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Abstract. In this paper we evaluate the use of 
software architectures in the development of 
component-based systems. The evaluation is 
based on the level of support provided by the 
software architectures formal representatives, 
namely ADLs, for four established component-
based development principles. Specifically, we 
will describe and evaluate three representative 
ADLs: ACME, Unicon and Rapide. For each of 
the above ADLs we give a brief introduction to 
its purpose, capabilities and special features, 
and describe the semantics of its main building 
constructs. 
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1. Introduction 

In this paper, we will attempt an evaluation of 
the use of software architectures in the 
development of component-based systems. The 
evaluation will be based on the level of support 
provided by the software architectures formal 
representatives, namely ADLs, for four 
established component-based development 
principles. Specifically, we will describe and 
evaluate three representative ADLs: ACME, 
Unicon, and Rapide. For each of the above ADLs 
we give a brief introduction to its purpose, 
capabilities and special features, and describe the 
semantics of its main building constructs. We 
will also evaluate each ADL’s modelling 
capabilities against the following criteria: 
encapsulation, concern separation, abstraction 
and decomposability ([1]). 

In order to make the presentation and 
evaluation of ADLs more clear and 
understandable, we depict a simple software 
architecture of a component-based system. The 
architecture, presented in figures 1 and 2, 
comprises a part of a bank system’s software 
structure. Figure 1 presents the high level 
structure of the system; it includes two 
components, the ATM and the Bank Server 

component, as well as the interaction among 
them. Figure 2 forms a decomposition of the 
Bank Server component to its constituent 
components. For each ADL, we will describe the 
structure of the system presented in the two 
figures, using the notation provided by the 
language. The evaluation of each ADL will also 
use the same example to clearly present the 
support that the ADL offers regarding the 
component-based principles discussed earlier.  
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transferMoney
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Figure 1. The Bank System Architecture 
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Figure 2. Decomposition of the Bank Server 
Component 

2. ACME 

ACME ([2]) is a generic language for 
describing software architectures. As is the case 
with any typical ADL, ACME provides 
constructs for describing systems as graphs of 
components interacting via connectors. 
Furthermore, the language provides 
representation mechanisms for decomposing 
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systems into subsystems and ways to describe 
families of components. In particular, the 
language’s core concepts are Systems, 
Components, Connectors, Ports, Roles, 
Representations and Rep-maps.  

The first three concepts have the usual 
meaning as in any component-based system. 
Ports define the interface of a component, 
identifying a point of interaction between the 
component and its environment.  

Roles specify the interface of a connector. 
Each role of a connector defines a participant of 
the interaction represented by the connector. 
Binary connectors have two roles such as the 
caller and the callee roles, or the sender and the 
receiver roles. A different kind of connector is 
the broadcast connector, which might have a 
single event-announcer role and an arbitrary 
number of event-receiver roles.  

2.1. Modelling the example in ACME 

System BankSystem = { 
    Component ATM = {  
Port authenticateUser, 
getBalance, transferMoney;  }; 
    Component BankServer = {  
Port authenticateUser, 
getBalance, transferMoney; 
        Representation { 
         System BankServer = { 
               Component 
UserAuthentication = { Port 
authenticateUser; }; 
               Component 
AccountHandler = {  
Port getBalance, transferMoney;}; 
          Bindings{ 
          
 authenticateUser UserAuthenti
cation.authenticateUser; 
          
 getBalance UserAuthentication
.getBalance; 
           transferMoney
UserAuthentication.transferMoney; 
};
         }; 
        }; 
    }; 
    Connector 
authenticateUserConn = { Role 
callee, caller;   }; 
    Connector getBalanceConn = { 
Role callee, caller;   }; 
    Connector transferMoneyConn = 
{ Role callee, caller;   }; 

   Attachments { 
       ATM.authenticateUser to 
authenticateUserConn.caller; 
       ATM.getBalance to 
getBalanceConn.caller; 
       ATM.transferMoney to 
transferMoneyConn.caller; 
       
BankSystem.authenticateUser to 
authenticateUserConn.callee; 
       BankSystem.getBalance to 
getBalanceConn.callee; 
       BankSystem.transferMoney 
to transferMoneyConn.callee;  }; 
};

2.2. Evaluating ACME 

Encapsulation: In the above description the 
details of each of the Bank System’s components 
are hidden and only their provided and required 
functions (i.e. authenticateUser,
getBalance, transferMoney) are exposed 
through the input and output ports of each 
component.  

