
.

nds

rus

K.

a-
arate
arate
ibed,
of the

their
ond to
ion is
lation-
d.

s that
s in
es to
k of
rms

talk
enar-
Con-
uni-
tion.
d with
itself
A Multiply Hierarchical Automaton Semantics
for the IWIM Coordination Model

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K

banach@cs.man.ac.uk)

F. Arbab
(Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherla

farhad@cwi.nl)

G. A. Papadopoulos
(Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cyp

george@cs.ucy.ac.cy)

J. R. W. Glauert
(School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.

J.Glauert@sys.uea.ac.uk)

Abstract: The drawbacks of programming coordination activities directly within the applic
tions software that needs them are briefly reviewed. Coordination programming helps to sep
concerns, making complex coordination protocols into standalone entities; permitting sep
development, verification, maintenance, and reuse. The IWIM coordination model is descr
and a formal automata theoretic version of the model is developed, capturing the essentials
framework in a fibration based approach. Specifically, families of worker automata have
communication governed by a state of a manager automaton, whose transitions corresp
reconfigurations. To capture the generality of processes in IWIM systems, the construct
generalised so that process automata can display both manager and worker traits. The re
ship with other formalisations of the IWIM conception of the coordination principle is explore
Keywords: Coordination, IWIM, Automata, Fibration.
Categories: C.2.4, D.1.3, D.2.6, D.3.3, F.1.1.

1 Introduction
The massively parallel systems that can be built today require programming model
explicitly deal with the concurrency of cooperation among large numbers of entitie
a single application. Today’s concurrent applications typically use ad hoc templat
coordinate the cooperation of their components, and this is symptomatic of a lac
proper coordination frameworks for describing complex cooperation protocols in te
of simple primitives and structuring constructs.

In most real applications, there is no paradigm in which we can systematically
about cooperation of active entities, and in which we can compose cooperation sc
ios such as client-server, workers pool, etc., out of a set of more basic concepts.
sequently, applications programmers must deal directly with the lower-level comm
cation primitives that instantiate the cooperation model of a concurrent applica
These primitives are generally scattered throughout the source code, intersperse
non-communication application code, and the cooperation model never manifests

de-
of the
ica-
a-

dif-
rec-
n of
o im-

ca-
rproc-
ica-

ication
assing
s the
low-

roto-

d co-
ton
ach-
iro
line.

s and
al.
ives
lernter
ased
l. It

IM
cal
de-
sen-
u-
ge of

ily of
bitrar-
d, it
ion
D
way

he
rin-
in a tangible form. Thus it is not an identifiable piece of source code that can be
signed, developed, debugged, maintained, and reused, in isolation from the rest
application. This inability to deal with the cooperation model of a concurrent appl
tion explicitly, contributes to the difficulty of developing working concurrent applic
tions containing large numbers of actively cooperating entities.

Despite the fact that the implementation of complex protocols is often the most
ficult part of a development, the end result is typically so nebulous that it cannot be
ognized as a commodity in its own right. This makes maintenance and modificatio
the cooperation protocols much more difficult than necessary, and their reuse next t
possible.

The two most popular models of communication within highly concurrent appli
tions are shared memory and message passing. In the shared memory model, inte
ess synchronisation primitives play the dominant role, with interprocess commun
tion subordinate, whereas in the message passing model, interprocess commun
is dominant, and synchronisation subordinate. The latter makes the message p
model somewhat more flexible than the shared memory model and, therefore, it i
dominant model used in concurrent applications. However, both paradigms are too
level to serve as a proper foundation for systematic construction of cooperation p
cols as explicit, tangible pieces of software.

Such observations have led in recent years to an upsurge in activity in so-calle
ordination frameworks and languages. An early survey is [Malone and Crows
(1994)] which characterisies coordination as an emerging discipline. Various appro
es with roots in eg. the actor model [Agha (1986)], or in logic programming [Shap
(1989)], were instrumental in establishing coordination as an independent discip
See [Ciancarini and Hankin (1996), Garlan and Le Metayer (1997), Papadopoulo
Arbab (1998), Ciancarini and Wolf (1999), Porto and Roman (2000), Omicini et
(2002)] for representative contemporary work. A number of higher level perspect
have emerged. Among these are the tuple based approaches such as Linda [Ge
(1985), Carriero and Gelernter (1989)], and by contrast, the connection control b
approaches amongst which we find the IWIM (Ideal Worker Ideal Manager) mode
is with this model that this paper is concerned.

The rest of this paper contains the following. In [Section 2] we survey the IW
model informally. With this motivation covered, in [Section 3] we develop a theoreti
automaton-based model for IWIM, which we call the IWIM systems model. This is
veloped gradually, as it is a fairly complicated construction, aiming to reflect the es
tials of IWIM in a credible manner. The underlying idea is that families of worker a
tomata perform their tasks under the supervision of a manager automaton. Chan
state of the manager corresponds to reconfiguration, whereupon a different fam
worker automata shoulders the burden. This basic idea is elaborated to enable ar
ily complex hierarchies to be modelled. Although our model is reasonably involve
falls short of trying to capture everything about IWIM or any specific implementat
of the IWIM idea, such as is to be found in the formal specification of the MANIFOL
language [Arbab et al. (1993), Bonsangue et al. (2000)]. In particular we abstract a
from the ability of workers to continue with internal actions on their own, which in t
full IWIM model they can do irrespective of the attentions of any manager. One p

ide-

our
gura-

del
ts of
how
ent
rises
ea
ion-
with
s the
as a
f this

ork-
)].
ls. A
ges
ed
ex-
h port
(in-

els. A
Inde-

ge in
t oc-
event
event,

does
rma-
makes
cation

ordi-
rker
n the
tion
eral,
. It
cipal purpose of this work could be seen as exploring the viability of fibration based
as in the arena of reconfiguration problems.

In [Section 4] we discuss how the instantaneous reconfiguration aspect of
IWIM systems can be generalised to model the asynchronous event based reconfi
tions characteristic of real IWIM frameworks. In [Section 5] we show how the mo
of Arbab, de Boer and Bonsangue [Arbab et al. (2000a)], a model featuring aspec
reconfiguration, can be expressed by IWIM systems; and in [Section 6] we show
the model of Katis, Sabadini and Walters [Katis et al. (2000)], a significantly differ
theoretical account, can also be captured within IWIM systems. These two enterp
support the other principal purpose of this work, which is to explore how the IWIM id
may be formalised in a manner that vividly highlights the special nature of the relat
ship between managers and workers in IWIM, and to compare such a formalization
models that do not do so. One aspect of IWIM systems not covered in this paper i
issue of their algebraic properties. The highly structured IWIM systems model h
rich algebraic theory. However an in depth account would almost double the size o
paper; see [Banach et al. (2002)]. [Section 7] concludes.

2 The IWIM Model

In this section we review the generic coordination framework known as the Ideal W
er Ideal Manager (IWIM) model [Arbab (1995), Arbab (1996), Arbab et al. (1998
The basic concepts in the IWIM model are processes, events, ports, and channe
process is a black box with well defined ports of connection through which it exchan
units of information with the other processes in its environment. A port is a nam
opening in the bounding walls of a process through which units of information are
changed using standard I/O primitives such as read and write; we assume that eac
is used for the exchange of information in only one direction: either into the process
put port) or out of the process (output port).

The interconnections between the ports of processes are made through chann
channel connects a port of a producer process to a port of a consumer process.
pendent of the channels, there is an event mechanism for information exchan
IWIM. Events are broadcast by their sources into their environment, yielding even
currences. In principle, any process in an environment can pick up a broadcast
occurrence. In practice, usually only a few processes pick up occurrences of each
because only they are tuned in to the relevant sources.

The IWIM model supports anonymous communication: in general, a process
not, and need not, know the identity of the processes with which it exchanges info
tion. This concept reduces the dependence of a process on its environment and
processes more reusable; it also makes the protocols governing such communi
more reusable.

A process in IWIM can be regarded as a worker process or a manager (or co
nator) process. The responsibility of a worker process is to perform a task. A wo
process is not responsible for the communication that is necessary for it to obtai
proper input it requires to perform its task, nor is it responsible for the communica
that is necessary to deliver the results it produces to their proper recipients. In gen
no process in IWIM is responsible for its own communication with other processes

e the

n an
of
, the
nager
ses,
nsible

ped
f in-

aran-
ed;

ce and
r proc-

the

e-

dent
cted
IM

l will

ents.
ports

one
on-
o one
and

in
e for-

e in-
t in
mod-
ort’s
ing

t
vent
-
o them.
is always the responsibility of a manager process to arrange for and to coordinat
necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers, i
application. In the IWIM model, an application is built as a (dynamic) hierarchy
worker and manager processes on top of this layer. Aside from the atomic workers
categorization of a process as a worker or a manager process is subjective: a ma
processproc that coordinates the communication among a number of worker proces
may itself be considered as a worker process by another manager process respo
for coordinating the communication ofproc with other processes.

In IWIM, a channel is a communication link that carries a sequence of bits, grou
into units. A channel represents a reliable, directed, and perhaps buffered, flow o
formation in time. Here, reliable means that the bits placed into a channel are gu
teed to flow through without loss, error, or duplication, and with their order preserv
and directed means that there are always two identifiable ends in a channel: a sour
a sink. Once a channel is established between a producer process and a consume
ess, it operates autonomously and transfers the units from its source to its sink.

If we make no assumptions about the internal operation of the producer and
consumer of a channelc, we must consider the possibility thatc may contain some
pending units. The pending units of a channelc are the units that have already been d
livered toc by its producer, but not yet delivered byc to its consumer. The possibility
of the existence of pending units in a channel gives it an identity of its own, indepen
of its producer and consumer. It makes it meaningful for a channel to remain conne
at one of its ends, after it is disconnected from the other. The full details of the IW
model codify a number of variations on this theme, but for our purposes, a channe
stay alive as long as one end or another is connected to a process.

Worker processes have two means of communication: via ports, and via ev
The communication primitives that allow a process to exchange data through its
are conventional read and write primitives. A process can attempt to read data from
of its input ports. It hangs if no data is presently available through that port, and c
tinues once data is made available. Similarly, a process can attempt to write data t
of its output ports. It hangs if the port is presently not connected to any channel,
continues once a channel connection is made to accept the data.

It is worth mentioning at this point that the interaction of all the ideas sketched
the preceding paragraphs conspires to make the notion of port quite intricate, as th
mal models of subsequent sections show. The fact that an individual portp belongs to
a specific worker (which may also be engaged in management activities, but non
volving p), but has its connectivity controlled by a different process, whose interes
p may wax and wane depending on the state of the computation, requires careful
elling to ensure that there are ‘no bits left dangling’. Thus various aspects of a p
functionality end up attached to different parts of the formal model, the whole be
subject to a number of carefully constructed invariants.

Besides reading and writing over ports, a processproccan also broadcast an even
e to all other processes in its environment by raising that event. The identity of the e
e together with the identity of the processproccomprise the event occurrence. A proc
ess can also pick up event occurrences broadcast by other processes and react t

le, ter-
. Our
n-

fect

) and
el con-
own.
uni-

ed by
unica-
The
which

lity
ugh
uch
ctic

ssion

odel
We
y, to
fam-
e a
stem
ion of
n the
men-
s of
n. As
onto

oke
ork-
nt the

uine
ion

tary

, cf.
Certain events are guaranteed to be broadcast in special circumstances; for examp
mination of a process instance always raises a special event to indicate its death
formal model in the rest of the paper will be quite limited in that we only model reco
figuration events. Even then, for simplicity, the modelling will be synchronous, a de
we address later.

