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A methodology is developed for mapping a wide class of concurrent logic languages (CLLs) onto Dactl, a compiler
target language based on generalized graph rewriting. We show how features particular to the generalized graph
rewriting model (such as non-root overwrites and sharing) can be used to implement CLLs. We identify problems in
the mapping of a concurrent logic program to an equivalent set of rewrite rules and provide solutions. We also show
some important optimizations and compilation techniques that can be adopted in the process. Finally, we take advan-
tage of the underlying graph reduction model to enhance a concurrent logic program with some capabilities found
usually only in functional languages such as lazy evaluation, sharing of computation and higher order programming.
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The formalisms of graph rewriting (reduction) and logic programming have developed quite indepen-
dently of each other. With the exception of a few cases, advances in the former have not been exploited
by the latter and vice versa. In this paper we try to bridge the gap between the two formalisms by showing
how concurrent logic languages can be implemented using graph rewriting. In particular, we develop tech-
niques for mapping a wide class of CLLs including Parlog, GHC, Strand, Janus and a restricted subset of
the Concurrent Prolog family onto Dactl, a compiler target language based on graph rewriting. We discuss
the problems found in the process and the adopted solutions. The paper contributes to related research by:

� examining the potential of graph reduction as a suitable model for implementing CLLs in terms of
expressiveness and efficiency

� showing that CLLs can be thought of as instances of the generalized graph rewriting model

� giving meaning to some properties of graph rewriting (such as sharing and arc redirection) in the
logic programming world, thus identifying relationships between operations in graphs and ‘equiva-
lent’ logic programs

� examining the potential of the intermediate language approach in general and Dactl in particular as
an appropriate model for implementing concurrent logic languages

� taking advantage of the intermediate level of computation offered by Dactl in enhancing concurrent
logic languages with some features found only in some other languages also mapped onto Dactl,
and in particular functional ones.
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The paper is organized as follows: section 1 introduces Dactl as an intermediate language in the context
of rewriting systems; section 2 introduces concurrent logic languages. These are essentially condensed
descriptions and the reader is referred to more specialized papers cited in the references for further de-
tails. Section 3 presents the mapping of concurrent logic programs onto equivalent sets of Dactl rewrite
rules, and section 4 describes the enhancement of concurrent logic programs with functional capabilities.
The paper ends with a short description of related work and some conclusions and directions for further
research.

1 Dactl and the ‘intermediate language approach’
Rewriting systems(Barendregt et al. 1987) offer a powerful computational model for declarative lan-
guages. It can be shown that a functional program can be mapped onto an equivalent canonical rewrit-
ing system. However, logic programs can also be seen as sets of equivalence preserving rewrite rules
(Dershowitz 1985). It follows that a language based on rewriting theory has the potential of being an
intermediate language (an UNCOL; (Steel 1961)) for a number of declarative languages. This decou-
pling of language design from actual implementation allows the easier evolution of languages as well as
architectures.

Dactl is such an intermediate language. It was developed as part of the Alvey Flagship research program
(Procter and Skelton 1988) to play the role of a compiler target language through which declarative lan-
guages would be implemented on fine grain parallel architectures such as Flagship (Watson et al. 1988),
Alice (Darlington and Reeve 1981), GRIP (Peyton Jones et al. 1987), etc. In addition to the family of lan-
guages described in this paper, it has been shown that functional languages such as Hope+, ML, Common
Lisp, Clean, etc. can be easily mapped onto Dactl rewrite rules (Darlington et al. 1988, Hammond 1990,
Kennaway 1988). A subset of Dactl has been implemented on the Flagship machine (Banach and Watson
1988); an ongoing implementation was also reported for the GRIP machine (Peyton Jones et al. 1987)
while Hammond (1990) studies a possible implementation on transputers. There is also an interpreter
running under Unix on Suns and on Macintoshes (Glauert et al. 1988a). In this paper, however, we will
not consider the implementation of Dactl; instead we will concentrate on the high level transformations
necessary to derive a Dactl program operationally equivalent to the original concurrent logic program.

A Dactl program is a set of rewrite rules specifying possible transformations of graph objects. In addi-
tion, a set of control markings is used to specify the required reduction stategy, i.e. the choice procedure
for selecting candidate redexes from those available in the graph. Following Kowalski’s well-known equa-
tion ‘Algorithm = Logic + Control’, the rules comprise the Logic part and the control markings the Control
part. The reason for decoupling the logic from control in a Dactl program at the programmer’s level is
the need to accommodate different families of languages with possibly divergent operational semantics
(lazy functional languages, ‘eager’ concurrent logic languages) for which no general predefined reduction
strategy is adequate.

The following definition of an append function in Dactl illustrates the above points:

Append[Nil y])�y;

Append[Cons[h t] y])#Cons[h ^
�Append[t y]];

Similar notation is used both for rewritable functions (such asAppend) and for constructions (such as
Consor Nil); however, there will be no rules for rewritingConsor Nil nodes. Each node has a symbol and
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a list of arcs to successor nodes. The first rule specifies that anAppendnode withNil as first argument
is overwritten with the second argumenty. The activation marking ‘*’ will activatey, causing further
evaluation if the latter is a rewritable function. The second rule is applicable when the first argument
of Appendis a Cons, in which caseAppendis overwritten to a newConsnode bearing the suspension
marking ‘#’ whose second argument is a recursive call toAppend. This call is activated using ‘*’, and the
notification marking ‘^’ on the argument causes theConsnode to be reactivated when the result has been
calculated. Hence, the original caller ofAppendwill be notified of completion only when the argument
to Conshas been fully evaluated. To illustrate Dactl’s flexibility in accommodating different operational
semantics, consider the following variations ofAppend’s second rule:

Append[Cons[h t] y])�Cons[h �Append[t y]];

Append[Cons[h t] y])�Cons[h Append[t y]];

The first rule specifies an eager evaluation strategy where the partial result ofAppend’s reduction is made
available to its caller while the recursive call is executed in parallel. The second rule shows a lazy version;
the recursiveAppendwill remain dormant until the original caller activates it again. A more elaborate
description of Dactl can be found in the accompanying paper (Glauert et al. 1997).

2 Concurrent logic languages
Concurrent logic languages (CLLs) comprise a family of languages based on a subset of first order pred-
icate calculus (Horn clauses) and utilizing stream parallelism. They provide a powerful computational
model able to model reactive systems and easily amenable to parallel execution. A concurrent logic pro-
gram is a set of guarded Horn clauses of the form

H :�G1; : : : ;Gmj B1; : : : ;Bn m;n� 0

whereH is the head,j is the commit operator,G1; : : : ;Gmis the guard part andB1; : : : ;Bn is the body part.
Declaratively, the meaning of the above clause is thatH is true if bothG1; : : : ;GmandB1; : : : ;Bnare true.
Operationally, the guard callsG1 to Gmare evaluated first in parallel and upon successful termination the
computation commits to the body of the clause. The headH is of the formp(t1; : : : ; tn) wherep=n is a
predicate name of arityn andt1; : : : ; tn are its arguments. There may be more than one rule with the same
namep and arityn, in which case they form a group definition of the processp.