Concern separation: The communication part 
of the Bank System example which is described 
by connectors and attachments is clearly 
separated by the computational part of the 
system which is encapsulated in the component 
constructs.  

Abstraction: When describing the software 
architecture of the above system we did not have 
to consider the algorithms to be implemented by 
e.g. the Account Handler component or 
even the protocols to be used for the 
communication of the system’s components. 
This clearly presents the capability of ACME to 
adjust the level of abstraction according to the 
current development level.  

Decomposability: The decomposition of the 
Bank Server component to its constituent 
components (e.g. User Authentication
and Account Handler) though the 
representation construct, clearly illustrates the 
support of ACME decomposability.  

3. Unicon 

Unicon ([4]) attempts to support a large 
variety of real life applications and make the 
transition of system design to implementation 
code smoother. A system architecture described 
in Unicon consists of a number of components 
and connectors. Components represent 
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computational or data units of the system while 
connectors mediate the communication between 
components. Each component is associated with 
an interface and an implementation.  

A component’s interface defines the 
computational capabilities of the component, as 
well as a number of constraints on the way the 
component can be used. An interface must also 
include the component type, assertions that apply 
to the component and a number of players 
exposed by the component. Players are the units 
through which a component can interact, provide 
or request services. Their semantics is closely 
related to ACME ports described earlier. The 
specification of a player is given in the form of a 
property list. Each property includes an attribute 
name and its associated value.  

The implementation of a component can be 
primitive or composite. Primitive 
implementations are specified in the code of 
some programming language. Composite 
implementations enable the building of 
progressively larger subsystems from 
components.  

Unicon connectors mediate the interaction 
between components. They include a protocol 
specifying the type of interactions that are 
provided by the connector and an 
implementation.  

3.1. Modelling the example in Unicon 

COMPONENT ATM  
    INTERFACE IS TYPE Computation 
    PLAYER authenticateUser IS 
RPCCall  
       SIGNATURE (“char 
*”,“int”; “char *” )   
    END authenticateUser 
    PLAYER getBalance IS 
RPCCall 
       SIGNATURE (“char *”; 
“float”)   
     END getBalance 
    PLAYER transferMoney IS 
RPCCall 
       SIGNATURE (“char 
*”,“char *”, “float”; “float” ) 

    END transferMoney  
    END INTERFACE 
    IMPLEMENTATION IS VARIANT 
atm_library IN “atm.jar” 
     IMPLTYPE is (executable) 
    END IMPLEMENTATION 
END ATM 

/* Definition of 
UserAuthentication and 
AccountHandler Components */ 
/* in the same way as above                 
*/
COMPONENT UserAuthentication  … 
END UserAuthentication 
COMPONENT AccountHandler … END 
AccountHandler  

COMPONENT BankServer  
    INTERFACE IS TYPE Computation 
    PLAYER authenticateUser IS 
RoutineCall  
       SIGNATURE (“char 
*”,“int”; “char *” )   
    END authenticateUser 
    PLAYER getBalance IS 
RoutineCall 
       SIGNATURE (“char *”; 
“float”)   
      END getBalance  
    PLAYER transferMoney IS 
RoutineCall 
       SIGNATURE (“char 
*”,“char *”, “float”; “float” ) 

    END transferMoney  
    END INTERFACE 
    IMPLEMENTATION IS 
        /* Instantiate the parts 
to use */ 
        USES userAuth is 
INTERFACE UserAuthentication,  
        USES accHandler is 
INTERFACE AccountHandler 
        USES authenticateConn 
PROTOCOL ProcedureCall 
        USES getBalanceConn 
PROTOCOL ProcedureCall 
        USES transferConn 
PROTOCOL ProcedureCall 
        /* Associate players of 
parts to players of interface */ 
        BIND authenticateUser to 
userAuth.authenticateUser 
        BIND getBalance to 
accHandler.getBalance 
        BIND transferMoney to 
accHandler.transferMoney 
        /* Associate players of 
roles */ 
        CONNECT authenticateUser 
TO authenticateConn.caller 
        CONNECT 
userAuth.authenticateUser TO 
authenticateConn.definer 
        CONNECT getBalance TO 
getBalanceConn.caller 
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        CONNECT 
accHandler.getBalance TO 
getBalanceConn.definer 
        CONNECT transferMoney TO 
transferConn.caller 
        CONNECT 
accHandler.transferMoney TO 
transferConn.definer 
    END IMPLEMENTATION 
END BankServer 
     
