by these manager
facets are mapped via the channel reconfiguration data for their particular
manager facet.

0 # RMpan= {Mym | Mym U TinadSt9 * K" "My,
(&, my,) O sts, (@, M) -rec> (b, my) ,
RMnan= {Mwm| Mym & TinadSt9 © k"Mym,
M rman(T€C) = Mym =T=> My = Xmumwm © Cmwm = Crnd »
Stgest= Sts— ({(ax M)} O
{(awm Mam) | @wm Mym) U sts Mym 0 RMyay) |
St$ost= {(Bi, M)} B {(awm M) | @wm Mym) O st
Mym 5 RMnan Mym U RMmant
Asgel = {€:0c | € O Cpyypy © 0 dOMK s Mym D RMya O
{d:aq1d 0 Crypy A O 'K mym g Mwvm & RMnan MmO Rfnan

0Sest= AS— el »
Astom = {C[| € 0 Cryyry € 0 dOMKymrirrds Mam B RMyant
OSmerge™ {d:0cq | cide, € O Cryyy € 0 AOMK i)

d:qd! Xm:vm.nwm(c) =d0 Cm/vm' a0 rng(xm:vm.nwm)’

Mym U RMyan Mwm U RMnan

Ocq U merged, aq)}

Sts—> Stgestl Stgosts
aS—> QSestl dSiom U ASmerge

The remarks made following the elementary IWIM subsystems transition system de-
scription apply with equal or greater force here. Thus all transitions have hypotheses
that ensure that any active worker is being actively managed by being above at least one
current mangement state. Also there is no murder, only anasthesia and suicide. More-
over, reconfiguration events simultaneously affect all mangers who might be managing
a particular worker facet. The structure of the model ensures that they can all do this
without adversely interfering with each other.

Let ConffWM) be the set of all configurations @M. Equipping it with the transitions
just described makes it into a transition system.

A run of WM s a sequence of contiguous transitionsCainfgWM) starting with
an initial configuration:

(sts q9) —> (sts, qs) —> (sts’, gs’) —> ...

Let (sts q9 be a configuration dVM. Let MngrqWM) be the set of manager parts of
configurations irConf§WM). It can be equipped with transitions derived from those of
ConfgWM). Thus wheneversfs qs) — (sts, gs) is a(REC)transition ofConf§WM),
there is aVingrgWM) transitionTt,,5{St9 —> Ti,a(StS). We also add an identity tran-
sition i (St — Tia{St9 to each manager part Mngr§WM). As previously, all
of these transitions are unlabelled.

It will now not be surprising that despite the greater complexity we have here, the
projection that we had in [Section 3.1] can be recovered.

Proposition 3.8 Let WM be an unrestricted IWIM system. L&€obnfgWM) be the as-
sociated transition system, aMhgrgWM) be the associated manager parts transition
system. Then there is a projection:

M : ConfWM) - MngrqWM)
which maps states by:

(sts Q9 I-» ThhaSt9
and which map¢REC)transitions by:

(sts g9 — (sts, gs)

|—

Tinar(St9 — Tina(Sts)
and which map¢ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(sts g9 — (sts, as)

[N
TinarSt9 — Tinar(StS) = TinadSty
Proof. Obvious.©

Having covered the technical details, it is appropriate to review how the formal con-
structions relate to the informal account of [Section 2]. As well as the internal details
of both manager and worker automata, we have the ” relatio, iijections, and the

r reconfiguration mappings. Given a worker-manager automamgrihe domains and
ranges of M\, r, suitably restricted tavm, make precise within our model the notion of

the environment ofvm loosely refered to at the beginning of [Section 2]. That these
aspects of the model reside outside of the worker and manager facets, reflects the IWIM
philosophy that on the one hand workers should be unaware of who they are communi-
cating with or who is in charge of the distributed computation, and that on the other
hand managers should have no detailed knowledge of the state of their subordinate
workers. For this to work, we need the managers to be ready at all times to react to

reconfiguration events from their workers, and if a manager’s worker facet is also busy
working for his own boss, the asynchronous product between the two facets gives the
simplest possible model of the required interruptibility.

In the remainder of the paper we will be concerned only with unrestricted IWIM
systems, and will henceforth just refer to them as IWIM systems.

4 |WIM Systems with Delayed Reconfigurations

Now we tackle the problem of the asynchronous nature of true IWIM system event
processing. As noted previously, this can be captured within our framework. The basic
idea is simple. We introduce fresh pure worker automata, delay automata, whose job is
to buffer the reconfiguration events generated by the worker facets of the automata of
the original model on their way to the relevant destination manager facet. The way this
is done is to change ttrec events of the original model int@c messages to the delay
automata, who then subsequently raise the required event. Since buffering is already
implicit in the message queues used by worker facets, and further buffering can be
achieved by retaining information in automaton states, there are a number of ways one
can imagine of implementing such an idea. In the one we will follow, the workers each
acquire an extra output port through which to sesxmessages instead of raisirer
events. Connected to these extra output ports, are channels leading to delay automata,
one per manager facet in charge of the worker. This ensures thatcthreessages are
broadcast asynchronously towards each relevant manager. (Because event processing
takes place simultaneously by all managers below a worker, we need to ensure that each
delay automaton is above only one manager. To ensure the correct separation of con-
cerns between automata it is easiest to introduce delay automata on a wetyay,,,
tuple basis.) Upon receipt of threc message, the delay automaton raises the corre-
sponding event with the manager.

Assuming that some particular worker facet is abkweanager facets, the behav-
iour of the original system can be recovered as long as there is always the possibility of
performing the following R+1 step sequence of the new system insteade aansi-
tion of the original system, in a manner uninterrupted by other system transitions:

(1) the worker facet transmits the relevest value through its extra output port
onto then delay channels leading to thelelay automata corresponding to the
manager facets above which it sits,

(2)) delay automatonreceives theec value from delay channglrecording it in
its state,

(3;) delay automatonperforms aec transition causing manager facéd perform
the required reconfiguration.

This sequence of steps preserves the property that all delay channels remain empty ex-
cept between steps (1) and)(2vhich is correspondingly consistent with enabling them
to be executed without interruptions.

