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Abstract. This work contributes in bridging the 
gap between software design and implementation 
of component-based systems using software 
architectures at the modelling/design level and 
the coordination paradigm at the implementation 
level. Exploiting the improvements realized by 
the latest version of UML, we present a 
methodology for automating the transition from 
software architecture design of component-based 
systems described in UML 2.0 to coordination 
code. The presented methodology is further 
enhanced with a code generation tool that fully 
automates the production of the complete code 
implementing the coordination-communication 
part of software systems modelled with UML 2.0. 
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1. Introduction 

Our effort is focused on bridging the gap 
between software design and implementation of 
component-based systems using software 
architectures at the modelling/design level and 
the coordination paradigm at the implementation 
level. Our choice was based on the clear support 
of both software architectures and event-driven 
coordination models for Component Based 
Software Engineering and the similarities we 
have identified between the fundamental 
concepts of software architectures and the event-
driven coordination model.  

In [6] we have presented a methodology for 
mapping ACME ([2]), a generic language for 
describing software architectures, down to event-
driven coordination code in the Manifold ([1, 7]) 
language. The reason for using ACME was 
precisely in order to show the generality of our 
approach: since ACME embodies the core 
features that any state-of-the-art Architecture 
Description Language (ADL) would support, by 
mapping ACME to Manifold we effectively 
provide the core of an implementation route for 

any other ADL Based on the results and 
experience of our first work and exploiting the 
improvements realized by the latest version of 
UML towards the support of software 
architecture descriptions, we propose a new 
methodology for modelling the software 
architecture of a component based system in 
UML 2.0 ([9]) and the automatic transition of 
this model to event-driven coordination code in 
Manifold. Our latest work targets an improved 
support for the dynamic aspects of the software 
architecture exploiting the powerful tools of 
UML for dynamic behaviour. Furthermore, we 
use the standards (UML2.0, XMI) and approach 
proposed by the new software development 
discipline, namely the Model Driven 
Architectures ([5]).  

The presented methodology is further 
supported by a code generation tool that fully 
automates the production of the complete code 
implementing the coordination-communication 
part of software systems modelled with UML 
2.0. The fact that our approach integrates 
software architectures and coordination models 
enables us to derive the advantages that both 
models provide in reducing the costs of software 
development. The modelling of the system 
architecture enables developers to define the 
more important properties and constraints of the 
system, but also to detect errors early at the 
design time. The generated code, which is 
consistent with the previously modelled 
architecture, clearly separates the communication 
from coordination parts of the system, making 
the system maintenance easier 

1.1. Event-driven coordination 

In general, coordination models and 
languages adhere in two main approaches, the 
“data-driven” or shared dataspace approach and 
“control” or “event-driven” approach. The main 
characteristic of the first approach is the use of a 
notionally shared medium via which the 
processes forming a computation communicate. 
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The most notable realization of this approach is 
Linda. In contrast to data-driven approach, in 
event-driven approach processes communicate in 
a point-to-point manner by means of well-
defined interfaces. Such a system evolves 
dynamically by means of raising and receiving 
control events. Manifold is a typical member of 
this family, and is a realization of the Ideal 
Worker Ideal Manager (IWIM) coordination 
model ([1]). In Manifold, there exist two 
different types of processes: managers (or 
coordinators) and workers. A manager is 
responsible for setting up and taking care of the 
communication needs of the group of worker 
processes it controls (non-exclusively). A worker 
on the other hand is completely unaware of who 
(if anyone) needs the results it computes or from 
where it itself receives the data to process. 
Manager processes are written in Manifold 
whereas worker processes may be written also in 
Manifold or in some computational language 
(typically C, Fortran). In this latest case, these 
worker processes are called atomics. In 
particular, Manifold possesses the following 
characteristics:  
• Processes. A process is a black box with well-

defined ports of connection through which it 
exchanges units of information with the rest 
of the world. A process can be either a 
manager (coordinator) process or a worker. A 
manager process is responsible for setting up 
and managing the computation performed by 
a group of workers. Note that worker 
processes can themselves be managers of 
subgroups of other processes and that more 
than one manager can coordinate a worker’s 
activities as a member of different subgroups. 
The bottom line in this hierarchy is atomic 
processes, which may in fact be written, in 
any programming language. 

