
IMPLEMENTING A GENERIC COMPONENT-BASED
FRAMEWORK FOR TELE-CONTROL APPLICATIONS

Avraam N. Chimaris, George A. Papadopoulos
Department of Computer Science, University of Cyprus

75 Kallipoleos Street, POB 20537, CY-1678, Nicosia, Cyprus
Email: chimaris@cytanet.com.cy, george@cs.ucy.ac.cy

Keywords: Distributed Applications, Component-Based Systems, Generic Frameworks, XML/XSL, TCP/IP.

Abstract: The rapid growth of distributed systems is one of the major facts in today’s network-oriented community.
The implementation of generic frameworks, consisting of reusable components that can be used for the
development of such systems is a necessity. There is a plethora of applications that can be developed in a
distributed environment, such as audio/video tele-conferencing, groupware and collaborative computing
environments, remote controlled services, etc. In this paper we design and implement a generic framework
of components that can be used for the realization of Tele-Control applications. This category of
applications focuses particularly on the issues of managing distributed units on remote end-systems. Such
applications contain remote and administrative units that are connected and exchange data and control
messages. In the analysis of our framework, we used UML for the specification, analysis and presentation of
system operations. The distributed units of our framework are using XML messages and TCP channels for
exchanging data and control messages. We implement a communication “protocol” that contains the basic
messages that can be used in Tele-Control Systems. Finally, we are presenting two different applications,
which are implemented by reusing the generic components of our framework.

1 INTRODUCTION

Distributed Systems are being extensively used
in many parts of the industrial sector. There exist
many categories of distributed applications, most of
them with different types of requirements and
operational functions. Although in general it is
impossible to implement a generic framework for all
of them, we would like to have available more
focused frameworks for specific domains of
distributed applications, comprising reusable
components which can then be used to “instantiate”
specific applications. In this paper we try to analyse
the basic concepts of Tele-Control systems; most of
the Tele-Control applications focus on the
“controlling of remote units”. This is an easy
concept to understand, but to implement it requires a
complex environment that contains middleware
environments, predefined commands, structured
data, communication channels, etc. Instances of a
Tele-Control environment give rise to many modern
applications, such as Tele-Medicine Systems,
Domestic Appliances Control, Remote Observation

Units, etc. In this paper we will generalise the model
of a Tele-Control environment, while at the same
time address all the common issues that are involved
in such applications. In the following sections we
will try to cover briefly the aspects of the Tele-
Control framework we implemented and the
constituent parts of such systems. We use both
XML/XSL for formatting Tele-Control messages
and TCP/IP channels for forwarding messages
between units. The generic framework was
implemented using Microsoft COM Technology
(Szyperski, 1998), and towards the end of the paper
we show how we can use it to develop two specific
Tele-Control applications.

In the next section we analyse our framework by
describing the communication issues and the
constructing blocks of the system. In section 3 we
present the two applications that we implemented by
using our generic framework. We show some
screenshots of the systems and we mention how
these applications use the generic components to
realize their requirements.

2 FRAMEWORK ANALYSIS

Any distributed application - homogenous or
heterogeneous - communicates, exchanges and
manages data via the network. Our generic
framework contains four main categories of reusable
components: Remote Units, Control Centre,
Administration Units and Mobile Administrators.

The Remote Units are small “intelligent” systems
that have the ability to communicate with certain
devices. The aim of our framework was to create the
basic infrastructure of such systems and certainly not
to create electronic mechanisms for communicating
with external devices. In our example we are using
components that are “simulating” the functionality
of needed devices. The Control Centre is used in
order to create the central communication unit in
which both Remote Units and Administration Units
can get connected. The Remote Units can send or
receive messages by using their connection on the
Control Centre. These messages can contain data
about changes, the status of Units and control
signals. The Administration Units, like the Remote
Units, are able to send messages to Remote Units
through Control Centre connections. The
Administrators are connected either directly by
TCP/IP channels or, in the case of Mobile
Administrators, through the IIS (Internet
Information Server) connection. The IIS Server is
loading a “virtual” Administration space and it is
constructing dynamic ASP (Active Service Pages)
documents that are forwarded to the connected
mobile devices. The Administration Units can get
acknowledgments of changes on Remote Units by
messages that are sent through the Control Centre
connection. The Administration Units’ messages are
most of the times requests for changes, that update
both Remote Units and copied data that is stored in
other Units. All Units in the Tele-Control System
(except WAP Administrators) can communicate and
take part in peer-to-peer conference by using
request/accept XML messages and Video/Audio
streams. Figures 1 and 2 show the basic structure of