On the other hand, if we consider that the execution of these steps can indeed be
interrupted, as allowed by the asynchrony inherent in the fragmenting of a single tran-
sition into several, other outcomes become possible. Since the original system had only
synchronous reconfigurations, it provides no definition of what might happen should a
reconfiguration be attempted nonatomically, and any evolution consistent with the se-

mantics is permissible. For example, a context dependent notion of reconfiguration can
be created by having delay automata raise different reconfiguration actions in manager
facets, depending on what reconfigurations intervened between the receiving of some
particularrec value from a worker, and the raising of the corresponding reconfiguration
event in the manager; the information to manage this being kept in a delay automaton’s
state, suitably managed through intervening reconfigurations. And depending on what
policy is adopted for the introduction and behaviour of the delay automata, different
policies for the handling of pending events become possible. Moreover being them-
selves workers, delay automata can be woken and suspended during reconfiguration
transitions, further tuning this aspect.

One canonical possibility for dealing with reconfigurations that attempt to inter-
leave other reconfiguration actions, is to enforce a strict sequentialisation policy. This
can be done by ensuring that onceeamessage arrives at a delay automaton, the only
thing the delay automaton can then do is to raise the corresponding event, ignoring fur-
ther inputs till it has done so. We call this arrangement the standard asynchronisation
of an IWIM system, and we now present the technical details.

SupposaVMis an IWIM system with the usual notations, i.e. the typical automa-
ton name isvmmapping to [, O, A= (St Init, Tr)) O (M, m;, R), with manager states
mapping to networksRy,, . Cr,,.»)» @and reconfigurationsngm -r-> Nym = Xmymnwm -

Crwm = Chwrs @nd with ancillary data given by my;m, Ay wiriAmnr

The standard asynchronisationwi, which we call her&V/M*, has the set of au-
tomaton name$VM* = WM O {A.wrm.m.wm| wmi”m,,+. We assume all of these
A.wm.m.wmnames are fresh, and introduce for eAchimi.m.wmname, for future con-
venience, fresh port, channel, and input and output port Rames

Awm.mwn , Awnm.mwm , Awnm.mwm, , Awm.m.wm , Awmri,

If wmmaps to [, O, A= (St Init, Tr)) O (M, m;, R) in WM, in WM¥*, wmmaps to [, O%,
A* = (St Init, Tr*)) O(M, my, RY).
The input portd of the worker facet ofvmremain unchanged. However for the
output ports we hav®* = O O {A.wm}. The worker facet automatomor(wm) itself
is given by the same state sp&tenitial statelnit, and:

Tr*=Tr, O Tro O {a-A.wmylrec> b |a-rec> b O Trg}

This ensures thatec messages can be sent ovewm, to all delay automata
A.wm.m.wm. To ensure that these are handled properly, we examine the manager facet
of wm

In the manager facehan(w), the state spackl and initial statem, remain un-
changed. Stat@however maps to the communication netwd?k{ . C*,) where:

P* mwm = P & {A.Wm.m.wm, A.wmi.m.wm | wmi~my,
C* mwm = Cmym & {Awnd.m.wmyy, | wim,,.}

S mwm = Smwm D {A-WM.m.wmyy, 1— A.wmi.m.wng | wim~m,
™ mam = tmwm O 1AWN.m.wmyy, 1> Awnd.m.wm | wim,, .}

2. The last of these is not an error.

Finally, if mym-r-> fym = Xmumnwm - Cmwm = Chwm IS @ reconfiguration transition &,
there is a corresponding transition®f given by X* i, - - C* mum = C*num Where
X* Mumiwm = Xmamnwm INtErpreted as a partial injection Ghy,, -

Standing between the worker and manager facets of the preceding automata, are the
delay automata themselves. A delay automaton nAmer.m.wmmaps to a pure
worker given by:

(1A wrrt.m.wm OA.wm.r_n.wm An wni.m.wm=
(Stwirt.mawm Mita wit.mwm Trawm.mwn) 2 { ¢} ¢, 0)

Here:
[Awmi.mwm= {A.wm.m.wm|wm”m,,}

while Op wni. m.wm= L. The worker automatoAp \yi.m wmiS given by the state space:

St wirt.mwm= R€Gum B {INita wit mwnd

and the initial staténita \wn m.wmiS the one named as such. The transitions of
Ap wrd.m.wmare given by:

Tra wrd.mawm= {INItA wird mowm-A-w.m.wnirec-> rec| rec 0 Regyy} O
{rec-rec> Initp i mwml rec O ReGy}

where we have abused notation a little by allowiagto name the state reached by in-
putting arecmessage (not to mention its original use as event name), hopefully without
causing confusion. Itis now clear that the delay automaton inpgs message com-
ing from the original worker, and then provokerea reconfiguration event in the man-
ager at a later point.

To connect all this together, we give the above relation, which is:

Ax = A O {AwnT.mawn™ my,, | wn my,
and thex*,, —bijections which are:

A m = Amm & {A W mowng 1 Awnd, | wm my,p O
{Awm.m.wm - Awml.m.wm|wm” my,;

Note how in the first line of the above the original worker’s output poni, is shared
by as many managers as it has, each controlling an individual queue to a separate
A.wni.m.wmdelay automaton.

Finally ther* o \wni.m wm+*mum fUNCtions are given by:

I A wirt. mawnt* myrF€0) = Mym > Ny 1f - 1yyiam,, (F€C) = My -r-> Ny

Itis now clear that this construction has the properties indicated informally above. Thus
whereas inWM, a workerwmi above a manger stame,,, can perform the step-rec->

b simultaneously with each implicated manager’s performing the appropnater->

Nym (DEcause,nyiam,,, MAPSrec to My, -r-> Ny, in WM*, wni can no longer do this
directly. Instead it passesrac message té.wiri.m.wmvia a singlea -A.wmiglrec-> b
action which causesec messages to be broadcast onto all relevant channels
A.wm.m.wnyy,. If such a channel was previously empty, tewni.m.wmcan swallow

therecmessage by performing dmit i m.wm-2-wn.m.wnirec-> recinput from the

same channel. This obtains by the fact that pAntari, andA.wni.m.wmare connect-

ed viaA.wm.m.wmy, sinceA*, —connectsA.wm, to A.wm'.m.wm =

S* munA.-Wm.m.wmyp), and also connects ,, (A.wni.m.wmy,) = A.wnml.m.wm to
Awm.m.wm SiNCer* a . m.wm*mwm Maps the only availablé.wni.m.wmtransition

rec -rec-> Initp ywn.m.wmto the reconfiguratiomm,, -r-> ny,, it follows that when
A.wm.m.wmperformsrec -rec-> Inita yyni.m.wm it Provokes the desired reconfiguration
Mym -T-> Ny Thus if Awm.m.wmy, was empty at the outset, the simulation of one
manager’s reconfiguration by a delayed but uninterrupted sequence of steps is available.
Evidently when several managers need to react, consequent on the same original atomic
reconfiguration, similar simulations can also be constructed. These simulations may
also be interleaved with other actions, provided none of the other actions ‘beat the se-
guence to the tape’, where the ‘tape’ is the invocation eé@step mapped by a

I* A wii.m.wm*mam O @ change of configuration of the managen while the manager
remains in the original state. Examples of other actions that can safely be interleaved

in this manner are ordinary I/O actions, and reconfigurations not involving any of the
automata involved.

Proposition 4.1 The construction just given is idempotent, in the sense that applying
it n more times tdVM* results in a systeMWM*__* which can simulate an atomic
reconfiguration ofWVM that involvesk managers inkn+1)+1 uninterrupted steps.

The straightforward if tedious proof rests on the observation th&yhtf, the only
worker aboveam,,,capable of provoking a reconfiguration iAavim.m.wm so that the

next application of the construction replaces eAchim.m.wns rec steps by a three

step sequence etc. Thus iterated application of the construction exempilifies the fact that
a chain of buffers is behaviourally equivalent to a single buffer.

5 The Arbab, de Boer, Bonsangue Model

In this section we show how the model proposed by Arbab, de Boer and Bonsangue in
[Arbab et al. (2000a)] (see also [Arbab et al. (2000b)]), henceforth the ABB model, can
be subsumed within our framework. In the ABB model, there is a familgaofipo-

nents Each component is a transition system similar to one of our worker automata,
and it has access to a set of channel ends to which it is connected. A component may
output values along channel source ends¢etn which it is connected, and may input
values from channel sink ends (@yto which it is connected. The state transitions for
these actions are of the foranrc!v-> b anda -c-> b respectively, and these are the only
kinds of action that components may perform. The dynamic reconfigurability of ABB
systems comes from the fact that they can alter their set of connected channel ends by
sending and receiving channel end identities along the channels themselves. Thus if a
component possesses channel endsit may relinquish possessiondby a transition

like a-cld-> b; likewisea -c!d-> b relinquishes possessionaf Likewise possession of
dordcan be gained by -c?d-> bora-c?d-> b. Itis tacitly assumed that since channels

are point to point connections, once a component has relinquished possession of a chan-
nel end, it will no longer attempt to use it until it has received it once again from some
other component. Channels themselves are queues in the ABB model, just as they are

in ours, and when a channel erldresp.d) say, becomes detached from the component
to which it was previously connected by being output along chaosaly, no inputs
overd (resp. outputs oved) can take place until the relevant message has been con-
sumed by the component connected to the sink eegwifiereupord (resp.d) becomes
available to that component for communication purposes. Output and input transitions
in which a channel end is respectively transmitted or received are called reconfiguring
output and input transitions.

We will now describe the mapping of a family of ABB components to a corre-
sponding IWIM system. Note that since channels are not created dynamically in the
ABB model, the complete set of channels that figure in an execution of an ABB system
is known at initialisation time, and given an ABB system, we call this complete set of
channelCH. From this we create the five disjoint alphabets:

CH, ={ch|chO CH}
CH, = {ch, |chO CH}
CH; = {chy | ch O CH}
CH, = {ch/|ch O CH}
CHCh = {Chch | chd CH}

LetC; ... C,, be a family of ABB components. For ea€hwe construct a transition
systenK; as follows. LetC; be St, Init;, Tr;, r;) whereSt is a set of states of whidhit;
is an initial state]r; is a transition relation containing transitions of typeoutiv-> b or
a -inv-> b (with in, out 0 CH), andr; is the initial value of the dynamically changing
set of channel ends possessedly By the remarks above we can assume @idt=
{ch|for somei, chOr; orch Or;}. For simplicity we will assume that each end of each
channel inCH is in some;.

Now we sei; to be the transition system given b€, Initj*, Tr;*), where the set
of states isSt* = St O newS§, with Init;* = Init;, andTr;* is given as follows (also im-
plicitly defining the fresh stateswSt). Each transitior -outiv-> b or a-in-> b of C;
wherev is not a channel end yields a transit@rout,!v-> b or a -inj2-> b of K;. More-
over each reconfiguring outpat-outich-> b of C; is replaced by a pair of transitioras
-outy!chy-> ab -rec(outy!chy)-> b, whereabis a fresh state inewSt andrec(outy!chy) is
a reconfiguration action where the intention is to simulate the detaching of the channel
endch, from the component in a manner that will be made clear below. Likewise if the
channel end being detachedttsrather thareh, K; will contain the pair of transitiona
-oufy!ch-> ab -rec(out,!ch)-> b. A similar arrangement holds for reconfiguring input
transitionsa -in?ch-> b anda -inch-> b. For these we have respectivelyin,?ch,-> ab
-req(injch,)-> b anda -in;”ch-> ab -rec(in;?ch)-> b.

For technical reasons, it is not sufficient to work with justihe Givenk;, let6,"
be a finite directed path through the transition systel ¢fe. a finite sequence of con-
tiguous transitions df;), starting at state. LetK;?be the transition system determined
by the set of paths:g*2| 6,2 is a path through the transition systemkgfstarting at
a, and if 6, contains aec transition, there is only one and it is the last transition of
6,"9}.