The computation starts with a set of cooperating processes (goals) executing in parallel and commu-
nicating by means of shared variables. The clauses of a program specify the behaviour and the various
transitions possible for each process. If for a certain goal to be reduced there is more than one candidate
clauses to select from, the first one to solve its guard successfully will be chosen and the computations
in the guards of the other candidate clauses will be abandoned. Thus CLLs incorporate the concept of
committed choice ‘don’t care’ non-determinism from CSP.

The variables shared among the processes form communication channels; some of the processes in a
computation (termed theproducers) are allowed to send messages over these channels (by means ofout-
put unification ) while others are waiting for messages (input unification ). A number of CLLs have been
developed over the years that differentiate in the synchronization mechanism they employ for managing
the processes running in parallel, ranging from compile time based input/output data flow specification
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(Parlog, GHC, Fleng, Janus) to run time based read only unification (Concurrent Prolog) or determinacy
conditions (P-Prolog).

The usual way to implement concurrent logic languages is by means of variants of the highly successful
WAM (Warren 1983, A¨ıt-Kaci 1991). In particular, in a parallel implementation of a CLL, each processor
in the system executes an emulator of the abstract machine. The latter comprises a reduction component
and a communication component. The reduction component is responsible for local process scheduling
and execution and supports the basic operations required by the operational model (reading and writing
of data, process management). The communication component is responsible for managing the mes-
sages generated to access remote variables (those residing on other processors) for reading or writing. In
this paper we offer an alternative way to implement a CLL based on a high-level intermediate language
approach.

Concurrent logic languages simplify considerably the programming of parallel machines (Foster and
Taylor 1990, Tick 1991) and they formed the basis on which the Japanese Fifth Generation Computer
System (FGCS) project was implemented (Furukawa 1991). A comprehensive survey of the development
of CLLs can be found in Shapiro (1989).

3 Translating concurrent logic programs into Dactl rewrite rules

3.1 Principles of the translation

We recall that a concurrent logic program is a set of axioms (clauses) defining relationships between
objects. By ‘objects’ we refer to terms manipulated by the clauses using unification. The way unification
is used to manipulate terms is defined by an associated execution strategy which is based on stream
parallelism but is not necessarily identical for all languages (there may be differences, for instance, in
the search operators employed or the exact kind of synchronization used). However, it is possible to
associate all these languages with a process interpretation which involves, among others, mapping of
goals to processes, and synchronization and communication between the latter two. In implementing a
concurrent logic language in Dactl, therefore, the following main issues arise: representation of terms,
support for the unification mechanism employed, and the ability to express adequately the language’s
process interpretation in the underlying implementation model.

Regarding terms, a number or a string preserves its usual representation in Dactl; in addition, special
patterns are provided (INT, REAL, etc.) to allow testing of nodes matched in the left-hand side of rules. A
list [H jT] is represented asCons[h t] with Nil being the empty list, and any other data structuref (t1; : : : ; tn)
is represented asTup[`f ’ t1 : : : tn].

The exact way unification is implemented varies from one language to the other depending on the lan-
guage’s semantics; the same is true about the representation of logic variables (as we will see below).
However, any unification procedure includes rules for instantiating variables and decomposing data struc-
tures. In particular, a Dactl unification function has some variable instantiation rule

Unify[v : Var term]! v := �term;

and some data decomposition rules like the following for lists:

Unify[Cons[h1 t1] Cons[h2 t2]]!�Unify[h1 h2];�Unify[t1 t2];
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Note that in the first rule we have firedterm; this will activate any process suspending onv waiting for its
instantiation. The principles of mapping a concurrent logic program onto a set of Dactl rewrite rules are
illustrated by means of the following concurrent logic version ofappend:

append([H j T];Y;Z) :�true j Z = [H j Z1];append(T;Y;Z1):

append([ ];Y;Z) :�true j Z = Y:

A possible translation to Dactl is the following:

Append[Cons[h t] y z]) �Append[t y z1 : Var];�Unify[z Cons[h z1]];

Append[Nil y z])�Unify[z y];

Append[l : Var y z])#Append[^l y z];

Append[ANY ANY ANY])�FAIL;

The first two rules perform the reduction as defined by the original append program. Note here the
introduction of the new nodez1 with the patternVar; Dactl does not support ‘open graphs’ with true
variables. This turns out to be an advantage, however, as we will see later on. The third rule models the
required synchronization mechanism and in particular the suspension of the process until its first argument
is instantiated to some value. The last one reports failure. This last rule is not always necessary, depending
on how each language treats the notion of failure. In general, a procedure in a concurrent logic program
is translated into an equivalent Dactl rule set comprising a sufficient number of rewrite rules to perform
the required unification and execution of guard and body calls, followed by a suspension rule and a failure
rule.

Depending on the type of head unification that must be performed and the existence or not of guards
we have basically three types of procedures:

� unguarded

� guarded with non-overlapping patterns

� guarded with overlapping patterns.

The above procedure belongs to the first category. The translation to Dactl of this first category is quite
trivial since the language’s semantics captures completely the needed functionality.

3.2 Translating languages with non-atomic unification
The group of languages with non-atomic unification includes (among others) Fleng (Nilsson and Tanaka
1986), Parlog (Gregory 1987), GHC (Ueda 1986), Strand (Foster and Taylor 1990) and Janus (Saraswat
et al. 1990). Consider the definition of the predicatememberadd(X;L;Lb;Le), adding an elementX into
the difference listLb=Le if it is a member of the listL (Foster and Taylor 1990):

memberadd(X; [X1 j ];Lb;Le) :�X == X1 j Lb= [X j Le]:

memberadd(X; [X1 j L];Lb;Le) :�X = n= X1 jmemberadd(X;L;Lb;Le):

memberadd( ; [ ];Lb;Le) :�Lb= Le:
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This example belongs to the category of procedures having guarded clauses with non-overlappingpatterns.
The translation to Dactl optimizes the (identical) input unification performed by the first two clauses:

Memberadd[x Cons[x1 l] lb le])#Memberadd Commit[^g1 ^g2 xl lb le];

g1 : �Eq[x x1];g2 : �NotEq[x x1];

Memberadd[ANY Nil lb le])�Unify[lb le];

Memberadd[x l : Var lb le])#Memberadd[x^l lb le];

Memberadd[ANY ANY ANY ANY])�FAIL;

Memberadd Commit[SUCCEED ANY x l lb le])�Unify[lb Cons[x le]];

Memberadd Commit[ANY SUCCEED x l lb le])�Memberadd Commit[x l lb le];

Memberadd Commit[FAIL FAIL ANY ANY ANY ANY]) �FAIL;

r : Memberadd Commit[ANY ANY ANY ANY ANY ANY]!#r;

The first rule performs the unification required for the first two clauses and callsMemberadd Committo
solve the guards. The rest of the rules can be understood easily. The last rule ofMemberadd Commitis
a bit tricky, however; it will suspend the root packet waiting for further signals from any remaining child
processes. Note thatMemberadd Commitrefrains from building the body calls if they are not needed;
this is similar to the lazy creation technique used in implementing functional languages. Note also that a
sophisticated compiler would exploit the complementary nature of== and= n= and produce code for
only the first test.