• Ports. These are named openings in the 
boundary walls of a process through which 
units of information are exchanged using 
standard I/O type primitives analogous to 
read and write. Without loss of generality, we 
assume that each port is used for the exchange 
of information in only one direction: either 
into (input port) or out of (output port) a 
process. We use the notation p.i to refer to 
the port i of a process p.

• Streams or channels. These are the means by 
which interconnections between the ports of 
processes are realised. A stream connects a 
producer process to a consumer process. We 
write p.o -> q.i to denote a stream 

connecting the port o of a producer process p
to the port i of a consumer process q.

• Events. Independent of channels, there is also 
an event mechanism for information 
exchange. Events are broadcast by their 
sources in the environment, yielding event 
occurrences. In principle, any process in the 
environment can pick up a broadcast event; in 
practice though, usually only a subset of the 
potential receivers is interested in an event 
occurrence. We write e.p to refer to the 
event e raised by a source p.
Activity in a Manifold configuration is event 

driven. A coordinator process waits to observe an 
occurrence of some specific event (usually raised 
by a worker process it coordinates) which 
triggers it to enter a certain state and perform 
some actions. These actions typically consist of 
setting up or breaking off connections of ports 
and channels. It then remains in that state until it 
observes the occurrence of some other event, 
which causes the preemption of the current state 
in favour of a new one corresponding to that 
event. Once an event has been raised, its source 
generally continues with its activities, while the 
event occurrence propagates through the 
environment independently and is observed (if at 
all) by the other processes according to each 
observer’s own sense of priorities. The figure 
below shows diagrammatically the infrastructure 
of a Manifold process.  

Figure 1. A Manifold process 

2. The basic rules of code generation 

The general steps for the construction of the 
diagrams are the following ones:  
1. Identify the top-level components of the 
system architecture. Create a top level diagram 
and add a special Main component. (This will 
represent the special manifold process that every 
system in manifold should include). Add the top-
level components of the system as sub-
components of the Main Component. 

862



2. For each component identify the different 
operations that are provided by this component. 
3. For each operation identify the different 
parameters that the component needs to execute 
this operation and the possible values returned by 
this operation. Create an interface for each 
operation and add the specific operation with its 
parameters and return values. 
4. Identify the possible signals sent by the 
component providing this operation to its 
environment in response to a call on this 
function. Add the signals to the created interface. 
5. Identify possible main variables related to the 
operation that can be identified at this stage and 
may affect the setup of the architecture. Add 
these attributes to the created interface. 
6.  Identify the required operations and create an 
interface for each of them in a similar way as 
above. For each required interface add a signal 
sent by the component requesting the call of the 
related operation to its parent component that 
coordinates it in order to create the needed setups 
(connections). 
7. For each component add a port for each 
provided or required operation of the component 
and attach it to the corresponding required or 
provided interface. 
8. Identify all possible connections between the 
sub-components of a first level component.  
9. Identify all possible connections from the top 
level component to its parts (sub-components, 
classes).  
10. Decompose each of the sub-components to 
another diagram. Add in the new diagram the 
specific sub-component as the top level 
component and add all sub-components and 
classes that this component is composed of.  

Figure 2 presents the top level architecture 
model of a small part of a bank system where an 
ATM component sends the requests accepted 
from users to the central bank server, realized by 
the BankServer component, for displaying the 
balance of its account.  

2.1. From architecture to Manifold code 

A Component can be exactly mapped to a 
Manifold coordinator process. An Active Class is 
mapped to a Manifold atomic process. Passive 
Classes will be used in our architecture 
modelling to represent the different data types 
supported by Manifold such as string, integer, 
tuple, etc.  