a Tele-Control system and the Use Case diagrams
(Figures 3 and 4) are the representation of the
discrete set of work that will be performed by the
users of the Tele-Control System. These users are
handling the four categories of units we mentioned
previously and they will be used as “actors” in the
following Use Case diagrams. The Use Case
diagrams are screening the major activities that users
on Remote Units and on the Control Centre can
perform. In Administrative Units and WAP
Administrators the activities are quite similar. The
users in these Units want to retrieve and update data
of a selected Remote Unit by using their connection
to the Control Centre. The difference between them
is the fact that the Administrative Unit is directly
connected to the Control Centre whereas the Mobile
Administrator is using the IIS to perform its role.

Below we create certain sets of classes/
components for each Tele-Control Unit. These sets
are constructing the fundamental functionality that
resolved from role analysis as mentioned in the Use
Case diagrams. The distributed sets of components
are communicating through TCP channels and
exchanging data based on their role in the system. In
this section we are describing the general aspects
that we followed in the analysis of the framework.
Initially we will describe some communication

issues, then we will show how XML/XSL messages
are used, and finally we will extensively analyse the
internal structure of each Tele-Control Unit.

2.1 Communication Issues

Any distributed system must necessarily have an
infrastructure of communication channels between
the remote units. In order to implement the
communication aspect, it was necessary to create a
communication "protocol" which could cover the
needs in communication issues. We also created
“clever” classes that are used for reading and parsing
XML messages.

Figure 1: Tele-Control System

Administration
 Units

Remote Units

Control Center IIS

Mobile
Admin.

Figure 2: Tele-Control Components

«system»
Remote Unit

«executable»
WEB Server

«system»
Control Center

«system»
Administrative Unit

«library»
WAP Administrator

* 1

*

1

1

1

*

1

2.1.1 Communication messages

In the communication process use XML as an
easy way of transmitting data. We created a DTD,
which is constructed taking into account the needs of
communication messages. Below we are showing
the types of XML messages we are using:

XML Message: A Tele-Control unit uses this
message in order to send an XML data structure to
the connected peer.

XSL Message: This message is used in order to
send an XSL Stylesheet to a connected peer. This
Stylesheet is used to present the receipt XML data in
the desired form on the connected peer unit.

Updating Message: This type of message is
used in order to update XML data in the connected
peer. This type of message is using XML “sub-tree”
update information instead of sending the XML
structure again.

Alert Message: This kind of message is used in
cases of notifying Central Control Unit or
Administrators of certain incidences on Remote
Units.

General Message: This message is used in
exchanging general messages between connected
peers. General messages are separated by a certain
element, which determines the specific type of the
general message.

2.1.2 Communication classes

 In our approach we tried to find a generic
structure that could be used simply and efficiently in
order to parse any XML structure. We implemented
a class that can read and store an XML structure in a
powerful tree, easily used by a programmer. This
class, the clsTeleMsg, constitutes the main
communication class of our communication. It is the
mediator between the communicating parties and it
is parsing messages and stores the XML data of the
administrators and the distributed units. Generally
speaking, this class has the capability to create
recursively a tree of clsTeleMsg nodes, which hold
the XML elements. We also implement classes that
handle sockets (Communicators) with which the
Tele-Control units send and receive the XML
Messages. These classes are quite simple and they

Figure 4: Use Case Diagrams

Remote Unit

Remote Unit User

Handle Machine

TeleConferenceRequest Tele-
Conference

Accept Tele-
Conference

«uses»

«uses»

Communicate with
Control Center«uses»

«uses»