Given a8, "2, let 8;2 be the result of erasing frof* all non+ectransitions (so the
transitions listed ir®;® will not be contiguous, neither will they necessarily mentn

Let@(6;"®), ®(6;%) denote the final state reached by suéidor 6;2. Define®;?={62|
8,72 is a path through the transition systenkgftarting ag}; consequentlyd;? is par-
tially ordered by the prefix relation. We wri*, 8;, ©; to denoted;*'"'i, g;""ti @,/niti,
Let:

M=[HO i O{l ... n}}

The rest of the construction will proceed by recursion on the structuk& efhich is
again partially ordered by the prefix relation. We construct a pure manger automaton
pm, whose space of stated\s and above eaam [0 M, there will be a collection of pure
worker automata crafted from the? transition systents

The base case i® = []x[]x...x[]. Above thismwe have the collection of pure
Workerspw,[] fori O{1 ... n}, where pvv;[] is given by CHH[], CHoi[], Ki'”'ti), with
CH;ll = {ch | ch O CH, ch O r}} and CH,ll = {ch, | ch, O CH,, ch O r;}. Note that
Init; = @([]) (with the understanding that [] is the empty path throkigh

The manager state maps to Ry, C,,) where:

Pn={ch|chy O CHs,chOr} O {ch|ch OCH,chOr}
Cm = {chy [{chy, ch} n Py # O}

and thes,, t,,maps function in the way we would expect, sg(ch.,) = chy andt,(chy)
=ch. The link between the manager and the workers is also unsurprising:

Am={ch 1~ ch[ch O CH;l'} O {chy 1 chy | ch, O CHGl}
p\N|[]Am

completing the base case.

Now suppose than = (8, ... 8,)) and supposet = (0, ... 6" ... 6;) wheref;" =
0,@[a; -rec(out,!chy)-> by], and where the transitios -rec(out,!ch,)-> b; is aK;- imme-
diate successor reconfiguring transition to the last o8¢ ifhe manager statewhich
maps to Ry, Cy) is transformed ton which maps toK,,;, C,y) where:

Pry = Pm—{ch}
Cr = {chy [{ch, ch} n Py # 0}

and thes,,, t,y maps work as expected, igy(chy,) = chy andt,;(chy) = ch. It now
makes sense to define the manager reconfiguration transition m' as the partial in-
jection

Xmni : Cm = Cyy

which is the maximal identity function @}, n Cy,.

Suppose that abovawe had then pure workers pvwei [j O{1 ...n}}. Thenabove
m we will also haven pure workers. Fof#i, pvwei will continue to be aboven' and
the reconfiguration transitiom -r-> m’ will leave it in the same state as it was. For the
casg =i we have instead the pure worlan® = (CH;®', CH,®', K;%®)) where:

CHiieg_,: CHiie‘e_
CHyi™" = CHg™ — {chy}

3. Since there is only one nontrivial manager, we suppresprthégs for convenience.

and so we can summarise the above mapifais:
{pw ¥ | pwi®rm,j O {1 ... n}—{i}} O {pw*"m}
TheAy map is:

Ani = A —{chy - chy}
and we have that:

Moweam(recout!chy)) = m-r-> mf

which completes the piece of the recursion for the casereé@ut,!ch,) reconfigura-
tion. If we consider insteaec(out,!ch), rec(injch,), rec(in;?ch) reconfigurations, the
above is modified respectively by:

CH;% =CH® —{ch} ; CHy® =CH;% ;

Py =Pm—{ch} ; Gy ={chy [{ch, ch} n Py 20} ;
At =Am—{ch 1~ ch}

CH;® =CH% ; CH,® =CHy* O {ch;} ;

Py =PrmO{ch} ; Coy = {che [{chy, ch} n Py 2 0}
Ani = A O {chy 1- chy}

CH% =CH;% O {ch} ; CH,® =CHy" ;

Py =PmO{ch} ; Cyy ={chy [{ch, ch} n Py 20} ;
Ami =AmO {chy i~ ch}

together with the obvious consequences. Since the ABB system enjoys the property
that a component cannot give away a channel end that it is not connected to and neither
does it ever receive a channel end that it already possesses, it readily follows that the set
operations above are nonnull.

Beyond these there are the expected identity transitions on staté®bEourse,
which completes the construction. Thus we have cut up the original ABB system into
a collection of pieces that can be reassembled as an IWIM system, in order that the latter
is able to achieve the same effect as the original system. In fact it is easy to convince
onself that the IWIM system constructed from a given ABB system by the above tech-
nigue is able to simulate it in the sense that non-reconfiguring inputs and outputs corre-
spond bijectively, while reconfiguring inputs and outputs correspond to sequences of
two steps in the IWIM system, the first to receive or transmit the channel end identifier,
the second to provoke the desired reconfiguration via the manager.

6 The Katis, Sabadini, Walters Model

In this section we consider a model proposed by Katis, Sabadini and Walters in [Katis
et al. (2000)], henceforth the KSW model, and show how it too can be subsumed within
our framework. In the KSW model, the main entity of interest is the CP automaton. A
CP automatoils = (G, X, Y, A, B, g, 91, Yo, Y1), consists of a directed grajgh = (G,
G1) whereGg is the set of nodes ai@) is the set of arcs, together with four maps:

00:G1 - X;01:G1=-Y ;V9:A-Gy;v:B- Gy

These work as follows. The arcs of the graph represent transitions of the automaton,
whose states are the nodes. The XetrdY are input and output alphabets respectively.
Thus the map8y : G; -~ Xandd,; : G; - Y describe which input letter a transition of

the graph consumes, and which output letter it produces. Since both maps are total,
each transition involves both input and output. We will write a CP automaton transition
as:

s-(ind, arc, outd)-> t

wheresandt are statesarcis the arc carrying the transition, aimdl, outdare the input

and output data. (In [Katis et al. (2000)], the authors also admit null elements in both
XandY alphabets, to aid abstraction and to represent the absence of genuine communi-
cation during a step.) Communication is synchronous, thus when two CP automata
communicate, the symbol output by the producer of the communication, is simultane-
ously input by the consumer of the communication. Most emphatically, there are no
gueues in the model: communication in this model is above all a synchronisation mech-
anism.

