International Journal of High Speed Computing, Vol. 9, No. 2 (1997) 127-160
(© World Scientific Publishing Company

COORDINATION OF DISTRIBUTED AND PARALLEL
ACTIVITIES IN THE IWIM MODEL

GEORGE A. PAPADOPOULOS
Department of Computer Science, University of Cyprus,
75 Kallipoleos Str, P. O. Boz 537,

CY-1678 Nicosia, Cyprus
e-mail: george@turing.cs.ucy.ac.cy

FARHAD ARBAB
Department of Software Engineering,
Centre for Mathematics and Computer Science (CWI),
Kruislaan 415, 1098 SJ Amsterdam, The Netherlands
e-mail: ferhad@cwi.nl

Received November 1996

ABSTRACT

We present an alternative way of designing new as well as using existing coordi-
nation models for parallel and distributed environments. This approach is based
on a complete symmetry between and decoupling of producers and consumers, as
well as a clear distinction between the computation and the coordination/ com-
munication work performed by each process. The novel ideas are: (i) to allow both
producer and consumer processes to communicate with each other in a fashion
that does not dictate any one of them to have specific knowledge about the rest
of the processes involved in a coordinated activity, and (ii) to introduce control or
state driven changes (as opposed to the data-driven changes usually employed) to
the current state of a computation. Although a direct realisation of this model in
terms of a concrete coordination language does exist, we argue that the underly-
ing principles can be applied to other similar models. We demonstrate our point
by showing how the functionality of the proposed model can be realised in a gen-
eral coordination framework, namely the Shared Dataspace one, using as driving
force the Linda-based formalism. Qur demonstration achieves the following ob-
jectives: (i) vields an alternative (control- rather than data-driven) Linda-based
coordination framework, and (ii) does it in such a way that the proposed appa-
ratus can be used for other Shared-Dataspace-like coordination formalisms with
little modification.

Keywords: Coordination languages and models, distributed and parallel comput-
ing models, software engineering for distributed systems.

127

128 Peapadopoulos & Arbab

1. Introduction. The concept of coordinating a number of activities,
possibly created independently from each other, such that they can run con-
currently in a parallel and/or distributed fashion has recently received wide
attention. A number of coordination models have been developed for many
application areas such as high-performance computing and distributed sys-
tems {11]. Most of these models address important issues such as modularity,
reuse of existing (sequential) software components, language interoperabil-
ity, portability, etc. However, we believe that they also share some weak
points: (i) lack of complete separation between the computation and coor-
dination/communication components of the processes involved; (ii) lack of
complete symmetry between the processes in the sense that traditionally,
producers may have to know more information about consumers than vice
versa; (iii} need for some process (producer or consumer) to know impor-
tant information about the rest of the processes involved in a coordination
activity such as their id, types and fashion (lazy, eager or otherwise) of com-
municating data, etc., which compromises the complete decoupling between
them; finally, (iv) almost always the coordination model is based on some
“vanilla type” functionality which, although simple and intuitive for use,
does not address other important issues such as security, optimised message
handling, etc.

More to the point, one can distinguish three major uses of coordination
models, namely the separation of the following components:

e Control issues from the computation concerns in the design and de-
velopment of programs, thus allowing the correctness concerns (i.e.,
the computation) and the efficiency issues (i.e., the coordination) to
be dealt with separately.

e Uniform operations on primarily passive data that are common in
a large number of parallel/distributed applications, away from the
application code, into a small set of generic primitives with their own
independent well-defined semantlcs, this is applicable more to data-
oriented applications.

¢ Communication protocols necessary for the cooperation of the active
entities that comprise a parallel/distributed application into indepen-
dent coordination modules; this is applicable more to control-oriented
applications.

The natural description of the activities and the history of the com-
putation carried out in a data-oriented application tends to center around
the data; the application is essentially concerned with what happens to the
data. However, there is a large class of applications, called process-oriented
or control-oriented where it is unnatural to view their activities and their
history as centered around the data. Indeed, often, the very notion of the
data, as such, simply does not exist in these applications.

Coordination of Distributed and Parallel Activities in the IWIM Model 129

Comparatively, less work has been reported on models and languages
for coordination with specific focus on control-oriented applications. Most
of such relevant work takes the message passing paradigm as its base and
modifies it by introducing such additional notions as synchronisers, con-
tracts, constraints, and events. A major drawback of these approaches to
control-oriented coordination models and languages is that they cannot over-
come the deficiencies that are inherent in their underlying message passing
paradigm.

On the other hand, there already exist a number of highly popular and
successful coordination models and languages which are data-oriented rather
than control-oriented. We would like to be able to use these models and
languages for control-oriented applications too, and do so consistently and
in as less ad hoc a way as possible.

In this paper we argue for an alternative way of designing new coordina-
tion models for parallel and distributed environments based on a complete
symmetry between and decoupling of producers and consumers. We place
particular emphasis on using existing coordination models to accomplish
this, and make a clear distinction between the computation and the coor-
dination/communication work performed by each process. The novel ideas
are: (i) to allow both producer and consumer processes to communicate with
each other in a fashion that does not obligate any one of them to have specific
knowledge about the rest of the processes involved in a coordinated activ-
ity, (i) to introduce control or state driven changes (as opposed to the data
driven changes ordinarily employed by exisiting coordination models) to the
current state of a computation, (iii) to clearly separate issues related to co-
ordination and/or communication from the purely computational ones, and
(iv) to address within the coordination/communication component, other
important issues not directly handled by most coordination models, such as
security of sending/receiving data, optimisation of message handling, etc.
These ideas form the basis of a new model, referred to as Ideal Worker
Ideal Manager (IWIM, [4]). Although a direct realisation of IWIM in terms
of a concrete coordination language does exist [5], we argue that the un-
derlying principles can be applied to other similar models, thus yielding
control-oriented variants of them. We demonstrate our point by compar-
ing our model with a state-of-the-art coordination framework, namely the
Linda-type Shared Dataspace model, and we show how the functionality
of the former can be embedded into the latter thus yielding an alternative
(control- rather than data-driven) Linda-based coordination framework. The
apparatus we developed to achieve this can be used by other Shared Datas-
pace based coordination models with minimal modification.

This last point is achieved to a major extent by noting an additional
advantage of the proposed framework; namely, that the complete separa-
tion between computation and coordination/communication results in the

130 Papadopoulos & Arbab

creation of two sets of activities which can be isolated in respective sets
of modules [6]. The former set plays the role of what is already known
as “computing farm” but the latter offers a new form of reusable entity, a
“coordination farm”. Thus, different computation modules of similar opera-
tional behaviour can be plugged together with the same set of coordination
modules enhancing the reusability of both sets and allowing the design of
novel and interesting forms of “coordination programming”.

The rest of this paper is organised as follows. The next section is a brief
introduction to IWIM; here we highlight those features of the model which we
feel are unique to this particular philosophy of coordination. We then com-
pare the control-oriented coordination model IWIM with the data-oriented
family of coordination models based on the metaphor of Shared Dataspace
and in particular the most prominent of its members, namely Linda. We also
make a first attempt to express IWIM’s functionality in Linda, the purpose
being to highlight some of the issues that must be addressed. In Section 4
we present a concrete realisation of our proposed framework, thus deriving
an alternative control-oriented Linda-based coordination framework which
we term IWIM-Linda. The paper ends with some conclusions and references
to related and further work where we argue that a variety of other families
of coordination models could benefit from similar IWIM extensions of them.

2. The IWIM coordination model. Most of the message passing
models of communication can be classified under the generic title of TSR
(Targeted-Send /Receive) in the sense that there is some asymmetry in the
gsending and receiving of messages hetween processes; it is usually the case
that the sender is generally aware of the receiver(s) of its message(s) whereas
a receiver does not care about the origin of a received message. The following
example, describing an abstract send-receive scenario, illustrates the idea:

process Prod process Cons:

compute M1 " receive Mi

send M1 to Cons let PR be Ml’s sender
compute M2 receive M2

send M2 to Cons _ compute M using M1 and M2
do other things : send M to PR

receive M

do other things with M
There are two points worth noting in the above scenario:

e The purely computation part of the processes Prod and Cons is mixed
and interspersed with the communication part in each process. Thus,
the final source code is a specification of both what each process com-
putes and how the process communicates with its environment.

Coordination of Distributed and Parallel Activities in the IWIM Model 131

e Every send operation must specify a target for its message, whereas a
receive operation can accept a message from any anonymous source.
So, in the above example, Prod must know the identity of Cons
although the latter one can receive messages from anyone.

Intermixing communication with computation makes the cooperation
model of an application implicit in the communication primitives that are
scattered throughout the (computation) source code. Also, the coupling be-
tween the cooperating processes is tighter than is really necessary, with the
names of particular receiver processes hardwired into the rest of the code.
Although parameterisation can be used to avoid explicit hardwiring of pro-
cess names, this effectively camouflages the dependency on the environment
under more computation. Thus, in order to change the cooperation infras-
tructure between a set of processes one must actually modify the source code
of these processes.

Alternatively, the IWIM (Ideal Worker Ideal Manager) communication
model {4] aims at completely separating the computation part of a process
from its communication part, thus encouraging a weak coupling between
worker processes in the coordination environment. IWIM is itself a generic
title (like TSR) in the sense that it actually defines a family of communi-
cation models, rather than a specific one, each of which may have different
significant characteristics such as supporting synchronous or asynchronous
communication, ete.