The above program was written in (kernel) Parlog and adheres to Parlog semantics: bindings to vari-
ables are created by full output unification and failure to match during input unification must be reported.
(Safe) GHC imposes the same constraints and the translation to Dactl of the corresponding GHC program
is identical to the one shown above. Strand, however, uses assignment instead of unification. In addition,
the trapping of failure is the responsibility of the programmer rather than the underlying implementation
model. To translate Strand programs, therefore, there is no need for either a failure rule or a call to some
Unify Dactl function. Assuming Strand semantics,memberaddwould be translated to Dactl as follows:

Memberadd[x Cons[x1 l] lb le]!#Memberadd Commit[^�Eq[x x1] xl lb le];

Memberadd[ANY Nil lb: Var le]! lb := �le;

Memberadd[x l : Var lb le]!#Memberadd[x^l lb le];

Memberadd Commit[SUCCEED x l lb: Var le]! lb := �Cons[x le];

Memberadd Commit[FAIL x l lb le]!�Memberadd Commit[x l lb le];

r : Memberadd Commit[ANY ANY ANY ANY ANY]!#r;

Here we have performed the optimization regarding the guard tests that was mentioned above. Note that
Strand’s assignment can be modelled directly in Dactl by means of non-root overwrites. The reason for
dispensing with the need for a full unification primitive stems from the language’s (reasonable) restriction
that only one producer process should exist for each variable. The language Janus, developed for dis-
tributed concurrent logic programming, goes even further with respect to this restriction and imposes the
additional constraint that only one consumer should exist for each variable. One of the main advantages of
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this restriction is the simplification of memory reclamation. The equivalent Janus program for the above
example is :

memberadd(X; [X1 j L]; !Lb;Le) ::X == X1! Lb= [X j Le];

X = n= X1!memberadd(X;L; !Lb;Le):

memberadd( ; [ ]; !Lb;Le) :: Lb= Le:

where ! denotes the occurrence of the variable that can be written. The translation of the above program
in Dactl is the same as for the Strand version but it is expected that the underlying implementation would
take advantage of the single-producer single-consumer constraint and reuse immediately the data nodes
matched in the left-hand side of a rule (such asConsandNil above). Here the generated Dactl program
could be enhanced with appropriate annotations on those data nodes that can be reused to assist the
translator of Dactl programs to native machine code (such as King and Glauert (1991)). Such nodes would
be overwritten directly with the new data instead of using indirection nodes. Note that these optimizations
can be performed for any concurrent logic program, not necessarily written in Janus, that has this property
something that can be checked by means of compile time or run time analysis (Foster and Winsborough
1991).

Note also that there is no need to perform root overwrites (i.e. rewrites) of Dactl functions corresponding
to Strand or Janus predicates using). This is a point that raises some interesting comparison issues in
the way Strand or Janus and the rest of the CLLs are mapped onto a graph rewriting model. In particular,
consider a conjunction of goalsg1(: : :); : : : ;gn(: : : ) written in a language that should detect failure , such
as Parlog or GHC. The equivalent set of Dactl functions executing in parallel should be monitored by an
AND function which would detect failure as soon as possible:

LHS)#AND[^�G1[: : : ] : : :^ �Gn[: : : ]];

AND[SUCCEED: : :SUCCEED]) SUCCEED;

r : AND[(ANY�FAIL) : : : (ANY�FAIL)]!#r;

AND[ANY: : :ANY])�FAIL;

Any predicateG would have to be mapped to eitherSUCCEEDor FAIL by means of suitable rules as
shown above. For the case of Strand or Janus, however, this is not necessary and we can dispense with
these extra rules and monitoringAND functions. It suffices to simply spawn the processes in the new
graph constructed after the successful matching with the left-hand side of the rule:

LHS! �G1[: : : ]; : : : ;�Gn[: : : ];

The use of! instead of) states that the right-hand side of the rule will spawn some new processes (G1 to
Gn) but will not change the state of the left-hand side function (because it is irrelevant to the computation).
Any communication will be done by means of shared overwritable nodes. It is worth pointing out that the
functionality of! is not easily expressible in a CLL (although Janus semantics come closer to this notion
than those of any other CLL).

As a final point on implementing Janus in Dactl, we note that the language supports arrays. These can
be easily implemented in Dactl using the latter’s support for vector operations (Glauert et al. 1988a).
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We recall that there are three categories of procedures in the translation of concurrent logic programs to
Dactl, and so far we have considered only the first two. The efficient translation of procedures belonging
to the third category is not a trivial issue since all candidate clauses must be evaluated in parallel. The
techniques reported in the literature generally involve a lot of copying (Gregory 1987, Levy and Shapiro
1987). Our technique (described fully in Papadopoulos (1989a), Papadopoulos (1989b) involves the use
of an overwritable node to be instantiated to the body of the committed clause. In particular, assuming a
procedure of the form

p(: : :) :�g1(: : :) j b1(: : : ):

p(: : :) :�g2(: : :) j b2(: : : ):

where the input patterns ofp are overlapping andg1,g2 are non-flat guards, the translation to Dactl adheres
to the following pattern:

P[: : : ]) commit: Var;##OR[^o1 ^o2 commit];

o1 : �P[1 : : :commit];o2 : �P[2 : : :commit]

OR[FAIL FAIL commit: Var]! commit:= �FAIL;

P0[1 : : :commit])�Eval G1[commit];

P0[2 : : :commit])�Eval G2[commit];

Eval G1[SUCCEED: : :commit: Var]! commit:= �B1[: : : ];

Eval G2[SUCCEED: : :commit: Var]! commit:= �B2[: : : ];

Note that the input unification performed is absorbed completely by the Dactl model and involves no copy-
ing. Overwritable nodes, like thecommitabove, that are instantiated to functions rather than constructors,
play the role ofmetavariablesand in the graph rewriting world are referred to asstateholders.

We now turn our attention to the optimization of the suspension patterns. There is an interesting similar-
ity here with the way functional languages, and in particular lazy ones, are compiled to Dactl (Kennaway
1988, Hammond 1990). There, a number of firing rules are necessary to activate the inner function
applications as detected by strictness analysis. Here, we need the opposite – a suspension rule that will
detect any unistantiated input arguments and suspend on them until they get their values from their ‘eager’
producers running in parallel. Consider the following Parlog or GHC procedure:

P(1;2;3):

p(4; ;5):

p( ; ;6):

p( ; ;7):

Using the techniques described so far, the translation to Dactl is as follows:

P[1 2 3]) �SUCCEED;

P[4 ANY5]) �SUCCEED;

P[ANY ANY6])�SUCCEED;
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P[ANY ANY7])�SUCCEED;

(P[p1 p2 p3]&(P[(Var+1)(Var+2)(Var+3)]+P[(Var+4)ANY(Var+5)]

+(P[ANY ANY(Var+6)]+P[ANY ANY(Var+7)])))#P[^p1 ^p2 ^p3];

P[ANY ANY ANY])�FAIL;

Note the use of the pattern operators available in Dactl to express the conditions under which the process
P should suspend. The left-hand side of the rule comprises a number of different pattern combinations,
all causing suspension of the process, unioned together. However, the suspension rule is naive and unnec-
essarily complex since in many cases it is possible to collapse a number of patterns into one general one.
A number of techniques have been devised to optimize suspension patterns and these are summarized by
the following rules. These techniques can also be used in implementing other applicative languages using
a pattern matching language like Dactl.

