International JI. on E-Learning (2008) 7(2), 219-243

Towards an Object-Oriented Model for the Design
and Development of Learning Objects

CHRYSOSTOMOS CHRYSOSTOMOU AND GEORGE PAPADOPOULOS
University of Cyprus, Cyprus
chrisc@ucy.ac.cy
george(@cs.ucy.ac.cy

This work introduces the concept of an Object-Oriented
Learning Object (OOLO) that is developed in a manner sim-
ilar to the one that software objects are developed through
Object-Oriented Software Engineering (OO SWE) tech-
niques. In order to make the application of the OOLO feasi-
ble and efficient, an OOLO model needs to be developed
based on Object-Oriented (OO) concepts. A sample OOLO
model of inheritance is used to demonstrate the application of
such Learning Objects (LOs) to a learning scenario. The ben-
efits of this model are quantified in terms of savings on the
number of new LOs that need to be developed and savings on
metadata entry. Additionally, benefits extend to the quality of
new LOs due to the automatic application of standards and
the increased compatibility among LOs (due to inheritance)
and the increased extendibility and functionality of LOs due
to the OO characteristic of method and data encapsulation
and polymorphism, which also make OOLOs more adaptable
to the varied teaching styles. The study goes on to examine
existing LO design and development models as well relevant
tools and assesses the ability of these models and tools to
implement the OOLO concept. The study concludes by sum-
ming up the benefits that can be realized by the development
of OOLOs and by outlining the work that needs to be done for
achieving the application of OO techniques to LOs.

After e-learning had become popular through the use of electronic courses
delivered through the Web, the researchers in the area were concerned with the
inflexibility of those courses, as they were very time consuming, costly to
build, and they were not reusable. The researchers have shown that the most

mailto:chrisc@ucy.ac.cy
mailto:george@cs.ucy.ac.cy

220 Chrysostomou and Papadopoulos

efficient way to deal with this problem was to break the courses down into
smaller self-contained modules that could be archived and reused whenever
they were needed. In this way instead of creating everything from scratch every
time a new course was needed, the e-learning developer could just select a
number of existing course modules, add some new ones if necessary, and
assemble them into a new course. Probably influenced from their counter-parts
in Object-Oriented Software Engineering (OO SWE) — the software objects —
these course modules were called Learning Objects (LOs). Although LOs form
an attempt to offer to e-learning the benefits that software objects offered to
SWE (i.e., reusability, extensibility, efficiency, etc.), it is argued that LOs are
not truly Object-Oriented (OO) as they lack important characteristics of OO
theory such as inheritance, abstraction, polymorphism, and so forth (Sosteric &
Hesemeier, 2002), and consequently they cannot offer the same benefits. A
number of authors have supported the idea of applying to Los, design tech-
niques that have so far been applied to SWE. Poulton (2005) for example stat-
ed: “Applying software engineering principles in the development of learning
objects will bring the benefits of proven software design methods for reusabil-
ity into the field of education content.” Douglas (2001) argues: “Object-orient-
ed software engineering is proposed as a useful basis for new thinking in
instructional design methodology.” Retalis (2003) commenting on Rehak and
Brooks mentioned: “The authors suggest that we need better descriptive mod-
els such as CLEO [Customized Learning Experiences Online] or educational
modeling languages such as EML. Not only that. We also need better design
models for the authoring/aggregation of learning content.”

This article follows an introductory work on recent e-learning develop-
ments and trends (Chrysostomou & Papadopoulos, 2005), and aims to lay
down the root towards an OO model for LO design and development. In one
section there is an analysis of the concept of an LO, followed by a section
on an analysis of how OO concepts may link to LOs. In the next section
there is a reference to the technical and cultural difficulties of using LOs and
an outline of ways in which these difficulties may be overcome by applying
OO techniques. In another section a learning scenario that requires the appli-
cation of LOs is described and then the processes of applying both tradi-
tional LOs and OOLOs to that scenario are explained. A sample LO inheri-
tance model is used to demonstrate the application of the OOLOs to the sce-
nario. The benefits of applying OOLOs are quantified in terms of effort sav-
ings in the creation of new LOs, mostly offered by the inheritance of LO
structures and metadata. In the next section, the requirements for an OOLO
design and development model and a relevant tool are outlined, followed by
a comparative evaluation of existing LO models and tools against those fea-
tures. The article concludes by summarizing the main benefits that can be
offered by applying OO techniques to LOs, and the work that needs to fol-
low in order to implement an appropriate OOLO model.

Object-Oriented Model for the Design and Development of Learning Objects 221

THE DEFINITION OF A LEARNING OBJECT (LO)

The Institute of Electrical and Electronics Engineers (IEEE) Learning
Technology Standards Committee (LTSC) has defined a Learning Object as
“...an entity, digital or nondigital, that may be used for learning, education
or training” (IEEE LTSC, n.d.). This definition, although it gives a good
understanding of the idea of an LO, it leaves quite a few details undefined
allowing disagreements on a number of matters regarding LOs. Such mat-
ters include mainly the granularity (the size of an LO) and its structure (the
components that make up an LO).

A collective attempt to better define different aspects regarding LOs, such
as their granularity and structure, has been done by a number of standards
organizations (IEEE, Instructional Management Systems [IMS], Aircraft
Industry Computer-Based Training Cosortium [AICC]) that have joined
forces with the initiative of the Advanced Distributed Learning consortium
(ADL) and have created a library of such standards called the Sharable Con-
tent Object Reference Model, widely known as SCORM. In one of the
SCORM sections (or books), the SCORM Content Aggregation Model
(CAM), issues of LO granularity and structure are dealt with. More specifi-
cally the SCORM Content Model defines the components that make up
SCORM conformant learning resources and the way in which these compo-
nents are aggregated. There are five aggregation levels within the SCORM
content model: asset, Sharable Content Object (SCO), activity, content organ-
isation, and content aggregation. An asset is the most basic form of a learn-
ing resource (text file, image, video, audio, html file, animation, etc.). An
SCO is a collection of one or more assets. An SCO is the lowest level of gran-
ularity of a learning resource that can be tracked by a Learning Management
System. An SCO is the SCORM equivalent of an LO. Assets and SCOs make
up the learning resources. Learning resources link to structured units of
instruction called activities. Activities (shown in Figure 1 as “items”) may be
nested within other activities (only the lower level activities link to
resources). A set of activities makes up the content organisation, and the
whole pack of activities and resources is called the content aggregation.

SCORM also defines the way in which learning content should be pack-
aged through the Content Packaging specification. This specification aims in
providing a standardised way to exchange learning content between the
authoring tools, learning content repositories and learning content manage-
ment systems. A Content Package (Figure 2) contains two major compo-
nents, the manifest (an XML document describing the content structure and
associated resources of the package including metadata) and the physical
files (the learning content).