How are processes adhering to an IWIM model structured and how is
their inter-communication and coordination perceived in such a model? One
way to address this issue is to start from the fact that in TWIM there are
two different types of processes: managers (or coordinators) and workers.
A manager is responsible for setting up and taking care of the communica-
tion needs of the group of worker processes it controls {non-exclusively). A
worker on the other hand is completely unaware of who (if anyone) needs the
results it computes or from where it itself receives the data to process. This
suggests that a suitable (albeit by no means unique) combination of entities
a coordination language based on IWIM should possess is the following:

e Processes. A process is a black bozr with well defined ports of connec-
tion through which it exchanges units of information with the rest of
the world. A process can be either a manager (coordinator) process
or a worker. A manager process is responsible for setting up and man-
aging the computation performed by a group of workers. Note that
worker processes can themselves be managers of subgroups of other
processes and that more than one manager can coordinate a worker’s
activities as a member of different subgroups. The bottom line in
this hierarchy is atomic processes which may in fact be written in any
programming language.

132 Papadopoulos & Arbab

Ports. These are named openings in the boundary walls of a process
through which units of information are exchanged using standard 1/0
type primitives analogous to read and write. Without loss of general-
ity, we assume that each port is used for the exchange of information
in only one direction: either into (input port) or out of (output port)
a process. We use the notation p.i to refer to the port i of a process
instance p.

Channels. These are the means by which interconnections between
the ports of processes are realised. A channel connects a (port of
a) producer {process) to a (port of a} consumer (process). We write
p-© -> q.i to denote a channel connecting the port o of a producer
process p to the port i of a consumer process q. A channel can support
either synchronous or asynchronous communication; we often refer to
channels realising asynchronous communication as streams.

Events. Independent of channels, there is also an event mechanism for
information exchange. Events are broadcast by their sources in the
environment, yielding event occurrences. In principle, any process in
the environment can pick up a broadcast event; in practice though,
usually only a subset of the potential receivers is interested in an event
occurrence. We say that these processes are tuned in to the sources
of the events they receive. We write e.p to refer to the event e raised
by a source p.

The IWIM model supports anonymous communication: in general, a
process does not, and need not, know the identity of the processes with
which it exchanges information. This concept reduces the dependence of a
process on its environment and makes processes more reusable. Using IWIM,
our example can now take the following form: '

process Prod:

compute M1

write M1 to out port 01
compute M2

write M2 to out port 02
do other things

receive M from in port Il
do other things with M

process Coord:

do other things

process Cons:

receive M1 from in port I1l
receive M2 from in port I2
compute M using M1 and M2
write M to out port 01

create the channel Prod.01 -> Cons.Il
create the channel Prod.02 -> Cons.I2
create the channel Cons.01 -> Prod.Ii
carry on doing other things

Coordination of Distributed and Parallel Activities in the IWIM Model 133

Note that in the IWIM version of the example all the communication
between Prod and Cons is established by a new coordinator process Coord
which defines the required connections between the ports of the processes by
means of channels. Note also that not only Prod and Cons need not know
anything about each other, but also Coord need not know about the actual
functionality of the processes it coordinates.

In general, there are five different ways to model a communication chan-
nel C in IWIM, depending on what happens when either of the two ends of
the channel (referred to as its source and sink) breaks connection with the
respective (producer or consumer) process and what happens to any units
pending in transit within C.

¢ Both ends of C have type S (synchronous connections). In this case
there can never be any pending units in transit within C and a channel
is always associated with a complete producer-consumer pair.

s Both ends of C have type K (keep connections). In this case the
channel is not disconnected from either end if it is disconnected from
the other end.

e Both ends of C have type B (break connections). In this case once
the channel is disconnected from one end it will automatically also get
disconnected from the other end.

e The source of C has a B and its sink has a K type connection. If a BK
channel is disconnected from its consumer then it is also automatically
disconnected from its producer but not vice versa.

e The source of C has a K and its sink has a B type connection. If a KB
channel is disconnected from its producer then it is also automatically
disconnected from its consumer but not vice versa.

Activity in an JWIM configuration is event driven. A coordinator pro-
cess waits to observe an occurrence of some specific event (usually raised
by a worker process it coordinates) which triggers it to enter a certain state
and perform some actions. These actions typically consist of setting up or
breaking off connections of ports and channels. It then remains in that state
until it observes the occurrence of some other event which causes the pre-
emption of the current state in favour of a new one corresponding to that
event. Once an event has been raised, its source generally continues with its
activities, while the event occurrence propagates through the environment
independently and is observed (if at all} by the other processes according to
each observer’s own sense of priorities. Figure 1 shows diagramatically the
infrastructure of an IWIM process.

The process p has two input ports (in1, in2) and an output one (out).
Two input streams (81, s2) are connected to inl and another one (s3) to
in2 delivering input data to p. Furthermore, p itself produces data which
via the out port are replicated to all outgoing streams (s4, s5). Finally,
p observes the occurrence of the events el and e2 while it can itself raise

134 Papadopoulos & Arbab

el e2

inl
s P ou

e 3

el ed

Fic. 1.

the events e3 and e4. Note that p need not know anything else about the
environment within which it functions (i.e., who is sending it data, to whom
it itself sends data, etc.).

The IWIM model has been realised by means of a concrete coordina-
tion language, namely MANIFOLD [5]. However, the purpose of this paper
is not to introduce this language; this is done extensively elsewhere [4-6].
Instead, we argue that IWIM is in fact independent of its concrete reali-
sation and provides a complete — and tested! (due to the very existence
of MANIFOLD) — methodology for using any data-oriented coordination
language for control-oriented applications. Nevertheless, for illustrative pur-
poses, we present below the MANIFOLD version of a program computing
the Fibonacci series.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum{event)

port in x.

port in y.

import.
event overflow.

auto process v0 is variable(0).

auto process vi is variable(1).

auto process print is PrintUnits.
auto process sigma is sum(overflow).

manifold Main()

{
begin: (vO->sigma.x, vi->sigma.y,v1->v0,sigma->vl,sigma->print).
overflow.sigma:halt.

}

Coordination of Distributed and Parallel Activities in the IWIM Model 135

The above code defines sigma as an instance of some predefined process
sum with two input ports (x,y) and a default output one. The main part
of the program sets up the network where the initial values (0,1) are fed
into the network by means of two “variables” (v0,v1). The continuous
generation of the series is realised by feeding the output of sigma back to
itself via vO and vi. Note that in MANIFOLD there are no variables (or
constants for that matter) as such. A MANIFOLD variable is a rather
simple process that forwards whatever input it receives via its input port to
all streams connected to its output port. A variable “assignment” is realised
by feeding the contents of an output port into its input. Note also that
computation will end when the event overflow is raised by sigma. Main
will then get preempted from its begin state and make a transition to the
overflow state and subsequently terminate by executing halt. Preemption
of Main from its begin state causes the breaking of the stream connections;
the processes involved in the network will then detect the breaking of their
incoming streams and will also terminate.

More information on MANIFOLD can be found in [4-6]; note that MAN-
IFOLD has already been implemented on top of PVM and has been success-
fully ported to a number of platforms including Sun, Silicon Graphics, Linux,
and IBM SP1 and SP2.

3. Comparison of IWIM with Linda. The notion of a conceptually
shared dataspace via which concurrently executing agents exchange messages
is a fundamental programming metaphor and a number of models make use
of it in one way or another. Some of them are Gamma [7] based on the
Chemical Abstract Machine and LO [3] based on Linear Logic as well as the
models presented in [19,24]. Probably the most well known realisation of this
notion is the Tuple Space as used primarily by Linda [2], and other similar
models such as Swarm [21]. Linda’s four tuple operations (out,in,rd,eval)
constitute a minimal set via which coordination of a number of concurrently
executing activities can be achieved. The Tuple Space is a centrally man-
aged dataspace which contains all pieces of information that processes want
to communicate. A process in Linda is a black box and the Tuple Space
exists outside of these black boxes which, effectively, do the real computing.
The semantics of the tuples is independent of the underlying programming
language used, thus rendering Linda a true coordination model where pro-
cesses can be written in any programming language; indeed there are a
number of such successful marriages [2,11] such as C-Linda, Fortran-Linda
and Prolog-Linda {9].

The Linda formalism (and more generally the Shared Dataspace one)
shares the same purpose with IWIM, namely addressing the deficiencies
of the TSR model, and achieves that by providing symmetric, anonymous
means of communication between parties. Nevertheless, there are a

136 Papadopoulos € Arbab

number of fundamental differences between Linda and TWIM. First of all,
Linda is not a concrete language but rather a set of “add on” primitives.
This has many advantages (such as the fact that these primitives can fit into
almost any computation model); however, the functionality offered, although
simple t0 use and intuitive, is also minimal. One still has to program realistic
coordination patterns on top of the vanilla ones offered by the model. Thus,
the simplicity of a Linda program is somewhat deceptive in that the program
in question may not address issues such as security, optimisation techniques
when point to point or selective broadcasting communication is required,
reliability, etc.

For instance, if more than one process can obtain a tuple from the Tu-
ple Space, a protocol is needed to avoid undesirable effects. This presents
a problem reflecting the natural hierarchy of applications (such as divide-
and-conquer or domain decomposition) that involve independent groups of
processes, in their implementation. Ideally, each such group should commu-
nicate through its own private medium, to avoid accidental conflicts among
the communications of unrelated parties. However, secure, private commu-
nication between two processes is not directly possible in Linda. Folding
all these private communication media into one shared Tuple Space involves
some non-trivial protocols and programming tricks leading to solutions that
are not simultaneously elegant, simple and efficient. Furthermore, rather
than being general, such solutions seem to be ad hoc extensions of the ba-
sic model derived from the need to address specific scenarios faced by their
designers [8,16,18,19)].