Figure 2. ATM Example – Top level 
architecture diagram 

An interface is not directly mapped to a 
specific Manifold construct but the set of 
operations, attributes and signals defined for the 
specific interface are separately mapped. For 
every operation that is defined in a provided or 
required interface attached to a port, we create an 
input port for each input parameter and an output 
port if the specific operation returns a value. A 
special input control port is also created for each 
operation and a guard is installed on this port to 
notify the owning manifold process for requests 
received for the specific operation. The set of 
signals defined in provided and required 
interfaces attached to the ports of a component or 
class are defined to be the events that can be 
raised by the corresponding manifold or atomic 
process. Attributes of an interface attached to a 
component or class are mapped to local variables 
of the corresponding Manifold coordinator or 
atomic processes. 

Figure 3. Mapping components and classes 
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Figure 4. Mapping ports and interfaces 

Figure 5. Mapping assembly connectors 

2.2. Creating the scenario model 

Scenario modelling is realized by a number of 
sequence diagrams describing the dynamic 
aspects of a component-based system’s 
architecture, i.e. the: 
• interactions taking place between 

components, realized by message exchanges, 
• activation/deactivation of component and 

class instances,  
• conditions under which the above actions 

take place,  
• sequence within which the above actions 

take place.  
As soon as the different scenarios are 

identified, the software architect can create in a 
hierarchical top-down approach the sequence 
diagrams of each scenario as follows: 
1. Create a top level sequence diagram and 
include a lifeline for the “Main” component and 
a lifeline for each instance of the first level 
components/classes that are involved in the 
execution of the first execution scenario. 

2. Use the constructs for scenario modelling 
described above to define the interactions – 
messages taken place during the execution of the 
first execution scenario.  
3. Decompose every decomposable lifeline to 
another sequence diagram, describing the 
message exchanges taking place for the current 
scenario at a lower lever (i.e. between the 
specific component and its part’s instances). 
4. Add all “signal” and incoming “operation” call 
messages of the higher level sequence diagram 
that are attached to the lifeline currently being 
decomposed. 
5. Between the already created messages, add all 
message exchanges taking place between the 
decomposed lifeline (i.e. the parent component) 
and the other lifelines. 
6. For each component, create a new sequence 
diagram with a special name “Component name - 
Init” in order to describe the initialization 
process of the component such as the creation of 
process instances.  

For our example, the “getBalance” and 
“transfer” scenario can be identified. The 
sequence diagrams for the “transfer” scenario as 
well as the special “init” diagram for the “Main” 
component are presented below: 

Figure 6. First level sequence diagrams 

Figure 7. Special “init” sequence diagram for 
the “Main” component 
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3. Code generation 

We have developed a tool that automatically 
generates the Manifold code implementing the 
coordination-communication part of software 
architectures modelled with UML 2.0. Our code 
generation tool takes as input an XMI document 
describing the architecture model of a system 
and outputs the full Manifold code implementing 
the coordination part of the system. The full 
route of creating and transforming a software 
architecture model to Manifold code is shown 
below: 

Figure 8. Code generation tool – 
Transformation/code generation route. 
Following the MDA approach, we first create 
a Platform Independent Model (PIM) in 
UML2.0, then we apply our mapping rules to 
create a Platform Specific Model (PSM) and 
finally we create the coordination code by 
applying our code generation rules on PSM. 
In our case “platform” is the specific event-
driven coordination language, e.g. Manifold. 

The creation of the software architecture of 
the system forms the first step. For the modelling 
of the software architecture, we use the Sparx 
Enterprise Architect modelling tool ([8]). Using 
the “export” function of Enterprise Architect, we 
then export the modelled software architecture to 
an XMI (v.1.1) document.  