Rule 1 If the matching pattern of a clause has only one non-variable termTerm, then the corresponding
position in the suspension pattern for that clause is required to matchVar only rather than(Var+
Term).

This is justified because had the position beenTermit would have matched the correspondingmatch-
ing rule. The suspension rule now becomes :

(P[p1 p2 p3]&(P[(Var+1)(Var+2)(Var+3)]+P[(Var+4)ANY(Var+5)]

+(P[ANY ANY Var]+P[ANY ANY Var])))#P[^p1 ^p2 ^p3];

Rule 2 After applying the first rule to some positioni in a suspension pattern, then in all the other sus-
pension patterns that expect a non-variable termTerm in i, that position is required to matchVar
only rather than(Var+Term).

This is justified since the case of positionsi havingVar is now covered by the patterns to which the
first rule has been applied. The suspension rule now becomes:

(P[p1 p2 p3]&(P[(Var+1) (Var+2) 3]+P[(Var+4)ANY5]

+(P[ANY ANY Var]+P[ANY ANY Var])))#P[^p1 ^p2 ^p3];

Rule 3 After applying rules 1 and 2 where possible, if there are any suspension patterns with a single
expression(Var+Term) in any position, this expression is simplified toVar.

This is justified for reasons similar to the ones for rule 1. The suspension rule now becomes :

(P[p1 p2 p3]&(P[(Var+1) (Var+2) 3]+P[Var ANY5]+(P[ANY ANY Var]

+P[ANY ANY Var])))#P[^p1 ^p2 ^p3];

Rule 4 After applying any of the first three rules, if there exist any repeated occurrences of a suspension
pattern, these are eliminated.

This is self-explanatory. Our suspension rule takes its final form:

(P[p1 p2 p3]&(P[(Var+1) (Var+2) 3]+P[(Var+4)ANY5]

+(P[ANY ANY Var])))#P[^p1 ^p2^ p3];
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Rule 5 After applying any of the first four rules, if there are any suspension patterns that have no occur-
rences ofVar, these patterns are eliminated.

This is justified on the grounds that such a pattern would be identical to the one in the corresponding
matching rule. Sometimes, after applying the above transformations, such patterns are generated;
the last rule eliminates any of these patterns.

Deep pattern matching will not be discussed here. There are a number of issues related to how patterns
involving deep data structures should be matched: they focus mainly on the tradeoff between performing
the matching operations efficiently and preserving order independence semantics. Most implementations
of concurrent logic languages prefer to perform deep pattern matching sequentially, thus improving the
performance of these operations at the expense of compromising the order independence nature of proper
unification. In Papadopoulos (1989a) we describe an algorithm for an order independent compilation of
deep patterns and its implementation in Dactl. There, we also discuss the implementation of other features
of CLLs such as metacalls.

The techniques discussed so far can be used to implement in Dactl all CLLs having non-atomic unifica-
tion, with the exception of the unsafe subset of GHC. For that, a run time safety check is required that will
suspend all instantiations of a variable outside its own environment. In Glauert and Papadopoulos (1988)
we describe an elegant technique for performing this run time safety test in Dactl. It involves extending
the notion of a GHC variable to include its birthplace. In particular, a GHC variable is now represented as
Var[env] whereenvis a pointer to the place it was created. The run time test can therefore be implemented
as a simple pointer equality test with unification rules of the following sort:

Run Time Unify[env v: Var[env] term]) �SUCCEED;v := �term;

Run Time Unify[env1 v : Var[env2] term])#Unify[^v term];

We recall here that in the graph rewriting world a repeated occurrence of a variable denotes sharing of a
subgraph. Note that the hierarchical nature of local environments in GHC guarantees that the run time
test will be performed at most once for each variable. Hence the use of the ordinaryUnify function in the
second rule above. Dactl’s flexibility in defining what constitutes a variable will be further exploited later
on.

We end this section with some performance analysis. Table 1 presents some performance figures com-
paring the efficiency of the Dactl programs produced by our Parlog and GHC to Dactl compilers with the
original versions running under the SPM system for Parlog (Gregory et al. 1989) and the Logix system
for FCP (Silverman et al. 1988). All systems were installed on a Sun 3/180S running Sun OS 3.5. Time
was measured using the relevant facilities of the C-based Dactl interpreter and the Logix system, and the
Unix facilities for the case of SPM. Rewrites (or reductions) (R) refers to the number of process reduc-
tions performed by the system, parallel cycles (PC) refers to the number of emulator cycles performed
and reductions per cycle (RPC) refers to the average and maximum number of rewrites performed per
emulator cycle. For the last two parameters we assume the system having available an infinite number of
processors. Note that the SPM system has no statistics facilities available. Note also that we do not claim
any relationship between the relevant parameters of the Dactl interpreter and the Logix system but present
them simply as a profile of the systems’ behaviour.

Bearing in mind that the Dactl interpeter does not enjoy the compiler technology that was developed
for the Logix and SPM systems, we note that Dactl programs that perform essentially symbolic manip-
ulations (such as append, merge or binary tree) produce comparable results regarding execution time to
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Table 1: Performance figures: Dactl interpreter, Logix and SPM

System Dactl interpreter Logix SPM
Benchmarks T R PC RPC T R PC RPC T

append 0.70 509 315 2.91 0.60 1041 202 5 0.26
(100+0) 7
merge 1.2 1012 615 2.96 1.0 1641 302 5 0.3
(100+100) 7
primes 100 53 726 4495 18.25 20 16 969 1166 14 11
(2 to 300) 39
quicksort 16 13 759 912 24.04 7 7218 258 27 1.5
(100 els not rev.) 79
binary tree 0.18 157 46 5.15 0.24 259 24 10 0.2
(depth 5) 17

T, time (s); R, rewrites (reductions); PC, parallel cycles; RPC, rewrites (reductions) per cycle (the two values
for the Dactl interpeter correspond to the mean and peak value respectively).

those produced by the other two systems. The significant differences in execution time for the other two
programs (primes, quicksort) may be attributed to how arithmetic and other operations are implemented
in each system. A further indication of the validity of the above argument is the significant increase in
rewrites (R) performed by the Dactl system for the latter two programs when compared with the other
three. Finally, the consistently higher number of emulator cycles (PC) performed by the Dactl system, as
compared to those performed by Logix, can be attributed to the inherently finer grain nature of a Dactl
program, when compared to an equivalent Flat Concurrent Prolog one.