This comment should not be taken as a criticism of Linda (or, indeed,
of its aforementioned extensions) but rather as a justification for the extra
complexity that must be added when we want to build more sophisticated
coordination patterns on top of the basic one offered by Linda. In fact,
we explore {and exploit) this aspect of comparison in the rest of the paper,
essentially by deriving an IWIM-Linda model which we feel leads to an
alternative Linda-based coordination framework. In this respect, our work is
along the lines of many other researchers who have extended the basic Linda
formalism in one way or another [8,16,18,19]. But, contrary to the rather
ad hoc extensions that some of these approaches suggest, ours is following a
concrete, if abstract, model (namely IWIM — it is concrete because of the
realisation of the model in terms of a specific coordination language). The
very fact that the proposed framework has already been realised by means
of a specific language suggests that it has been tried and proved useful as
well as implementable; furthermore, it minimises the danger of containing
“notional gaps” in the sense that it supports a “complete” coordination
functionality (no important or necessary features are left out) in a consistent
way (supported features do not have conflicting functionality).

Furthermore, the fact that these add on primitives must be fitted
into a computation language leads to intermixing of computation and

Coordination of Distributed and Parallel Activities in the IWIM Model 137

coordination/communication activities within individual processes. On the
other hand, TWIM encourages a clean separation of computation and coordi-
nation concerns into different program modules. As we will see later on, this
allows the reuse of coordination patterns by different computation modules.

3.1. Attempting to express IWIM’s features in Linda. Proba-
bly the most important notion of IWIM that must be expressed in Linda (or
any other coordination model for that matter) is the sending and receiving
of messages with complete lack of knowledge on the part of a receiver
(respectively sender) as to who is the sender(s) (respectively receiver(s))
of a message. In other words we want to model the fundamental operation

prod.out -> cons.in

Of course, every such transaction can only be done via the Tuple Space.
The following is a vanilla realisation of a communication channel.

channel (prod, out, cons,in)
{

while (1)

{
in(prod,out,Index,Data);
out{(cons,in,Index,Data) ;

}

}

The above process is effectively a Linda-like coordinator which makes
the data tuples sent to the Tuple Space by some producer available to some
consumer process. Each such data tuple, equivalent to a MANIFOLD’s unit
of data as it flows through a stream, is of the form <pid,chid, index,data>
where pid is the producer or consumer process id, chid is the id of the
output or input channel, index is used to serialise access to the stream of
data units and data is the actual data sent.

Note that, as it is proper in IWIM, the producer has no knowledge of
who will consume its messages and vice versa. Also, the channel process can
at any time redirect the flow of data without the awareness of the producer
and/or consumer. Furthermore, using different values for the tuple field -
cons, a channel coordinator can duplicate data tuples from one producer
process to a number of consumer ones. For instance the IWIM/MANIFOLD
construct prod.out -> (-> comnsl.in, -> cons2.in) can be realised in
IWIM-Linda as follows:

channel (prod, out,consl,inl,cons2,in2)
{

vhile (1)

{

in{prod,cut,Index,Data) ;

138 Papadopoulos & Arbeb

out(consl,inil, Index,Data};
out (cons2,in2, Index,Data);
}
1

This vanilla apparatus, however, does not really express the actual func-
tionality of a proper IWIM or MANIFOLD stream connection. There is no
provision for the producer and/or the consumer to break its connection with
a channel in a graceful way. If prod or cons dies, channel will carry on
“forwarding” the data resulting in either an indefinite suspension (if prod
is dead) and/or data loss (if cons is dead). Moreover, there is no provision
for merging channels; although the output from prod can be duplicated, it
is not possible to redirect the output of a number of channels into a single
input “port”. Simply making channel (or some other similar process) to
transform tuples produced by other producers into ones having the same
value for the fields cons and in does not help because it is not possible to
retain the partial ordering of received data within some stream (although
the receiving of data between the streams can and will certainly be non-
deterministic). This shortcoming is caused by the fact that the n-tuple
<prod,out,cons,in,...> actually defines a single stream only if someone
considers this structure as a whole. If we do not want the producers and the
consumers to know about each other, then in order for them to still be able
to distinguish between different streams, there is a need for an extra stream
id field available to both sets of processes.

The above scheme of implementing channel operations in Linda has a
resulting behaviour which is still different in some significant ways from the
IWIM channels; these differences stem from the very nature of the Tuple
Space. One difference is related to the issue of secured communication. An
ITWIM channel is secure in the sense that it represents an unbounded buffer
where data units that flow through it are guaranteed to be delivered from
source to sink. No loss of data can occur either because of some overflow in
the channel or for any other reason. The same is not true when the Tuple
Space is used as a communication medium since it is by nature a public
forum. Safe delivery of data has to rely on the assumption that only the
intended processes either send data (out) down some “channel” or retrieve
data (in) from it. Otherwise we would have forging of some channel’s output
or loss of data units respectively. In order to achieve this security, which is
of major importance in realising IWIM, one would have to create additional
guard or filter processes which would check whether a process is actually
allowed to perform some in or out operation and if not either postpone or
abort it completely [18]. Alternatively, the notion of multisets as in Bauhaus
Linda [13] can be used to facilitate such secure private communication.

Another major difference is related to efficiency. An IWIM channel is
effectively a point to point communication medium and transfer of data is

Coordination of Distributed and Parallel Activities in the IWIM Model 139

physically confined to only those processors handling the involved processes.
However, this knowledge of locality is lost when realising channels via the
Tuple Space since this is only logically shared but physically distributed.
This problem can be alleviated to some extent by providing the intended
functionality at some higher level of abstraction and thus help a Linda com-
piler derive more optimised code [1]. But to what extent this will be practical
for large dynamically evolving systems remains to be seen.

4. Realising IWIM in shared dataspace — the IWIM-Linda co-
ordination framework. The purpose of the discussion so far was to high-
light some important issues that must be raised and dealt with in using the
Tuple Space as a means to achieve coordination and communication between
processes in an IWIM fashion. We now provide a more concrete realisation
of IWIM in terms of the functionality offered by the Shared Dataspace. To
make the discussion complete while producing concrete implementations of
our ideas, we concentrate on Linda and present what we have already called
IWIM-Linda. Nevertheless, we stress the point that the proposed framework
is inherently independent of which Shared Dataspace coordination model is
being used and thus can be applied to other such models (3,7,15,19,21,24] in
order to provide IWIM extensions of them.

An TWIM-Linda computation consists of the following groups of entities:

o Ordinary computation processes using the Tuple Space by means of
the usual Linda primitives. Each such process should have no knowl-
edge about the rest of the processes involved in a computation. We
recognise two different types of such processes: (i) “IWIM-Linda com-
pliant ones” which adhere to the principles of IWIM as discussed in
the previous section and behave as shown in Fig. 1. These processes
enjoy the full functionality of the model since they are able to commu-
nicate via multiple ports, broadcast and receive a plethora of events,
etc. (ii) Non-compliant (in the sense just described) processes. These
processes can still function within our framework where communica-
tion is done via default input and output ports and events are raised
by the underlying system software {compiler, operating system, etc.).

e For each such process, whether it is IWIM-Linda compliant or not,
we introduce a monitor process which intercepts all communication
between the process and the Tuple Space. The monitor process is ef-
fectively responsible for handling all aspects related to the main pro-
cess’s interface with the environment, namely delivering input/output
data from/to respective ports, handle raised events, etc.

¢ Finally, there are coordination processes which set up the stream con-
nections between computation processes by communicating with the
respective monitoring processes.

140 Papadopoulos & Arbab

Figure 2 below presents a possible scenario based on the framework just
described. There are four computation processes (P1-P4) which communi-
cate with their environment through an equal number of monitor processes
(M1-M4), and also a number of coordination processes (C1-C3). C1 is used
for the broadcasting of events while C2 and C3 are used for setting up and
monitoring stream connections between the computation processes (via their
respective monitor processes). So, for instance, P1 is the producer of data
consumed by P3 by means of the stream connection S1 while P2 produces
data through two streams, 52 and S3, the first one connected to an input
port of P4 and the second to another input port of P3.

The monitor and coordination processes can in fact be implemented in
any language (and we admit that a natural choice can be the host language
the computation processes are written in); for instance, the vanilla channel
code in Section 3.1 was written in C. Nevertheless, we have found that it is
more natural to use a symbolic language formalism, namely the concurrent
logic language one [22]. The formulation of the necessary functionality is
easily and succintly expressed; in addition the concepts of guarded don’t care
selection and concurrency, inherent in a concurrent logic program, provide
an almost ideal mechanism to express the non-deterministic features of our
model. Finally, the derived monitor/coordination concurrent logic program
can be used as a “skeleton” [23] for adding IWIM-based coordination to other
Linda-like coordination models. This can be achieved merely by modifying
those pieces of code that use the Linda primitives and substituting them
with equivalent code using the primitives of the other formalism; the rest
of the apparatus however should remain mostly intact. We admit that to a
certain extent the choice of the concurrent logic notation is somewhat biased
(one of the authors has been pursuing research in this area for years) but,
along with other researchers [18] we believe that when “laws”, “rules” or
“constraints” must be expressed, a symbolic notation is easier to use and
modify. Finally, we note that the code written in a symbolic notation can
be partially evaluated and transformed to more efficient versions (23)].

Coordination of Distributed and Parallel Activities in the IWIM Model 141

We now describe in more detail the IWIM-Linda framework. Some
rather lower level functionality is not covered here, primarily for reasons
of clarity and brevity. The framework to be desecribed is currently being
implemented; the monitor and coordination processes are written in the con-
current logic language KL1 [14] and that system is interfaced to a C-Linda
package running on a network of Unix machines (IBM RS /6000 running ATX
4.2). From the discussion so far it should be apparent that in implement-
ing IWIM-Linda, three types of activities must be realised: (i) establishing
and monitoring stream connections between computation processes via their
respective monitor processes, (ii) actual sending and receiving of data, (iii}
raising and reacting to events. The next three subsections cover each of the
above topics while the following two present concrete examples.