A manager process can create new instances of processes (including itself
broadcast and react to event occurrences. It can also create and destroy chann
nections between various ports of the process instances it knows, including its
Creation of new process instances, as well as installation and dismantling of comm
cation channels are done dynamically. Specifically, these actions may be prompt
event occurrences it detects. Each manager process typically controls the comm
tions among a dynamic family of process instances in a data-flow like network.
processes themselves are generally unaware of their patterns of communication,
may change in time, according to the decisions of a coordinator process.

In our formal model, again for reasons of simplicity, we eschew the full genera
of these concepts. Our process networks will turn out to be statically defined, tho
the execution trajectory through this stucture will be dynamically determined. As s
they may be viewed as the static unwinding of an implicit but more succinct synta
specification of dynamic behaviour, and the unwinding enables us to restrict discu
to the semantic level alone, a welcome simplification.

3 IWIM Automata
In this section, we distil the essentials of the ideas just described, to create the m
which will serve as the basis for the semantics of IWIM in the rest of the paper.
build the model up in two steps. The first is based on a fibration-inspired strateg
reflect the way that IWIM events tear down and rebuild interconnections between
ilies of processes. Accordingly, elementary IWIM automata will have in the bas
manager automaton, describing how the manager part of an elementary IWIM sy
moves, and above each state of the manager automaton, there will be a collect
worker automata, connected together according to the prescription contained i
manager state. The various worker collections are then integrated into a single ele
tary IWIM system using an ‘above’ relation describing how workers relate to state
the manager, a construction inspired in essence by the Grothendieck constructio
a result of this, each configuration of the overall automaton can be projected down
the relevant state of the manager in the manner of a fibration1.

The capacity of IWIM systems to reconfigure themselves via events that prov
managers into reconfiguration activities, is here modelled by mappings of certain w
er moves (that represent the raising of the event) to manager moves (that represe
reception and processing of the event, resulting in reconfiguration). Unlike gen
IWIM systems, this is a synchronous activity in our model, but we will show in Sect
4 that the asynchronous aspects can be recaptured within our framework.

[Fig. 1] illustrates in pictures what we have just described in words for elemen
IWIM automata. It shows a collection of worker automata {A, B, C, D, E, S} sitting

1. The projection oriented nature of fibrations explains why we say ‘above’ and not ‘below’
Proposition 3.4 and Proposition 3.8 below.

and
ports
their

e hol-
ual
to

that

to

te.
above a managerMan, forming an elementary IWIM system. The states ofMan i.e. {l,
m, n}, each map to communication networks consisting of directed graphs of ports
channels. The ports of these networks correspond bijectively to input and output
in the workers, who are ignorant of whence come their input messages and where
output messages are destined. Input ports are shown solid, while output ports ar
low. Furthermore these bijections in large part mimic the substructuring of individ
ports in IWIM into their private and public parts. Also, following these bijections up
the workers reveals which workers are above which management states. Note
workerB is above more than one management state. This means that whenManmakes
a transition froml to m, B is unaffected and continues to work as before. Attached
each channel is a queue of messages, illustrated for just one channel forl in the figure.
Some of the channels can be external, such as the external input channel for statel, and

l

m

n

a -o!v-› b

c -rec-› d

χ

[u, …]

A B

C

S
D E

Fig. 1: A manager Man with some workers above it. Broken vertical lines show the

Man

correspondence between worker and manager ports, bijective for each manager sta

a-
hen

ens to

ut
n-
er

lus-

an-

del,
ount

both
n one
er. To
ts of
and
pre-

nre-
.

au-
rep-
being
man-
mic
point
en-
ta. In
own

den-
red

te

ot in
the external output channel forn; these allow connection to and exchange of inform
tion with the outside world. Note however that external input can only take place w
l is the current management state, and external output can only take place whenn is the
current management state. The management transitions must specify what happ
the message queues. These are mapped by additional data illustrated byχ in the figure
and merged into the destination queues.

WorkerC shows a typical worker output transition; there are similar worker inp
transitions. The port of workerS shows that ports are really quite general purpose co
cepts in IWIM, able to accomodate several incoming and outgoing channels. WorkS
itself can be seen as providing a serialisation service forB, C, D. WorkerD shows a
reconfiguration event transition. The thick line from the transition to the manager il
trates that the atomic transition labelrec is mapped to the manager transition fromm to
n. In this manner the workers can provoke reconfigurations implemented by the m
ager.

In the second step of the two step strategy for building our IWIM system mo
the elementary IWIM system construction just described is generalised to take acc
of the more flexible nature of real IWIM systems. Now, processes may manifest
manager and worker roles, worker processes may enjoy the attentions of more tha
manager, and manager processes may enjoy the benefits of more than one work
cope with this, we define IWIM worker-manager automata as asynchronous produc
individual worker and manager automata. Also the relation connecting workers
managers becomes global. In this manner we get unrestricted IWIM systems. The
viously mentioned properties continue to hold. In particular, configurations of an u
stricted IWIM system can be projected down onto configurations of their mangers

Let us illustrate all this in another figure. [Fig 2] shows four worker-manager
tomata,W, X, Y, Z. These are drawn as rectangles with the dashed horizontal line
resenting the division between the worker and manager facets, the manager facet
uppermost. The worker structure is suppressed in all cases, and the fact that the
ager parts ofW andX are empty is intended to indicate that these automata are ato
workers, with trivial manager facets. The arrows emanating from manager states
to the worker facets under their control. [Fig 2] illustrates that (almost) completely g
eral management relationships are permitted between worker-manager automa
fact the only restriction is that an automaton’s manager facet cannot manage it’s
worker facet. Of course in realistic settings, the kind of contorted and cyclic depen
cies occurring in [Fig. 2] do not really arise. Far more plausible, are regularly structu
hierarchies with atomic workers in the bottommost layer.

3.1 Elementary IWIM Systems

Definition 3.1 An IWIM manager automaton is a triple (M, mI, R), whereM is a set of
management states,mI ∈ M is an initial state, andR is a set of reconfiguration transi-
tions. These components are further stuctured as follows. Each management stam is
itself the name of a pair (Pm, Cm), wherePm is a set of port names, andCm is a set of
channel names. There are two partial functionssm, tm : Cm → Pm which map channels
to source and target port names, wheneversm or tm are defined. They satisfy dom(sm)
∪ dom(tm) = Cm, i.e. each channel is connected to at least one port — channels n

n net-
Dif-
tify

of
of

ill
dom(sm) are called external input channels, and channels not in dom(tm) are called ex-
ternal output channels; channels in both dom(sm) and dom(tm) are called internal chan-
nels. In a reconfiguration transition, writtenm -r-› n, ther is shorthand for a partial in-
jection on the channel namesχm,n : Cm → Cn. Also for each management statem, we
have an identity transitionm -idm-› m in which theχm,m partial injection is a total iden-
tity.

The above definition characterises states of the manager automaton as connectio
works in which the ports do not have a unique orientation (as input or output ports).
ferent statesm, n may refer to the same connection network. Reconfigurations iden
some channels of the source state with some channels of the target.

Definition 3.2 An IWIM worker automaton is a triple (I, O, A), whereI is a set of input
ports,O is a set of output ports, andI andO are disjoint.A = (St, Init, Tr) is an autom-
aton with statesSt, of which Init ∈ St is an initial state, andTr ⊆ St× Act × St is a tran-
sition relation, whereAct is a set of actions of the formin?v or out!v or rec. In the first
two kinds of action,in ∈ I, out ∈ O, and we assume that there is a global alphabet
valuesVal containingv. In the last kind,rec is just a name (intended to be the name
a reconfiguration transition as in Definition 3.1). Where convenient below, we w
write transitions using the notationa -in?v-› b or a -out!v-› b or a -rec-› b. We define

Fig. 2: A schematic illustration of a network of worker-manager automata. Arrows

W X

Y

Z

from manager states to other automata show the ‘above’ relation of the system. N.B.
The fact that Y manages Z and Z also manages Y is legitimate in the IWIM model.

and

-

rs

a

ch

e the

 end
TrI = {a -in?v-› b ∈ Tr}, TrO = {a -out!v-› b ∈ Tr}, TrR = {a -rec-› b ∈ Tr}, so thatTr =
TrI ∪ TrO ∪ TrR, the union being evidently disjoint. Additionally we defineRec= { rec |
a -rec-› b ∈ Tr} the alphabet of reconfiguration events of the worker.

So far, workers are automata of a fairly standard kind. Now we show how workers
managers are glued together.

Definition 3.3 An elementary IWIM system (Man, Wor) consists of an IWIM manager
automatonMan, an elementary workforceWor, and ancillary data to be described be
low. Wor is a set of worker names together with a mapwor, which yields for each work-
erw ∈ Wor, an IWIM worker automatonwor(w). Furthermore we have:

(1) There is a relation ^ betweenWor and the management states ofMan. We write
w^m to say that a workerw is abovea management statem if the pair is in the re-
lation.

(2) If a workerw is above a management statem, then there is a maprw^m from therec
actions ofwor(w), into reconfiguration transitionsm -r-› n of Man.

(3) For each management statem ∈ Man, there is a total bijectionλm : Pm → IOm
whereIOm is the disjoint union of all of the input and output ports of all worke
abovem; i.e. IOm = +∪k^m{ i | i ∈ Iwor(k)} +∪ +∪k^m{ o | o ∈ Owor(k)}.

(4) Associated to each channelc ∈ Cm (wherem is a management state), there is
queue of messages which we writec:[u0, u1, …]. Eachui is in Val. The front of
this queue isu0.

A configuration of an elementary IWIM system (Man, Wor) consists of:

(1) a statem of Man;

(2) a setests = {ak | ak ∈ Stwor(k), k ∈ Wor} of statesak one for each workerk;

(3) a setqs= {c:qc | c:qc = c:[u0, u1, …], c ∈ Cn, n ∈ M} of queues of messagesc:[u0,
u1, …] one for each channel of each management state.

Note that in the above,estsmay equivalently be viewed as the range of a function whi
maps each worker to one of its states, so thatak is formally an ordered pair. Since we
are overwhelmingly concerned with the states and how they change, we will not us
more cumbersome functional apparatus. Similar remarks apply toqsthough here some
of the indexing information is routinely suppressed.

A configuration of an elementary IWIM system (Man, Wor) is initial iff: m is initial,
theak are also all initial, and the queues associated with all channels are empty.

A transition of an elementary IWIM system (Man, Wor) in state (m, ests, qs) is one
of the following six kinds:

(ENVI) The environment adds a value to the input end of a queue whose source
is not attached to any port (an external input channel’s queue).