Tables 2 and 3 compare the performance of the Dactl programs produced by our Parlog/GHC compilers
with the similar ones produced by the Clean to Dactl (Kennaway 1988) and ML to Dactl (Hammond 1990)
compilers. The first example is a typical deterministic program with plenty ofhorizontal parallelism and
the second is a typical non-deterministic program with a high degree of speculative parallelism. The re-
sults show that in the first case the functional versions generated by the Dactl compilers are oversequential
while in the second case the functional versions overcompute. The ability of the concurrent logic versions
to kill any remaining tasks after commitment (using techniques described in Papadopoulos (1989a) that
are similar to the short circuit one) renders the latter more efficient. More to the point, Table 2 shows
that the CLL version performs less parallel cycles than the other two versions while at the same time
exhibiting a higher degree of parallelism. Table 3 shows that if only part of the speculative computation
need be performed (as in the case for finding the seventh element of the binary tree) the CLL version
will manage to stop execution before completing the whole search, thus avoiding performing unneccesary
computations (only 92 rewrites will be performed compared with 221 for the Clean and 197 for the ML
versions). Only when the whole binary tree must be explored do the three versions exhibit similar results,
where in fact the ML version turns out to be the faster of all. This is attributed to the fact that in this
case there is little benefit in searching the tree completely in parallel; the higher parallelism of the CLL
version (compared to that of the Clean or ML programs) introduces some extra overhead without provid-
ing any benefits (as in the first case where unneccesary computations are killed). A broader comparison
between the various language models using Dactl as common reference basis is reported in Hammond
and Papadopoulos (1988), Glauert et al. (1988b).
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Table 2: Performance comparison: quicksort

Program Quicksort (50 elements reversed)

Langs R PC AvP MxP
CLL 10 250 836 19.95 46
Clean 6654 11 357 1.11 2
ML 19 879 9081 1.78 3

CLL, Parlog/GHC; R, rewrites; PC, parallel cycles per-
formed; AvP, activations processed per cycle (mean
value); MxP, activations processed per cycle (peak
value).

Table 3: Performance comparisons: tree search

Programs Tree search Tree search
(finding the 7th element) (finding the 31st element)

Langs R PC AvP MxP R PC AvP MxP
CLL 92 37 3.81 11 278 56 7.41 33
Clean 221 63 6.32 24 275 63 7.84 30
ML 197 52 5.69 24 245 52 7.08 30

CLL, Parlog/GHC; R, rewrites; PC, parallel cycles performed; AvP, activations
processed per cycle (mean value); MxP, activations processed per cycle (peak
value).
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3.3 Translating languages with atomic unification
We turn our attention now to those CLLs that have atomic unification and we present the basic princi-
ples of mapping them to Dactl. In particular, we consider some members of the Concurrent Prolog family
(Shapiro 1989), namely FCP(j), FCP(:), FCP(?) and FCP(:; j). The mappings presented here, unlike those
of the previous section, rely on the full power of Dactl and in particular atomicity of rewrites. We recall
from section 1 that all redirections indicated in the right-hand side of a rule are performed as a single
action. This section therefore provides a justification of Dactl’s insistence on atomicity and an interpreta-
tion of it in the world of CLLs based on atomic unification. Note that Dactl does not support full atomic
unification; instead it offers the more limited form of atomic assignment. In most practical cases this
suffices since at least one of the terms involved in the unification is a single variable. However, an atomic
unification primitive can be supported by Dactl, without altering its semantics, based on transforming a
unification into a set of atomic assignments. Although such a primitive can be implemented at a lower
level for efficiency, it is imperative to be able to give it a meaning in the Dactl world. A top level definition
in Dactl of such a primitive is as follows:

AtomicUnify[term1 term2])#Merge Envs[^s]; s : �SelectArgs[term1 term2];

SelectArgs[term1 term2])�P[p1 : : :pn]; p1 : Pair[v1 : Var t1]; : : :pn : Pair[vn : Var tn];

Merge Envs[P[Pair[v1 : Var t1] : : :Pair[vn : Var tn]]])�SUCCEED; v1 := �t1; ;vn := �tn;

Merge Envs[pairs])#Merge Envs[^newpairs]; newpairs: �SelectArgs[pairs];

The implementation of the atomic unification primitiveAtomic Unify involves the use of the function
SelectArgswhich collects all the variables involved in a unification as the first argument of the structure
Pair and all the non-variable terms as its second.Merge Envsis then invoked which uses Dactl’s multiple
non-root overwriting mechanism to instantiate all variables atomically. Note thatSelectArgs’s computa-
tion is not done atomically but in parallel with the rest of the activities in the graph. Thus it is possible
for some of the variables involved in the unification to be instantiated by the timeMerge Envsis called.
In that case the first rule ofMerge Envswill fail to match (since somevi no longer has the patternVar)
and the second rule will be invoked which will recompute the variable term pairs. This scheme is similar
to theeager broadcastingone since it effectively allows the propagation of values made in the global
environment into the local ones.

The use of the primitiveAtomicUnifysuffices for the mapping of FCP(j) to Dactl. FCP(j) differs from
Parlog or GHC mainly in its ability to handle the short circuit technique in a more satisfactory way. Using
AtomicUnifythe compound unification(X;L) = (Y;R) whereX = Y is the base computation andL�R
is the short circuit can be performed atomically. As an example, consider the top level part of an FCP(j)
metainterpreter that allows interrupt handling, termination detection, and the computation of live and
frozen snapshots (Shapiro 1989):

reduce(true; Is;L�R) :�L = R:

reduce(X = Y; Is;L�R) :�(X;L) = (Y;R):

reduce((A;B); Is;L�R) :�reduce(A; Is;L�M); reduce(B; Is;M�R):

reduce(goal(A); Is;L�R) :�clause(A;B; Is); reduce(B; Is;L�R):

reduce(A; [I j Is];L�R) :�serveinterrupt([I j Is];A;L�R):
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This is translated to Dactl as follows:

Reduce[True is l r])�AtomicUnify[l r ]

Reduce[AtomicUnify[x y] is l r])�AtomicUnify[P[x l] P[y r]];

Reduce[G[a b] is l r])#AND[^b1 ^b2]; b1 : �Reduce[a is l m: Var];b2 : �Reduce[b is m r];

Reduce[Goal[a] is l r])#AND[^b1 ^b2]; b1 : �Clause[a b : Var is];b2 : �Reduce[b is l r];

Reduce[a s: Cons[i is] l r ])�ServeInterrupt[s a l r];

Reduce[p1 : Var p2 p3 p4])#Reduce[^p1 ^p2 p3 p4];

Reduce[ANY ANY ANY ANY]) �FAIL;

A final point worth making in the implementation of the short circuit technique in Dactl involves the use
of repeated variables in the head of a clause. Consider the following base case in detecting the closing of
a short circuit:

terminate(X�X; : : :) :�report termination

Since the head of an FCP(j) clause is considered as being passive (à la Parlog or GHC), the indicated
unification can be treated as equality checking. The translation to Dactl is trivial:

Terminate[x x : : : ]) report termination;

In fact here we illustrate another interpretation of pointer equality in graphs; pointers play the role of
switches that link various computations around a graph. Once a computation completes execution it
merges the corresponding arcs using redirection:

Process[: : : l r ])#Terminate[^�Compute[: : : ] l r ];

Terminate[ANY l: Var r : Var]! l := r;

(Note that there is no need to fire the noder; it suffices to collapse the graph nodes for each variable into
a single node.) This then can be detected using pointer equality.