Control Center

Central Administrator

Retrieve Data
of Remote Unit

TeleConference
Request Tele-
Conference

Accept Tele-
Conference

«uses»

«uses»

Communicate with
Remote Unit

«uses»

«uses»

Communicate with
Admin. Unit

«uses»

Update Data of
Remote Unit

«uses»

Retrieve Data
of Administrator

Send Data of
Remote Unit

«uses»

«uses»

Figure 3: Use Case Diagrams

Administrative Unit

Administrative Unit

Retrieve Data
of Remote Unit

TeleConference

Request Tele-
Conference

Accept Tele-
Conference

«uses»

«uses»

Communicate with
Control Center

«uses»

«uses»

Update Data of
Remote Unit

«uses»

Retrieve List
of Units

«uses»

Requesting a
Unit

«uses»

WAP Administrator

Wireless Administrator

Retrieve Data
of Remote Unit

Communicate with
IIS«uses»

Update Data of
Remote Unit

«uses»

Retrieve List
of Units «uses»

Requesting a
Unit

«uses»

Figure 5: Remote Unit structure

are initialising TCP channels on predefined ports
that the Tele-Control System uses.

2.2 Tele-Control Units

In this session we describe briefly how Tele-
Control units are implemented in order to support
Tele-Control system functionality. The processes of
such systems vary because they are built by using
predefined sets of requirements. We tried to analyse
the main requirements of such systems to determine
the main functionality of the Tele-Control Units.

2.2.1 Remote Units

The Remote Units are the units that are needed
to be handled by the Administrative Units in the
Tele-Control System. They have their data stored in
an XML structure and they have functionalities for
loading, updatting and communicating with other
units. We have mentioned that Remote Units cannot
be handled directly. They are connected with a
Control Centre, which is responsible for retrieving
and forwarding XML messages to the Remote Unit.
The Remote Unit is using a clsUnit class for storing
its data and also a clsCommunicator class for
connecting to the Control Centre. In Figure 5 we are
presenting a class diagram for the Remote Unit. In
this diagram both clsUnit and clsCommunicator are
shown; these are handled by a Controller Class. The
controller classes are used in all Tele-Control Units.
This type of class is using the parsed XML messages
to execute a defined process on a local unit. For
example, the Remote Units’ conroller
(clsControlUnit) can receive an update XML
message and use it in order to update local XML
data (clsUnit). Below we are summarizing some of
the major activities that this controlling class can
perform:

• Handling the Communicator for connecting to
the Control Centre.

• Sending the initial data of a Remote Unit to the
Control Centre. Data is loaded into a clsUnit
class, which is contained in the Controller. The
XSL Stylesheet is also stored and transmitted in
the initial stage.

• Performing the activities on XML messages
arrivals. These messages are mainly updating
messages and teleconferencing messages.
The role of this category of units is to retrieve

and update data on certain devices. These devices
must be electronic machines that are connected on
the Remote Units and handled by a defined set of
commands. In this paper we will avoid defining any
external signals because we put emphasis on how
these Tele-Control units cooperate. In the two
applications that we implemented by means of this
framework, we used certain “simulators” that have
the role of external machines. These “machine
components” are components that encapsulate the
basic functionality that they are expected to have,
due to their role in the application we are
implementing. In the analysis of the framework we
will use the Tele-Medicine application, which is an
application that handles medication of remote
patients. In this application the Remote Units are
machines that handle a set of stacks that hold a
number of pills. A medication is submitted at the
machine and only when the medication time is
reached, the patient is notified in order to take his
pills. So if we summarize the general components of
the Remote Unit and the “machine” that is needed in
order to create such a unit, we will have effectively
generated the diagram in Figure 5. It is obvious that
that a “programmer-defined” component is needed
(Controller) in order to coordinate the four major
parts of the Remote Unit, which are the following
ones: Controller (clsControlUnit), Teleconference
component (ucTeleconference), Machine component
(ucMachine), and a Database class (clsDatabase).