One of the most important parts of an LO is its metadata. Metadata is the
information that accompany the content, according to SCORM, it is part of

222 Chrysostomou and Papadopoulos

| Content Organization]
i \\ N
4 NG
Organization
[1tem |

|
=

Resource Reso
_‘E (Asset) (Asse

Resource
—@ »_(sco)

| Activities | | Resources |

Figure 1. The different aggregation levels of content components and the
relations between them as represented in the SCORM CAM
(figure from ADL SCORM)

Content Package—— Manifest
Meta-data
Organizations

Manifest File
(imsmanifest.xml) =—t=j» Resources

(sub)Manifest(s)

Physical Files

(The actual Content, Media,
Assessment, and other file)

Figure 2. The components of a SCORM Content Package
(figure from ADL SCORM)

Object-Oriented Model for the Design and Development of Learning Objects 223

the manifest file (Figure 2), and it enables interaction with an LO by sup-
plying information about it (such as subject, date, length, learning objective,
description, type, language, etc.). The specification of LO metadata has been
standardised by the IEEE Learning Technology Standards Committee
(LTSC) in 2002 through the Learning Object Metadata (LOM) standard
(IEEE standard 1484.12.1; IEEE LTSC LOM, n.d.). The LOM standard
(also part of SCORM) defines the data that could be used to fully describe
each LO and groups it into nine categories, which group data into a hierar-
chy of data elements. Data elements may be aggregate data elements or sim-
ple data elements. Aggregate data elements are basically subcategories that
include more data elements. Simple data elements are the lowest level data
elements (the leaf nodes of the hierarchy). Each simple data element is
described by a unique identifier, a name, an explanation, its size, order
(whether the order is significant or not), its value space, its datatype, and an
example. Figure 3 illustrates part of the LOM Base Schema. Data element 1
defines the high level category “General.” Data element 1.1 is an aggregate
data element. Data elements 1.1.1 and 1.1.2 are simple data elements for
which value space, datatype, and an example are defined. The complete set

Nr |Name |Explanation Size Order Value |Datatype Example
space

1 General | This category groups |1 Unspecified |-
the general informa-
tion that describes
this learning
object as a whole

1.1 |ldentifier| A globally unique Smallest | Unspecified |-
label that identifies | permitted
this learning object | maximum:

10 items

1.1.1 | Catalog | The name or 1 Unspecified |Repertoire | CharacterString | “ISBN,”
designator of the of SO/IEC | (smallest “ARIADNE,”
identification or 10646- | permitted “URI”
cataloging scheme 1:2000 |maximum:
for this entry. 1000 char)
A namespace

1.1.2 |Entry | The value of the 1 Unspecified |Repertoire | CharacterString | “2-7342-
identifier within the of SO/IEC | (smallest 0318,”
identification scheme 10646- | permitted “LEA0875,”
that designates or 1:2000 |maximum: “http://
identifies this learning 1000 char) www.iee.org/
object. A namespace documents/
specific string. 1234”

Figure 3. Part of the LOM v1.0 base schema

http://identifies
http://identifies
http://www.iee.org

224 Chrysostomou and Papadopoulos

of data elements can be found in the draft LOM standard available online
from the IEEE (IEEE LTSC LOM, n.d.).

Summing up the analysis regarding the nature of LOs we can try and sim-
plify the definition of an LO: An LO is a set of learning resources (raw learn-
ing content such as text files, images, video files, audio files, etc.), accom-
panied by a set of metadata that satisfies a single learning objective and can
be used and reused in e-learning.

OBJECT-ORIENTATION AND LEARNING OBJECTS

LOs are self-contained chunks of learning content that can be reused in a
variety of learning contexts. This probably reminds you of the OO paradigm
for software development, where self-contained programs (software objects)
can be reused in a variety of software applications. An LO can ideally be con-
nected to other LOs to form larger learning content, similarly to how a soft-
ware object can be linked to other software objects to form larger applica-
tions. This raises the question whether it would be possible to apply to LOs
techniques that have so far been successfully applied to OO SWE. A number
of studies have been concerned with this matter in the past. Following is a
brief summary of the prevailing ideas that have surfaced through those stud-
ies and an analysis of how the OO paradigm can be applied to LOs.

Robson (1999) viewed learning resources (content, assessments, refer-
ences, activities, etc.) as objects in an OO model that have methods (such as
rendering and assessment) and properties (such as content and relationships
to other resources). He also identified the drawbacks of existing web-author-
ing techniques for the creation of online courses as being: time, cost, inflex-
ibility, and interdependency of content with design.

Downes (2001) identified the same inefficiencies as Robson and pro-
posed the use of SWE techniques for the development of learning objects.
The aim is to avoid creating all content from scratch every time it is needed
and allow for content to be applied to larger audiences. The author concen-
trates on the method that OO design uses to construct object prototypes,
referring basically to the idea of constructing a class (prototype) acting as a
template from which objects may be created when needed with hardly any
effort. He also pays great attention to the concept of inheritance through
which new learning objects may be created from existing similar ones by
extending their properties (adding more functionality to them).

Friesen (2003) identified the parallels between software objects and LOs
and goes on to discuss another aspect of Object Oriented Programming (OOP)
that could be reflected on learning objects, that of the “black box,” according
to which the implementation of an object should be hidden from its users.
Interactions with the users should only be available through the objects inter-
faces (methods) that will control how a user can customize the object.

Object-Oriented Model for the Design and Development of Learning Objects 225

Polsani (2003) identified reusability as the major functional requirement
of LOs and suggests that LOs should be created with a high level of abstrac-
tion, as this will provide independence from usage scenarios and the ability
of the LO to join other LOs in a variety of contexts. The article concludes
by suggesting as immediate necessities the commonly accepted, accurate,
and functionally effective definition of an LO and the reengineering of the
design and development process of LOs in a “multidisciplinary and cooper-
ative model of development to create knowledge that is appropriate for the
emergent network society.”

Permanand and Brooks (2003) suggested the notion of the “Object-Ori-
ented Learning Object” (OOLO). According to the authors, there should be
an LO super class from which all LOs should derive. The LOs should:

* have properties to metadata instances;

* have properties to other objects (e.g., version object, context object,
combination object, etc.);

* have methods (e.g., query methods, version control methods, insertion,
deletion, etc.);

* support aggregation relationships to allow hierarchies of LOs to be cre-
ated out of simple LOs;

* support inheritance for producing new LOs out of existing ones; and

* not have “using” relationships because they reduce reusability due to
coupling between LOs.