4.1. Setting up and managing stream connections. The follow-
ing clauses are used by a coordination process to request from a pair of
monitor processes to set up a stream connection, thus realising an IWIM
type communication channel between a producer and a consumer process
along some output (respectively input) port.
channel (TS,Prod,Out_Port,Cons, In_Port,Type,...)

<- Str_Id=’str_id_unique’, /* some unique id generated */
out ("estbl_str",Prod,Out_Port,Str_Id),
out ("estbl_str",Cons,In_Port,Str_Id),
receive_ack(TS,Prod,Out_Port,Cons,In_Port,Str_Id,Type,...}.

receive_ack([in("ack_estbl_stxr",Prod,Str_Id),
in("ack_estbl_str",Cons,Str_Id)|TS],
Prod,Dut_Port,Cons,In_Port,Str_Id,Type,...)
<- forward(TS,Prod,Out_Port,Cons,In_Port,Str_Id,Type,...}.

The above piece of code outs two tuples requesting the setting up of
a stream connection between the processes Prod and Consg, along the ports
Out_Port and In_Port respectively; the stream connection should be of type
Type (we recall from Section 2 that in IWIM there are four types of stream
connections, excluding the synchronous channel). Note that all clauses to
be presented in the rest of the paper have two things in common regarding
the header: (i) The first argument is always a communication stream with
the environment of the clause; if the clause belongs to a coordinator process
then the environment is just the Tuple Space but if it belongs to a monitor
process then it is both the Tuple Space and the corresponding computation
process. (ii) The symbol “ ... ” indicates that the clause may make use of
more arguments which are not shown either because they are not relevant
to the context of the discussion or because they are related to the handling
of lower level issues. Thus, as far as this last point is concerned, the position
of the arguments in the head of the clause should be taken for granted only
in the context of the paragraph a clause is presented and discussed.

142 Papadopoulos & Arbab

Upon receiving back the acknowledgments that the two monitor pro-
cesses involved in setting up the requested stream connection have done so,
a forward process (described in detail in the next subsection) is spawned to
manage the transfer of data units through the stream. We end this subsec-
tion with the code executed by a monitor process which has been requested
by a coordinator process in the fashion just described to assist in the setting
up of some stream connection.

m_process([in("estbl_str",Self,Port_Id,Str_Id)|TS],Pert_Strs,...)
<- New_Port_Strs=[(Str_I4,0) |Port_Strs],
out("ack_estbl_str",Self,Str_Id),
m_process(TS,New_Port_Strs,...).

Upon receiving a request for setting up a stream connection, the monitor
process adds a new entry (Str_Id,Index) to the list of streams connected to
the involved port held by the argument Port_Strs. We recall here that a port
is either an input or an output one and consequently all attached streams
either produce or receive data. Note also that Index (whose initial value is
0) is used to retain the partial ordering of messages received or sent by the
monitor process along the same stream. Finally, note that Self is a special
variable referring to the id of the dual process entity monitor-computation.

4.2. Sending and receiving data. Accomplishing the communica-
tion between monitor processes on behalf of their respective computation
processes through some stream connection involves two sets of activities.
The first is performed by some monitor process and involves the interception
of messages intended to be sent by its corresponding computation process
to the Tuple Space or received from it. These tuples must be modified in
such a way that are presentable to the intended recipients; more details fol-
low promptly as we examine the relevant code. In the code that follows we
assume that the processes involved use only the default ports that always
exist for communication, namely in for receiving data and out for sending
data; it is straightforward to add similar rules for other ports (see code in
Sections 4.4 and 4.5).

m_process({in("unit",Self,Port_Id,8tr_Id,Data,Index)|TS],In_Strs,...)}
<= Port_Id==in, :
(Str_Id,Index+1)@In_Strs
l
process!out ("unit",in,Data),
New_In_Strs=In_Strs. (Str_Id,Index+1),
m_process{TS,New_In_Strs,...).

m_process ([Self7out ("unit",Port_Id,Data)|Rest],0ut_Strs,...)
<- Port_Id==out

Coordination of Distributed and Parcllel Activities in the IWIM Model 143

{
send_out (Data,Self,Port_Id,Out_Strs,New_Out_Strs,...),
n_process (Rest ,New_Out_Strs,...).

send_out {Data,Prod,Port_Id, [(Str_id,Index) |Rest],New_Port_Strs,...)
<- out{"unit",Prod,Port_Id,Str_Id,Data,Index),
New_Port_Strs=[(Str_id,Index+1) |New_Port_Strs_Rest],
send_out (Data,Prod,Port_Id,Rest,New_Port_Strs_Rest,...).
send_out(_,_,_, {],New_Port_Strs,...) <- New_Port_Strs=[].

The first rule intercepts a unit sent by some coordinator process to
the in port of process. The respective monitor process (m_process) first
establishes that the stream connection does indeed exist; note here that the
expression (Stream Id,Index+1)@X Strs which uses a special set operator
‘@’ succeeds if the pair (Stream Id,Index+1) is an element of the list X_Strs
(in the process it may instantiate variables in the LHS of the operator if
they are non-ground). Upon the successful evaluation of the guard, the rule
commits to the body where an “ordinary” version of the tuple is sent to
process. Here note the operator ‘!’ which forwards the tuple to process.
The rule updates the index entry kept for the stream and recurses. Also,
note the update operator °.’; New=01ld.New.El replaces some element E1 of
a list 01d with New.E1. E1 is found by unifying the first argument (playing
the role of an index) of the structure E1 with the corresponding argument in
each of the arguments in 01d. All these special operators are simply syntactic
sugaring of calling rather straightforward-to-implement utility procedures.

The next two rules are used to intercept outgoing units from the com-
putation process to the Tuple Space via some output port (in this case the
default one out). Upon receiving such a unit the monitor process m_process
replicates it and sends it down all streams connected to the port in question
updating again, appropriately, the relevant indices. Note here the use of the
symmetric (to ‘!’) operator ‘?’ which is used by a monitor process to accept
tuples from its respective computation process which must be forwarded to
the Tuple Space.

The above set of activities 1s responsible for sending and receiving unit
tuples in a manner as dictated by IWIM, namely that neither receivers nor
senders of data units are aware of each other. However, somewhere along the
line the tuples must be modified and enhanced with the necessary informa-
tion needed so that they can be delivered to the intended destination. This
is accomplished by the second set of activities which is performed by a suffi-
cient number of coordinator processes. The relevant code follows promptly.

forward([in("unit"®,Prod,Out_Port,Str_Id,Data,New_Index)|TS],
Prod,Out_Port,Cons,In_Port,Str_Id,Base,Index,Type,...)
<- out("anit",Cons,In_Port,S8tr_Id,Data,Index+Base),
forward(TS,Prod,Out_Port,Cons,In_Port,Str_Id,Base,New_Index,Type,...}.

144 Papadopoulos & Arbab

This rule intercepts a tuple sent by a monitor process on behalf of some
computation process and modifies it so that the id of the sender is removed
and instead the id of the receiver is added. Base and Index are used to
retain the partial ordering between units sent down the same stream. In
particular, Index retains the partial ordering during the lifespan of a certain
stream connection. If the connection breaks but the stream is reconnectable
then upon reestablishing the flow of data units, Base (which is initially 0 and
subsequently has as value the last one Index had just before the connection
broke) is added to the new index. Thus, we retain the partial ordering
of messages flowing down a certain stream connection independent of how
many times the stream has been broken and reconnected. We recall here
that more than one stream can be connected to either an output or an input
port. In the first case a data unit to be sent is replicated to all streams
connected to the port; in the second case data units arriving at an input
port connected to many incoming streams are received by the consumer
process in a non-deterministic fashion.

We also recall that there are four types of stream connections, depending
on whether and how a stream connection may be broken and reconnected.
forward handles these activities as well but we discuss them in the following
subsection since they are related to the handling of events.

4.3. Raising, detecting and reacting to events. T'WIM is a control
oriented coordination model. After establishing stream connections, data
units flow through them to the intended destinations. This set up is retained
until some event is raised by some process in which case, typically, a number
of activities take place such as the breaking off of existing stream connections,
the establishing of new ones, termination of processes or spawning of new
ones. As in the case of sending and receiving data, the activities to be
performed can be classified into two sets, the first performed by the monitor
processes and the second by the coordination processes.

The monitor processes are again responsible for intercepting events
intended to be broadcast or observed by their corresponding computation
process.

m_process([rd("event",Type,Source,Self,Index) |TS],. .. ,Events_Received,...)
<- (Source,Index)0Events_Received
|
Self!in("event",Type),
New_Events_Received=Events_Received. (Source,Index+1),
m_process(TS,...,New_Events_Received,...).

m_process([Self?out ("event",Type) |Rest], ,Events_Raised,...)
<- (Type,Index)@Events_Raised
|

Coordination of Distributed and Parallel Activities in the TWIM Model 145

out ("event",Type, Self,Index+1),
New_Events_Raised=Events_Raised.(Type,Index+1),
m_process (Rest,New_Events_Raised,...).

Before a monitor process forwards an event tuple to the corresponding
computation process (if it has been received from the Tuple Space) or to the
Tuple Space (if it has been received from the computation process), it first
checks to see whether the following conditions are satisfied: (i) The event can
indeed be observed or raised — the relevant information is kept in arguments;
thus, Events Received is a list of all sources from which raising of events
can be observed by this process and Events Raised is a list of all types
of events that this process can raise. (ii) The partial ordering of observing
events is retained. This last point is important because if some process raises
two events, another process which is tuned to observe the raising of events
from the previous process must do so in the order the events were raised.
Here again, an index is used for that purpose, updated as the need arises.