/* Defintion of BankSystem as a 
component type in the */  
/* same way as BankServer 
Component.                         
*/

3.2. Evaluating Unicon 

Encapsulation: Unicon hides the 
implementation details exposing the 
computational capabilities and requirements of 
each component through the Interface and 
Player constructs. In the example each 
component includes an interface constituting of a 
number of players. Each player represents a 
function of the component giving its signature, 
i.e. the number and type of input and output 
parameters. For example, the signature of the 
getBalance method given in the above 
example (“char *”; “float”) specifies that an 
input parameter of string type is required which 
is the account number and a return value of float 
type is returned which is the current balance of 
the account.  

Concern separation: A superficial 
examination of the above code may lead to the 
conclusion that the communication and 
computational parts of the system are not 
separated since both are included in the 
component implementation construct of Unicon. 
However, separation is still achieved since the 
computational part is described by component 
interfaces, players and primitive component 
implementations in contrast to the 
communication part that is described through 
connectors, protocols and bindings included in a 
composite component implementation. In the 
above example, primitive component 
implementations are the ones of ATM, 
UserAuthentication and 
AccountHandler components which include 
information about the libraries implementing the 
components and could also include code in some 
programming language. Composite component 
implementation is the one given for the Bank 

Server component which includes component 
instantiations, connector instantiations and the 
connections between them. Each connector is 
attached to a built-in protocol defining the type 
of communication implemented by the specific 
connector. Bindings are also included in the 
component implementation, specifying the links 
between the internal parts of the component and 
the players of its interface.  

Abstraction: Although a software engineer 
can use Unicon to give a detailed description of 
the system including code in specific 
programming languages, the level of abstraction 
can be adjusted, i.e. during the first stage of the 
system description one can only use the 
component, interface and players constructs in 
addition to the communication constructs to give 
a high level description of the system and 
elaborate this description at a following stage, 
giving more implementation details.  

Decomposability: Decomposability is also 
supported by Unicon, by first defining the 
constituent components, e.g. the 
UserAuthentication and 
AccountHandler components that constitute 
the Bank Server component in the above 
example and then specify instantiations of these 
constituent components definitions in the 
component implementation part of the parent 
component.  

4. Rapide 

Rapide ([3]) is an executable event-based 
ADL, intended to describe but also simulate the 
behaviour of systems’ architectures. Rapide 
models computations and interactions of a 
system as partially ordered event sets (or 
“posets”). An architecture described in Rapide 
consists of interfaces, connections and 
constraints.  

An interface describes the functionality 
provided and/or required by a component of the 
system. The main elements that constitute an 
interface are actions, functions and behaviour. 
Actions represent asynchronous "one-way" 
messages to be sent or received by the interface, 
while functions represent synchronous 
communication. Functions and actions can be 
grouped into Services that can be reused in 
different interfaces. The behaviour of an 
interface can be described by an implementation 
module, by a set of reactive rules or by defining 
an architecture that implements the interface. A 
module can be described using elements of 
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conventional programming languages provided 
by Rapide, Reactive rules are pieces of code 
written in a rule-based approach and executed 
when certain preconditions are satisfied. 
Preconditions are defined in the form of event 
patterns 

Rapide connections are the assembly units of 
the language. Unlike some other languages, 
Rapide connections are active elements 
associated to a behaviour. They can be seen as 
special case of reactive rules that when triggered 
by events of specific patterns, generate another 
set of events 