Permanand and Brooks (2003) concluded by expressing their beliefs on
the future of the OOLO: “We believe that the object-oriented approach can
go a long way towards achieving the vision currently being promoted for
learning objects. Learning objects with object-oriented features provide a
solid foundation for the effective reuse of learning resources on the Web.”

Morris (2005) also supported the idea of LOs being developed as classes
in an OO environment. The author stresses the importance of inheritance,
which enables new LO classes to be developed by extending existing ones
and polymorphism that enables new LO classes to change the way in which
they implement the methods of the classes they inherit from.

Having studied the work of the authors that have been involved with the
idea of applying OO techniques to the design and development of LOs we
can draw some parallels between the OO paradigm of SWE and the appli-
cation of this paradigm to the development of Los:

* in OO SWE, software is created as classes that include attributes (data)
and methods (operations that can be performed on the data). Those
classes serve as templates for creating Software Objects. In a similar
manner LO classes can be created to include attributes (content, meta-
data, etc.) and methods (query, insertion, deletion, etc.). These classes

226 Chrysostomou and Papadopoulos

can serve as templates from which LOs can be created. Each new LO
will include all the attributes and methods that are included in the rele-
vant class;

» new LO classes should have the ability to be created from existing ones
by applying rules of inheritance to avoid duplicated effort when the
required LO is similar to an existing LO;

* aggregation could also be applied when the desired class can be created
by a number of instances of other classes (for example a “Test” class can
be created by aggregating a number of instances of the “Exercise” class);

* LO classes should also demonstrate polymorphic behavior. A child class
should be able to override and implement the methods of its parent class
in a way that will better serve its purposes. This could enable LO class-
es to easily adapt to different environments and also better serve the
varied teaching styles of each individual instructor; and

* finally LO classes should be created with a high level of abstraction in
order to hide their implementation details and make their creation and
usage feasible and simple to users that may not have extended technical
knowledge.

An LO that demonstrates the characteristics could be considered as an
OOLO. In order for this OOLO to really take advantage of its OO character-
istics however, it must form part of a larger hierarchy of OOLOs. The idea is
to create an LO superclass from which a hierarchy of LOs can be created. A
basic hierarchy of LO classes should exist that includes LO templates for
most of the common LO types. From those templates new LOs can be instan-
tiated and new templates can be created by applying rules of inheritance.

THE TECHNICAL AND CULTURAL DIFFICULTIES OF USING LOS

In the development of LOs a number of standards need to be applied
(SCORM) and a large number of metadata (LOM) needs to be entered.
Applying all the SCORM and LOM requirements is quite time consuming
and requires a great deal of knowledge on behalf of the developer. Modern
LO authoring tools aim in minimizing the knowledge and effort required to
build LOs, by automating processes such as XML document generation. In
the current LO research agenda, subjects such as automatic metadata gener-
ation and the development of LO design techniques and tools exist that are
expected to minimize time, effort, and cost of developing LOs by further
automating processes and by more efficiently reusing existing LOs. Apply-
ing techniques (i.e., OO) that have already been applied elsewhere (i.e.,
SWE) with proven positive outcomes is expected to help in further over-
coming current problems in LO development.

In addition to the technical problems that the usage of LOs involves there

Object-Oriented Model for the Design and Development of Learning Objects 227

are cultural problems as well, that make the application of LOs unappealing
to a number of members of the academic community. Such problems main-
ly involve the individual preferences of instructors that have a tendency to
avoid using learning content created by others, as it may no suit their pre-
ferred teaching style.

So, exactly what are the problems that currently exist in LO development?
What follows is a representative, however not exhaustive, list of problems that
have been identified through a literature review and personal study of LOs:

« creating LOs requires knowledge of LO theory, standards (e.g.,
SCORM, LOM) and sometimes even markup languages (XML),
although some authoring tools make this process easier;

+ following the existing model for LOs (i.e., SCORM Content Aggrega-
tion Model), each LO has to be created from scratch or existing LOs
have to be modified to produce the desired content;

« for each new LO, a large number of LOM has to be entered manually
(automatic metadata generation is still in its infancy);

« similar LOs are often created from scratch causing unnecessary waste
of time, money, effort, and possible risk of incompatibilities;

+ each new LO is untested leading to unreliability of new LOs;
* LOs are often bound to specific context and cannot be easily reused,;

* developers often find the internal structure of an LO confusing espe-
cially when they are not very familiar with the related technologies
(e.g., XML); and

* pre-written learning content usually follows a specific form that does not
suit each individual’s teaching style making them unwilling to use it.

Summing up, the LO development process still requires extensive knowl-
edge, effort, time, cost, and often causes reusability, interoperability, and
reliability problems. The usage of LO is often problematic as well, due to the
dependency on specific learning styles, that usually come in conflict with
instructors’ individual preferences. For once again, if we compare these
problems with problems that the SWE area faced in the past we can see the
analogy. It should be possible to solve these problems of LO development
by applying the lessons we have learned from applying object-orientation to
software development.

Following is an analysis of ways in which OO techniques can help in
minimizing the problems of the LO development and usage:

* By following a hierarchical model of inheritance in developing LOs, a
number of abstract LOs (LO templates) will exist through which new
LOs will be created. In this way:

228 Chrysostomou and Papadopoulos

-new LOs can be developed faster, easier, and with less cost by
extending existing LOs;

-new LOs will inherit the properties of their predecessors including
metadata (minimizing metadata input);

- new LOs will be based on existing-tested-ones (more reliable LOs);

- existing LOs will already follow the appropriate standards and con-
sequently the developer will not need to deal with ensuring the appli-
cation of standards;

- all new LOs will be created following a common (standardized) struc-
ture and they will consequently display increased interoperability;

- abstract LOs will not be bound to any specific context or design and
hence be highly reusable;

- the developer does not have to know the internal structures of the
LOs (less knowledge needed to develop LOs);

- the hierarchy can be extended in a way that best suits specific
domains or organizations (i.e., new more specialized abstract LOs
can be created to create more specialized LOs);

- LO can be better maintained (e.g., easier modification of LOs by
modifying the LO class they inherit from); and

- LOs can easily be aggregated to form larger learning contents, which
can also be reused when necessary.

* By creating LOs in an abstract, polymorphic, and context independent way:
- LOs will have the ability to be used in a variety of contexts;

- instructors will be able to use the LOs in a variety of teaching styles
or apply to them their own preferred style; and

- LOs will become more appealing to instructors and consequently
to learners.