The setsA andB (called the in-condition and out-condition respectively in [Katis
et al. (2000)]), are to do with initialisation and finalisation, though in a slightly non-
standard manner. Specifically, tiigimage ofA is the set of entry points into the CP
automaton, i.e. initial states, and tiigimage ofB is the set of exit points, i.e. final
states, of the automaton — except that when CP automata are combined in the appro-
priate way, then subsets of entry or exit points may be identified, leading to a richer
gamut of possibilities parameterised by partitiong,04) andy;(B).

CP automata are endowed with a number of algebraic operations, which construct
more complex CP automata out of simpler ones. We will model the KSW formalism
by mapping CP automata to IWIM systems, and then showing how the CP automaton
algebraic operations can be reflected in constructions on the corresponding IWIM sys-
tems.

Let G = (G = (Gp, G1), X, Y, A, B, 0, 01, Yo, Y1) be a CP automaton. We build an
IWIM system corresponding 13, and consisting of a pure manager and a pure worker.
The pure managgmhas one-state which maps to (s, p, { chs, ch}) with s, (chy)
= ps andt, (chy) = p; (and withs, (ch) andt, (chy) undefined). The stateis initial and
the only transition of the manager is the identity. Clearly the manager’s structure is in-
dependent 0.

The pure workepwis ({p}, { P}, (St Init, Tr)) where the transition systefir is
constructed thus. For eahtransitions -(ind, arc, outd)-> t, Tr contains the two step
sequence-p;2ind-> arc -p,!outd> t ; this makes it clear th&t= Gy O G, (we will tac-
itly assume that this union is disjoint). Regardiimif, we can choosany statesy in
Yo(A) to belnit. Thus the mapping from CP automata to IWIM systems is in general
one to many. In reality of course, examples of CP automata that represent complete sys-
tems typically have unique initial states, reflecting the often observed fact that most real
systems start in a well defined condition. The plurality comes in useful when compo-
nent CP automata are combined to form a larger system. We will comment on this fur-
ther below. More generallyg(A) andy;(B) are sets of states of the pure worker

Our basic construction is nearly complete. All that remains is to note thatrttapping
is given by:

Av(Ps) =Py 3 A(P) =P
that the above mapping is given by:
PW™ bm

and that since there are rex actions in the worker, thremap is empty.

Note the following invariant of the generated IWIM system: regardle$s, dfiere
is exactly one pure worker, one one-state pure manager, one external input channel, one
external output channel, ayg(A) andy;(B) can be identified with sets of configurations
of the pure worker.

We can easily see that whatever the initial state of the given CP automaton, we can
find an IWIM system from among the possibilities constructed, with the same initial
state; and which furthermore simulates it in the sense that the execution of a CP autom-
aton transition inputting and outputting, corresponds in the IWIM system to the input
from the input queue of and the output onto the output queueyah that order. (The
alternative order leads to an equally acceptable construction.) Note that in the IWIM
system these are comunications with the environment.

We now move on to constructions on CP automata and how these are reflected in
the corresponding IWIM systems; the principal ones that we must consider are binary
combinators. We will subscript with the name of the relevant automaton to disambigua-
te when notations would otherwise clash.

Communicating Parallel Composition. Let G = (G = (G, Gy), X, Y, A, B, 9, 01 6.
Yo Y1,6) @andH = (H = (Ho, Hy), Y, Z,C, D, dg , 01 11, Yo . Y11) be CP automata. Then
the communicating parallel composition @fandH, written G [H, is the CP automa-
ton:

G M = (GH = (Gg x Hg, GyH; = {(9, h) [g 0 Gy, h O Hy, 016 (9) =g ()}),
X, Z,
AxC,BxD,
906 m (0, h) =09 (9), 016m (9, h) =014 (h),
Yoo ® =Yoe XYoH Yic® =YiG X YiH)

This definition makes clear the statement above that communication is synchronous in
the KSW model. The input and output labels on an grd) of the combined system
aredg ; (g) anda 4 (h) respectively, while the very existence of the arc is predicated on
the conditiond; (g) = dp 1 (h), which supports the interpretation that groutput and
arch input the same symbol. This is the only notion of communication in the KSW
model.

We model the communicating parallel compositiofccdindH at the IWIM system
level as follows. Suppos@/M is an IWIM system representing, andWM, is an
IWIM system representingl. We assume that bodWM; andWM, each have a pure
worker, pwg andpwy respectively, a one-state pure manageg andpmy respectively,
an external input channeh, ; andch ; respectively, an external output chanok] g
andch respectively, thayg g (A) andy; (B) can be identified with a set of states of

pwg, and thatyy 14(C) andy; (D) can be identified with a set of statesiy. The
IWIM systemWMg i we seek can be generated fréfivi; andWMy as follows.

There is the usual one-state pure manageyy as above. The corresponding pure
workerpwg g = ({p} { P}, (St m, INitgm, Trem)) is built from pwg andpwy by defin-
ing St = Sk *x Sk, InitgE = (Initg, Inity), and forTrg i, whenever we have a pair of
transitions inTrg of the forms; -p;2ind-> arcg; -p,!val-> t, and a pair of transitions in
Try of the forms,, -pval-> arcg;y -p,!outd tyy, we form theTrg g transitions &;, s)
-p7ind-> (arcg; g, arcs;) -Pyloutdk> (i, ty). Itis clear that this procedure only succeeds
because of the special structure of the transition systegesndTry. We can now iden-
tify o g m (A % C) with states corresponding Y9 ¢ (A) Yo 1(C), andy; g (B % D) with
states corresponding @ (B) * y; 1(D); and the rest of the data for the IWIM system
WM is routine.

It is obvious thatWMg g is able to simulat& [in a straightforward manner pro-
vided WM can simulatés andWM, can simulaté.

Parallel Composition without Communication. Let G = (G = (Gy, Gy), X, Y, A, B,
906, 916 Yo Y1) andH = (H = (Ho, Hy), Z, W, C, D, dg 4, 01 4, Yon» Y1) be CP
automata. Then the noncommunicating parallel compositida andH, written G x
H, is the CP automaton:

GxH=(GxH=(GyxHg Gy xHq),XxZ YxWAxC,BxD,
906 xH (@, h) =095 (9) X 9o (h), 016 x (@, h) =015(0) x 91 4 (D),
Yoo xH =YoG XYoH » Y1GxH =Y16 X YiH)

This noncommunicating parallel composition still features synchronous communica-
tion, but this time of pairs of data values.