4.1. Modelling the example in Rapide 

type ATM is interface 
 requires function 
getBalance(accNo: String) return 
balance; 
 requires function 
authenticateUser(cardNo: String, 
pin:Integer)  
  return accNo; 
 requires function 
authenticateUser(sourceAcc: 
String, targetAcc: String,  
  amount:Float) return 
sourceAccBalance; 
behavior ….. end;  
/* Definition of 
UserAuthentication, 
AccountHandler and  */ 
/* BankServer in the same way as 
above                              
*/

with UserAuthentication, 
AccountHandler, BankServer 
architecture BankServerArch is 
    bankServer: BankServer   
    userAuth: UserAuthentication; 
    accHandler: AccountHandler; 
connect 
    ?cardNo, ?accNo, ?sourceAcc, 
?targetAcc :String; 
    ?pin: Integer; 
    ?balance: Float; 
    
bankServer.authenticateUser(?card
No, ?pin) =>  
userAuth. 
authenticateUser(?cardNo, ?pin);

    bankServer.getBalance(?accNo) 
=> accHandler.getBalance(?accNo);

    
bankServer.transferMoney(?sourceA
cc,?targetAcc,?amount) =>  
accHandler.transferMoney(?sourceA
cc,?targetAcc,?amount); 
end BankServerArch; 

with ATM, BankServerArch 
architecture BankSystem is  
    atm: ATM; 
    bankServer: BankServerArch; 
connect 
    ?cardNo, ?accNo, ?sourceAcc, 
?targetAcc :String; 
    ?pin: Integer; 
    ?balance: Float; 
    atm.authenticateUser(?cardNo, 
?pin) =>  
bankServer. 
authenticateUser(?cardNo, ?pin);

    atm.getBalance(?accNo) => 
bankServer.getBalance(?accNo);  
    
atm.transferMoney(?sourceAcc,?tar
getAcc,?amount) =>  
accHandler.bankServer 
(?sourceAcc,?targetAcc,?amount);

end BankSystem; 

4.2. Evaluating Rapide 

Encapsulation: The details of each component 
are encapsulated behind the interface type 
definition of each component. Each interface 
type defines the provided and required 
functionality of the component in the form of 
function declarations. In the Bank System 
example the Account Handler interface 
defines the function: “transferMoney 
(sourceAcc: String, targetAcc: 
String, amount:Float) return 
sourceAccBalance” which declares three 
input and one output parameter. The first two 
input parameters are of string type corresponding 
to the source and target accounts depicted in the 
transfer transaction, while the third input 
parameter is of float type, corresponding to the 
amount to be transferred. The output parameter is 
also of float type corresponding to the new 
balance of the source account after the execution 
of the transfer transaction.  

Concern separation: The communication part 
of the system is explicitly defined by connections 
included in the architecture element provided by 
Rapide notation. The connections take the form 
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of mapping between functions or actions 
required by a component and corresponding 
functions or actions provided by another 
component. One such mapping in the above 
connection is the following: 
“atm.getBalance(?accNo) => 
bankServer.getBalance(?accNo);” .  

Abstraction: Abstraction is also supported, 
although the behaviour and posets construct can 
be used to give a detailed description of a 
system’s computation. As is the case with 
Unicon, the level of abstraction can be easily 
adjusted according to the needs of each stage.  

Decomposability: The support of Rapide here 
is very similar to that of Unicon. There is no 
explicit construct that is used to define the 
decomposition of a component to its constituent 
components but decomposability can be defined 
in the same way as in Unicon, i.e. by defining an 
interface type for each constituent component 
and then define instances of these types into the 
description of the parent’s component.  

5. Summary and conclusions 

The four main principles of component-based 
development are supported by all ADLs, 
although this support is not straightforward in all 
cases. The description of required or provided 
interfaces exposed by components is modestly 
supported. The description of interfaces 
supported by the rest of the ADLs is 
implemented either by providing specific 
constructs and syntax such as Rapide and 
Unicon, or by providing just a framework such 
as ACME that offers an open semantics 
framework enabling users to define their own 
properties to describe different aspects of the 
system.  

Table 1 summarizes the support of the ADLs 
presented above for the four principles of 
component-based development. The symbol “√”
used in the table indicates clear or explicit 
support of the specific principle while the “?” 
symbol indicates implicit or weak support.  

We can see that most of the ADLs do not 
clearly support all of the component-based 
development principles and this is because most 
of the ADLs emphasize on specific aspects such 
as the communication part. On the other hand, 
ADLs that support all principles, such as ACME, 
lack in support of dynamic configuration 
descriptions.  

Criteria 
vs 
ADLs 

ACME Unicorn Rapide

Encapsulation √ √ √

Concern 
Separation 

√ ? √

Abstraction √ √ ?

Decomposability √ ? ? 

Table 1. Support of ADLs for component-
based development principles
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