Note that, unlike what is happening with data tuples, event tuples are
rd rather than ined; this is because a raised event is actually broadcast to
a number of processes tuned to observe its occurrence rather than jusi one
such process.

Some simple but useful variations of the first clause above (the one
responsible for detecting the raising of events) are possible. We recall that
in IWIM and MANIFOLD the expression e.p refers to an event e raised
by some source p. In addition to detecting the raising of an event from a
specific source, it is also possible to use “wildcards” and refer to e.* (ie.,
has event e been raised from any source) or, indeed, *.p (i.e., has source p
raised any event). This functionality can be easily expressed by modifying
slightly the head of the relevant clause:

m_process([rd("event",Type,_,Self,Index) |TS],...)
<_

m_process{[rd("event",_,Source,Self,Index)|TS],...)
<-

The second set of activities performed by the coordination processes
involves the distribution of event tuples from the processes raising them to
those that must observe them. This is implemented by means of the following
clauses.

detect_event ([in("event",Type,Source, Index) | TS],0bserv_Procs, ...}
<~ distribute_event(e(Type,Source,Index),0Observ_Procs,...),
detect_event(TS,0bserv_Procs,...).

distribute_event(_,[1,...).
distribute_event(E, [(Type,Proc) |Rest_Observ_Procs],...)

146 Papadopoulos & Arbab

<- E=e¢(Type,Source, Index)
|
out ("event",Type,Source,Proc,Index),
distribute_event (E,Rest_Observ_Procs,...).
distribute_event (E, [_|Rest_Observ_Procsl,...)
<~ distribute_event(E,Rest_0Observ_Procs,...).

In the above code note that Observ Procs holds the information re-
lated to which process can observe what event. Thus, an event is forwarded
to some process only if its relevant entry can be found. Depending on
how IWIM-Linda is implemented, this list could be updated dynamically
or formed statically by means of suitable syntax annotations. Here for sim-
plicity we adopt the second approach; however, our on going implementation
uses the first one because it is more expressive.

We can now show how forward, introduced in the previous subsection,
handles the breaking off and possible reconnection of streams that are al-
ready set up. If either the producer or the consumer process wants to break
a stream connection it raises via its corresponding monitor process a rele-
vant event which is detected by the coordinator process responsible for that

stream connection. What happens afterwards is indicated by the following
code.

forward([in{"event", [break,Str_Id],Prod,_) ITS],
Prod,Out_Pert,Cons,In_Port,Str_Id,Base,Index, [T,k],...)
<- wait_new_connectionl(TS,Cons,In_Port,Str_Id,Index, [T,k],...).

forward([in("event", {break,Str_Id],Pred,_)|TS].
Prod,Out_Port,Cons,In_Port,Str_Id,Base,Index,[T,b],...)
<- out("event”, [disconnect,Str_Id],Cons,0).

forward([in("event", [break,Str_Id],Cons,_}|T8],
Prod,Cut_Port,Cons,In_Port,Str_Id,Base,Index, [k,T],...)
<- wait_new_connection2(TS,Prod,0ut_Port,Str_Id,Index,[k,Tl,...).

forward([in("event", [break,Str_Id] ,Cons,_) |TS],
Prod,Dut_Port,Cons,In_Port,Str_Id,Base,Index, [b,T],...)
<~ out("event", [disconnect,Str_Id] ,Prod,0).

wait_new_connectioni([in("event", [connect,Dut_Port,Str_Id],Pred,0)|Ts],
Coris,In_Port,Str_Id,Index,Type,...)
< forward(TS,Prod,0Out_Port,Cons,In_Port,Str_Id,Index,0,Type,...).

wait_new_connection2([in("event", [connect,In_Port,Str_Id]l,Cons,0)|TS],
Prod,Out_Port,Str_Id,Index,Type,...)
<~ forward(TS,Prod,Dut_Port,Cons,In_Port,Str_Id,Index,0,Type,...).

Each clause for forward handles one of the four types of stream con-
nection, i.e., B > K, B - B, K — B or K — K. The Type argument of
forward is in fact a binary list [T1,T2] indicating the type of connection

Coordination of Distributed and Parallel Activities in the IWIM Model 147

from both the sender’s and the receiver’s point of view. Upon receiving an
event to break connection forward decides as to whether simply wait until
the stream gets reconnected again (if the other side of the stream is a keep
connection) or totally dismantle the channel connection (if the other side
of the stream is a break connection) in which case it sends an appropriate
control tuple to the process handling the other end of the stream. For brevity
we do not show what happens when a process receives a disconnect event
although we get a glimpse of it in the next section describing the Fibonacci
program.

4.4. A concrete example. We now use the above described apparatus
to produce an IWIM-Linda version of the Fibonacci program of Section 2.
This is a concrete, albeit not particularly realistic, example whose purpose is
to put everything we covered in the previous sections into perspective. The
next section discusses the implementation of a more realistic test case.

The only computation process is the one performing the addition. For
simplicity we assume that it is IWIM-Linda compliant. Its code can be
written as follows.

sigma ()
{

while (1)

{

in("unit",x,?intl); in("unit",y,?int2);

if (safe to add numbers)

out ("unit”,out,intl+int2)
else { out("event",overflow); out("unit",out,error); break; }

}
}

sigma is written in the host language (C in this case) and it is IWIM-
Linda compliant in the sense that it recognises the concept of receiving
data from multiple (input in this case) ports, raises events (overflow) and
repeats the procedure by enclosing everything in an infinite loop. Otherwise,
it is an ordinary computation process unware of who sends it data, who (if
anyone) is receiving its output, how many producers and/or consumers are
connected by means of streams to its input and output ports, ete. We
stress again the fact that this need not be the case; a non-compliant gigma
which simply ins two data tuples and outs the result without recognising
ports, supporting repetition or raising of events can also function in an IWIM
fashion at the expense of creating a more elaborate monitor process than the
one shown below: the monitor would have to filter out all references to ports
from tuples, trap the raising of events from the underlying system software
(compiler, operating system, etc.) and reactivate sigma each time a new
pair of input data arrives at the default nominal input port. The monitor

148 Papadopoulos & Arbab

process for a compliant sigma follows promptly (some in-line optimisation of
code has been performed for the sake of brevity and clarity). Note that the
rest of the rules are written in KLIC and effectively implement the TWIM
functionality.

m_sigma([in("estbl_str",Self,x,Str_Id)|TS],
New_X_Strs,Y_Strs,0ut_Strs,Events,)
<- New_X_Strs=[(Str_Id,0)|X_Stre]l,
out ("ack_estbl_str",Self,Str_Id),
m_sigma(TS,New_X_Strs,Y_Strs,Out_Strs,Events,...).

m_sigma([in("estbl_str",Self,y,Str_Id)|TS],
X_Stre,New_Y_Strs,Out_Strs,Events,...)
<~ New_Y_Strs=[(Str_Id4,0)IY_Strs],
out ("ack_estbl_str",Self,S5tr_1Id),
m_sigma(TS,X_Strs,New_Y_Strs,Out_Strs,Events,...).

m_sigma([in("estbl_str",Self,out,Str_Id)|TS],
X_Strs,Y_Strs,New_0ut_Strs,Events,...)
<- New_Out_Strs=[(Str_Id,0)|Out_Strs],
out{"ack_estbl_str",Self,Str_Id),
m_sigma(TS,X_Strs,Y_Strs,New_Dut_Strs,Events,...).

m_sigma([in("unit*,Self,Port_Id,Stream_Id,Data,Index) |TS],X_Strs,...)
<~ Port_Id==x,
(Stream_Id,Index+1)@X_Strs
!
sigmalout("unit",x,Data),
Index’=Index+1,
New_X_Strs=[(Stream_Id,Index’) |X_Stre],
m_sigma(TS,New_X_Strs,...).

m_sigma([in("unit",Self,Port_Id,Stream_Id,Data,Index)|TS8],...,Y_Strs,...}
<= Port_Id==y,
(Stream_Id,Index+1)QY_Strs
f .
sigma!out ("unit",y,Data),
Index’=Index+1,
New_Y_Stre=[(Stream_Id,Index’) |Y_Strs],
m_sigma(TS,...,New_Y_Strs,...).

m_sigma([Self?out ("unit",Port_Id,Data) |Rest],...,0ut_Strs,)
<= Port_Id==out
i

Coordination of Distributed and Parallel Activities in the IWIM Model 149

send_out (Data,Self,Port_Id,Qut_Strs,New_Out_Strs),
m_sigma(Rest, ... ,New_Out_Strs,...).

m_sigma([Self?out("event",Type) |Rest],...,EventsRaised,...)
<~ (Type,Index)@FventsRaised
]
out("event",Type,Self,Index+1),
New_Events_Raised=Events_Raised.(Type,Index+1),
m_sigma(Rest,...,New_Events_Raised,...).

/* token clause to illustrate the handling of events;
in practice there are many clauses here */
m_sigma([rd("event",halt,Process_Id,_)|TS],X_Strs,Y_Strs,Out_Strs,...)
<- BSelf!in("event",halt).