In the previous paragraphs we have argued in favor of the OOLO
approach and outlined a number of benefits that this approach may have to
offer against traditional LO development. It is probably not easy and maybe
not even feasible to test and quantify with accuracy these benefits without
actually implementing, using, and assessing the OO model for LOs. How-
ever, in support of these arguments, it would be useful to examine how the
OOLO approach would apply to a real-life learning scenario. In the section
that follows, a traditional learning scenario in higher education is described
and then the work that needs to be done to transform this class based course
into an e-learning course by making use of LOs is analyzed. This analysis is
done first for the case where traditional (non OO) LOs are used and then for
the case that an OOLO model is applied.

Object-Oriented Model for the Design and Development of Learning Objects 229

A COMPARISON OF THE APPLICATION OF LOS AND 00LOS
TO A LEARNING SCENARIO

The Learning Scenario

A lecturer is teaching an Information Systems (IS) class based course.
The course plan in brief includes the following:

* two hours of lecture every week (for the lectures power point presenta-
tions are used);

* one hour of seminar work every week, during which students are
involved in conversations around issues relevant to the week’s subject,
answer questions, work with case studies, solve exercises, or carry out
other tasks that are relevant to each week’s subject. Materials for the
seminars are given to students in printed MS Word format;

« towards the middle of the semester the lecturer carries out a revision
session by supplying the students with a printed document (MS Word)
that includes a set of revision questions;

+ following the revision is a midterm exam,;

« after the midterm exam classes continue as normal, followed by anoth-
er review session just before the final exam; and

* during the term the lecturer also hands out an assignment that the stu-
dents should solve and return by a due date.

The lecturer has been assigned the task of adapting the above course for
web delivery and consequently decides to break the course down into small,
self-contained, reusable LOs. An LO authoring tool is available for use. The
main tasks that need to be performed in brief include:

+ the disassembling of all material into self standing single learning
objective units;

+ the development of LOs by creating appropriate XML packages;
+ the entry of appropriate metadata for each LO; and
« the aggregation of LOs to form larger learning units.

Following (Figure 4) is the detailed course outline for the course.

Following is an analysis of the number and types of LOs that will be

needed:

* from the breakdown of the course outline in Figure 4, there is an aver-
age of approximately eight individual learning objectives in each week’s
lecture. Each of the learning objectives would require a short power-
point presentation for assisting with demonstrating the main points
(approximately 100 single objective presentations will be needed); many
of the objectives also require graphical explanations such as pictures,
diagrams, and so forth, that will form separate resources (assets);

230 Chrysostomou and Papadopoulos

Week | Subject Description

1 What is IS? | Why IS? What is an IS? The business perspective of IS: Organization, Manage-
ment and Technology. The socio-technical approach to IS. The role of IS.

2 Types of IS Major types of IS in organizations: Transaction Processing, Knowledge Work
and Office Systems, MIS, DSS, ESS. The functional perspective of IS: Sales
and Marketing, Manufacturing and Production, Finance and Accounting,
Human Resources. Enterprise applications.

3 Organisations | What is an organization? Organization features. The role of IS in organiza

and IS tions: IT infrastructure, Effect of IS on organizations. Managers and decision-
making: the role of managers in organizations, decision making. Information
Systems and Business Strategy.
4 Hardware Hardware: The computer system, computer processing, storage, input and
and Software | output. Categories of computer systems. Software: types of software, OS,
Programming languages, application and productivity software. Managing
hardware and software assets.
5 Data Managing data resources. The file environment: terms and concepts, problems
management | with the file environment. The database approach: Database Management
Systems (DBMS), Types of databases. Basic SQL. Designing Databases.
Hand out assignment.

6 REVISION

7 MIDTERM EXAM

8 Development | Linking IS to the Business Plan, Organizational information requirements.

of IS Organizational Change. Business Process Re-engineering. Total Quality
Management. Systems development process. Alternative approaches to
systems development.

9 Management | Business value of IS. Management of change for IS success. Management of

of IS IS implementation — Critical Success Factors (CSF).

10 Security Systems vulnerability. Concerns for system builders and users. System quality

of IS problems. Creating a control environment. Systems security. Ensuring system
quality.

11 Knowledge Knowledge management. Information and Knowledge work systems. Artificial

Management | Intelligence. Expert systems. Neural Networks. Decision Support Systems.

12 Networking Telecommunication systems. Communication Networks. E-commerce &
E-Business. The Internet. The WWW. Support technology for e-commerce and
e-business. Management issues and decisions.

13 REVISION

14 FINAL EXAM

Figure 4. The course outline for an introductory information systems

course

Object-Oriented Model for the Design and Development of Learning Objects 231

« in addition there must be at least one discussion subject per week (this
could be in the form of a case study). A set of questions or other kind of
tasks must also exist. We could assume that three to five tasks must
exist for each week’s seminar averaging to approximately 50 tasks;

+ a set of tasks will be needed for the revision sessions (at least 10 per session);

* a number of tasks will also be needed to form the midterm and final
exams (approximately 10); and

« additional assessment tasks are required for the assignment.

Applying LOs to the Learning Scenario

From the described analysis we can roughly estimate that approximately
200 individual learning assets will be needed to deliver and assess the course.
Sharable Content Objects (SCOs or LOs) will be formed by individual assets
or groups of assets. It can be estimated that more than 100 LOs will need to
be created to satisfy the entire course’s learning objectives and assessments.
The LOs will be grouped into Activity Items to create larger learning and
assessment units such as lectures, seminar sessions, revision sessions, assign-
ment, and exams. Finally, Activity Items will be grouped into content orga-
nizations to form the complete course. Based on SCORM requirements each
one of these items will require a set of metadata to be attached to it and pack-
aged into an appropriate XML document. Following a traditional SCORM
approach, the process would require the following tasks:

* breaking the content down into appropriate assets (resources such as
single objective power-point presentations, graphics, questions, revi-
sion notes, case studies, tasks, etc.);

« attaching appropriate metadata to each asset (SCORM asset metadata);

« grouping assets into Sharable Content Objects (SCOs) and attaching
appropriate metadata to them;

« grouping assets and SCOs into aggregated LOs (Activity Items) and
attaching appropriate metadata to them (SCORM Activity Metadata);

* grouping Activity Items into a Content Organization attaching appro-
priate metadata to it (SCORM Content Organization metadata); and

* creating appropriate XML packages for these learning resources.

The most time-consuming and repetitive task involved in the process is
probably the creation and embedding of the appropriate metadata within the
XML documents for the different resources. According to the LOM standard
there are 58 pieces of lower level metadata (simple data elements) grouped
into nine top level categories and then further into other subcategories. Not
all metadata are always necessary in describing an LO. The SCORM Con-
tent Aggregation Model specifies, which metadata is mandatory for the dif-

232 Chrysostomou and Papadopoulos

ferent types of resources. Specifically it specifies 8 out of the 58 lower level
metadata as mandatory for assets and 11 for SCOs, activities, and content
organizations.