).

g
e

ut
c ∉ dom(sm) ,
c ∈ dom(tm) ,
qsrest = qs – {c:[… , un]}
—————————————
m —› m ,
ests —› ests ,
qs —› qsrest∪ {c:[… , un , u]}

(ENVO) The environment removes a value from the output end of a queue whose
target end is not attached to any port (an external output channel’s queue

c ∉ dom(tm) ,
c ∈ dom(sm) ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
m —› m ,
ests —› ests ,
qs —› qsrest∪ {c:[u1, …]}

(IN) A worker automaton performs an input on one of its input ports, removing
the front element from an input queue attached to the port, of which there
must be at least one.

k^m , ak ∈ ests , ak -i?u-› bk ,
λm(p) = i ∈ Iwor(k) , tm(c) = p ,
estsrest = ests – {ak} ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
m —› m ,
ests —› estsrest∪ {bk} ,
qs —› qsrest∪ {c:[u1, …]}

(OUT) A worker automaton performs an output on one of its output ports, addin
a value to the end of any output queue attached to the port, of which ther
must be at least one.

k^m , ak ∈ ests , ak -o!u-› bk ,
λm(p) = o ∈ Owor(k) ,
∅ ≠ Out = {d | sm(d) = p} ,
estsrest = ests – {ak} ,
qsrest = qs – {d:[… , ud,nd

] | d ∈ Out}
———————————————————
m —› m ,
ests —› estsrest∪ {bk} ,
qs —› qsrest∪ {d:[… , ud,nd

, u] | d ∈ Out}

(FOR) A port performs a forwarding action, removing the front element from
an input queue attached to the port and inserting (a copy of) it to all outp
queues attached to the port, of which there must be at least one.

n
ker

mata
r au-
. The
ia

es
fore.

input/
s lit-
asting
d for-
to be-
pur-

ntire-
The
sition
new

anage-
tm(c) = p ,
∅ ≠ Out = {d | sm(d) = p} ,
qsrest = qs – ({c:[u, u1, …]} ∪ {d:[… , ud,nd

] | d ∈ Out})
—————————————————————————————
m —› m ,
ests —› ests ,
qs —› qsrest∪ {c:[u1, …]} ∪ {d:[… , ud,nd

, u] | d ∈ Out}

NB. The above notation is intended to include the case thatc ∈ Out,
whereupon the front message ofc’s queue is moved to its tail.

(REC) A worker automatonkr performs arec actionakr -rec-› bkr, provoking a re-
configurationm -r-› n of the elementary IWIM system, given by the functio
rkr^m. The manager automaton makes a transition to the new state. Wor
automatonkr completes its transition. Worker automata other thankr who are
above both the old and new manager state remain as before. Worker auto
above the old but not the new manager state go into suspension. Worke
tomata not above the old but above the new manager state are awakened
queues of channels above the old manager state which are reassigned v
the channel reconfiguration data are moved according to that data, being
merged with the existing queues at target channels and leaving the queu
at originating channels empty. The queues at other channels remain as be

kr^m , akr ∈ ests , akr -rec-› bkr ,
rkr^m(rec) = m -r-› n = χm,n : Cm → Cn ,
estsrest = ests – {akr} ,
qsdel = {c:qc | c ∈ Cm, c ∈ dom(χm,n)} ∪ {d:qd | d ∈ Cn, d ∈ rng(χm,n)} ,
qsrest = qs – qsdel ,
qsdom = {c:[] | c ∈ Cm, c ∈ dom(χm,n)} ,
qsmerge = {d:qcd | c:qc, c ∈ Cm, c ∈ dom(χm,n),

d:qd, χm,n(c) = d ∈ Cn, d ∈ rng(χm,n),
qcd ∈ merge(qc, qd)}

———————————————————–
m —› n ,
ests —› estsrest∪ {bkr} ,
qs —› qsrest∪ qsdom∪ qsmerge

This transition system has some features that deserve comment. Note firstly that
output and forwarding activities are completely decoupled. For this reason it make
tle sense for the manager to connect up a port to use simultaneously as a broadc
device, and as an input device to the relevant worker, since the input messages an
warded messages are necessarily disjoint. Thus since even forwarding ports have
long to some worker, it is best to invent special purpose dummy workers just for the
pose, such as workerS in [Fig. 1].

A second issue concerns the creation and destruction of processes. IWIM is e
ly virtuous regarding matters of life and death: there is no murder, only suicide.
most that managers can accomplish is anasthesia. When a reconfiguration tran
takes a worker out of the current configuration because that worker is not above the
current management state, the worker sleeps, because being above the current m

t state
ipate
t of

ansi-
ource
ral in-
com-

tran-
s de-

ons

king
tary
e el-

x-
ing

t

ment state is a hypothesis of all six transition types. When the current managemen
once more becomes one which the worker is above, it wakes and is able to partic
in worker transitions again. It is the worker’s own responsibility to enter a state ou
which no transitions emerge if it wishes to die.

Thirdly there arises the issue of queue management during reconfiguration tr
tions. We have elected to merge assigned queues with existing ones (for given s
and target ports) as representing an abstraction of the potential presence of seve
dependent queues from the source to the target. The latter would require a more
plex notion of reconfiguration transition than we wish to get embroiled in.

Let EConfs(Man, Wor) be the set of all configurations of (Man, Wor). Equipping it
with the transitions just described makes it into a transition system. We regard this
sition system as unlabelled, it being the case that the kind of step involved is alway
ducible from the pair of configurations in question.

A run of (Man, Wor) is, in the normal manner, a sequence of contiguous transiti
of EConfs(Man, Wor), starting with an initial configuration:

(m, ests, qs) —› (m′, ests′, qs′) —› (m′′, ests′′, qs′′) —› …

Let Mngr(Man, Wor) be the set of manager states of configurations inEConfs(Man,
Wor). These are given by a function eπmanwhere eπman(m, ests, qs) = m. The setMn-
gr(Man, Wor) can be equipped with transitions derived from the(REC) transitions of
EConfs(Man, Wor). Thus to the transition (m, ests, qs) —› (m′, ests′, qs′) corresponds
theMngr(Man, Wor) transition eπman(m, ests, qs) —› eπman(m′, ests′, qs′), i.e.m—› m′,
(we regard these transition as unlabelled too). We also add an identity transitionm—›
m to each manager state inMngr(Man, Wor).

Now although a particular worker may be above several manager states, ma
problematic the definition of a projection from the static structure of the elemen
IWIM system to its manager, the same is not true of the set of configurations of th
ementary IWIM system and its transition system,EConfs(Man, Wor), as it relates to the
set of manager states. InEConfs(Man, Wor), some specific manager state always inde
es any worker state that forms part of a configuration, and so we obtain the follow
result.

Proposition 3.4 Let (Man, Wor) be an elementary IWIM system. LetEConfs(Man,
Wor) be the associated transition system andMngr(Man, Wor) be the corresponding se
of manager transitions. Then there is a projection:

Πe : EConfs(Man, Wor) → Mngr(Man, Wor)

which maps states by:

(m, ests, qs) |→ m = eπman(m, ests, qs)

and which maps(REC) transitions by:

(m, ests, qs) —› (m′, ests′, qs′)
|→

m —› m′ = eπman(m, ests, qs) —› eπman(m′, ests′, qs′)

man-
does
rkers
y al-
rod-

of
-
u-

r au-
:

ple

a
ly
ton
ose
blig-
u-

c-
acets

iour,
the

rom
jobs
mber

e, no
lary,
e the
and which maps(ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(m, ests, qs) —› (m, ests′, qs′)
|→

m —› m

Proof. Obvious.

3.2 Unrestricted IWIM Systems

The previous section captures the essence of the process by which an individual
ager automaton manages a group of worker automata. However the IWIM model
not restrict worker management to a single layer. Managers may themselves be wo
managed by others, in time honoured hierarchical fashion. We model this here b
lowing managers to themselves acquire a worker facet. The result is effectively a p
uct of the two preceding constructions.

Definition 3.5 An IWIM worker-manager automaton is the asynchronous product
an IWIM worker automaton (I, O, A) as in Definition 3.2, and an IWIM manager au
tomaton (M, mI, R) as in Definition 3.1. That is to say, an IWIM worker-manager a
tomaton is of the form (I, O, A)⊗(M, mI, R), where (I, O, A) is called the worker facet
and (M, mI, R) is called the manger facet. The set of states of the worker-manage
tomaton isSt × M, with initial state (Init, mI), and there are two kinds of transitions
worker transitions, for example (a, m) -w-› (b, m), wherea -w-› b is a transition of (I, O,
A) (and the manager facetm remains unchanged), and manager transitions, for exam
(a, m) -r-› (a, n), wherem -r-› n is a transition of (M, mI, R) (and the worker faceta re-
mains unchanged).

The following is evident.

Proposition 3.6 An IWIM worker-manager automaton for which the worker facet is
single (initial) state IWIM worker automaton with empty transition relation is strong
bisimilar to an IWIM manager automaton. Also an IWIM worker-manager automa
for which the manager facet is a single (initial) state IWIM manager automaton wh
port and channel sets are empty, and with transition relation consisting of just the o
atory (in this case empty) identity function, is strongly bisimilar to an IWIM worker a
tomaton.

In view of this, we can refer to IWIM worker-manager automata with trivial worker fa
ets as pure mangers, and to IWIM worker-manager automata with trivial manager f
as pure workers.

Now that individual automata are capable of both worker and manager behav
we can define an unrestricted IWIM system as a community of automata where
manager facets of individual automata manage their individual workforces drawn f
the same community, and the worker facets of individual automata each do their
coordinated by one or more manager facets, since we place no restriction on the nu
of bosses any poor labourer might have. In keeping with the best industrial practic
worker is ever his own manager (no selfdetermination — no one sets their own sa
nor signs off their own expense claims). Since the moves of the whole system ar

self-
ave

r

ad-
fer

t

e
of
sre-

forth

n

lds

duct
moves of the individual elements, we need no additional restrictions beyond the no
determination rule and the restrictions that apply to elementary IWIM systems, to h
consistency.

Definition 3.7 An unrestricted IWIM systemWM is a set of IWIM worker-manager
automaton names calledWM, a subsetInitialWM⊆ WM, together with ancillary data de-
scribed below. There are three maps:worman, wor, man, where for eachwm∈ WM,
worman(wm) is an IWIM worker-manager automaton,wor(wm) is its worker facet, and
man(wm) is its manager facet. We writemwm to say that statem is a state of a facet of
automatonwm, the facet intended being clear from the context; formallymwm is an or-
dered pair, just as before. The states of a worker-manager automatonwmare thus writ-
ten (awm, mwm), wherea is the state of the worker facet andm is the state of the manage
facet.

Moreover, other aspects of the notation for elementary IWIM systems acquire
ditional subscripting to indicate what part of the unrestricted IWIM system they re
to. Thus we havePmwm for the set of port names of statem of the manager facet
man(wm) of wm; likewiseCmwm is the corresponding set of channel names.

There is a binary above relation ^ wherewm′^mwm means that the worker face
wor(wm′) of automatonwm′ is above statemof the nontrivial manger facetman(wm) of
automatonwm. The no selfdetermination rule implies that wheneverwm′^mwm, then
wm′ ≠ wm. The workforce {wm1, … , wmn} of automata whose worker facets are abov
states of the manager facet ofwm is refered to as an elementary IWIM subsystem
WM, and is an elementary IWIM system in the sense of Definition 3.3 when we di
gard the manger facets of the workers and the worker facet of the manager. ThusIOmwm
is the set of input and output ports of the workforce abovemwm. Specifically for an el-
ementary IWIM subsystem:

(1) The above relation is inherited from the global one, and we will assume hence
that no automaton is above the unique state of a trivial manager.

(2) There is a maprwm′^mwm of therec transitions of worker facets into reconfiguratio
transitions of the corresponding nontrivial manager facet.

(3) The total bijection property of manager ports to workforce input/output ports ho
via a mapλmwm : Pmwm → IOmwm.

(Note that the no selfdetermination rule is consistent with the asynchronous pro
structure of the transitions for worker-manager automata. Otherwise somerwm̂ mwm
could force moves ofwm that were worker and manager moves simultaneously.)