2.2.2 Control Centre

The Control Centre is the most important unit in
our framework. It is the middleware unit, the
coordinator, the message handler, the “heart” of our
framework. The Control Centre should normally run
on a powerfull machine and it is using an IIS in
order to implement the Mobile Administrator role.
The Control Centre machine is using certain ports
through which units get connected and send/receive
XML messages. The port 80 is used from IIS for the
WWW connections and two other ports are used for
connecting Remote Units and Administrators. The
tricky part is the Mobile Administrator connection.
In this case an administrator component is

Figure 6: Administrative Unit

instantiated on the IIS and a connection is
established with the Control Centre process by using
the same port that Administrative Units are using. So
the Mobile Administrators are calling the IIS
through port 80, the IIS is then initiating a local
channel through the Administrative Units’ port and
the dynamically built content is returned to the
Mobile Administrator. It is quite obvious that the
Control Centre must separate the Remote Units and
Administrators conections in order to split the
functionality into different parsers and activity
handlers. So we created a class that handles two
communicator switches and two coordinators to
serve the Remote Units and the Administrators (see
Figure 6). The two cordinators (clsUnitsCoordinator and
clsAdminsCoordinator) are coordinating data classes of Units
(clsUnit) and Administrators (clsAdmin) respectively. The
XML messages that arrive in the communicator
switches are parsed in the controlling class
(clsControlSrv), triggering certain activities to be executed
by the coordinators. So the major components that
comprise the Control Centre unit are: a Controlling
Class, Communicator Switches, Coordinators, a
Teleconference component and forms to present
Administrators and Units.

The Units’ Controlling Form that is mentioned
earlier is used for presenting and handling the
Remote Unit’s data. We defined the XML and XSL
messages which are passed by the Remote Unit in
order to create an identical copy of the Remote Unit
data on the Control Centre machine. These ASCII
texts are received and used together in order to
present a Remote Unit’s XML structure in the
prefered format (XSL Stylesheet). On this form a
certain group of controls is also added in order to
offer a set of functinalities that can change the
Remote Unit’s data. The same form of controller can
be used from the Administrative Unit. The only
difference between the two instances is that in the
first one is using the coordinator for retrieving the
copied unit and the second one is using directly the
local copy.

The structure of the Control Centre is shown in
Figure 5. The major functionality of the Control
Centre is contained in the communication of the
communicator switches and the controlling class.
The controlling class receives a defined set of XML
messages with which it is updating local copies and
forwarding messages to Remote Units and
Administrators. In order to define the sender of the
XML messages of the switches we are using the
RequestID (Socket connection) in order to uniquely
determine the correct source. In our framework we
have implemented all updating scenarios between
the Tele-Control units and these are briefly
described below:

Remote Unit is changing its XML data: The
Control Centre is notified and it changes its local
copy. If the copy is already requested from an
Administrator unit then an update message is
forwarded to that Administrator.

Control Centre is changing a Remote Unit’s
data on the local copy: The Control Centre notifies
both the Remote Unit and the Administrator (if it
exists) that is currently using a copy of the data, to
update the latter.

Administrator is changing a local Remote
Unit’s data: The Control Centre is notified and it
changes its local copy. Then the Control Centre is
forwarding the same update message to the selected
Remote Unit.

The other scenario that is significant to the Tele-
Control System, is the Teleconference
communication process. In this scenario XML
messages (CONF_REQUEST, CONF_ACCEPT,
CONF_CLOSE) are sent between a Remote Unit
and an Administrator in order to realize a
teleconference communication. The Control Centre
is the middleware of the XML messages because in
the teleconference communication the components
are connected directly through a TCP channel.

The other scenarios that will not be described in
the analysis, because they are quite simple, are:

Unit connected/disconnected from the Control
Centre: It is updating the local list of connected
Remote Units and then updates the list of units in all
connected Administrators by a LIST message. If an
Administrator is using a disconnected Remote Unit,
then it is notified in order to release the copy of the
Remote Unit’s data.

Administrator connected/disconnected from
the Control Centre: It is updating the local list of
connected Administrators and if the Remote Unit

Figure 7: Administrative Unit

that previously requested it is not released, the
Control Centre releases it.