We model the noncommunicating parallel compositiofsadndH at the IWIM
system level thus. L&/Mg andWMy be IWIM systems representiffigandH respec-
tively. We assume th&Mg; andWMy have pure workergwg andpwy, one-state pure
managerspm andpmy, external input channetsh ; andch y, external output chan-
nelsch g andch y, thatyy ¢ (A) andy; (B) can be identified with a set of stateguf;,
and thaty, 1 (C) andy; 14(D) can be identified with a set of statespfyy. Then we pro-
ceed as follows to construdIMg .

There is the usual one-state pure mangget « 4 as above. We build a corre-
sponding pure workepwg x 4 = ({ P}, { Po}, (St x . INitg x . Trg x W) from pwg and
pwy by definingSk « 4 = Sk % Sy, Initg « y = (Initg, Inity), and forTrg « y, whenever
we have a pair of transitions ifrg of the formsg -pandg-> arcg; -p,!outd;-> tg, and
a pair of transitions iffry, of the formsy, -pAnd,-> arcg; -p,!outdy-> tyy, we form the
Trg « g transition pair:

(Se» S4) -Ri?(Ndg, indy)-> (arcsy g, arcsiy) -Po!(outds, outdy)-> (tg, t)-

We can now identifyyg ; x (A x C) with states corresponding ¥g(A) * Yp(C), and
Y16 x H(B % D) with states corresponding 1@ (B) x y; 4(D); and the rest of the data
for WM; « is routine.

It is obvious thaMWMg 4 1 is able to simulaté& x H in a straightforward manner
providedWNMg can simulatés andWM, can simulaté.

Up to now, the in-conditions and out-conditions of the component CP automata have
played a passive role; the next construction remedies this.

Restricted Sum. LetG = (G = (G, Gy), X, Y, A, B, 996, 91 6. Yoo Y1,6) andH = (H
= (Ho, H1), X, Y, B, C, 0g 14, 01 14, Yo, Y1,1) b€ CP automata. Then the restricted sum of
G andH, writtenG + H, is the CP automaton:

G+H=(G+H=(Gy+Hy/~ where 5 is the finest equivalence
relation generated by; g(b) ~5 Yo 4(b) (and we write
[g]g for the equivalence class containigjgG; + Hy),
XY, A C,
090G +H =006 * 0o, 016 +H =016 t 01 h,
YoG +H =Y0G» YLG+H =YL H)

(As expected, the sources and targets of the ar€g inH; are the equivalence classes
of the corresponding sources and targetSgandH.)

Let WMg andWMy be IWIM systems representirig andH respectively. We as-
sume thatWMg andWMy have pure workergawg andpwy, one-state pure managers,
pmg andpmy, external input channetsy ; andch y, external output channetsy ; and
chg y, thatyy g (A) andy; g(B) can be identified with a set of states pfi; via maps
Ywos - A — Sk, Vw1 : B — Sk, and thatyy 14(B) andy; (C) can be identified with a
set of states gbw via mapsyyon : B - Si, Ywaq - C » Sty We proceed as follows
to constructWM; ; .

There is the usual one-state pure mangwes ;. 4 as above. We build a corre-
sponding pure workemwg + 4 = ({pi}, { Po}, (St + 1 INitG + 1, Trg +) from pwg and
pwy by defining:

St +H = Sk + Sty / ~5 where 3 is the finest equivalence relation
generated by, g(b) ~s Ywon(b) (and we write
[s]g for the equivalence class containg)g

|nitG +H = [lnitG]B
Trg o1t = {[Ss -PV> [| [Ser [0 St 8-> t 0 Trg O Tryg } 0
{[sl -po'v-> [t | [Sle, [t]ls O St s-pglv-> t O Trg o O Try o}

That this works as desired is conditional on the observation that indvaitand pwy,
the states picked out byo 6, Y1 YwoH: YwiH @r€, SO to speakGy-states’ and not
‘arc-states’. This can be assured by choosigs: Ywi c: YwoH: YwiH 10 P€Yo G, Y16
Yo Y14 in the base case construction, whereupon it evidently persists through the bi-
nary combinator simulations we have described, and enables us to formally identify
Yoc+H=YoG with a set of states QjVVG +H via YW0oG+H - Ao Sb +H=Ywos / ~B and
to identifyy; g + 4 = y1 4 With a set of states gfwg + y ViaYy1g+1 : C » S+ =
Ywin ! ~s- With this confirmed, the construction 8f; + Sy / ~g results in a glueing of
s-p7ind-> arc -p,!outd-> t sequences only at their ends, and it then becomes easy to see
that the given recipe gives us an IWIM syst&M; . 4 capable of simulating the CP
automators + H, if WMg simulate€s andWM, simulatesH.

Two points deserve comment. Firstly, [Katis et al. (2000)] speak of the need to ‘ad-
just’ the in-conditions or out-conditions of a CP automaton in order to make it fit for

some patrticular purpose. More than anything else this is an indication that these inter-
connection aspects of the automaton are really properties that belong more to the inter-
connection mechanism itself, than to the automata involved.

Secondly if, following [Katis et al. (2000)], we intend the restricted sum to model
sequential composition, the constructiorVdl; . y, though faithful to the CP autom-
atonG + H, suffers from the weakness that if a final statéohas out-transitions, and
a corresponding initial state & has in-transitions, then a run may wander freno
H and then back in t&. The IWIM system paradigm offers more flexibility here, al-
lowing the expression of an irreversible transition frérno H. We describe the details,
resulting in the construction of an IWIM systeMM* , , that simulate$s + H in a
different way.