Since the latest version of XMI (v.2.1) that 
corresponds to UML 2.0 has recently been 
released, the few tools that provided support of 
UML 2.0 after its official release on 2003 have 
used previous versions of XMI format to export 
the models and added custom extensions to cover 
the needs not supported by these versions. 
Additionally, since XMI has to be general 

enough to represent not only UML models but 
every kind of model, there are specific needs of 
UML tools that may not be supported. As it is 
stated in [4] "the XMI standard itself doesn't 
support all that is needed, and vendors 
unfortunately implement it differently".  In order 
to make our code generation tool more 
independent from specific UML modelling tools 
we first parse XMI generated by Enterprise 
Architect and create an intermediate, tool 
independent, representation of the model. The 
intermediate representation consists of generic 
UML 2.0 Java classes that represent the elements 
of our software architecture model. 

For parsing the XMI document and creating 
the UML 2.0 object model, we use Apache 
Commons Digester ([3]). Having an intermediate 
representation of the software architecture 
enables the support for additional modelling 
tools in the future with minimum effort. If we 
wanted to add support for a modelling tool other 
than Enterprise Architect that has a different 
implementation of XMI format, then we would 
only have to add another set of digester rules for 
parsing the XMI document exported by this tool 
(or just the rules for parsing the XMI parts that 
are implemented differently in this tool) and 
transform it to the common UML2.0 object 
model.  

The next step is the transformation of the 
UML2.0 object model to the equivalent Manifold 
object model by applying the mapping rules of 
our methodology. The Manifold object instances 
are finally processed to generate the Manifold 
code by applying the syntax rules of Manifold. 
Part of the code generated by our tool for the 
“Main” manifold  (Main.m file) is presented 
below: 
manifold ATM(event 
getBalance_req,  
event transfer_req ) import. 

manifold BankServer( 
  event getBalance_success,  
 port in getBalance. import. 

manifold Main(){  
 begin: 
(activate(atm),activate(server) 
).
atmError.atm:  

    "An error occurred on ATM" -> 
out, deactivate(atm). 

serverError.server:  
    "An error occurred on Server" 
-> out; halt. 
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//transfer scenario 
transfer_req: "transfer"-
>server.transfer,  
  atm.sourceAccount_out ->  
           
server.sourceAccount_in,  
  atm.targetAccount_out ->   
           
server.targetAccount_in. 
  atm.amount_out 
server.amount_in. 

  "An error occurred on Server"
out;    
   halt.  } 

4. Discussion and further work 

Some advantages of this work are the 
following ones: 
• The use of a standard, broadly accepted and 

established modelling language for 
describing software architectures.  

• The two types of diagrams that are used in 
our methodology can be perfectly 
interrelated, thanks to the new feature of 
UML 2.0 for structure and behaviour gross 
integration.  

• By virtue of XMI, the software architecture 
descriptions can be exchanged and 
used/edited by many modelling tools.  

• Adhering to the main principles of the MDA 
approach, we tried to keep the software 
architecture model constructed by our 
methodology “platform” independent.  

The software developer that will use our 
methodology and the associated code generation 
tool will face a common, in the field of automatic 
code generation, problem: the maintenance of the 
generated code. Although in our latest 
methodology the coordination code that can be 
generated is more complete limiting the need for 
the programmer to manually add missing bits of 
coordination code, if the software architecture of 
the system changes in a subsequent stage (e.g. 
the system is extended with new functionality 
and subsequently new components) the code has 
to be generated again. However, the problem is 
limited to the atomics files that the tool generates 
for the coordination-related code and where the 
programmer manually adds the computational 
code.  

Our future work involves the enhancement of 
our code generation tool by: 
• addressing the problem of code maintenance; 

we are currently in the process of 
considering code-block recognition methods 
used in other code generation tools,  

• supporting additional modelling tools apart 
from Sparx Enterprise Architect,  

• adding enhanced mechanisms for 
consistency checking and validation of the 
imported software architecture model.  
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