Another member of the Concurrent Prolog family is FCP(:). A program in FCP(:) is a set of clauses of
the form

Head:�Ask: Tell j Body

where theTell part is allowed to unify global variables before commitment. Since upon failure such an
attempted unification should leave no trace, it must be performed as an atomic action. Dactl’s multiple
redirection facility combined with pattern matching offers a limited form of ask–tell unification. Consider
the following example:

Test SetSpawn[v1 : Var v2 : Var Cons[p1 p2]])�SUCCEED; v1 := �1; v2 := �2;�Pr1[p1];�Pr2[p2];

Test SetSpawn[v1 v2 l : Var])#Test SetSpawn[v1 v2 ^l];

Test SetSpawn[ANY ANY ANY]) �FAIL;
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The processTest SetSpawnwill suspend until its third argument is instantiated to a list. It will then
attempt to instantiatev1 andv2 and spawnPr1 andPr2. If either ofv1 or v2 is not a variable or the third
argument is not a list, the third rule will be chosen. Note that the first rule performs both ask unification
(matching of theConsstructure) and tell unification (redirection of the two variables), and both kinds of
unification are performed before commitment. For if either the ask or tell part fails (l is not a list orv1 or
v2 is not a variable), failure to select the first rule would leave no trace.

In most cases this limited form of tell unification suffices; for the very few cases where full unification
is needed, the primitiveAtomicUnifycan be used. As an example consider the following FCP(:) program
that simulates CSP with output guards (Shapiro 1989):

p(X;ToC1;ToC2) :�ToC1 = hello(X);ToC2 = hello(X):

c(Id;hello(X1); ) :�true : X1 = Id j true:

c(Id; ;hello(X2)) :�true : X2 = Id j true:

where the intention is thatc should non-deterministically and atomically select a variable (X1 or X2) and
bind it to its unique id. This program can be translated to Dactl quite easily as follows:

P[x toc1 toc2])##AND[^b1^ b2]; b1 : �Unify[toc1 Hello[x]];b2 : �Unify[toc2 Hello[x]];

C[id Hello[x1 : Var] ANY]) �SUCCEED;x1 := �id j

C[id ANY Hello[x2 : Var]]) �SUCCEED;x2 := �id;

C[p1 p2 : Var p3 : Var])#C[p1 ^p2 ^p3];

C[ANY ANY ANY]) �FAIL;

So assuming the following query:

:�p(x1;m11;m12); p(x2;m21;m22); c(a;m11;m21); c(b;m12;m22):

which is translated to Dactl as:

INITIAL)#AND[^b1 ^b2 ^b3 ^b4];

b1 : �P[x1 : Var m11 : Var m12 : Var];

b2 : �P[x2 : Var m21 : Var m22 : Var];

b3 : �C[A m11 m21];

b4 : �C[B m12 m22];

when the process network terminates, one ofx1 or x2 will be bound toA and the other toB. Incidentally,
note the use of the predefined nodeINITIAL in the first rule; any Dactl computation commences with a
graph comprising the single nodeINITIAL.

Finally, we consider the mappings of FCP(?) and FCP(:,?) to Dactl. We note that there are basically
two uses for read-only variables. The first is in the implementation of test-and-set operations as shown by
the following FCP(?) program:

test and set(X?;T) :�X = T:
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where the intention is thatX is unified only if it is a variable. These cases, however, can be taken care of
in Dactl trivially, without the need for read-only annotations, using the techniques discussed so far:

Test and set[x : Var t] :��SUCCEED;x := �t;

Incidentally, a similar technique can be used to implement Saraswat’swait annotation using the pattern
x : (ANY�Var).

The second use is in the creation of protected data structures. Consider the following FCP(:,?) program:

p(Xs; : : : ) :� : : : true : Xs= [messagej Xs0?] j p(Xs0; : : : ):

where the producerp protects the incomplete part of the stream it produces from the outside world. A
possible implementation in Dactl is the following:

P[xs: Var: : : ]) �P[xs0 : Var: : : ];xs:= �Cons[Message RO[xs0]];

where any other process will be accessing that incarnation ofxs0 protected with RO. A unification primitive
implemented in Dactl should now be extended with rules handling the data structure RO:

Unify[v1 : Var v2 : RO[Var]])�SUCCEED;v1 := v2;

Unify[RO[ro : RO[ANY]] term])�Unify[ro term];

Unify[RO[v1 : Var] RO[v2 : Var]])##Unify[^v1 ^v2];

The second rule dereferences the nestedRO structures produced in the unifications and the third rule
chooses to suspend upon encountering two read only variables involved in a unification.

In general, the use of read-only annotations complicates significantly our model (pattern matching in
the left-hand side of Dactl rules becomes also more complex) and we would like to avoid their use as
much as possible. It should be emphasized that, in general, an embedding of FCP(?) in Dactl is highly
problematic since it relies heavily on implicit head unification which is not supported by the weaker (in
this respect) Dactl model.

4 Enhancing concurrent logic programs with functional capabili-
ties

In this section we discuss the extension of the concurrent logic model with some features found usually
only in functional languages such as lazy evaluation, sharing of computation, and higher order functions.
The introduction of sharing enhances the efficiency of concurrent logic programs. Lazy evaluation is
also very useful, but the enhancement of the ‘eager’ concurrent logic component with laziness introduces
deadlock and we will discuss techniques for avoiding this.

4.1 GHC/F
We start with a brief description of a prototype language called GHC/F, a superset of GHC, which is used
as a vehicle for the development of the above ideas. A GHC/F to Dactl compiler has been built as an
extension of that for GHC described previously.

Programs in GHC/F consist of clauses and rewrite rules written in any of the following three forms:
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LHS:�G j B: (A)

LHS) RHS: (B)
LHS) RHS:�G j B:(C)

LHS is a relational atom of the formp(t1; : : : ; tm) (type A) or a functional atom of the formf (t1; : : : ; tm)
(types B and C) wherep is the name of the predicate,f is the name of the function andt1 to tm aredata
terms. A data term is either a variable, a constant, or a constructor of the formd(t1; : : : ; tn) whered is the
data constructor’s name andt1 to tn are data terms. RHS can be either a data term or a functional atom of
the formf (t1; : : : ; tm) wheret1 to tmare either data terms or functional atoms. The part:�G j B is called
thecondition, whereG andB are defined as in GHC. Note that the second form is identical to

LHS) RHS:�true j true:

Note also that some of a function’s parameters may be output arguments. If that is the case however, these
arguments must always be a variable; an attempt to instantiate an output argument which is not a variable
will cause a run time exception whose result is undefined. In addition, a mode declaration identical to
those used in Parlog must accompany the definition of the function distinguishing explicitly the input
arguments from the output ones. In the absence of mode declarations, all the arguments of a function are
treated as input by default.

GHC/F supports four unification primitives which can be used anywhere in the guard and/or body of a
clause (A) or rewrite rule (C):

= denotes lazy evaluation;x= f (: : : ) will unify x with f (: : : ) without evaluatingf (this allows sharing of
computations, as we will see below).