Having approximately 200 assets produces a requirement for approximate-
ly 1600 pieces of metadata (if minimum metadata is used) and around 12000
pieces of metadata (if all possible metadata is used). Additional metadata will
need to be attached to each one of a minimum of 100 SCOs (LOs). This will
produce a requirement for at least an additional 1100 pieces of metadata (if
minimum metadata is used) and 6000 pieces of metadata (if all possible meta-
data is used). Activity Items and Content Organizations will also need meta-
data, but for simplicity purposes we will not consider these as the number of
activity items and content organizations in the course will not be large com-
pared to the large number of assets and SCOs. In order to create all the neces-
sary resources the lecturer has to import each asset into the LO authoring tool
and manually enter the metadata for each one. Depending on the automation
of the authoring tool the lecturer may also need to create a large number of
XML packages for the LOs that make up the learning content.

Judging by the complexity of the XML packages described in SCORM
CAM, the large amount of metadata prescribed in the LOM model and the
large amount of assets and LOs needed to create learning resources, the task
of creating each resource and attaching the appropriate metadata to it is
highly repetitive, time consuming, tiring, and consequently error prone.

In addition to the complexity of creating the traditional LOs, the usage of
them may also be quite problematic. It is expected that a number of func-
tions will need to be applied on an LO (i.e., create, edit, delete, insert,
remove, etc.). A traditional LO includes only content and metadata. The
ways that it is used depends entirely on the developer/user and the runtime
environment using the LO. An OOLO including the methods providing the
necessary functionality to the LO, will make it more self-contained, abstract
to the user, consistent and reusable, as we have very well learned from our
experiences with the software objects.

Applying 00LOs to the Learning Scenario

In the previously described, scenario we have described the process fol-
lowed to create an e-learning course by using a traditional LO approach. In
this section, we assume the existence of an OO model for the design and
development of LOs. This model should incorporate concepts similar to the
ones used in OO SWE. Most important concepts being those of data and
method encapsulation and inheritance. The Java language for example pro-
vides a hierarchical library of classes (known as the Application Program-
ming Interface — API). At the top of the Java API hierarchy there is a class
called “Object,” this class includes functionality (data and methods) that is
common to all Java classes. All Java classes inherit the functionality of the

Object-Oriented Model for the Design and Development of Learning Objects 233

Object class. Further down the hierarchy there are more classes that extend
the “Object” class and provide additional functionality. In the case of LOs,
there should be a top level “LearningObject” class that includes the func-
tionality that is common to all LOs. Functionality in the case of LOs should
include the appropriate metadata as well as functions that an LO may per-
form (create, edit, delete, insert, remove, etc.). More specialized classes of
LOs should extend the “LearningObject” class by supplying additional func-
tionality, suitable for the type of LO they describe. The idea is that the user
may choose a suitable LO from this hierarchy and by using one of the LO’s
methods will add the appropriate content to it. The packaging and all com-
mon (for that type of object) metadata will already be included and the LO
will be ready for use. If none of the LOs in the hierarchy is suitable, then the
user should be able to select the one that is closest to their required object
and extend it to add the missing functionality or metadata. As Poulton
(2005) argued: “...the most reused feature of a learning object is its struc-
ture and design as opposed to its content....”

From the teaching and learning scenario described earlier we can extract
a number of possible LO types including:

* presentation

« graphical representation
* question

* task

* case Study

* case study exercise

* assignment task

* revision question

* exam question

More LO types may exist, such as animation, essay question, multiple
choice question, and so forth. Each one of these LO types could form an LO
class from which LO “objects” may be created. Metadata and functionality
will be inherited from the parent classes and the developer will only have to
input a limited amount of metadata for these subclasses of LOs.

The process to be followed in creating LOs for the course described ear-
lier will now be easier and faster since the XML packages for each type of
object will exist or be created by extending existing ones and most of the
metadata and functionality will be inherited from other LO classes instead
of having to repeatedly input it for each LO. For example an LO class called
“Question” may exist. The metadata that are common to all questions will
be attached to that class. Whenever the developer needs to create a question
LO they can use the existing class so that they will avoid inputting all com-
mon metadata and creating LO packages. A subclass may also exist or be

234 Chrysostomou and Papadopoulos

created (e.g., “CaseStudyQuestion”) that will incorporate even more meta-
data that are common to all questions that relate to case studies. Figure 5
demonstrates part of the proposed hierarchy which shows an example of the
LO classes that may exist that will enable the easy and fast creation of LOs
that would satisfy the earlier described scenario.

To quantify the amount of work that will be saved using the OOLO
approach, the LOM standard has been studied with the purpose of identify-
ing the number of metadata that would be common between similar LOs.
For example all “Question” objects will have the same format, location, plat-
form requirements, interactivity type, learning resource type, intended end
user role, language, purpose, and so forth. Furthermore, each “CaseS-
tudyQuestion” (for the same case study) will have the same “relation” meta-
data (kind, catalog, entry, description) as all such questions will relate to the
same LO (the specific case study). It has been estimated that 33 to 42 out of
the 58 lower level metadata in LOM could be common between similar LOs
due to their nature.

Based on this study and the metadata requirements as defined in
SCORM, we can estimate the amount of metadata input that can be avoided
by using the OOLO model. Table 1 summarizes the effort savings that could
occur when using the OOLO model.

The tasks required to create the LOs for the web-based delivery of the
course described earlier would now include:

* breaking the content down into appropriate assets;

» most of the LO (i.e., the XML packages) already exist for the different
types of LOs (e.g., Presentation, CaseStudyQuestion, RevisionQues-
tion). These existing LOs can be used by attaching the appropriate
assets to them and adding any missing or specialized metadata;

LearningObject

TeachingObject

AssessmentObject

Lecture ‘Discus‘sion ‘CaseStudy | Queston Task |
Presentation ‘Problamstatamenl‘ }CaseSludyQueslion ExamQuestion RevisionQuestion

Figure 5. An example hierarchy of OOLOs

Object-Oriented Model for the Design and Development of Learning Objects

Table 1

235

Effort Savings That Can be Offered by Using an OOLO Model in Creating
Learning Resources (all numbers are approximations)

Traditional LO approach 00LO approach
Minimum Maximum Minimum Maximum
metadata used | metadata used | metadata used | metadata used
Number of assets 200 200
to be used
Number of LOs At least 100 At least 100
to be created
Number of asset 1600 12000 0 6000
metadata to be
entered
Number of LO 1100 6000 0 3000
(SCO) metadata
to be entered
LO packages to At least 100

be created from
scratch

« if a specialized kind of LO does not exist in the hierarchy of predefined
LOs then it can be created by extending an existing LO (e.g., an Assign-
mentTask LO can be created by extending the Task LO); and

» Aggregate LOs may be created by creating a new LO (e.g., Seminar)
that is made up of a number of existing LOs (e.g., CaseStudy, CaseS-
tudyQuestion, Task etc.). A number of commonly used aggregated LO
may also be predefined so that effort and time will be further mini-
mized. This will enable the fast and easy creation of SCORM Activity
Items and Content Organizations.