Suppose i + Hp / ~g above, there arke of the equivalence classes that are non-
singletons, i.e. there akeclasses that glue at least one elemer®gfo at least one el-
ement oH, (the remaining classes just containing individual elements outside the rang-
es ofy; (B) andyp 4(B)). Call them:

Vw6 (0)a], Va6 (0)2] - [Yiwr .6 (D)
Now partition each ofyfy; g(b)1] ... [Vwa (D)l into two subsets each:

Vw101l = e n Go and Y16 1dH = [Ywas(0)1] N Ho

Vo Ods = Vs ®)d 1 Go and i O)dss = Moz 6B 0 Ho

all nonempty by our assumptions. Replacintg, y the [yy1 g(b)1] - [V c(D)id bY
the w1 .c(D)ale: Ywa 6(D)lH - [Ywa 6 (D), [Yiwa 6 (D) is tantamount to generating
a new equivalence relation, which we cail on the state spac®; + Syy. This is the
finest relation generated by the two families of clauses:

(Yw1.6(0) ~8 YwoH (D) = Yo H(O) ~8 Yu1,6(0) U Yw1 (D) ~& Yu1,6(C))
(YnoH(0) ~& Y1 ,6(B) = Yw1,6(C) ~& Ywo H(C) O YwoH (D) ~& Ywo H(C))
Now we define:

Stg+H = Ck+n — Vsl - [Ywr e} U
{{Ywr.c(®1le: [Ywas0O)lH - [Ywac (e [Ywic(O)dH}

|nit*G +H = [lnitG]B*

TG +n = {[Sle P> [tes | [Slges [tle O Sts-pv->t O Trg, O Try } O
{[sle- -Po!v-> [t]g- | [Sle+: [tlex O St s-pylv->t O TrG’o O TrH’o} O
{[sl -rec [tlg: | S=Vua,6(0) = Ywopn(b) =t, b 0 B}

By distinguishing thes from theH components of the glueing states, we are able to
introducerectransitions from one to the other. All of these transitions are above the
unigue state of the pure manager, and all map to the identity reconfiguration on the cor-
responding port/channel networkp{{ p}, { chs, ch}). Since the pure worker remains
above this state when suchiex transition is executed, it®c transition completes and

the run continues in thil component; however this time there is no way back td3he

component, even if there are in-transitions to the initial statd afsed, and out-transi-
tions from the final state & reached.

This all works adequately, but is still open to the criticism that pure warkegy its
useful life over when the locus of control moves into tha, part of the system, re-
mains alive, though defunct, preventing its resources from being reused. In a real sys-
tem, it would be garbage collected releasing its resources for other activities. Equally,
a demand driven implementation might well not createpiivg part of the system until
it was needed. Our IWIM system model enables us to express these aspects though we
will not go into all the formal details. Here is the general idea.

We split the state of the pure manager into two; and (a modifiegd)is above the
new initial state, whileowy is above the other state. There is a reconfiguration transi-
tion from the former to the latter, whose data is the identity reconfiguration on the port/
channel network (s, pg. { chs, ch}). The modification topwg entails adding the
[Ywi (D1l - [Ywic(b)ilg States described previously to its state space, and then add-
ing rec transitions to a typicaly{,; (0);]¢ state from each of its comprising,; g(b);
states. Thesec transitions map to the reconfiguration mentioned above.

It is clear that the behaviours of the resulting system are as follows. The manager
starts in its initial state; consequently the modified; is active. It executes until it
reaches g, (b); state and proceeds to perform g (b); -rec-> [y g (b);]g tran-
sition. This maps to the reconfiguration step of the manager, and bgoayseabove
the new manager state, the modiffeg; leaves the system configuration gmaly joins
it, starting in its initial state.

This story holds up iH has a unique initial state. If not, an unwinding technique
similar to that used in our ABB system simulation must be employed.

Furthermore, the nontrivial state space now introduced for the manager has conse-
guences for all the combinators. A product-like construction must be used on the man-
ager states for the communicating and noncommunicating parallel compositions, while
a sum-like construction, involving the introduction of reconfiguration transitions must
be used for the restricted sum. We leave the fascinating details for the motivated reader.

7 Conclusions

In the preceding sections we have introduced a formal model for capturing some of the
essence of the IWIM concept in an automata based framework. The essence of the
IWIM model is the special role of reconfigurations, so our constructions aimed to reflect
this in an explicit manner, rather than relying on ‘programming them away’ within a
more general purpose automata theoretic framework. The objective was to model these
structural aspects of reconfigurations involving managers and workers as simply as pos-
sible while keeping their special nature to the fore. This led to some complexity in the
model as we saw, but hot as much as there might have been had we chosen for example
to model the full asynchrony of the true IWIM model, rather than emulate it via delay
automata.

To keep things as accessible as possible, we started with elementary IWIM sys-
tems, before treating the unrestricted case. The fact that the generalisation went
smoothly is due in no small way to the fact that the design of the model was tacitly un-

dertaken in a manner in sympathy with categorical imperatives, which have a great ca-
pacity to foster relatively elegant structural properties.

Having built our IWIM systems and dealt with the emulation of full asynchrony,
we emulated the ABB and KSW models. While the ABB model is a distributed state
model like ours, the KSW model is a global state model, in which the state of the entire
system resides at one indivisible point. This policy permits a straightforward construc-
tion for sequential composition, at the price of being somewhat unrealistic for a distrib-
uted model of computation. It is clear that sequential compaosition would involve the
distributed termination problem in a distributed state model, and this is one reason why
it is not contemplated for the ABB model. Had we not wanted to capture all the alge-
braic properties described in [Katis et al. (2000)], including sequential composition, we
could have employed a more natural construction to emulate aspects of the KSW model.
For example we could have piped the output of one worker into the input of another in
modelling communicating parallel composition, this however immediately distributes
the state.

Finally, we observe that coordination models different from the IWIM one, and in
particular the global state tuple based approaches, must nevertheless embody the capac-
ity for disentangling management from worker aspects, which was done so readily for
IWIM, even if they only do so implicitly. The challenge of extracting this structure from
so different looking starting points remains an intriguing issue to explore in future pub-
lications.

Acknowledgement

The work described in this paper was partially supported by the EU in the course of the
KIT-INCO Project SEEDIS (Contract No. 962114).

References

[Agha (1986)] Agha G. (1986); Actors: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press.

[Arbab (1995)] Arbab F. (1995); Coordination of Massively Concurrent Activities. CWI Tech.
Rep. CS-R9565.