2.2.3 Administrative Units

The Administrative Unit structure is quite
similar to the Remote Unit’s one. It is using a local
copy of a Remote Unit’s data that is updated and
informed by XML messages that are sent initialy to
the Control Centre and afterwards to the original
Remote Unit. The major activities that can be
performed by this unit are:
• Connect/Disconnect on the Control Centre.
• Requesting a selected Remote Unit by using a

list that informs the Administrator about the
available units.

• Changing the local copy of a Remote Unit that is
retrieved from the Control Centre. Changes are
sent by using an Update Message to the Control
Centre. The Control Center afterwards notifies
the Remote Unit in order to update the original
source.

• Initiates a Teleconference if it is needed or when
it is requested from a Remote Unit.
The Administrative Unit is using a

communicator to connect to the Control Centre, as in
the case of the Remote Unit. The controlling form
exists in the structure of this unit in order to be able
to perform changes on copies of Remote Units. The
administrator is using two data classes. The first one
is clsAdmin that contains local information and the
other one is clsUnit that contains the copy of the
selected Remote Unit that is currently handled by
the Administrator.

2.2.4 Mobile Administrators

The Mobile Administrators are mobile devices
that can retrieve and update data of a selected
Remote Unit. We have analysed the communication
infrastructure of such devices, so in this section we
will emphasize on the structure of the Mobile
Administrators. The data in the mobile devices is
dynamically built by calls on the IIS on the Control

Centre machine. When a dynamic content (ASP) is
requested from the Mobile Administrator, the IIS is
initializing a certain component (DLL – Dynamic
Linked Library) that contains the main classes of the
Administrative Unit’s connectivity. So we need a
communicator to initialize a TCP channel to the
Control Centre, a controlling class to parse the
messages of the Conrol Center, and a local copy
(clsUnit) of the Remote Unit’s copy. The conroller is
very similar to the conrolling class of the
Administrative Unit but it is not triggering events;
instead, it is builting WML content for mobile
device. So, in general, this type of Administrator is a
“virtual” Administrative Unit that comunicates with
the Control Centre by using an IIS as a middleware
environment. Instead of events, the ASP pages
dynamically build the list of Remote Units, the
“content” of a selected Unit and, on submission,
they update Remote Unit data.

3 APPLICATIONS PARADIGMS

In order to prove the simplicity and reusability of
our framework we used two different application
paradigms. These applications are similar because
their mission is the same, namely to “handle remote
units”. In the first case we used a Tele-Medicine
system that handles pill dispenser devices and in the
second one a Tele-Security system that monitors
lights, doors, and alarms of a set of buildings.

3.1 Tele-Medicine application

The paradigm we used in order to define how the
Remote Unit is built was a Tele-Medicine system.
As already mentioned, these units handle a stack of
pills stored in a dispensing machine. We will not
analyse the messages that are sent within the system
because the only classes and components that can be
used in order to implement the Tele-Medicine
system are the “Controlling Classes” and the
“Teleconference Components”. So the only
available interface that can be used is the interface of
the above class/components. During the first stages
of the implementation the programmer must create
the XML data that will be used from the Remote
Units and the “machine” that communicates with the
controlling class in order to read and write data.
Here we used a COM component that contains eight
stacks of pills that are also COM components. The
“machine” has buttons and pills indicators that are
used in order to have a GUI for our Remote Units
and a Teleconference component for

teleconferencing communication. The XML data
that is used is shown below:

<TTP>

<PrescriptionID>

<MedicationID>

<MedSchedules>

<MedSchedule ID="1">

<MedDay>Thu</MedDay>
<MedTime>10:20:00</MedTime>
<MedPill>1</MedPill>
<MedNoPills>1</MedNoPills>

</MedSchedule> . . .
</MedSchedules>

<MedExpiray>10</MedExpiray>
</MedicationID>

</PrescriptionID>

<Machine>

<Pill1>

<Active>1</Active>
<Color>16711680</Color>
<Count>13</Count>
<Last>16/05/2002 11:18:17</Last>

</Pill1> . . .