Let WMbe an unrestricted IWIM system. Then we defineWM# = {wm∈ WM | wm
has a nontrivial manager facet}.

A configuration (sts, qs) of an unrestricted IWIM system consists of:

(1) a setsts= {(awm, mwm) | wm∈ WM} of states (awm, mwm) one for each automaton
in WM;

(2) a setqs= {c:qc | c ∈ Cmwm, ∃ a • (awm, mwm) ∈ sts} of queues of messagesc:[u0, u1,
…] one for each channelc ∈ Cmwm of each management statemwm of each non-
trivial manager facetman(wm).

ons.

ue.

s,
As before, these configuration components are really the ranges of suitable functi
A configuration (sts, qs) of an unrestricted IWIM systemWM is initial iff: all states

in sts are initial in both facets, and all channel queues inqs are empty.
Let (sts, qs) be a configuration of an unrestricted IWIM systemWM. Then we can

define the manager part of (sts, qs) to beπman(sts) = {mwm | ∃ awm • (awm, mwm) ∈ sts,
wm∈ WM#}.

A transition of an unrestricted IWIM systemWM in configuration (sts, qs) is one
of six kinds, patterned after elementary IWIM system transitions:

(ENVI) The environment adds a value to the end of an external input queue.

c ∉ ∪{dom(sm′wm′) | m′wm′ ∈ πman(sts)} ,
c ∈ dom(tmwm) , mwm∈ πman(sts) ,
qsrest = qs – {c:[… , un]}
—————————————
sts —› sts ,
qs —› qsrest∪ {c:[… , un, u]}

(ENVO) The environment removes a value from the end of an external output que

c ∉ ∪{dom(tm′wm′) | m′wm′ ∈ πman(sts)} ,
c ∈ dom(smwm) , mwm∈ πman(sts) ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
sts —› sts ,
qs —› qsrest∪ {c:[u1, …]}

(IN) A worker facet of an automaton performs an input on one of its input port
of which there must be at least one.

k^mwm , mwm∈ πman(sts) ,
(ak, nk) ∈ sts , (ak, nk) -i?u-› (bk, nk) ,
λmwm(p) = i ∈ Iwor(k) , tmwm(c) = p ,
stsrest = sts – {(ak, nk)} ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
sts —› stsrest∪ {(bk, nk)} ,
qs —› qsrest∪ {c:[u1, …]}

(OUT) A worker facet of an automaton performs an output on one of its output
ports, of which there must be at least one.

(ak, nk) ∈ sts , (ak, nk) -o!u-› (bk, nk) ,
∅ ≠ Out = {d | ∃ mwm∈ πman(sts), p • k^mwm,

λmwm(p) = o ∈ Owor(k), smwm(d) = p} ,
stsrest = sts – {(ak, nk)} ,
qsrest = qs – {d:[… , ud,nd

] | d ∈ Out}
———————————————————
sts —› stsrest∪ {(bk, nk)} ,
qs —› qsrest∪ {d:[… , ud,nd

, u] | d ∈ Out}

nager
r

de-
eses
st one
More-
ging
this
(FOR) A port performs a forwarding action.

k^m′wm′ , m′wm′ ∈ πman(sts) , tm′wm′(c) = p ,
∅ ≠ Out = {d | ∃ mwm∈ πman(sts), p • k^mwm,

λmwm(p) = o ∈ Owor(k), smwm(d) = p} ,
qsrest = qs – ({c:[u, u1, …]} ∪ {d:[… , ud,nd

] | d ∈ Out})
—————————————————————————————
sts —› sts ,
qs —› qsrest∪ {c:[u1, …]} ∪ {d:[… , ud,nd

, u] | d ∈ Out}

NB. The above notation is intended to include the case thatc ∈ Out,
whereupon the front message ofc’s queue is moved to its tail.

(REC) The worker facet of automatonkr performs arec actionakr -rec-› bkr,
moving to statebkr, and provoking reconfigurations of all the elementary
IWIM subsystems managed by manager facets above a current state
of whichkr sits. All these manager facets move to their respective new
management states. The queues of the channels managed by these ma
facets are mapped via the channel reconfiguration data for their particula
manager facet.

∅ ≠ Rmman = {mwm | mwm∈ πman(sts) • kr^mwm} ,
(akr, mkr) ∈ sts , (akr, mkr) -rec-› (bkr, mkr) ,
Rnman = {nwm | mwm∈ πman(sts) • kr^mwm,

rkr^mwm(rec) = mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm} ,
stsrest = sts – ({(akr, mkr)} ∪

 {(awm, mwm) | (awm, mwm) ∈ sts, mwm∈ Rmman}) ,
stspost = {(bkr, mkr)} ∪ {(awm, nwm) | (awm, mwm) ∈ sts,

mwm∈ Rmman, nwm∈ Rnman} ,
qsdel = {c:qc | c ∈ Cmwm, c ∈ dom(χmwm,nwm), mwm∈ Rmman} ∪

 {d:qd | d ∈ Cmwm, d ∈ rng(χmwm,nwm), mwm∈ Rmman, nwm∈ Rnman} ,
qsrest = qs – qsdel ,
qsdom = {c:[] | c ∈ Cmwm, c ∈ dom(χmwm,nwm), mwm∈ Rmman} ,
qsmerge = {d:qcd | c:qc, c ∈ Cmwm, c ∈ dom(χmwm,nwm),

d:qd, χmwm,nwm(c) = d ∈ Cmwm, d ∈ rng(χmwm,nwm),
mwm∈ Rmman, nwm∈ Rnman,
qcd ∈ merge(qc, qd)}

———————————————————–
sts —› stsrest∪ stspost ,
qs —› qsrest∪ qsdom∪ qsmerge

The remarks made following the elementary IWIM subsystems transition system
scription apply with equal or greater force here. Thus all transitions have hypoth
that ensure that any active worker is being actively managed by being above at lea
current mangement state. Also there is no murder, only anasthesia and suicide.
over, reconfiguration events simultaneously affect all mangers who might be mana
a particular worker facet. The structure of the model ensures that they can all do
without adversely interfering with each other.

f
of

the

on

on-
tails

f
se
IWIM
uni-

ther
inate
ct to
Let Confs(WM) be the set of all configurations ofWM. Equipping it with the transitions
just described makes it into a transition system.

A run of WM is a sequence of contiguous transitions ofConfs(WM) starting with
an initial configuration:

(sts, qs) —› (sts′, qs′) —› (sts′′, qs′′) —› …

Let (sts, qs) be a configuration ofWM. Let Mngrs(WM) be the set of manager parts o
configurations inConfs(WM). It can be equipped with transitions derived from those
Confs(WM). Thus whenever (sts, qs) —› (sts′, qs′) is a(REC)transition ofConfs(WM),
there is aMngrs(WM) transitionπman(sts) —› πman(sts′). We also add an identity tran-
sition πman(sts) —› πman(sts) to each manager part inMngrs(WM). As previously, all
of these transitions are unlabelled.

It will now not be surprising that despite the greater complexity we have here,
projection that we had in [Section 3.1] can be recovered.

Proposition 3.8 Let WMbe an unrestricted IWIM system. LetConfs(WM) be the as-
sociated transition system, andMngrs(WM) be the associated manager parts transiti
system. Then there is a projection:

Π : Confs(WM) → Mngrs(WM)

which maps states by:

(sts, qs) |→ πman(sts)

and which maps(REC) transitions by:

(sts, qs) —› (sts′, qs′)
|→

πman(sts) —› πman(sts′)

and which maps(ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(sts, qs) —› (sts′, qs′)
|→

πman(sts) —› πman(sts′) = πman(sts)

Proof. Obvious.

Having covered the technical details, it is appropriate to review how the formal c
structions relate to the informal account of [Section 2]. As well as the internal de
of both manager and worker automata, we have the ^ relation, theλ bijections, and the
r reconfiguration mappings. Given a worker-manager automatonwm, the domains and
ranges of ^,λ, r, suitably restricted towm, make precise within our model the notion o
the environment ofwm loosely refered to at the beginning of [Section 2]. That the
aspects of the model reside outside of the worker and manager facets, reflects the
philosophy that on the one hand workers should be unaware of who they are comm
cating with or who is in charge of the distributed computation, and that on the o
hand managers should have no detailed knowledge of the state of their subord
workers. For this to work, we need the managers to be ready at all times to rea

busy
s the

IM

ent
asic
job is
ta of
this

ready
n be
s one
ach

omata,

essing
t each
f con-

re-

-
ity of

:

ty ex-
m

ed be
tran-

only
ld a
se-
reconfiguration events from their workers, and if a manager’s worker facet is also
working for his own boss, the asynchronous product between the two facets give
simplest possible model of the required interruptibility.

In the remainder of the paper we will be concerned only with unrestricted IW
systems, and will henceforth just refer to them as IWIM systems.

4 IWIM Systems with Delayed Reconfigurations
Now we tackle the problem of the asynchronous nature of true IWIM system ev
processing. As noted previously, this can be captured within our framework. The b
idea is simple. We introduce fresh pure worker automata, delay automata, whose
to buffer the reconfiguration events generated by the worker facets of the automa
the original model on their way to the relevant destination manager facet. The way
is done is to change therec events of the original model intorec messages to the delay
automata, who then subsequently raise the required event. Since buffering is al
implicit in the message queues used by worker facets, and further buffering ca
achieved by retaining information in automaton states, there are a number of way
can imagine of implementing such an idea. In the one we will follow, the workers e
acquire an extra output port through which to sendrec messages instead of raisingrec
events. Connected to these extra output ports, are channels leading to delay aut
one per manager facet in charge of the worker. This ensures that therec messages are
broadcast asynchronously towards each relevant manager. (Because event proc
takes place simultaneously by all managers below a worker, we need to ensure tha
delay automaton is above only one manager. To ensure the correct separation o
cerns between automata it is easiest to introduce delay automata on a per perwm′^mwm
tuple basis.) Upon receipt of therec message, the delay automaton raises the cor
sponding event with the manager.

Assuming that some particular worker facet is abovek manager facets, the behav
iour of the original system can be recovered as long as there is always the possibil
performing the following 2k+1 step sequence of the new system instead of arec transi-
tion of the original system, in a manner uninterrupted by other system transitions

(1) the worker facet transmits the relevantrec value through its extra output port
onto then delay channels leading to then delay automata corresponding to then
manager facets above which it sits,

(2i) delay automatoni receives therec value from delay channeli, recording it in
its state,

(3i) delay automatoni performs arec transition causing manager faceti to perform
the required reconfiguration.

This sequence of steps preserves the property that all delay channels remain emp
cept between steps (1) and (2i), which is correspondingly consistent with enabling the
to be executed without interruptions.

On the other hand, if we consider that the execution of these steps can inde
interrupted, as allowed by the asynchrony inherent in the fragmenting of a single
sition into several, other outcomes become possible. Since the original system had
synchronous reconfigurations, it provides no definition of what might happen shou
reconfiguration be attempted nonatomically, and any evolution consistent with the

n can
ager

some
tion
ton’s
what
rent
em-
ration

er-
This
ly

g fur-
ation

a-

facet
mantics is permissible. For example, a context dependent notion of reconfiguratio
be created by having delay automata raise different reconfiguration actions in man
facets, depending on what reconfigurations intervened between the receiving of
particularrecvalue from a worker, and the raising of the corresponding reconfigura
event in the manager; the information to manage this being kept in a delay automa
state, suitably managed through intervening reconfigurations. And depending on
policy is adopted for the introduction and behaviour of the delay automata, diffe
policies for the handling of pending events become possible. Moreover being th
selves workers, delay automata can be woken and suspended during reconfigu
transitions, further tuning this aspect.