From the example we can easily realize that the existence of a well struc-
tured set of hierarchically related OOLOs (i.e., LO templates with appropri-
ate attributes and functionality already attached to them), can minimize the
effort, time and cost required to develop LOs. To develop such an efficient
hierarchy it is necessary to:

* define the best way to structure and represent OOLOs so that they

demonstrate OO functionality (encapsulation of operations and data,
inheritance, polymorphism);

« analyze, structure, and represent the LO Metadata into an appropriate
hierarchy that will make the metadata more efficient for OOLO; and

* devise an extensible hierarchy of predefined OOLOs and OOLO aggre-

236 Chrysostomou and Papadopoulos

gations that will minimize as much as possible the need for the creation
of entirely new LOs.

LO DESIGN MODELS AND TOOLS

LO Design Models

In the previous sections it has been demonstrated that a number of bene-
fits may be realized by applying an OO approach to LO design and devel-
opment. However, for the OOLO concept to be put in use, an OOLO model
has to be developed. Such a model should aim in enabling the design and
development of LOs in a way that will be more efficient than traditional LO
models. The literature review and the author’s primary research carried out
so far, has revealed a number of features that have been found to be neces-
sary for such a model. These features include:

* the specific and detailed definition of the general structure of the
OOLO, which should include properties and methods;

* a hierarchy of predefined OOLOs that can be used or be extended to
create the required learning resources for any learning scenario. This
will be similar to the Application Programming Interfaces (APIs)
offered by some programming languages (e.g., the Java API);

* a set of schema definitions for defining the elements making up the
OOLO hierarchy;

* the mark-up documents that will be used for creating the LOs including
extension mechanism that will support inheritance;

« support of relevant standards (i.e., SCORM, LOM);
* an appropriate notation for designing the OOLO;

* appropriate notations for representing the hierarchies of the LOs. For this
purpose an existing notation scheme (such as Unified Modeling Language
[UML]) may be used (i.e., extended to enable the design of OOLO), or a
new scheme may be developed if an existing one cannot be adapted;

* notations for representing the LO metadata. If possible metadata should
also be represented in an OO hierarchical way; and

* the model should reflect an OO approach that will provide flexibility,
efficiency, and reusability to all the elements of the new LO model.

This list represents the required features of an OOLO model as they have
been formulated through the literature review and research work done so far.
It is expected that additional requirements may surface as further work is
carried out, however this list of requirements will form a starting point for
evaluating existing LO design models, and identifying the gaps between the
current state of the art and the required OOLO model. To identify these gaps,

Object-Oriented Model for the Design and Development of Learning Objects 237

an analysis of existing LO models was carried out. Models studied include
complete specifications that are the result of the work of organizations that
are involved with the development of learning technologies, but also ideas
for models that have been suggested by individuals or groups of people
working in the area of e-learning.

The models studied include:
+ the IMS Learning Design (IMS);

* a schema for Learning Object based on Object Oriented Model of
Object Inheritance (Daniel & Honggang, 2003);

+ application of the UML in modeling SCORM-conformant contents (Hu,
2005);

* an Instructional Design Model for Constructivist Learning (Sun &
Williams, 2003);

* the CLEO model (Rehak & Blackmon, 2001); and

* a practical example of LO creation using Standard Generalized Markup
Language (SGML)/Extensible Markup Language ([XML], Bartz, 2002).

These models have been evaluated against the degree to which they satis-
fy the desired features of an OOLO model as they were specified earlier. The
results of this evaluation are outlined in Table 2. From the evaluation it can
be concluded that the work done so far on LO design and development mod-
els is very limited. Very few models have been adequately developed to be
put into practice and most of them concentrate on the pedagogy level. The LO
design and development is currently carried out rather arbitrarily. Some
attempts to create OO models for LO design and development have also been
done, but apparently they have not been adequately extended and they do not
support most of the requirements that are required for modeling OOLO.

LO Tools

When an OOLO model is developed, an appropriate tool will be needed to
assist with the creation of OOLOs. Such a tool should include features that
will enable the design and development of LOs based on the OOLO model.
Since a number of LO tools already exist, it is necessary to evaluate those tools
to assess whether it is possible to use any of them for the design and develop-
ment of OOLOs and if not then identify the features that are required but are
absent from existing systems. At this stage this evaluation process cannot
exhaustively define all the necessary features, as the OOLO model itself does
not yet exist. However based on the initial requirements of an OOLO model
that have been previously defined, an initial appreciation can be made on some
features that an OOLO tool is required to incorporate. These features are:

+ enable the design of LOs based on the notations (for LOs, Metadata, LO
relationships) defined by the OOLO model (existing tools cannot be

238 Chrysostomou and Papadopoulos

effectively assessed against this requirement as the specific notations
are not yet known);

* enable the creation of LO classes (including properties and methods)
representing the different possible types of LOs applying SCORM and
LOM standards (probably through the creation of schemas and mark-up
documents);

* enable the creation of LO classes by extending existing ones through
inheritance relationships; and

* enable the creation of LO aggregations to represent the different LO
aggregation levels as described in SCORM,;

For the purpose of carrying out an initial evaluation of existing LO tools,
a number of well-known commercial LO tools have been examined and their
main purpose and functionality has been identified and compared to the
above requirements. The tools evaluated include:

* ReLoad Metadata and Content Packaging Editor (http://www.reload.ac.uk/);
* InSite Studio (http://thorax.erc.msstate.edu/insite/default.aspx);
* Quest (http://www.ops.ltd.uk/products/prods/quest.html);

* Learning Activity Management System - LAMS
(http://www.lamsinternational.com);

* Websphere (http://www.ibm.com/websphere); and
* Authorware (http://www.macromedia.com/software/authorware/).