:= is the strict assignment primitive;x := f (: : : ) will assignx to f (: : : ) and at the same time firef ; if at
the time of the callx is not a variable, an error will be reported.

There are also the strict unification primitive=:= and the one-way unification primitive(; these are
discussed elsewhere (Glauert and Papadopoulos 1991). Note also that GHC/F supports the operator @
used in higher-order programming. In particular,f @(X) whereX represents an argument or a list of
arguments will produce the function or predicate applicationf (X) depending on whether the metavariable
f represents a function or predicate. The use and implementation in Dactl of this primitive is described in
Papadopoulos (1989a).

We illustrate GHC/F’s expressive power with three examples; a complete description of the language is
given in Glauert and Papadopoulos (1991). The first example computes efficiently the Fibonacci numbers
using extraoutput variables for storing intermediate results (Josephs 1986):

mode fib(?;^ ;^ ):

fib(0;X; )) 1 :�true j X := 1:

fib(1;X;Y)) 1 :�true j X := 1;Y := 1:

fib(N;X;Y)) fib(N1;Y;Z) :�true j N1 := N�1;X := Y+Z:

The argumentX is used to store the result of the computation. Note that in the last rule the values forN1
andX are computed in parallel with the recursive call toFib. Note also that it is the user’s responsibility
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to ensure that such output variables have only one producer function (i.e. they do not appear as output
arguments of more than one function). In fact, the above program is more efficient than the fully lazy
version given by Josephs (1986), since more needed parallelism can be extracted.

The second example is an implementation of the quicksort algorithm:

sort(List;Sorted) :�true j qsort(List;Sorted; [ ]):

qsort([U j X];Sortedh;Sortedt) :�true j X1 := partition(U;X;X2);

qsort(X1;Sortedh; [U j Sorted]);

qsort(X2;Sorted;Sortedt):

qsort([ ];Sortedh;Sortedt) :�true j Sortedh= Sortedt:

mode partition(?;?;^ ):

partition(U; [V j X];X2)) [V j X1] :�U < V j X1 := partition(U;X;X2):

partition(U; [V j X];X2)) partition(U;X;X20) :�V =< U j X2 := [V j X20]:

partition( ; [ ];X2)) [ ] :�true j X2 := [ ]:

Note here the use of the functionpartition that reduces itself to the first sublist while one of its arguments
is instantiated to the second sublist. Note also thatqsort is a predicate that concatenates the two sublists
in constant time using difference lists.

The last example is a Hamming numbers generator and we illustrate here the use of sharing and the
handling of infinite data structures.

hamming()) H :�true j H = [1 jmerge(X2;merge(X3;X5))];

X2 := times(2;H);

X3 := times(3;H);X5 := times(5;H):

merge([U j X]; [V j Y])) [U jmerge(X;Y)] :�U == V j true:

merge([U j X]; [V j Y])) [U jmerge(X; [V j Y])] :�U < V j true:

merge([U j X]; [V j Y])) [V jmerge([U j X];Y)] :�V < U j true:

times(U; [V j Y])) [W j times(U;Y)] :�true jmul(U;V;W):

Here, the three calls totimesare performed in parallel with the reporting of theConsstructure. In addition,
the functionU �V has been replaced by the predicatemul(U;V;W) which, in addition to computingW
eagerly, also makes the program more expressive: since predicates use unification, the above program can
also be used to verify whether the elements of a given list are Hamming numbers.

4.2 Mapping GHC/F programs to Dactl: the deadlock problem
The principles of translating GHC/F programs to equivalent sets of Dactl rewrite rules have been dis-
cussed elsewhere (Papadopoulos 1989a). They rely on integrating the techniques described in the previ-
ous sections with those developed for implementing functional languages in Dactl and in particular ML
(Hammond 1990) and Clean (Kennaway 1988). However, the interaction of the ‘eager’ concurrent logic
part with the (‘lazy’ subset of the) functional one introduces deadlock, particularly in the presence of
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shared variables. The problem of deadlock occurs in many logic+functional computational models and
there are numerous methods for detecting it and resolving it. In residuation (Hanus 1992), for instance,
deadlock is detected by compile time analysis which, however, yields only an approximation of the ac-
tual operational behaviour of a program. In GHC/F deadlock is detected and resolved at run time. This
has the additional advantage of retaining the compositionality potential of the original language (GHC);
any GHC/F program component can interact with other independent components and producer–consumer
relationships in the presence of logic variables in lazy functions will be determined at run time.

Deadlock problems in GHC/F arise in two cases, both having to do with instantiation of variables to
data terms or function applications. The first case involves the use of the lazy unification primitive: if, in
addition to a callx= f (: : : ) wheref (: : : ) is a function application, some other process is suspended onx
waiting for its value, then we should evaluatef (: : : ) even if= is lazy. This, however, may not be easy to
detect, as illustrated by the following example:

? : : :prod(X);cons(X):

prod(X) :�true j X = f (: : : ):

cons(1):

where f (: : : ) is a function application. Using the techniques described in Glauert and Papadopoulos
(1991), the above program would be translated to Dactl as follows (in this section we ignore for simplicity
the rules needed for the run time test):

INITIAL)�Prod[x : Var];�Cons[x];

Prod[x])�LazyUnify[x F[: : : ]];

Cons[1]) �SUCCEED;

Cons[x : Var])#Cons[^x];

Cons[f : REWRITABLE])#Cons[^�f ];

Note that the third rule ofConswill fire its argument if it matches the patternREWRITABLE, i.e. if
it is a function. All node identifiers representing functions are defined to match the generic pattern
REWRITABLE. Note also thatLazyUnifydoes not fireF[: : : ]; in particular,LazyUnify is defined by
rules of the form:

LazyUnify[v : Var vr : (Var+REWRITABLE)])�SUCCEED;v := vr;

LazyUnify[v : Var data term])�SUCCEED; v := �data term;

Now, if Prod completes execution beforeConsis tried for reduction, then the common variablex will
have already been instantiated toF[: : : ] andConswill be able to fire it (by matching the third rule) and
get the required result. If, however,Consis executed first, then it will suspend on the variablex until the
latter is instantiated. The problem here is thatProd cannot possibly know whether anyone (Consin this
case) is waiting forx’s value, and the lazy unification primitive will assignF[: : : ] to x without firing it,
thus causing deadlock.