One canonical possibility for dealing with reconfigurations that attempt to int
leave other reconfiguration actions, is to enforce a strict sequentialisation policy.
can be done by ensuring that once arecmessage arrives at a delay automaton, the on
thing the delay automaton can then do is to raise the corresponding event, ignorin
ther inputs till it has done so. We call this arrangement the standard asynchronis
of an IWIM system, and we now present the technical details.

SupposeWM is an IWIM system with the usual notations, i.e. the typical autom
ton name iswmmapping to (I, O, A = (St, Init, Tr))⊗(M, mI, R), with manager statesm
mapping to networks (Pmwm, Cmwm), and reconfigurationsmwm -r-› nwm = χmwm,nwm :
Cmwm → Cnwm; and with ancillary data given bywm′^mwm, λmwm, rwm′^mwm.

The standard asynchronisation ofWM, which we call hereWM*, has the set of au-
tomaton namesWM* = WM ∪ { ∆.wm′.m.wm| wm′^mwm}. We assume all of these
∆.wm′.m.wmnames are fresh, and introduce for each∆.wm′.m.wmname, for future con-
venience, fresh port, channel, and input and output port names2:

∆.wm′.m.wms , ∆.wm′.m.wmt , ∆.wm′.m.wmch , ∆.wm′.m.wmi , ∆.wm′o

If wmmaps to (I, O, A = (St, Init, Tr))⊗(M, mI, R) in WM, in WM*, wmmaps to (I, O*,
A* = (St, Init, Tr*)) ⊗(M, mI, R*).

The input portsI of the worker facet ofwm remain unchanged. However for the
output ports we haveO* = O ∪ { ∆.wmo}. The worker facet automatonwor(wm) itself
is given by the same state spaceSt, initial stateInit, and:

Tr* = TrI ∪ TrO ∪ {a -∆.wmo!rec-› b | a -rec-› b ∈ TrR}

This ensures thatrec messages can be sent over∆.wmo to all delay automata
∆.wm.m′.wm′. To ensure that these are handled properly, we examine the manager
of wm.

In the manager facetman(wm), the state spaceM and initial statemI remain un-
changed. Statemhowever maps to the communication network (P*mwm, C*mwm) where:

P*mwm = Pmwm ∪ {∆.wm′.m.wms, ∆.wm′.m.wmt | wm′^mwm}
C*mwm = Cmwm ∪ {∆.wm′.m.wmch | wm′^mwm}

s*mwm = smwm ∪ {∆.wm′.m.wmch |→ ∆.wm′.m.wms | wm′^mwm}
t*mwm = tmwm ∪ {∆.wm′.m.wmch |→ ∆.wm′.m.wmt | wm′^mwm}

2. The last of these is not an error.

re the

of

-
out

arate

hus

els
Finally, if mwm -r-› nwm= χmwm,nwm : Cmwm → Cnwm is a reconfiguration transition ofR,
there is a corresponding transition ofR* given by χ*mwm,nwm : C*mwm → C*nwm where
χ*mwm,nwm = χmwm,nwm interpreted as a partial injection onC*mwm.

Standing between the worker and manager facets of the preceding automata, a
delay automata themselves. A delay automaton name∆.wm′.m.wmmaps to a pure
worker given by:

(I∆.wm′.m.wm, O∆.wm′.m.wm, A∆.wm′.m.wm =
(St∆.wm′.m.wm, Init∆.wm′.m.wm, Tr∆.wm′.m.wm))⊗({ ♦}, ♦, ∅)

Here:

I∆.wm′.m.wm = {∆.wm′.m.wmi | wm′^mwm}

while O∆.wm′.m.wm= ∅. The worker automatonA∆.wm′.m.wmis given by the state space:

St∆.wm′.m.wm = Recwm′ +∪ { Init∆.wm′.m.wm}

and the initial stateInit∆.wm′.m.wm is the one named as such. The transitions
A∆.wm′.m.wm are given by:

Tr∆.wm′.m.wm = {Init∆.wm′.m.wm -∆.wm′.m.wmi?rec-› rec | rec ∈ Recwm′} ∪
{ rec -rec-› Init∆.wm′.m.wm| rec ∈ Recwm′}

where we have abused notation a little by allowingrec to name the state reached by in
putting arecmessage (not to mention its original use as event name), hopefully with
causing confusion. It is now clear that the delay automaton inputs arecmessage com-
ing from the original worker, and then provokes arec reconfiguration event in the man-
ager at a later point.

To connect all this together, we give the above relation, which is:

^* = ^ ∪ {∆.wm′.m.wm̂ *mwm | wm′^mwm}

and theλ*mwm bijections which are:

λ*mwm = λmwm ∪ {∆.wm′.m.wms |→ ∆.wm′o | wm′^mwm} ∪
{ ∆.wm′.m.wmt |→ ∆.wm′.m.wmi | wm′^mwm}

Note how in the first line of the above the original worker’s output port∆.wm′o is shared
by as many managers as it has, each controlling an individual queue to a sep
∆.wm′.m.wm delay automaton.

Finally ther*∆.wm′.m.wm̂ *mwm functions are given by:

r*∆.wm′.m.wm̂ *mwm(rec) = mwm -r-› nwm iff rwm′^mwm(rec) = mwm -r-› nwm.

It is now clear that this construction has the properties indicated informally above. T
whereas inWM, a workerwm′ above a manger statemwmcan perform the stepa -rec-›
b simultaneously with each implicated manager’s performing the appropriatemwm -r-›
nwm (becauserwm′^mwm mapsrec to mwm -r-› nwm), in WM*, wm′ can no longer do this
directly. Instead it passes arec message to∆.wm′.m.wmvia a singlea -∆.wm′o!rec-› b
action which causesrec messages to be broadcast onto all relevant chann
∆.wm′.m.wmch. If such a channel was previously empty, then∆.wm′.m.wmcan swallow

e
ilable.
tomic
may
e se-

ed
the

ing
ic

t that

ue in
can

ata,
t may
t
r
y
BB
ds by

us if a

ls
chan-
me
ey are
therecmessage by performing anInit∆.wm′.m.wm-∆.wm′.m.wmi?rec-› rec input from the
same channel. This obtains by the fact that ports∆.wm′o and∆.wm′.m.wmi are connect-
ed via ∆ .wm′ .m.wmc h , since λ* mw m connects∆ .wm′o to ∆ .wm′ .m.wms =
s* mwm(∆.wm′.m.wmch), and also connectst* mwm(∆.wm′.m.wmch) = ∆.wm′.m.wmt to
∆.wm′.m.wmi. Sincer*∆.wm′.m.wm̂ *mwm maps the only available∆.wm′.m.wmtransition
rec -rec-› Init∆.wm′.m.wmto the reconfigurationmwm -r-› nwm, it follows that when
∆.wm′.m.wmperformsrec -rec-› Init∆.wm′.m.wm, it provokes the desired reconfiguration
mwm -r-› nwm. Thus if ∆.wm′.m.wmch was empty at the outset, the simulation of on
manager’s reconfiguration by a delayed but uninterrupted sequence of steps is ava
Evidently when several managers need to react, consequent on the same original a
reconfiguration, similar simulations can also be constructed. These simulations
also be interleaved with other actions, provided none of the other actions ‘beat th
quence to the tape’, where the ‘tape’ is the invocation of arec step mapped by a
r*∆.wm′.m.wm̂ *mwm to a change of configuration of the managerwm, while the manager
remains in the original statem. Examples of other actions that can safely be interleav
in this manner are ordinary I/O actions, and reconfigurations not involving any of
automata involved.

Proposition 4.1 The construction just given is idempotent, in the sense that apply
it n more times toWM* results in a system which can simulate an atom
reconfiguration ofWM that involvesk managers in 2k(n+1)+1 uninterrupted steps.

The straightforward if tedious proof rests on the observation that inWM*, the only
worker abovemwmcapable of provoking a reconfiguration is a∆.wm′.m.wm, so that the
next application of the construction replaces each∆.wm′.m.wm’s rec steps by a three
step sequence etc. Thus iterated application of the construction exemplifies the fac
a chain of buffers is behaviourally equivalent to a single buffer.

5 The Arbab, de Boer, Bonsangue Model

In this section we show how the model proposed by Arbab, de Boer and Bonsang
[Arbab et al. (2000a)] (see also [Arbab et al. (2000b)]), henceforth the ABB model,
be subsumed within our framework. In the ABB model, there is a family ofcompo-
nents. Each component is a transition system similar to one of our worker autom
and it has access to a set of channel ends to which it is connected. A componen
output values along channel source ends (eg.c) to which it is connected, and may inpu
values from channel sink ends (eg.c) to which it is connected. The state transitions fo
these actions are of the forma -c!v-› b anda -c?v-› b respectively, and these are the onl
kinds of action that components may perform. The dynamic reconfigurability of A
systems comes from the fact that they can alter their set of connected channel en
sending and receiving channel end identities along the channels themselves. Th
component possesses channel endsc, d, it may relinquish possession ofd by a transition
like a -c!d-› b; likewisea -c!d-› b relinquishes possession ofd. Likewise possession of
d or d can be gained bya -c?d-› b or a -c?d-› b. It is tacitly assumed that since channe
are point to point connections, once a component has relinquished possession of a
nel end, it will no longer attempt to use it until it has received it once again from so
other component. Channels themselves are queues in the ABB model, just as th

WM*…*
n+1—

nt

on-

tions
ring

e-
the

tem
t of

h

nnel
the

t

d

of
in ours, and when a channel end,d (resp.d) say, becomes detached from the compone
to which it was previously connected by being output along channelc say, no inputs
over d (resp. outputs overd) can take place until the relevant message has been c
sumed by the component connected to the sink end ofc, whereupond (resp.d) becomes
available to that component for communication purposes. Output and input transi
in which a channel end is respectively transmitted or received are called reconfigu
output and input transitions.

We will now describe the mapping of a family of ABB components to a corr
sponding IWIM system. Note that since channels are not created dynamically in
ABB model, the complete set of channels that figure in an execution of an ABB sys
is known at initialisation time, and given an ABB system, we call this complete se
channelsCH. From this we create the five disjoint alphabets:

CHi = {chi | ch ∈ CH}
CHo = {cho | ch ∈ CH}
CHs = {chs | ch ∈ CH}
CHt = {cht | ch ∈ CH}
CHch = {chch | ch ∈ CH}

Let C1 … Cn be a family of ABB components. For eachCi we construct a transition
systemKi as follows. LetCi be (Sti, Initi, Tri, ri) whereSti is a set of states of whichIniti
is an initial state,Tri is a transition relation containing transitions of typea -out!v-› b or
a -in?v-› b (with in, out ∈ CH), andri is the initial value of the dynamically changing
set of channel ends possessed byCi. By the remarks above we can assume thatCH =
{ ch | for somei, ch∈ ri or ch ∈ ri}. For simplicity we will assume that each end of eac
channel inCH is in someri.