The fact that the OOLO model is not yet implemented makes the evalu-
ation of existing tools against it rather arbitrary. However from the initial
evaluation of these examples of e-learning tools that make use of LOs, it can
be estimated that the majority of the existing tools may not be able to sup-
port OOLO design and development, due to the absence of any OO features,
such as the creation of LOs from existing ones through inheritance and the
encapsulation of methods as well as metadata within LO classes. Neverthe-
less, one of the systems that have been examined adopts an OO view of LO
design and development and it can be anticipated that such a system may be
applicable for an OOLO model.

The comparative evaluation of all of the systems mentioned against some
of the initial requirements for an OOLO tool is summarized in Table 3. How-
ever, further research should be carried out after implementation of the
OOLO model, for a more complete specification of the requirements for a
tool to support such a model and a more thorough evaluation of the capabil-
ities of existing tools in supporting the model.

http://www.reload.ac.uk
http://thorax.erc.msstate.edu/insite/default.aspx
http://www.ops.ltd.uk/products/prods/quest.html
http://www.lamsinternational.com
http://www.ibm.com/websphere
http://www.macromedia.com/software/authorware

239

Object-Oriented Model for the Design and Development of Learning Objects

SOA S8A SOA ON SOA SBA (81qesn) padojenap Ajarenbepy

ON SOA ON ON ON ON uonJelsqe sialQ

ON SOA SOA ON SOA SOA ‘uonefaibbe spoddng

(s0740)) INQT PUE 8O

SAA SAA SAA TN papusxg SAA NN Bunussaidal 10} suoneIOU SIBKQ

ON ON payjioads JoN SOA ON SO\ INHODS sHoddng

ON ON paj1oads JoN SOA ON SOA N0 suoddng

palyoads *90ue)IaYUl Loddns 1ey

ON 10N ON ON SAA ON uoneald (7 Joy syuawnaop dn-ylep

'$Q7 paulepaid

Ajuo ajdwex3 ON ON ON ON ON 10} suomulap BWBYIS SIaj0

9|dwexa [esousb e AluQ ON fjued ON ON ON S07 Jo Ayatelaly paulyepald e siajQ

ON SOA ON ON SOA ON | spouyaw pue saadoid aeinsdeous sQ

ON SOA ON SOA S9A ON 0700 Ue Jo 81monus 8y} saula(q

SOA SOA SOA SOA Sop | ‘|ena| ABobepad "N ‘|9A3] 07 8y} 1e palddy

Bujusea | u8ju0d NHOIS aouepIayu| 19poN salnjeaq palisag

TNX/TNDS Buisn SISIAIONIISUOY Bui(iapow ur | o [3po 00 uonewJojuj 18P0 07100
uoijeald 0 jo 10} [apoy ubisaq TN @Y} jJo | uo paseq Q1 ubisaq
a|dwexa [eonoeidy | 0319 leuononsuj uoneolddy | Jo) ewayos Bujurea S|

[9POIA O'TOO Ue JO sjuowaiinbay] oy} spremo], s[opojN O] Sunsixyg jo uonenjeaq aaneredwo) vy
¢ dqel

Chrysostomou and Papadopoulos

240

SOA SOA ON ON SOA SOA NH0DS suoddng
SOA SOA ON ON SOA SOA NO7 suoddng
SOA SOA SOA SOA SOA SOA 'suonebalbbe (07 o uoneald 8y} 8jqeud
(eourylIBYUI) SBUO BunSIXe BulpusIXe
ON ON ON ON ON ON Aq ,S8SSE[, 0] UOKBAID BU} 8|qeu
(spoyjaw 07 pue
sauadosd 07 se NOT Bululep Aq) yaelos
ON ON ON ON ON ON woJ} ,S8sse|9, 07 4O UONBaId 8y} 8|qeus
sdiysuoneyal sdiysuonejal pue
pue R Eepels|\ ‘07 J0 uonejuasaidal [eolydeld
SOA S3A | SO0} SBp S9A SOA SOA 10} uoilelOU palisap B Bunuswaidw)
"I0}pa
ubisap Bujutes)
walshs Buioyne | wayss Alquasse | Joypa ubisaq walshs J0YPa 07 “UoHpa pue elepejsw abexoed auy ul

Bujurely eipswny | ©SIN02 ojweuAQ Bujuses | Buloyine 8sino) | ubisep feuononiisul | ‘afiexoed jusjuon papnjoul $|00} Juswdojansp pue ubisep 0
ABobepad Apsopy 01 ABobepad ABobepad ABobepad Apsop ABobepad / 0 paijdde 8g Ued 11 YaIyMm 1e [ona]
alemloyiny alaydsqam SV 1sanp o1pnis aygu| peoay

SOT00 Moddng 03 [00], & Jo syuowannbay oy} sp1emo], s[oo], O Sunsixy jo uonenjeaq saneredwo) v

€ alqelL

Object-Oriented Model for the Design and Development of Learning Objects 241

CONCLUSIONS

This study has attempted to collect the varied views on the definition of
an LO and give a clearer understanding of what an LO is currently consid-
ered to be. It has then proposed a view of an LO that incorporates attributes
from the OO discipline and explained how SWE OO concepts can be linked
to LOs. An explanation was then given on how these OO techniques can
minimize the technical and cultural difficulties of using LOs. Through the
use of a real life learning scenario it has attempted to prove that the use of
such an OOLO as part of a larger OOLO model will overcome a number of
the problems that using LOs involve. Such problems include mainly the
complexity and time needed for LO design and creation, as well as reliabil-
ity, reusability, extensibility, maintainability, and portability of LOs. A sim-
ple example of an OOLO model has been presented, and the way that this
can be applied to the learning scenario has been described. The benefits of
applying this model were quantified in terms of the number of LOs to be cre-
ated from scratch and metadata to add to each learning resource. Finally, a
survey into existing LO design models and tools has shown that the specifi-
cation of a complete OOLO design model will be needed, and appropriate
tools must be created or adapted.

Summing up the findings of this research work, we can conclude that an
OO approach for the design and development of LOs has a lot to offer in
terms of efficiency in the creation and reusability of LOs. Such an approach
is expected to:

» minimize the time and effort needed to create learning resources by
minimizing the amount of LOs to be created from scratch and metada-
ta to be entered;

* minimizing the technical knowledge required to create LOs;

« increase the reliability and interoperability of new LOs as they will be
based on existing tested ones;

« ensure the application of the appropriate standards without the devel-
oper’s involvement;

* increase the reusability of LOs, as abstract LOs will not be bound to any
specific context; and

* minimize the resistance of instructors to using existing learning
resources due to the ability of OOLOs to easily adapt to different teach-
ing styles, because of the absence of interdependency between content
and context.