The next set of rules implement an IWIM “variable” needed in the
example; these special types of processes are in practice implemented at
a lower level for the sake of efficiency. Note that there is no need to keep
the value of the variable as a parameter to the coordinator process since
assignment can be realised by means of feeding the contents of the out port
back to the in port. Also, we choose to support no indices since attaching
multiple streams to the in port would be logically obscure. Due to the
simplicity of the process, there is no need for an associated computation
process.

variable{[in("estbl_str",Self,in,Str_Id) |TS],In_Strs,Out_Strs,Events)
<- New_In_Strs=[(Str_Id,0)|In_Strsl,
out("ack_estbl_str",Self,Str_Id),
variable(TS,New_In_Strs,Out_Strs,Events).
variable([in("estbl_str",Self,out,Str_Id)|TS],In_Strs,Out_Strs,Events)
<= New_Cut_Stres=[(Str_Id,0)|0ut_Strel,
out ("ack_estbl_str",Self,S5tr_Id),
variable(TS,In_Strs,New_Dut_Strs,Events).

variable([in("unit",Self,in,Stream Id,Data,_)|TS],In_Strs,Cut_Strs,Events)
<- (Stream_Id,_)0In_Strs
| !
send_out (Data,Self,out,0ut_Strs,New_Cut_Strs),
variable(TS,In_Strs,New_Out_Strs,Events).

variable([in("event",halt,Process_Id,_) |TS],In_Strs,0ut_Strs,Events)
<~ out("event",ack_halt,Self,_).

We end this section with the description of the coordinator process re-
sponsible for setting up the whole apparatus. We urge the reader at this

150 Papadopoulos & Arbab

point to notice the benefits of using a concurrent logic notation to express,
naturally, the concurrency involved in the activities performed by the coor-
dinator process. '

wmain(TS)} <- out(“"estbl_str",variablel,out,StrId1},

out ("estbl_str",sigma,x,Stridl), /% v0->sigma.x */
out ("estbl_str",variablel,out,StrId2),
out("estbl_atr",sigma,y,StrId2), /* vi->sigma.y */
out(“estbl_str",variablel,out,StrId3),

out ("estbl_str",variable0,in,StrId3), /% vi->v0 %/

out ("estbl_str",sigma,out,StrId4),

out ("estbl_str",variablel,in,StrIid4), /* sigma->vi */
out ("estbl_str",sigma,out,StrId5),

out ("estbl_str",print,in,Strids), /% sigma->print #/

mainl(T8,variable0,variablel,sigma,print,
StrIdl,StrId2,Strld3,StrId4,StrIdb).

maini ([in("ack_estbl_str",variablel, StxrIdi),
in("ack_estbl_str",variable(,StrId3),...|TS],...) /* rest of acks */
<- forwerd(TS,variable0,out,sigma,x,Strld1,0,0,[b,k],...),
forward(TS,variablel,out,sigma,y,StrId2,0,0, [b,k],...),
forward(TS8,variablel,out,variablel,in, StrId3,0,0,[b,k]1,...),
forward (TS, sigma,out,variable,in,5trId4,0,0, [b,Xk],...),
forward (TS, sigma,out,print,in,5tr1ds,0,0, [b,k],...),
detect_event (TS, [(main,halt), (sigma,overflow),...1,...).

main sends out the control tuples to establish the stream connections
between the processes involved in the coordination activities. It then calls
mainl which waits for the relevant acknowledgment messages to be sent
back to it by the processes in question, signifying that the requested stream
connections have been established. It then spawns a number of forward
processes and a detect_events process having the functionality described
in the previcus subsections. For instance, once an overflow event is raised
by sigma detect_events sends out a halt control tuple to signal termina-
tion of the stream connections and thus the whole spectrum of computation
and coordination activities. Upon observing the raising of halt, the mon-
itor process sends back an acknowledgment message and clears all stream
connections effectively suspending the execution of the corresponding com-
putation process. No data units will flow into or out from that process until
new stream connections have been established according to the procedure
described in the previous section (the actual procedure followed is in fact
more complicated involving the termination and restarting of the process
but it is not shown here for brevity).

We recall that the complete separation of computation and coordina-
tion/communication activities enhances the reusability of both groups. Our
Fibonacci series example above, being a rather specialised one, is not the
ideal candidate for illustrating this point. Even so, one can notice that
sigma behaves as some sort of possibly specialised merger receiving from

Coordination of Distributed and Parallel Activities in the IWIM Model 151

two input streams and producing a single output stream after performing
some computation activities. Thus, a more general sigma could be the
following:

sigma{err_gig)
{
while (1)
{
in("unit",x,datal); in("unit",y,data?};
compute results;
if (all_ok)
out ("unit",out,results)
else { cut("event",err_sig); out("unit",out,error); break; }

}
}

The IWIM coordination framework as it was realised before (i.e., the
set of concurrent logic programming rules) remains unchanged (we assume
only that detect_events has a rule that will handle err_sig). In fact,
even the name sigma can be factored out by using some suitable predicate
name building operator which is offered by any standard concurrent logic
programming environment, thus supporting the notion of parameterised co-
ordinators which in MANIFOLD are called manners [6]. In that way, we
can reuse the concurrent logic programming component for many similar
coordination patterns. We have more to say about this in the next section.

A couple of points must be addressed at this stage however. The first has
to do with comparing the MANIFOLD version of Section 2 with the IWIM-
Linda version just described. One can hardly miss noticing the complexity
of the latter and therefore wonder as to whether the approach advocated in
this paper is really worth pursuing. We believe it is for the following reasons:
(1) The simplicity of the first version is deceptive; the MANIFOLD version
is syntactically simple but it invokes the underlying abstract machine whch
takes care of all these details which precisely come out in the open when a
high-level realisation of IWIM is sought. (ii) Furthermore, as we discussed
at some length in Section 3 and we will discuss again in Section 5, if one
wants to employ sophisticated coordination patterns on top of the vanilla
Linda model (a purpose, we believe, worth pursuing), one must be ready to
accept the extra overhead incurred. However, we admit that one should also
be concerned about expressiveness vs efficiency tradeoffs.

Which takes us to the second point in question: there is no reason why
our IWIM rules cannot be interfaced to a general purpose Linda optimiser
(such as the ones reported in [1,10,25]} which can draw upon its functionality
and optimise certain operations. For instance, the system can recognise that
outed tuples which constitute an IWIM channel or stream will be ined by a
single process (by virtue of the IWIM functionality) and act appropriately.

152 Papadopoulos & Arbab

Or, that a pair such as <in("estbl str", Source, Target, StrIdi),
out("estbl.str", Source, NewTarget, StrId2)>> which is used in the
example of the following section to reconfigure stream connections, can be
treated like a shared variable. Much of the functionality of the IWIM rules
can already be mapped to predefined and more efficiently treated idioms or
templates of tools such as the Linda Program Building Tool [1]; the rest can
be taken care of by extending this or other similar tools.

4.5. A realistic case. The previous example served primarily to pro-
vide a detailed description of our framework. In this section we present the
most important pieces of code for a rather more realistic example, its purpose
being to highlight the reusability aspect of the coordination subcomponent
of a non-trivial application. However, we also take the opportunity to intro-
duce some additional important functionality such as the reconfiguration of
streams required in dynamically evolving patterns of communication.

Our example is an adaptation and simplification of the one presented in
[6] and involves the development of a bucket sorting program. There exists a
sufficiently large number of atomic sorters, each atomic sorter a; being able
to sort very efficiently a bucket of k; units (where, in fact, the number k; may
vary dynamically from one sorter to the next). Each atomic sorter receives
the units to sort in its (default) input port, sorts them and produces the
sorted sequence through its (default) output port. If its receives more than
the k; units it can handle efficiently, it raises the event £illed to signify that
its bucket is now full. Upon detecting the presence of filled, a coordinator
process spawns another atomic sorter to handle the rest of the stream of units
to be sorted as well as an atomic merger process which will merge the partial
results of the old and the new sorter. Figure 3(a) shows the configuration
with one sorter and 3(b) how the configuration evolves when a second sorter
is added to the apparatus. Note that the whole procedure recurs and it is
thus possible to have a number of sorters, all of them feeding their output to
mergers and the latter (via a number of intermediate mergers) to the output
process.

The psedo C-code for an IWIM-Linda compliant atomic sorter could be
something like the following:

bucket_sort ()
{

int num_read=0, next_num=0, nums[LIMIT];

while (next_num<LIMIT) /* sorts efficiently LIMIT nums */
{

in("unit",input,7num_read);

nums [next_num] =num_read;

next_numt+;

1

Coordination of Distributed and Parallel Activities in the IWIM Model 153

out("event”,filled); /* bucket is full */
<sort numbers>
for (next_num=0; next_num<LIMIT; next_num++;)

out ("unit",output,nums [next_num]);

}

Note that <sort numbers> refers to that part of the code which actu-
ally performs the sorting (it could in fact be a call to a purely computation
function); it is not included here since the emphasis of the example is on
how the various major components of the application get coordinated rather
than on what they precisely do or how they do it.

We will not show the respective monitor process for bucket_sort()
which is very similar to the ones presented for the previous example. Instead,
we move directly to the presentation of the coordination process and we show
the top clause.

coord_sorter(Ts,Prod_data, [Paramsl], /* input process in fig. 3 */
Comp_res, [Params2], /* sorter process in fig. 3 »/
Arrange_res, [Params3], /+ merge process in fig. 3 */
Cons_res, [Params4], /* output proceas im fig. 3 */
[Events_List], /% includes *filled’ */
cea) <=

call(Prod_data,Paramsl), call(Comp_res,Params2),
call(Arrange_res,Params3), call{Cons_res,Paramsd),
out ("estbl_str" ,Prod_data,out,StrIdl),

out("estbl_str",Comp_res,in,StrIdi), /* input -> sorter =/
out {"estbl_str",Comp_res,out,3trld2),
out ("estbl_str",Cons_res,in,Strld2), /* Borter -> output */

coord_sorteri(...).

coord_sorterl{[in("ack_estbl_str",Prod.data,out,Strld1),
in("ack_estbl_str",Comp_res,in,StrIdl)
in("ack_estbl_str",Comp_res,out,StrId2)
in{"ack_estbl_str",Cons_res,in,Strld2),...IT8],...)
<- forward(TS,Prod_data,out,Comp_res,in,StrId1,0,0,[b,k],...),
forward (TS, Comp_res, out,Cons_res,in,Str1d2,0,0,[b,k],...),
detect_event (TS, [{Comp_res,filled),...],...).