Now we setKi to be the transition system given by (Sti*, Initi*, Tri*), where the set
of states isSti* = Sti ∪ newSti, with Initi* = Initi, andTri* is given as follows (also im-
plicitly defining the fresh statesnewSti). Each transitiona -out!v-› b or a -in?v-› b of Ci
wherev is not a channel end yields a transitiona -outo!v-› b or a -ini?v-› b of Ki. More-
over each reconfiguring outputa -out!ch-› b of Ci is replaced by a pair of transitionsa
-outo!cho-› ab -rec(outo!cho)-› b, whereab is a fresh state innewSti andrec(outo!cho) is
a reconfiguration action where the intention is to simulate the detaching of the cha
endcho from the component in a manner that will be made clear below. Likewise if
channel end being detached isch rather thanch, Ki will contain the pair of transitionsa
-outo!chi-› ab -rec(outo!chi)-› b. A similar arrangement holds for reconfiguring inpu
transitionsa -in?ch-› b anda -in?ch-› b. For these we have respectivelya -ini?cho-› ab
-rec(ini?cho)-› b anda -ini?chi-› ab -rec(ini?chi)-› b.

For technical reasons, it is not sufficient to work with just theKi. GivenKi, let θi
+a

be a finite directed path through the transition system ofKi (i.e. a finite sequence of con-
tiguous transitions ofKi), starting at statea. LetKi

a be the transition system determine
by the set of paths: {θi

+a | θi
+a is a path through the transition system ofKi starting at

a, and if θi
+a contains arec transition, there is only one and it is the last transition

θi
+a}.

Given aθi
+a, let θi

a be the result of erasing fromθi
+a all non-rec transitions (so the

transitions listed inθi
a will not be contiguous, neither will they necessarily mentiona).

aton

e

Let φ(θi
+a), φ(θi

a) denote the final state reached by such aθi
+a or θi

a. DefineΘi
a = {θi

a |
θi

+a is a path through the transition system ofKi starting ata}; consequentlyΘi
a is par-

tially ordered by the prefix relation. We writeθi
+, θi, Θi to denoteθi

+Initi, θi
Initi, Θi

Initi.
Let:

M = ∏{ Θi | i ∈ {1 … n}}

The rest of the construction will proceed by recursion on the structure ofM, which is
again partially ordered by the prefix relation. We construct a pure manger autom
pm, whose space of states isM, and above eachm∈ M, there will be a collection of pure
worker automata crafted from theKi

a transition systems3.
The base case ism = []×[]×…×[]. Above thism we have the collection of pure

workerspwi
[] for i ∈ {1 … n}, where pwi

[] is given by (CHii
[] , CHoi

[] , Ki
Initi), with

CHii
[] = {chi | chi ∈ CHi, ch ∈ ri} and CHoi

[] = {cho | cho ∈ CHo, ch ∈ ri}. Note that
Initi = φ([]) (with the understanding that [] is the empty path throughKi).

The manager statem maps to (Pm, Cm) where:

Pm = {chs | chs ∈ CHs, ch ∈ ri} ∪ {cht | cht ∈ CHt, ch ∈ ri}
Cm = {chch | {chs, cht} ∩ Pm ≠ ∅}

and thesm, tmmaps function in the way we would expect, i.e.sm(chch) = chs andtm(chch)
= cht. The link between the manager and the workers is also unsurprising:

λm = {cht |→ chi | chi ∈ CHii
[] } ∪ {chs |→ cho | cho ∈ CHoi

[] }

pwi
[]^m

completing the base case.
Now suppose thatm = (θ1 … θn) and supposem′ = (θ1 … θi′ … θn) whereθi′ =

θi@[ai -rec(outo!cho)-› bi], and where the transitionai -rec(outo!cho)-› bi is aKi - imme-
diate successor reconfiguring transition to the last one inθi. The manager statemwhich
maps to (Pm, Cm) is transformed tom′ which maps to (Pm′, Cm′) where:

Pm′ = Pm – {chs}
Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅}

and thesm′, tm′ maps work as expected, i.e.sm′(chch) = chs andtm′(chch) = cht. It now
makes sense to define the manager reconfiguration transitionm -r-› m′ as the partial in-
jection

χm,m′ : Cm → Cm′

which is the maximal identity function onCm ∩ Cm′.
Suppose that abovemwe had then pure workers {pwj

θj | j ∈ {1 … n}}. Then above
m′ we will also haven pure workers. Forj ≠ i, pwj

θj will continue to be abovem′ and
the reconfiguration transitionm -r-› m′ will leave it in the same state as it was. For th
casej = i we have instead the pure workerpwi

θi′ = (CHii
θi′, CHoi

θi′, Ki
φ(θi′)) where:

CHii
θi′ = CHii

θi

CHoi
θi′ = CHoi

θi – {cho}

3. Since there is only one nontrivial manager, we suppress the ‘pm’ tags for convenience.

perty
either
he set

into
latter

vince
ch-
orre-
s of

ifier,

atis
ithin
. A
and so we can summarise the above map form′ as:

{ pwj
θj^m′ | pwj

θj^m, j ∈ {1 … n} – { i}} ∪ {pwi
θi′^m′}

Theλm′ map is:

λm′ = λm – {chs |→ cho}

and we have that:

rpwiθi^m(rec(outo!cho)) = m -r-› m′

which completes the piece of the recursion for the case of arec(outo!cho) reconfigura-
tion. If we consider insteadrec(outo!chi), rec(ini?cho), rec(ini?chi) reconfigurations, the
above is modified respectively by:

CHii
θi′ = CHii

θi – {chi} ; CHoi
θi′ = CHoi

θi ;
Pm′ = Pm – {cht} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm – {cht |→ chi}

CHii
θi′ = CHii

θi ; CHoi
θi′ = CHoi

θi ∪ {cho} ;
Pm′ = Pm ∪ {chs} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm ∪ {chs |→ cho}

CHii
θi′ = CHii

θi ∪ {chi} ; CHoi
θi′ = CHoi

θi ;
Pm′ = Pm ∪ {cht} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm ∪ {cht |→ chi}

together with the obvious consequences. Since the ABB system enjoys the pro
that a component cannot give away a channel end that it is not connected to and n
does it ever receive a channel end that it already possesses, it readily follows that t
operations above are nonnull.

Beyond these there are the expected identity transitions on states ofM of course,
which completes the construction. Thus we have cut up the original ABB system
a collection of pieces that can be reassembled as an IWIM system, in order that the
is able to achieve the same effect as the original system. In fact it is easy to con
onself that the IWIM system constructed from a given ABB system by the above te
nique is able to simulate it in the sense that non-reconfiguring inputs and outputs c
spond bijectively, while reconfiguring inputs and outputs correspond to sequence
two steps in the IWIM system, the first to receive or transmit the channel end ident
the second to provoke the desired reconfiguration via the manager.

6 The Katis, Sabadini, Walters Model

In this section we consider a model proposed by Katis, Sabadini and Walters in [K
et al. (2000)], henceforth the KSW model, and show how it too can be subsumed w
our framework. In the KSW model, the main entity of interest is the CP automaton
CP automatonG = (G, X, Y, A, B, ∂0, ∂1, γ0, γ1), consists of a directed graphG = (G0,
G1) whereG0 is the set of nodes andG1 is the set of arcs, together with four maps:

∂0 : G1 → X ; ∂1 : G1 → Y ; γ0 : A → G0 ; γ1 : B → G0

aton,
ly.
f
total,
tion

both
muni-
mata
ane-

no
ech-

is
n-

ppro-
her

truct
ism
aton
sys-

er.

s in-

ral
e sys-
t real
po-
fur-
These work as follows. The arcs of the graph represent transitions of the autom
whose states are the nodes. The setsXandYare input and output alphabets respective
Thus the maps∂0 : G1 → X and∂1 : G1 → Y describe which input letter a transition o
the graph consumes, and which output letter it produces. Since both maps are
each transition involves both input and output. We will write a CP automaton transi
as:

s -(ind, arc, outd)-› t

wheresandt are states,arc is the arc carrying the transition, andind, outdare the input
and output data. (In [Katis et al. (2000)], the authors also admit null elements in
X andYalphabets, to aid abstraction and to represent the absence of genuine com
cation during a step.) Communication is synchronous, thus when two CP auto
communicate, the symbol output by the producer of the communication, is simult
ously input by the consumer of the communication. Most emphatically, there are
queues in the model: communication in this model is above all a synchronisation m
anism.

The setsA andB (called the in-condition and out-condition respectively in [Kat
et al. (2000)]), are to do with initialisation and finalisation, though in a slightly no
standard manner. Specifically, theγ0-image ofA is the set of entry points into the CP
automaton, i.e. initial states, and theγ1-image ofB is the set of exit points, i.e. final
states, of the automaton — except that when CP automata are combined in the a
priate way, then subsets of entry or exit points may be identified, leading to a ric
gamut of possibilities parameterised by partitions ofγ0(A) andγ1(B).

CP automata are endowed with a number of algebraic operations, which cons
more complex CP automata out of simpler ones. We will model the KSW formal
by mapping CP automata to IWIM systems, and then showing how the CP autom
algebraic operations can be reflected in constructions on the corresponding IWIM
tems.

Let G = (G = (G0, G1), X, Y, A, B, ∂0, ∂1, γ0, γ1) be a CP automaton. We build an
IWIM system corresponding toG, and consisting of a pure manager and a pure work
The pure managerpmhas one-state♦ which maps to ({ps, pt}, { chs, cht}) with s♦(chs)
= ps andt♦(cht) = pt (and withs♦(cht) andt♦(chs) undefined). The state♦ is initial and
the only transition of the manager is the identity. Clearly the manager’s structure i
dependent ofG.

The pure workerpw is ({pi}, { po}, (St, Init, Tr)) where the transition systemTr is
constructed thus. For eachG transitions -(ind, arc, outd)-› t, Tr contains the two step
sequences -pi?ind-› arc -po!outd-› t ; this makes it clear thatSt= G0 ∪ G1 (we will tac-
itly assume that this union is disjoint). RegardingInit, we can chooseanystates0 in
γ0(A) to beInit. Thus the mapping from CP automata to IWIM systems is in gene
one to many. In reality of course, examples of CP automata that represent complet
tems typically have unique initial states, reflecting the often observed fact that mos
systems start in a well defined condition. The plurality comes in useful when com
nent CP automata are combined to form a larger system. We will comment on this
ther below. More generally,γ0(A) andγ1(B) are sets of states of the pure workerpw.

l, one
s

can
itial
tom-
t

IM

ed in
inary
gua-

us in

on

W

f

Our basic construction is nearly complete. All that remains is to note that theλ mapping
is given by:

λ♦(ps) = po ; λ♦(pt) = pi

that the above mapping is given by:

pŵ ♦pm

and that since there are norec actions in the worker, ther map is empty.
Note the following invariant of the generated IWIM system: regardless ofG, there

is exactly one pure worker, one one-state pure manager, one external input channe
external output channel, andγ0(A) andγ1(B) can be identified with sets of configuration
of the pure worker.

We can easily see that whatever the initial state of the given CP automaton, we
find an IWIM system from among the possibilities constructed, with the same in
state; and which furthermore simulates it in the sense that the execution of a CP au
aton transition inputtingxand outputtingy, corresponds in the IWIM system to the inpu
from the input queue ofx and the output onto the output queue ofy, in that order. (The
alternative order leads to an equally acceptable construction.) Note that in the IW
system these are comunications with the environment.

We now move on to constructions on CP automata and how these are reflect
the corresponding IWIM systems; the principal ones that we must consider are b
combinators. We will subscript with the name of the relevant automaton to disambi
te when notations would otherwise clash.