[Arbab (1996)] Arbab F. (1996); The IWIM Model for Coordination of Concurrent Activities.
Proc. COORD-96, Ciancarini, Hankin (eds.), LNO®%1 34-56, Springer.

[Arbab et al. (1993)] Arbab F., Herman 1., Spilling P. (1993); An overview of Manifold and its
Implementation. Concurrency: Practice and Experi&n@3-70.

[Arbab et al. (1998)] Arbab F., Blom C. L., Burger F. J., Everaars C. T. H. (1998); Rusable Coor-
dination Modules for Massively Concurrent Applications. Software: Practice and Experi-
ence28, 703-735.

[Arbab et al. (2000a)] Arbab F., de Boer F. S., Bonsangue M. M. (2000a); A Logical Interface
Description Language for Componernits. Proc. COORD-00, Porto, Roman (eds.), LNCS
1906 249-266, Springer.

[Arbab et al. (2000b)] Arbab F., de Boer F. S., Bonsangue M. M. (2000b); A Coordination Lan-
guage for Mobile Componenis: Proc. ACM SAC-00, 166-173.

[Banach et al. (2002)] Banach R., Arbab F., Papadopoulos G. A., Glauert J. R. W. (2002); A Mul-

tiply Fibred Automaton Semantics for IWIM. CWI Research Report SEN-RO2G6:/
www.cwi.nl

[Bonsangue et al. (2000)] Bonsangue M. M., Arbab F., de Bakker J. W., Rutten J. J. M. M., Scutel-
la A., Zavattaro G. (2000); A Transition System Semantics for the Control-Driven Coordi-
nation Language MANIFOLD. Theor. Comp. S240, 3-47.

[Carriero and Gelernter (1989)] Carriero N., Gelernter D. (1989); LINDA in Context. Comm.
ACM 32, 444-458.

[Ciancarini and Hankin (1996)] Ciancarini P., Hankin C. H. L. (eds.) (1996); Coordination Lan-
guages and Models 1996 (Proc. COORD-96). LNG6, Springer.

[Ciancarini and Wolf (1999)] Ciancarini P., Wolf A. L. (eds.) (1999); Coordination Languages
and Models 1999 (Proc. COORD-99). LNCS94 Springer.

[Garlan and Le Metayer (1997)] Garlan D., Le Metayer D. (eds.) (1997); Coordination Languag-
es and Models 1997 (Proc. COORD-97). LNC2B2 Springer.

[Gelernter (1985)] Gelernter D. (1985); Generative Communication in Linda. ACM Trans. Prog.
Lang. Sys7, 80-112.

[Katis et al. (2000)] Katis P., Sabadini N., Walters R. F. C. (2000); A Formalisation of the IWIM
Model.in; Proc. COORD-00, Porto, Roman (eds.), LNI®BG 267-283, Springer.

[Malone and Crowston (1994)] Malone T., Crowston K. (1994); The Interdisciplinary Study of
Coordination. ACM Comp. Sur26, 87-119.

[Omicini et al. (2002)] Omicini A., Zambonelli F., Klusch M., Tolksdorf R. (2002); Coordination
of Internet Agents: Models, Technologies, and Applications. Springer.

[Papadopoulos and Arbab (1998)] Papadopoulos G. A., Arbab F. (1998); Coordination Models
and Languageén: Advances in Computers — The Engineering of Large Systems, Zelkow-
itz (ed.), 329-400, Academic.

[Porto and Roman (2000)] Porto A., Roman G-C. (eds.) (2000); Coordination Languages and
Models 2000 (Proc. COORD-00). LNAS06 Springer.

[Shapiro (1989)] Shapiro E. (1989); The Family of Concurrent Logic Languages. ACM Comp.
Surv.21, 412-510.

	A Multiply Hierarchical Automaton Semantics for the IWIM Coordination Model
	R. Banach (Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man...
	F. Arbab (Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands farhad@c...
	G. A. Papadopoulos (Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cy...
	J. R. W. Glauert (School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.K...
	Abstract: The drawbacks of programming coordination activities directly within the applications s...
	1 Introduction
	2 The IWIM Model
	3 IWIM Automata
	3.1 Elementary IWIM Systems
	c œ dom(sm) , c Œ dom(tm) , qsrest = qs – {c:[º , un]}
	c œ dom(tm) , c Œ dom(sm) , qsrest = qs – {c:[u, u1, º]}
	k^m , ak Œ ests , ak -i?u-› bk , lm(p) = i Œ Iwor(k) , tm(c) = p , estsrest = ests – {ak} , qsres...
	k^m , ak Œ ests , ak -o!u-› bk , lm(p) = o Œ Owor(k) , Æ ¹ Out = {d | sm(d) = p} , estsrest = est...
	tm(c) = p , Æ ¹ Out = {d | sm(d) = p} , qsrest = qs – ({c:[u, u1, º]} » {d:[º , ud,nd] | d Œ Out})
	kr^m , akr Œ ests , akr -rec-› bkr , rkr^m(rec) = m -r-› n = cm,n : Cm Æ Cn , estsrest = ests – {...

	3.2 Unrestricted IWIM Systems
	c œ »{dom(sm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(tmwm) , mwm Œ pman(sts) , qsrest = qs – {c:[º ,...
	c œ »{dom(tm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(smwm) , mwm Œ pman(sts) , qsrest = qs – {c:[u, u...
	k^mwm , mwm Œ pman(sts) , (ak, nk) Œ sts , (ak, nk) -i?u-› (bk, nk) , lmwm(p) = i Œ Iwor(k) , tmw...
	(ak, nk) Œ sts , (ak, nk) -o!u-› (bk, nk) , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p) ...
	k^m¢wm¢ , m¢wm¢ Œ pman(sts) , tm¢wm¢(c) = p , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p...
	Æ ¹ Rmman = {mwm | mwm Œ pman(sts) • kr^mwm} , (akr, mkr) Œ sts , (akr, mkr) -rec-› (bkr, mkr) , ...

	4 IWIM Systems with Delayed Reconfigurations
	5 The Arbab, de Boer, Bonsangue Model
	6 The Katis, Sabadini, Walters Model
	7 Conclusions
	Acknowledgement
	References