To solve the problem, we pass the responsibility of indicating that the value of a variable is needed by
some process to the process itself. Any waiting process must now change the pattern of any input variable
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from Var to NVar (say). The lazy unification primitive then can recognize that the value forNVar must be
computed and fire the appropriate closure. Using this technique the procedureConsmust be compiled to
Dactl as follows:

Cons[1]) �SUCCEED;

Cons[x : Var])#Cons[^x];x := NVar;

Cons[x : NVar])#Cons[^x];

Cons[f : REWRITABLE])#Cons[^�f ];

A Dactl implementation of the lazy unification primitive= must now include the following rules:

LazyUnify[nv: NVar t : (ANY�Var)]) �SUCCEED;nv:= �t;

LazyUnify[v : Var t : (Var+NVar+REWRITABLE)]) �SUCCEED;v := t;

LazyUnify[v : Var data term])�SUCCEED;v := �t;

The second case causing deadlock is when a function making use of output variables (as infib and
partition earlier on) interacts with a predicate treating these variables as input arguments. If the function
is lazy there will be deadlock since the predicate will be suspended waiting for the variables’ bindings
while at the same time the lazy function will need someone to trigger its evaluation. The problem can be
alleviated by restricting the use of output variables to eager functions (Josephs 1986). A possible solution,
however, is to associate these sort of variables with their defining functions; if a predicate encounters
during input unification such a variable in a head’s non-variable input argument, it activates the corre-
sponding function. This case is reminiscent to the one where we associate variables with environments
in the implementation of GHC’s run time test; there is also some similarity with K-LEAF’sprodvar term
(Bosco et al. 1989). Consider the following base case:

mode f(^):

prod(X) :�true j X = f (Y);cons(Y):

cons(1):

whereY is an output variable of some functionf . Translation to Dactl using the techniques described so
far gives:

Prod[x y]) �LazyUnify[x F[y : Var]];�Cons[y];

Consis defined as above.
Note thatLazyUnifywill not fire F and, unless somebody demands the value ofx, Conswill remain

suspended for ever on the variabley. The problem can be solved by associatingy with its defining function
F as follows:

Prod[x y]) �LazyUnify[x f : F[y : Var[f ]]];�Cons[y];

wheref is the identifier of the graph node representing the functionF. The implementation ofConsnow
includes the following rule:

Cons[v : Var[f ]])#Cons[^v];�f ;
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Table 4: Performance comparison: hamming and quicksort

Programs Hamming Quicksort

Langs R PC AvP MxP R PC AvP MxP
Clean 672 1018 1.14 4 6654 11 357 1.11 2
GHC 3471 1098 4.98 30 16 879 944 28.85 60
GHC/F 1202 736 2.60 9 10 255 844 19.77 45

R, rewrites; PC, parallel cycles performed; AvP, activations processed per cycle (mean value);
MxP: activations processed per cycle (peak value).

Since the output variables of a function are now pointing to that function, any computation that needs their
value can activate the function through them. Again, here, the very fact that Dactl has no true variables
has once more come to our rescue. As in the case of GHC’s run time test, a variable can be viewed as
being an intelligent object associated with useful information regarding its identity, surrounding defining
environment, etc.

In the presence of output variables in functions as described above, a number of issues arise related
to their interaction with the rest of the computation. These are fully discussed in Papadopoulos (1989a),
but to give an idea of what is involved we note that in a unificationX = Y where bothX andY are output
variables of some functions, the lazy unification primitive= will fire these functions to determine whether
the produced values are compatible:

LazyUnify[v1 : Var[f1 : REWRITABLE]v2 : Var[f2 : REWRITABLE]]

)##LazyUnify[^v1 ^v2];�f1;�f2;

This behaviour stems from the fact that an output variable of a function is not a pointer to some empty
slot in the abstract memory space of the computation (as is the case for an ‘ordinary’ variable) but rather a
pointer to a specific computation. There is also the need to restrict the transitions between different kinds
of variables to valid ones: a valid transition is one that does not cause loss of information. For instance,
the redirectionv1 : Var := v2 : Var[r] is legal but the opposite is illegal since the informationr (whether
a pointer to a function or a local environment) would be lost. All the valid transitions between different
kinds of variables are given in Papadopoulos (1989a).

As before, we end the section with some performance analysis (see Table 4). We compare three versions
of hamming and quicksort written in Clean, GHC and GHC/F. Both the Clean to Dactl programs are
lazy. The GHC to Dactl programs have been translated using the compiler described in section 1.3; lazy
evaluation is achieved in GHC by using the technique of changing the producer into a consumer of a list
of unistantiated variables that will be assigned to the result of the computation. Hamming produces the
first 30 elements of the infinite list, and quicksort (as before) sorts a reversed list of 50 elements.

The results are quite encouraging since it is clear that the GHC/F versions are more efficient than the
GHC ones, and at the same time exhibit more parallelism than the Clean versions.

5 Conclusions, related and further work
In Saraswat et al. (1988) it is argued that certain computational behaviours are more tractable in one
programming language framework than another, allowing for easier understanding and reasoning. In
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this paper we have shown that a language based on graph rewriting can provide such a framework for
declarative computational models. In particular, we have presented a methodology for mapping a wide
class of concurrent logic languages onto a graph rewriting computational model using the intermediate
language Dactl as a vehicle. We showed how the features of these languages such as unification (ask and
tell), synchronization mechanisms, etc. can be modelled in a graph rewriting model by taking advantage
of the latter’s features such as node sharing and multiple redirections. Compilers have been written that
translate concurrent logic programs to equivalent sets of Dactl rewrite rules. These can take advantage of
techniques developed for the efficient execution of Dactl programs such as native machine code generation
(King and Glauert 1991). We have also illustrated the potential of graph rewriting in amalgamating logic
and functional features within a unified framework.

Our work, combined with other similar attempts (Darlington et al. 1988, Kennaway 1988, Hammond
1990), shows that graph rewriting can be seen as a general framework encompassing a variety of computa-
tional models and in particular logic and functional ones. The model has also been used for other purposes
such as modelling process calculi (Glauert 1992). A promising area of research would be to study its po-
tential for supporting object oriented programming along the lines proposed in Dami (1992) but also with
respect to concurrent OOP based on the actor model. Further, the possibility of interacting objects with
predicates and functions within the unified graph rewriting framework should also be explored.

Recently it has been shown that concurrent logic languages are instances of the wider family of con-
straint logic programming languages (Saraswat 1989). Moreover, Montanari and Rossi (1991) discuss the
relationship of concurrent constraint logic programming and graph rewriting. A fruitful area of research
is towards extending the work presented in this paper to provide graph rewriting based implementations
of concurrent constraint logic languages.

In addition, parallel logic programming and concurrent logic programming have been combined into a
hybrid model known as the Andorra family of languages combining stream AND-parallelism with OR-
parallelism. Languages that belong to this category include, among others, Andorra-I (Santos Costa et al.
1991), AKL (Janson and Haridi 1991) and Pandora (Bahgat 1991). Although it is not shown in this
paper, we can implement these languages in Dactl using high-level transformation techniques like the
ones discussed in Bahgat (1991) where Pandora programs are translated to Parlog equivalent ones.

Furthermore, we believe that graph rewriting has a role to play in the development of open systems
and the language support that this will require. There is a trend here towards multilingual paradigms
such as compositional notations allowing the writing of programs composed of subprograms written in
different languages (logic, functional or even imperative) and their interaction in a parallel environment
(Chandry and Kesselman 1992). Although languages like Strand or Janus discussed in this paper can play
the role of a unifying operational model comprising multilingual parallel processes, we believe that more
general computational models such as graph rewriting systems are more suitable for this purpose. To this
end, we have done some initial work (Banach and Papadopoulos 1993) where we show that most of the
languages discussed in this paper can be translated without loss of expressiveness to a weaker subset of
Dactl (Banach 1993) especially suited for distributed environments.
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