Communicating Parallel Composition. Let G = (G = (G0, G1), X, Y, A, B, ∂0,G, ∂1,G,
γ0,G, γ1,G) andH = (H = (H0, H1), Y, Z, C, D, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP automata. Then
the communicating parallel composition ofG andH, writtenG ⋅H, is the CP automa-
ton:

G ⋅H = (G⋅H = (G0 × H0, G1⋅H1 = {(g, h) | g ∈ G1, h ∈ H1, ∂1,G (g) = ∂0,H (h)}),
X, Z,
A × C, B × D,
∂0,G ⋅H (g, h) = ∂0,G (g), ∂1,G ⋅H (g, h) = ∂1,H (h),
γ0,G ⋅H = γ0,G × γ0,H , γ1,G ⋅H = γ1,G × γ1,H)

This definition makes clear the statement above that communication is synchrono
the KSW model. The input and output labels on an arc (g, h) of the combined system
are∂0,G (g) and∂1,H (h) respectively, while the very existence of the arc is predicated
the condition∂1,G(g) = ∂0,H (h), which supports the interpretation that arcg output and
arc h input the same symbol. This is the only notion of communication in the KS
model.

We model the communicating parallel composition ofG andH at the IWIM system
level as follows. SupposeWMG is an IWIM system representingG, andWMH is an
IWIM system representingH. We assume that bothWMG andWMH each have a pure
worker,pwG andpwH respectively, a one-state pure manager,pmG andpmH respectively,
an external input channelcht,G andcht,H respectively, an external output channelchs,G
andchs,H respectively, thatγ0,G(A) andγ1,G(B) can be identified with a set of states o

e

s

ica-
pwG, and thatγ0,H(C) andγ1,H(D) can be identified with a set of states ofpwH. The
IWIM systemWMG ⋅H we seek can be generated fromWMG andWMH as follows.

There is the usual one-state pure managerpmG ⋅H as above. The corresponding pur
workerpwG ⋅H = ({pi}, { po}, (StG ⋅H, InitG ⋅H, TrG ⋅H)) is built frompwG andpwH by defin-
ing StG ⋅H = StG × StH, InitG ⋅H = (InitG, InitH), and forTrG ⋅H, whenever we have a pair of
transitions inTrG of the formsG -pi?ind-› arcst,G -po!val-› tG, and a pair of transitions in
TrH of the formsH -pi?val-› arcst,H -po!outd-› tH, we form theTrG ⋅H transitions (sG, sH)
-pi?ind-› (arcst,G, arcst,H) -po!outd-› (tG, tH). It is clear that this procedure only succeed
because of the special structure of the transition systemsTrG andTrH. We can now iden-
tify γ0,G ⋅H(A × C) with states corresponding toγ0,G(A) × γ0,H(C), andγ1,G ⋅H(B × D) with
states corresponding toγ1,G(B) × γ1,H(D); and the rest of the data for the IWIM system
WMG ⋅H is routine.

It is obvious thatWMG ⋅H is able to simulateG ⋅H in a straightforward manner pro-
videdWMG can simulateG andWMH can simulateH.

Parallel Composition without Communication. Let G = (G = (G0, G1), X, Y, A, B,
∂0,G, ∂1,G, γ0,G, γ1,G) andH = (H = (H0, H1), Z, W, C, D, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP
automata. Then the noncommunicating parallel composition ofG andH, writtenG ×
H, is the CP automaton:

G × H = (G × H = (G0 × H0, G1 × H1), X × Z, Y × W, A × C, B × D,
∂0,G × H (g, h) = ∂0,G (g) × ∂0,H (h), ∂1,G × H (g, h) = ∂1,G (g) × ∂1,H (h),
γ0,G × H = γ0,G × γ0,H , γ1,G × H = γ1,G × γ1,H)

This noncommunicating parallel composition still features synchronous commun
tion, but this time of pairs of data values.

We model the noncommunicating parallel composition ofG andH at the IWIM
system level thus. LetWMG andWMH be IWIM systems representingG andH respec-
tively. We assume thatWMG andWMH have pure workers,pwG andpwH, one-state pure
managers,pmG andpmH, external input channelscht,G andcht,H, external output chan-
nelschs,G andchs,H, thatγ0,G(A) andγ1,G(B) can be identified with a set of states ofpwG,
and thatγ0,H(C) andγ1,H(D) can be identified with a set of states ofpwH. Then we pro-
ceed as follows to constructWMG × H.

There is the usual one-state pure managerpmG × H as above. We build a corre-
sponding pure workerpwG × H = ({pi}, { po}, (StG × H, InitG × H, TrG × H)) from pwG and
pwH by definingStG × H = StG × StH, InitG × H = (InitG, InitH), and forTrG × H, whenever
we have a pair of transitions inTrG of the formsG -pi?indG-› arcst,G -po!outdG-› tG, and
a pair of transitions inTrH of the formsH -pi?indH-› arcst,H -po!outdH-› tH, we form the
TrG × H transition pair:

(sG, sH) -pi?(indG, indH)-› (arcst,G, arcst,H) -po!(outdG, outdH)-› (tG, tH).

We can now identifyγ0,G × H(A × C) with states corresponding toγ0,G(A) × γ0,H(C), and
γ1,G × H(B × D) with states corresponding toγ1,G(B) × γ1,H(D); and the rest of the data
for WMG × H is routine.

It is obvious thatWMG × H is able to simulateG × H in a straightforward manner
providedWMG can simulateG andWMH can simulateH.

have

of

s

,

e bi-
ntify

see

‘ad-
for
Up to now, the in-conditions and out-conditions of the component CP automata
played a passive role; the next construction remedies this.

Restricted Sum. Let G = (G = (G0, G1), X, Y, A, B, ∂0,G, ∂1,G, γ0,G, γ1,G) andH = (H
= (H0, H1), X, Y, B, C, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP automata. Then the restricted sum
G andH, writtenG + H, is the CP automaton:

G + H = (G + H = (G0 + H0 / ~B where ~B is the finest equivalence
relation generated byγ1,G(b) ~B γ0,H(b) (and we write
[g]B for the equivalence class containingg), G1 + H1),

X, Y, A, C,
∂0,G + H = ∂0,G + ∂0,H, ∂1,G + H = ∂1,G + ∂1,H,
γ0,G + H = γ0,G , γ1,G + H = γ1,H)

(As expected, the sources and targets of the arcs inG1 + H1 are the equivalence classe
of the corresponding sources and targets inG0 andH0.)

Let WMG andWMH be IWIM systems representingG andH respectively. We as-
sume thatWMG andWMH have pure workers,pwG andpwH, one-state pure managers
pmG andpmH, external input channelscht,G andcht,H, external output channelschs,G and
chs,H, that γ0,G(A) andγ1,G(B) can be identified with a set of states ofpwG via maps
γw0,G : A → StG, γw1,G : B → StG, and thatγ0,H(B) andγ1,H(C) can be identified with a
set of states ofpwH via mapsγw0,H : B → StH, γw1,H : C → StH. We proceed as follows
to constructWMG + H.

There is the usual one-state pure managerpmG + H as above. We build a corre-
sponding pure workerpwG + H = ({pi}, { po}, (StG + H, InitG + H, TrG + H)) from pwG and
pwH by defining:

StG + H = StG + StH / ~B where ~B is the finest equivalence relation
generated byγw1,G(b) ~B γw0,H(b) (and we write
[s]B for the equivalence class containings)

InitG + H = [InitG]B

TrG + H = {[s]B -pi?v-› [t]B | [s]B, [t]B ∈ St, s -pi?v-› t ∈ TrG,I ∪ TrH,I} ∪
 {[s]B -po!v-› [t]B | [s]B, [t]B ∈ St, s -po!v-› t ∈ TrG,O ∪ TrH,O}

That this works as desired is conditional on the observation that in bothpwG andpwH,
the states picked out byγw0,G, γw1,G, γw0,H, γw1,H are, so to speak, ‘G0-states’ and not
‘arc-states’. This can be assured by choosingγw0,G, γw1,G, γw0,H, γw1,H to beγ0,G, γ1,G,
γ0,H, γ1,H in the base case construction, whereupon it evidently persists through th
nary combinator simulations we have described, and enables us to formally ide
γ0,G + H = γ0,G with a set of states ofpwG + H via γw0,G + H : A → StG + H = γw0,G / ~B and
to identify γ1,G + H = γ1,H with a set of states ofpwG + H via γw1,G + H : C → StG + H =
γw1,H / ~B. With this confirmed, the construction ofStG + StH / ~B results in a glueing of
s -pi?ind-› arc -po!outd-› t sequences only at their ends, and it then becomes easy to
that the given recipe gives us an IWIM systemWMG + H capable of simulating the CP
automatonG + H, if WMG simulatesG andWMH simulatesH.

Two points deserve comment. Firstly, [Katis et al. (2000)] speak of the need to
just’ the in-conditions or out-conditions of a CP automaton in order to make it fit

inter-
inter-

el

l-

n-

ng-

to

cor-
some particular purpose. More than anything else this is an indication that these
connection aspects of the automaton are really properties that belong more to the
connection mechanism itself, than to the automata involved.

Secondly if, following [Katis et al. (2000)], we intend the restricted sum to mod
sequential composition, the construction ofWMG + H, though faithful to the CP autom-
atonG + H, suffers from the weakness that if a final state ofG has out-transitions, and
a corresponding initial state ofH has in-transitions, then a run may wander fromG to
H and then back in toG. The IWIM system paradigm offers more flexibility here, a
lowing the expression of an irreversible transition fromG to H. We describe the details,
resulting in the construction of an IWIM systemWM*G + H that simulatesG + H in a
different way.

Suppose inG0 + H0 / ~B above, there arek of the equivalence classes that are no
singletons, i.e. there arek classes that glue at least one element ofG0 to at least one el-
ement ofH0 (the remaining classes just containing individual elements outside the ra
es ofγ1,G(B) andγ0,H(B)). Call them:

[γw1,G(b)1], [γw1,G(b)2] … [γw1,G(b)k]

Now partition each of [γw1,G(b)1] … [γw1,G(b)k] into two subsets each:

[γw1,G(b)1]G = [γw1,G(b)1] ∩ G0 and [γw1,G(b)1]H = [γw1,G(b)1] ∩ H0
… … … …

[γw1,G(b)k]G = [γw1,G(b)k] ∩ G0 and [γw1,G(b)k]H = [γw1,G(b)k] ∩ H0

all nonempty by our assumptions. Replacing inStG + H the [γw1,G(b)1] … [γw1,G(b)k] by
the [γw1,G(b)1]G, [γw1,G(b)1]H … [γw1,G(b)k]G, [γw1,G(b)k]H is tantamount to generating
a new equivalence relation, which we callB* , on the state spaceStG + StH. This is the
finest relation generated by the two families of clauses:

(γw1,G(b) ~B γw0,H(b) = γw0,H(c) ~B γw1,G(c)) ⇒ γw1,G(b) ~B* γw1,G(c))

(γw0,H(b) ~B γw1,G(b) = γw1,G(c) ~B γw0,H(c)) ⇒ γw0,H(b) ~B* γw0,H(c))

Now we define:

St*G + H = (StG + H – {[γw1,G(b)1] … [γw1,G(b)k]}) ∪
{[γw1,G(b)1]G, [γw1,G(b)1]H … [γw1,G(b)k]G, [γw1,G(b)k]H}

Init*G + H = [InitG]B*

Tr*G + H = {[s]B* -pi?v-› [t]B* | [s]B*, [t]B* ∈ St, s -pi?v-› t ∈ TrG,I ∪ TrH,I} ∪
{[s]B* -po!v-› [t]B* | [s]B*, [t]B* ∈ St, s -po!v-› t ∈ TrG,O ∪ TrH,O} ∪
{[s]B* -rec-› [t]B* | s = γw1,G(b) = γw0,H(b) = t , b ∈ B}

By distinguishing theG from theH components of the glueing states, we are able
introducerec transitions from one to the other. All of theserec transitions are above the
unique state of the pure manager, and all map to the identity reconfiguration on the
responding port/channel network ({ps, pt}, { chs, cht}). Since the pure worker remains
above this state when such arec transition is executed, itsrec transition completes and
the run continues in theH component; however this time there is no way back to theG

l sys-
ally,

gh we

si-
ort/

dd-

ager

e

onse-
man-

hile
ust
der.

f the
of the
flect

a
these
pos-
the
ample
lay

sys-
went
un-
component, even if there are in-transitions to the initial state ofH used, and out-transi-
tions from the final state ofG reached.