As for the case of the Fibonacci series example above, the top level
coordinator spawns and activates the application components and sets up
and activates the stream connection. Note that initially there is no merger
process; this will appear once the raising of the event £illed by the sorter
process has been detected by the coordinator.

The careful reader may have already noticed that we do not “hard-
wire” into the code the processes involved (i.e., input, sorter, merge and
output) but rather we pass them as arguments to the coordinator process
and the latter spawns them as processes by means of using a metacall facil-
ity available in all logic programming frameworks. In fact, the same is done

154 Papadopoulos & Arbab

@ (Linput }—{ sorter [—{ o)
D o I b

sorter

sorter — b

Fi1G. 3.

for the events involved in the scenario (namely filled). The reason for
doing so will become apparent later on. We now show how the dynamic
evolution of the configuration from the one shown above (which represents
the scenario of Fig. 3(a)) to the one involving the spawning of another atomic
sorter and a merger (which represents the scenario of Fig. 3(b)) is achieved.

detect_event (T3, (Comp_res,filled), /* detect raising of ’filled’ */
Prod_data, [Paramsi],
New_Comp_res, [Params2],
Arrange_res, [Params3],
Cons_res, [Parame4d],

cel) <=
call(New_Comp_res,Params2), /* spawn new sorter */
call(Arrange_res,Params3), /* and a merger */
in("eatbl_str",Comp_res,in,Stridl), /% break off existing */
in("estbdl_str",Comp_res,out,StrId2), /* stream configurations */

in("estbl_str",Cons_res,in,StrId2),

/* and establish new ones */
out ("estbl_str",New_Comp_res,in,Strldl), /+ input -> new_sorter */
out ("estbl_str",New_Comp_res,out,5trId3),
out ("estbl_str",Arrange_res,a,Strld3), /* new_sorter -> merge.a */
out("estbl_str",Comp_res,ocut,StrIdd),
out("estbl_str",Arrange_res,b,Strid4), /* sorter -> merge.b */
out ("estbl_str”,Arrange_res,out,StrIds),
cut{"estbl_str",Cons_res,in,StrIds), /* merge -> output */
coord_sorter2(...).

coord_sorter2{[in("ack_estbl_str",...),...],...|T8],...)
<- forward(TS,...),...,
detect_event(...). /* recur */

Once the raising of the event filled by Comp_res has been detected, a
new Comp_res and an Arrange res (namely merge) processes are spawned,
the old stream connections are broken off and new ones are established.

Coordination of Distributed and Parallel Activities in the IWIM Model 155

The functionality of coord_sorter?2 is similar to that of coord.sorterl and
there is no point in presenting its code in detail.

We notice once more that the coordination pattern just described is com-
pletely independent of the computation processes involved. In fact, as far as
our coordination “laws” are concerned, little matters if the (atomic compu-
tation) processes involved perform sorting, merging or anything else. The
benefits accruing from this complete decoupling of the computation from
the communication/coordination component that TWIM encourages and en-
forces become apparent if we consider the following optimisation problem:

max z = x2 + y° — 0.5 * cos(18 * y) with (x,y) in the range [~1.0, 1.0]

These types of problems are usually solved by means of domain decompo-
sition techniques where a grid on the domain of the function is imposed
splitting it into a number of sub-domains, as determined by the size of the
grid. Next, good rough estimates for the highest values of z are obtained,
they are further decomposed into smaller sub-domains and the whole proce-
dure recurs until a sufficiently good estimate for z has been obtained.

In order to implement the above technique we need three main com-
putation processes as follows. A split process receives as its parameters
the specification of a grid (say 6 x 6) and, through its input port, a unit
that describes a (sub-) domain and produces through its output port units
describing the sub-domains obtained by imposing the grid on this input do-
main before terminating. The ith instance of a third process, eval, reads a
bucket of k; > 0 sub-domains via its input port and raises a specific event
that it receives as a parameter, to inform other processes that it has filled up
its input bucket with some sub-domains descriptions. It then finds the best
estimate for the optimum z value in each of its sub-domains, producing an
ordered sequence of units describing the best solutions it has found through
its output port and terminates. Finally, a third process merge reads from its
input ports a and b two ordered sequences of units describing sub-domains
and their best estimates, and produces a sequence of one or more of its best
sub-domains on its output port.

We need a coordination rule to coordinate the cooperation of eval and
merge to solve the optimisation problem in a parallel/distributed fashion. It
should feed units describing (sub-) domains from a split to an eval process
up to the latter’s limit and feed the rest to a new eval process before merging
the two outputs and forwarding them to an output process. It is obvious that
this functionality is almost identical to the one performed by coord sorter
above. Thus the coordination protocol of the domain decomposition example
can be realised simply as follows:

coord_eval(TS) <- coord_sorter{(split,[6,6],eval, [],merge,[],output,[],...),
forward (TS, [1,[1 »8plit,in, _,0, [1,-1.0,-1.0,1.0,1.0],...).

156 Papadopoulos & Arbab

6. Conclusions — related and further work. Conceptually, IWIM
and Linda are very different models of coordination. At some fundamental
level, they can be considered to be “equivalent” in the sense that each can
emulate the other. They both provide symmetric primitives for anonymous
communication. Linda provides a single shared dataspace as the univer-
sal medium of (asynchronous) communication among all processes, whereas
IWIM provides (both synchronous and asynchronous) private channels. One
major difference between the two is that Linda is data-oriented, whereas
IWIM is a control-oriented model. The main advantage of IWIM is that
it supports a clean separation of computation and coordination concerns
into different program modules and encourages the decomposition of both
computation and coordination tasks into hierarchies of small, reusable pure
computation modules and small, reusable pure coordination modules. Fur-
thermore, IWIM explicitly models the fate of “pending messages” in an asyn-
chronous communication: a practically significant aspect of the behaviour of
some real systems that is often neglected or made implicit in other models.

Whereas the generative communication advocated by Linda and vari-
ants is well suited to data-oriented applications, it is cumbersome to use in
control-oriented ones [12]. Thus, the software engineering advantages inher-
ent in the IWIM model makes it worthwhile to consider its implementation
on top of Linda (and, more generally, in terms of the Shared Dataspace
family of coordination models). Essentially, this involves overcoming and
programming around most of the very same deficiencies in the vanilla Linda
model faced by other researchers and practitioners reported in the literature.
The derivation of what we refer to as the IWIM-Linda formalism has been
the purpose of this paper.

Asg such, our work is directly related to a whole spectrum of research
activities regarding the development of coordination models and languages
[11]. Although we share the basic principles on which the other coordination
frameworks are based, we pay particular attention to the issue of a clear and
complete separation between computation and coordination/communication
activities. We believe that an application should consist of a number of mod-
ules that clearly separate these two categories of activities; coordinator mod-
ules can in fact be reused with different computation ones. From this point
of view, one can notice some major differences between Linda (or any other
similar paradigm for that matter) on the one hand and IWIM-based for-
malisms such as IWIM-Linda on the other. The Linda model addresses only
part of the underlying concerns of the IWIM family of coordination models.
There is a symmetry between the communication primitives in Linda, and
the communication between processes is accomplished anonymously through
the Tuple Space. However, there is nothing to prevent complete mixing of
communication concerns with computation. There is no clear separation of
workers and managers, as in the IWIM family. Unlike Linda and similar

Coordination of Distributed and Parallel Activities in the IWIM Model 157

models, the IWIM philosophy encourages programmers to develop “pure
coordination modules” in their applications. This manifests the result of the
substantial effort invested in the coordination component of an application
in a tangible form as modular “pure coordinators” which can be reused by
other applications.

Another significant difference between the underlying models of Linda
and IWIM is that the former can be characterised as a more data-oriented
one whereas the latter is a more control-oriented approach to coordination of
the cooperation among concurrent processes. Because there is (conceptually)
one flat Tuple Space in Linda, it is difficult to write meta-coordinators (i.e.,
coordinators that coordinate coordinators). Meta-coordinators however can
be supported also by IWIM-Linda by means of techniques reminiscent of the
ones used in creating multiple (and private to subsets of processes) Tuple
Spaces (see relevant discussion below).

Our work is also in the spirit of [15] where the separation between com-
putation and coordination/communication is also recognised as useful and
enforced by means of synchroniser objects which are responsibie for the
coordination of ordinary computation ones. However, there are also some
important differences: (i) we emphasize the complete lack of knowledge that
some coordinated process need have about other fellow processes; (i) our
model is event driven whereas the one proposed in [15] is constraint based;
(iii) the work presented here is effectively an abstraction of an already ex-
isting (and therefore tested) concrete programming environment [5] whereas
115] presents a high-level proposal whose implementation is under way. An-
other major difference between the two models is that synchronisers are
different from the associated computation objects which means they cannot
be used as normal objects, whereas in IWIM-Linda coordinators and worker
processes behave in the same way and no external observer can distinguish
between the former and the latter. Thus, it is a lot easier to compose hierar-
chies of IWIM-Linda coordinators than similar hierar lies of synchronisers.
However, both schemes offer a compositional approach in the (re)use of
coordinator code.