To make the application of such a model feasible a number of tasks need
to be achieved. These include:

« the definition of the best way to structure and represent OOLOs so that

242 Chrysostomou and Papadopoulos

they demonstrate OO functionality (i.e., as a class/template with prop-
erties and methods);

* the implementation of OOLOs in a way that they will offer abstraction
(hiding of implementation details from the user by providing an inter-
face to enable interactions), enable inheritance and aggregation;

* the definition of an extensible hierarchy of predefined OOLOs;

« the definition or adaptation of appropriate notations to represent all the
components of the model;

* the definition or adaptation of an appropriate (probably mark-up) lan-
guage for implementing the OOLO (e.g., schemas and mark-up docu-
ments); and

« the creation or adaptation of a tool that will enable the design and devel-
opment of the OOLO.

References

Advanced Distributed Learning Committee (ADL) Sharable Content Object Reference Model
(SCORM, n.d.). SCORM overview. Retrieved January 1, 2008, from http://www.adInet.gov/
scorm/index.aspx

Bartz, J. (2002). Great idea, but how do | do it? A practical example of learning object creation
using [Standard Generalized Markup Language] SGML. Canadian Journal of Learning and
Technology, 28(3). Retrieved January 1, 2008, from http://www.cjlt.ca/content/vol28.3/
bartz.html

Chrysostomou, C., & Papadopoulos, G. (2005, May). An evaluation of e-learning technologies
and trends: Establishing an object-oriented approach to learning object design and develop-
ment. Paper presented at the First International Conference on E-Business and E-learning
(EBEL'05; pp. 343-348), Amman-Jordan. Retrieved January 1, 2008, from
http://www.cs.ucy.ac.cy/~george/EBELO5a. pdf

Daniel, B., & Honggang, W. (2003, July). Developing a schema for learning object based on
object oriented model of object inheritance. Proceeding of the 3rd IEEE International Confer-
ence on Advanced Learning Technologies, Athens, Greece. Retrieved January 1, 2008, from
http://csdl.computer.org/comp/proceedings/icalt/2003/1967/00/19670439.pdf

Douglas, 1. (2001, October). Instructional design based on reusable learning objects: Applying
lessons of object-oriented software engineering to learning systems design. Paper present-
ed at the 31st ASEE/IEEE Frontiers in Education Conference, Reno, NV. Retrieved January 1,
2008, from http://citeseer.ist.psu.edu/524398.html

Downes, S. (2001). Learning objects: Resources for distance education worldwide. International
Review of Research in Open and Distance Learning, 2(1). Retrieved January 1, 2008, from
http://www.irrodl.org/index.php/irrodl/article/view/32

Friesen, N. (2003). What are educational objects? Interactive Learning Environments, 9(3), 219-
230. Retrieved January 1, 2008, from http://www.ingentaconnect.com/content/routledg/
ilee/2001/00000009/00000003/art00003

Hu, S.C. (2005). Application of the UML in modelling SCORM-conformant contents. Kaifeng,
Taiwan: Providence University, College of Computing and Informatics. Retrieved January 1,
2008, from http://csdl2.computer.org/comp/proceedings/icalt/’2005/2338/00/23380200.pdf

http://www.adlnet.gov
http://www.cjlt.ca/content/vol28.3
http://www.cs.ucy.ac.cy/~george/EBEL05a.pdf
http://csdl.computer.org/comp/proceedings/icalt/2003/1967/00/19670439.pdf
http://citeseer.ist.psu.edu/524398.html
http://www.irrodl.org/index.php/irrodl/article/view/32
http://www.ingentaconnect.com/content/routledg
http://csdl2.computer.org/comp/proceedings/icalt/2005/2338/00/23380200.pdf

Object-Oriented Model for the Design and Development of Learning Objects 243

Institute of Electrical and Electronics Engineers (EEE) Learning Technology Standards Committee
(LTSC; n.d.). Learning technologies standards committee. Retrieved January 1, 2008, from
http://Itsc.ieee.org

Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee
(LTSC) Learning Object Metadata (LOM; n.d.). Draft standard for learning object metadata.
Retrieved January 1, 2008, from http://ieeeltsc.org/

Instructional Management Systems (IMS; n.d.). IMS learning design information model. Retrieved
January 1, 2008, from http://www.imsglobal.org/learningdesign/index.html

Permanand, M., & Brooks, C. (2003). Engineering a future for web-based learning objects.
Retrieved January 1, 2008, from http://www.cs.usask.ca/~cab938/icwe2003_mohan_brooks.pdf

Morris, E. (2005). Object oriented learning objects. Australasian Journal of Educational Technology,
21(1), 40-59. Retrieved January 1, 2008, from http://www.ascilite.org.au/ajet/ajet21/morris.html

Polsani, R. P. (2003). Use and abuse of reusable learning objects. Journal of Digital Information,
3(4), Article No. 164. Retrieved January 1, 2008, from http://jodi.tamu.edu/Articles/v03/
i04/Polsani/

Poulton, C. (2005). Applying principles of software engineering design to the development of
reusable learning objects. Retrieved January 1, 2008, from http://www.ecs.soton.ac.uk/
~cmp301/comp6009/IRP%20cmp301 .paf

Rehak, D.R., & Blackmon, H. R. (2001). Speculations: Content models — CLEO. Retrieved January
1, 2008, from http://141.225.40.64/Isal/expertise/projects/cleo/report20010701/ specula-
tions/contentmodels.html

Retalis, S. (2003) Commentary on keeping the learning in learning objects. Retrieved January 1,
2008, from http://www-jime.open.ac.uk/2003/1/reuse-05.html

Robson, R. (1999, June). Object-oriented instructional design and applications to the web.
Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecom-
munications (pp. 698-702), Seattle, WA.

Sosteric, M., & Hesemeier, S. (2002). When is a learning object not an object: A first step towards
a theory of learning objects. Retrieved January 1, 2008, from http://www.irrodl.org/index.
php/irrodl/article/view/106/185

Sun, L., & Williams, S. (2003). An instructional design model for constructivist learning. Retrieved
January 1, 2008, from http://www.ais.reading.ac.uk/papers/con50-An%20Intructional
%?20design.pdf

http://ltsc.ieee.org
http://ieeeltsc.org
http://www.imsglobal.org/learningdesign/index.html
http://www.cs.usask.ca/~cab938/icwe2003_mohan_brooks.pdf
http://www.ascilite.org.au/ajet/ajet21/morris.html
http://jodi.tamu.edu/Articles/v03
http://www.ecs.soton.ac.uk
http://141.225.40.64/lsal/expertise/projects/cleo/report20010701
http://www-jime.open.ac.uk/2003/1/reuse-05.html
http://www.irrodl.org/index
http://www.ais.reading.ac.uk/papers/con50-An%20Intructional