This all works adequately, but is still open to the criticism that pure workerpwG, its
useful life over when the locus of control moves into thepwH part of the system, re-
mains alive, though defunct, preventing its resources from being reused. In a rea
tem, it would be garbage collected releasing its resources for other activities. Equ
a demand driven implementation might well not create thepwH part of the system until
it was needed. Our IWIM system model enables us to express these aspects thou
will not go into all the formal details. Here is the general idea.

We split the state of the pure manager into two; and (a modified)pwG is above the
new initial state, whilepwH is above the other state. There is a reconfiguration tran
tion from the former to the latter, whose data is the identity reconfiguration on the p
channel network ({ps, pt}, { chs, cht}). The modification topwG entails adding the
[γw1,G(b)1]G … [γw1,G(b)k]G states described previously to its state space, and then a
ing rec transitions to a typical [γw1,G(b)j]G state from each of its comprisingγw1,G(b)j
states. Theserec transitions map to the reconfiguration mentioned above.

It is clear that the behaviours of the resulting system are as follows. The man
starts in its initial state; consequently the modifiedpwG is active. It executes until it
reaches aγw1,G(b)j state and proceeds to perform theγw1,G(b)j -rec-› [γw1,G(b)j]G tran-
sition. This maps to the reconfiguration step of the manager, and becausepwH is above
the new manager state, the modifiedpwG leaves the system configuration andpwH joins
it, starting in its initial state.

This story holds up ifH has a unique initial state. If not, an unwinding techniqu
similar to that used in our ABB system simulation must be employed.

Furthermore, the nontrivial state space now introduced for the manager has c
quences for all the combinators. A product-like construction must be used on the
ager states for the communicating and noncommunicating parallel compositions, w
a sum-like construction, involving the introduction of reconfiguration transitions m
be used for the restricted sum. We leave the fascinating details for the motivated rea

7 Conclusions

In the preceding sections we have introduced a formal model for capturing some o
essence of the IWIM concept in an automata based framework. The essence
IWIM model is the special role of reconfigurations, so our constructions aimed to re
this in an explicit manner, rather than relying on ‘programming them away’ within
more general purpose automata theoretic framework. The objective was to model
structural aspects of reconfigurations involving managers and workers as simply as
sible while keeping their special nature to the fore. This led to some complexity in
model as we saw, but not as much as there might have been had we chosen for ex
to model the full asynchrony of the true IWIM model, rather than emulate it via de
automata.

To keep things as accessible as possible, we started with elementary IWIM
tems, before treating the unrestricted case. The fact that the generalisation
smoothly is due in no small way to the fact that the design of the model was tacitly

t ca-

y,
tate
ntire
ruc-
trib-
the
why

lge-
, we
odel.

er in
tes

in
capac-
y for
m
ub-

f the

ys-

h.

its

oor-
eri-

ace
S

an-

Mul-
dertaken in a manner in sympathy with categorical imperatives, which have a grea
pacity to foster relatively elegant structural properties.

Having built our IWIM systems and dealt with the emulation of full asynchron
we emulated the ABB and KSW models. While the ABB model is a distributed s
model like ours, the KSW model is a global state model, in which the state of the e
system resides at one indivisible point. This policy permits a straightforward const
tion for sequential composition, at the price of being somewhat unrealistic for a dis
uted model of computation. It is clear that sequential composition would involve
distributed termination problem in a distributed state model, and this is one reason
it is not contemplated for the ABB model. Had we not wanted to capture all the a
braic properties described in [Katis et al. (2000)], including sequential composition
could have employed a more natural construction to emulate aspects of the KSW m
For example we could have piped the output of one worker into the input of anoth
modelling communicating parallel composition, this however immediately distribu
the state.

Finally, we observe that coordination models different from the IWIM one, and
particular the global state tuple based approaches, must nevertheless embody the
ity for disentangling management from worker aspects, which was done so readil
IWIM, even if they only do so implicitly. The challenge of extracting this structure fro
so different looking starting points remains an intriguing issue to explore in future p
lications.

Acknowledgement

The work described in this paper was partially supported by the EU in the course o
KIT-INCO Project SEEDIS (Contract No. 962114).

References

[Agha (1986)] Agha G. (1986); Actors: A Model of Concurrent Computation in Distributed S
tems. MIT Press.

[Arbab (1995)] Arbab F. (1995); Coordination of Massively Concurrent Activities. CWI Tec
Rep. CS-R9565.

[Arbab (1996)] Arbab F. (1996); The IWIM Model for Coordination of Concurrent Activities.in:
Proc. COORD-96, Ciancarini, Hankin (eds.), LNCS1061, 34-56, Springer.

[Arbab et al. (1993)] Arbab F., Herman I., Spilling P. (1993); An overview of Manifold and
Implementation. Concurrency: Practice and Experience5, 23-70.

[Arbab et al. (1998)] Arbab F., Blom C. L., Burger F. J., Everaars C. T. H. (1998); Rusable C
dination Modules for Massively Concurrent Applications. Software: Practice and Exp
ence28, 703-735.

[Arbab et al. (2000a)] Arbab F., de Boer F. S., Bonsangue M. M. (2000a); A Logical Interf
Description Language for Components.in: Proc. COORD-00, Porto, Roman (eds.), LNC
1906, 249-266, Springer.

[Arbab et al. (2000b)] Arbab F., de Boer F. S., Bonsangue M. M. (2000b); A Coordination L
guage for Mobile Components.in: Proc. ACM SAC-00, 166-173.

[Banach et al. (2002)] Banach R., Arbab F., Papadopoulos G. A., Glauert J. R. W. (2002); A
tiply Fibred Automaton Semantics for IWIM. CWI Research Report SEN-R0206.http:/
/www.cwi.nl

utel-
rdi-

m.

an-

es

uag-

rog.

IM

of

n

dels
w-

and

mp.
[Bonsangue et al. (2000)] Bonsangue M. M., Arbab F., de Bakker J. W., Rutten J. J. M. M., Sc
là A., Zavattaro G. (2000); A Transition System Semantics for the Control-Driven Coo
nation Language MANIFOLD. Theor. Comp. Sci.240, 3-47.

[Carriero and Gelernter (1989)] Carriero N., Gelernter D. (1989); LINDA in Context. Com
ACM 32, 444-458.

[Ciancarini and Hankin (1996)] Ciancarini P., Hankin C. H. L. (eds.) (1996); Coordination L
guages and Models 1996 (Proc. COORD-96). LNCS1061, Springer.

[Ciancarini and Wolf (1999)] Ciancarini P., Wolf A. L. (eds.) (1999); Coordination Languag
and Models 1999 (Proc. COORD-99). LNCS1594, Springer.

[Garlan and Le Metayer (1997)] Garlan D., Le Metayer D. (eds.) (1997); Coordination Lang
es and Models 1997 (Proc. COORD-97). LNCS1282, Springer.

[Gelernter (1985)] Gelernter D. (1985); Generative Communication in Linda. ACM Trans. P
Lang. Sys.7, 80-112.

[Katis et al. (2000)] Katis P., Sabadini N., Walters R. F. C. (2000); A Formalisation of the IW
Model. in: Proc. COORD-00, Porto, Roman (eds.), LNCS1906, 267-283, Springer.

[Malone and Crowston (1994)] Malone T., Crowston K. (1994); The Interdisciplinary Study
Coordination. ACM Comp. Surv.26, 87-119.

[Omicini et al. (2002)] Omicini A., Zambonelli F., Klusch M., Tolksdorf R. (2002); Coordinatio
of Internet Agents: Models, Technologies, and Applications. Springer.

[Papadopoulos and Arbab (1998)] Papadopoulos G. A., Arbab F. (1998); Coordination Mo
and Languages.in: Advances in Computers — The Engineering of Large Systems, Zelko
itz (ed.), 329-400, Academic.

[Porto and Roman (2000)] Porto A., Roman G-C. (eds.) (2000); Coordination Languages
Models 2000 (Proc. COORD-00). LNCS1906, Springer.

[Shapiro (1989)] Shapiro E. (1989); The Family of Concurrent Logic Languages. ACM Co
Surv.21, 412-510.

	A Multiply Hierarchical Automaton Semantics for the IWIM Coordination Model
	R. Banach (Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man...
	F. Arbab (Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands farhad@c...
	G. A. Papadopoulos (Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cy...
	J. R. W. Glauert (School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.K...
	Abstract: The drawbacks of programming coordination activities directly within the applications s...
	1 Introduction
	2 The IWIM Model
	3 IWIM Automata
	3.1 Elementary IWIM Systems
	c œ dom(sm) , c Œ dom(tm) , qsrest = qs – {c:[º , un]}
	c œ dom(tm) , c Œ dom(sm) , qsrest = qs – {c:[u, u1, º]}
	k^m , ak Œ ests , ak -i?u-› bk , lm(p) = i Œ Iwor(k) , tm(c) = p , estsrest = ests – {ak} , qsres...
	k^m , ak Œ ests , ak -o!u-› bk , lm(p) = o Œ Owor(k) , Æ ¹ Out = {d | sm(d) = p} , estsrest = est...
	tm(c) = p , Æ ¹ Out = {d | sm(d) = p} , qsrest = qs – ({c:[u, u1, º]} » {d:[º , ud,nd] | d Œ Out})
	kr^m , akr Œ ests , akr -rec-› bkr , rkr^m(rec) = m -r-› n = cm,n : Cm Æ Cn , estsrest = ests – {...

	3.2 Unrestricted IWIM Systems
	c œ »{dom(sm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(tmwm) , mwm Œ pman(sts) , qsrest = qs – {c:[º ,...
	c œ »{dom(tm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(smwm) , mwm Œ pman(sts) , qsrest = qs – {c:[u, u...
	k^mwm , mwm Œ pman(sts) , (ak, nk) Œ sts , (ak, nk) -i?u-› (bk, nk) , lmwm(p) = i Œ Iwor(k) , tmw...
	(ak, nk) Œ sts , (ak, nk) -o!u-› (bk, nk) , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p) ...
	k^m¢wm¢ , m¢wm¢ Œ pman(sts) , tm¢wm¢(c) = p , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p...
	Æ ¹ Rmman = {mwm | mwm Œ pman(sts) • kr^mwm} , (akr, mkr) Œ sts , (akr, mkr) -rec-› (bkr, mkr) , ...

	4 IWIM Systems with Delayed Reconfigurations
	5 The Arbab, de Boer, Bonsangue Model
	6 The Katis, Sabadini, Walters Model
	7 Conclusions
	Acknowledgement
	References