Our work is also somewhat similar in nature to Law-Governed Linda [18]
where, again, Linda is enhanced with extra functionality in order to support
some desirable features such as secured communication, the lack of which had
been noted earlier by other researchers, and to enforce other constraints. In
Law-Governed Linda, laws regulate the interactions of individual processes
with the shared Tuple Space (and therefore with each other), analogous to
the manner in which social laws do, e.g., secure financial transactions in the
market place. In effect, laws in Law-Governed Linda establish various forms
of secure message passing as well as multiple Tuple Spaces. Every process
has a controller that acts as the mediator between it and the Tuple Space to
ensure its compliance with the laws of the system. The laws are expressed

158 Papadopoulos & Arbab

in a restricted version of Prolog much in the same way that our IWIM-Linda
coordinators are written using the concurrent logic programming notation.
There is a good deal of similarity in the conceptual level of complexity of
controllers and laws in Law-Governed Linda as compared to their analogous
coordinators in IWIM-Linda. The notion of events in Law-Governed Ar-
chitectures [17] in general, and in Law-Governed Linda in particular, and
their role in coordination is also similar to the event mechanism supported
by IWIM-Linda. Finally, the capability-based message passing mechanism
of Law-Governed Linda resembles communication through ports in TWIM-
Linda.

Some of the issues and associated problems just mentioned are addressed
also by Bauhaus Linda, a generalisation of the vanilla model where the no-
tions of tuple and Tuple Space are unified into the single notion of a multiset
[13]. This generalisation both simplifies Linda and, simultaneously, makes it
more powerful and expressive. Bauhaus Linda makes no distinction between
passive and active objects. The concept of multisets allows multiple Tuple
Spaces, as well as protected, safe, private communication. It is possible to
have a hierarchy of multiple Tuple Spaces in Bauhaus Linda; this means
that, as in IWIM-Linda, we can form meta-level coordinators. However, as
in Linda, Bauhaus Linda does not enforce a separation of computation and
coordination/communication concerns. Pure coordination and computation
modules can be constructed in Bauhaus Linda, due to the availability of mul-
tiple Tuple Spaces and private communication through multisets, although
there are no linguistic features to enforce or even encourage such a style
of programming. In contrast, in IWIM-Linda this should be the only way
to orchestrate the cooperation and communication between the coordinated
components.

All in all, we notice that some of the ingredients of what constitutes
IWIM-Linda can already be found in other proposed extensions of the vanilla
model, even if the IWIM philosophy is not highlighted, explicitly enforced
or encouraged. Thus, one can use the already developed know-how, coupled
with the concepts contributed in this paper to develop a practical and effi-
cient concrete IWIM-Linda environment. As we have said already, the pro-
posed framework is currently under development using C-Linda and KLIC
[14] to write the monitor and coordination processes. This implementa-
tion will be used not only to assess the practicality of our approach in the
Linda context but also to compare it with a concrete realisation of IWIM,
namely MANIFOLD. In the process, we will examine ways to derive a min-
imal TWIM subset which provides the required functionality; for instance,
in practice we may not need in the IWIM-Linda context all five kinds of
stream connections. In addition, we recall that the code written in KLIC,
which is independent of any computation language as well as coordination
model, effectively forms a set of coordination skeletons [23]. These skeletons

Coordination of Distributed and Parallel Activities in the IWIM Model 159

can in fact be used as add-on IWIM coordinators in other models, thus pro-
viding the basis to extend the implementation work in ways that the more
theoretical comparison described below may dictate.

This paper is only the tip of the iceberg regarding the relationship be-
tween IWIM and other coordination models and languages. We are currently
pursuing an extensive study of other coordination models and languages
(3,7,11,15,19,21,23,24| with the aim of deriving IWIM-like versions of them
that, within the philosophy advocated by each such model, also support
IWIM’s basic principles. Also, a reverse study of how the basic functional-
ity of other coordination models and languages can be modelled within the
IWIM philosophy is also interesting in assessing the expressiveness of the
latter.

Finally, one notices that there are some interesting similarities between
IWIM and the family of Module Interconnection Languages [20]. An inter-
esting line of research would be to examine whether IWIM can be used as
the basis for a formal analysis of MILs’ functionality.

Acknowledgement. Part of this work was done while the first au-
thor was visiting CWI as part of the ERCIM-HCM Fellowship Programme
financed by the Commission of the European Community under contract
no. ERBCHBGCT930350. This work has also been partially supported by
the INCO-DC KIT (Keep-in-Touch) program 962144 “Developing Software
Engineering Environments for Distributed Information Systems”, financed
also by the Commission of the European Union.

REFERENCES

[1] 8. Ahmed, N. Carriero and D. Gelernter, “A program building tool for parallel appli-
cations”, DIMACS Workshop on Specifications of Parallel Algorithms, Princeton
Univ., May 1994.

[2] 8. Ahuja, N. Carriero and D. Gelernter, “Linda and friends”, IEEE Computer 19(8),
26 (1986).

[3] J.-M. Andreoli and R. Pareschi, “Linear objects: logical processes with built-in inher-
itance”, New Generation Computing 9{3-4), 445 (1991).

[4] F. Arbab, “The IWIM model for coordination of concurent activities”, First Interna-
tional Conference on Coordination Models, Lenguages and Applications (Coordi-
nation’96), Cesena, Italy, 15-17 April 1996, LNCS 1061 (Springer Verlag, 1996),
pp. 34-56.

[5] F. Arbab, I. Herman and P. Spilling, “An overview of manifold and its implementa-
tion”, Concurrency: Practice and Exzperience 5(1), 23 (1993).

[6] F. Arbab, C. L. Blom, F. J. Burger, and C. T. H. Everaars, “Reusable coordina-
tor modules for massively concurrent applications”, EUROPAR’96, Lyon, France,
27-29 Aug. 1996 (Springer Verlag, 1997), pp. 664-677.

[7] J.-P. Banatre and D. Le Metayer, “The GAMMA model and its discipline of
programming”, Science of Computer Programming 15, 55 (1990).

160 Pepadopoulos € Arbab

(8] S.

[10] N.

[11] N.

[12] N.

[13] N.

[14] T.

Bijnens, W. Joosen and P. Verbaeten, “Sender-initiated and receiver-initiated
coordination in a global object space”, Object-Based Models and Languages for
Concurrent Systems, Bologna, Italy, 5 July 1994, LNCS 924 (Springer Verlag,
1995), pp. 14-28.

- Brogi and P. Ciancarini, “The concurrent language shared-prolog”, ACM Trans.

on Programming Languages and Systems 13(1), 99 (1991).

Carriero and D. Gelernter, “New optimization strategies for the Linda pre-
compiler”, in Linda-Like Systems and their Implementation, Edinburgh Parallel
Computing Centre, Technical Report 91-13, 1991, pp. 74-83.

Carriero and D. Gelernter, “Coordination languages and their significance”,
Commun. ACM 35(2), 97 (1992).

Carriero, D. Gelernter and S. Hupfer, “Collaborative applications experience with
the Bauhaus coordination language”, $0th Haweii International Conference on
System Seiences (HICSS-30), Maui, Hawaii, 7-10 Jan. 1997 (IEEE Press, 1997),
Pp. 310-319.

Carriero, D. Gelernter and L. Zuck, “Bauhaus Linda”, Object-Based Models
and Languages for Concurrent Systems, Bologna, Ttaly, 5 July 1994, LNCS 924
(Springer Verlag, 1995), pp. 66-76.

Chikayama, “KLIC User’s Manual”, ICOT, Japan, Oct. 1994, software obtained
from http://www.icot.or.jp/ICOT /IFS/IFS-abst/ ifs-catalogue.html.

(15} 8. Frelund and G. Agha, “A language framework for multi-object coordination”, Eu-

16} T.

[17] N.

18] N.

[19] M.

[20] M.

ropean Conference on Object-Oriented Programming (ECOOP’93), Kaiserslautern,
Germany, 26-30 July 1993, LNCS 707 (Springer Verlag, 1994}, pp. 346-360.
Kielmann, “Designing a coordination model for open systems”, First Interna-
tional Conference on Coordination Models, Languages and Applications (Coordi-
nation’96), Cesena, Italy, 15-17 April 1996, LNCS 1061 (Springer Verlag, 1996),
PP. 267-284.

H. Minsky, “The imposition of protocols over distributed systems”, IEEE Trans-
actions on Software Engineering 17(2), 183 (1991).
H. Minsky and J. Leichter, “Law-Governed Linda as a coordination model”, Object-
Based Models and Languages for Concurrent Systems, Bologna, Italy, 5 July 1994,
LNCS 924 (Springer Verlag, 1995), pp. 125-145.

Rem, “Associons: A program notation with tuples instead of variables®, ACM
Transactions on Programming Languages ond Systems 3(3), 251 (1981).

D. Rice and S. B. Seidman, “A formal model for module interconnection
languages”, IEEE Transactions on Software Engineering 20, 88 (1994).

[21] G.-C. Roman and H. C. Cunningham, “Mixed programming metaphors in a shared

[22]

=

[23] D.

[24] A.

[25] G.

dataspace model of concurrency”, IEEE Transactions on Software Engineering
16(12), 1361 (1990).

. Y. Shapiro, “The family of concurrent logic programming languages”, Computing

Surveys 21(3), 412 (1989).

B. Bkillicorn, “Towards a higher level of abstraction in parallel programming”,
Progremming Models for Massively Parallel Computers (MPPM’95), Berlin,
Germany, 9-12 Oct. 1995 (IEEE Press, 1996), pp. 78-85.

Tanenbaum, F. Kaashouek and H. Bal, “Parallel programming using shared objects
and broadcasting”, IEEE Computer 25(8), 10 (1992).

Wilson, “Improving the performance of generative communication systems by
using application-specific mapping functions”, in Lindae-Like Sysiems and their
Implementation, Edinburgh Parallel Computing Centre, Technical Report 91-13,
1991, pp. 129-142.