</Machine>

</TTP>

The “machine” can be initialised be using the
retrieving procedure of the controlling class. The
interface of the machine is using events that are
triggered when the patient gets a pill, the stack of
pills is empty or the patient did not take his pill after
a notification. In these situations we are using the
SendMsg to update data on the Control Centre. The
SendAlert procedure is used for sending Alert
messages. Below we present a script that is used
from the Remote Unit in order to initiate the stacks.

For i = 1 To 8

 Active(i) = cControlUnit.UnitData.

 GetElement("Machine"). _

 GetElement("Pill" & i). _

 GetElement("Active").GetValue

 Pills(i) = ControlUnit.UnitData. _

 GetElement("Machine"). _

 GetElement("Pill" & i). _

 GetElement("Count").GetValue

 Color(i) = ControlUnit.UnitData. _

 GetElement("Machine"). _

 GetElement("Pill" & i). _

 GetElement("Color").GetValue

 LastTaken(i) =

 ControlUnit.UnitData.

 GetElement("Machine"). _

 GetElement("Pill" & i). _

 GetElement("Last").GetValue

Next i

For i = 1 To 8

 Call Me.Machine.InitMachine(i, _

 CLng(Color(i)), _

 CInt(Pills(i)),

 CBool(Active(i)),

 CDate(LastTaken(i)))

Next i

The following script is used when a patient gets
a pill from a stack. A pill is taken according to a
predefined medication schedule.

cControlUnit.UnitData. _

 GetElement("Machine", strPath). _

 GetElement("Pill"&index, strPath).

 GetElement("Count").SetValue

 Machine.PillslCount(index) - 1

cControlUnit.UnitData. _

 GetElement("Machine"). _

 GetElement("Pill" & index). _ _

 GetElement("Last").SetValue

 Format(Now, "dd/mm/yyyy hh:mm:ss")

strXML = cControlUnit.UnitData. _

 GetElement("Machine").

 GetElement("Pill" & index).XML

Call cControlUnit. _

 UpdateTTP(strPath, strXML)

The scenarios mentioned above dynamically
conform to the new Remote Unit type. The only
change in the Control Centre and the Administrative
Units is the “Controlling Form” that is used in order
to update the Remote Units scheduling. The
medication is the only information in the Remote
Units XML structure that can be changed, so in the
form we used a list of current schedules and controls
to add new schedules in the list. When additions and
removals take place, XML messages are constructed
and sent to other Tele-Control units. In Figure 8 we
show how the Tele-Medicine Control Centre looks
like, and in particular: a) the list of connected Units
on the Control Centre, b) the XML/XSL information
of the selected Remote Unit in a Web Browser
control, c) the controls that are used for listing,
deleting, adding new schedules (on the right). When
a new schedule is added in the Remote Unit copy,
the update scenarios are triggered in order to inform
the original source and other copies to change.

The Administrative Units are using the same
GUI and the same “Controlling Form” in order to

Figure 8: Tele-Medicine machine

update the Remote Units. In the Mobile
Administrators the ASP pages that are used, retrieve
dynamic content from Control Centre and they are
presenting the WML on the mobile device. The
above environment is fully functional and the
framework we implemented was successfully used
in the Tele-Medicine application.

3.2 Tele-Security application

The second paradigm is a security system that
handles lights, doors and alarms in a set of buildings.
The implementation of this system is quite similar to
the previous application. We used an XML structure
to contain information about a building and then a
“machine” component that handles the external
devices and sensors (a simulator component). In the
“machine’s” GUI we are using components that
simulates rooms and doors, and an XML structure
that holds information about their status. In the same
way the messages of the Tele-Security system are
forwarded to the communicating units and Remote
Units’ information is passed as a copy and gets
updated by the Administrators.

4 RELATED WORK

Distributed applications are based on the
distribution of components through communication
channels. Many of them are using connectors and
well-defined interfaces to put into operation the
distributed systems (Bruneton, 2001). The
connectors are constructed on middleware, mainly
CORBA and DCOM. Although these platforms
provide various methods, they do not by themselves
provide a simple messaging binding between the
nodes. Additionally, there is some serious research
in implementing middleware that is using XML
documents between the connected nodes (Lowe,

2002) which is much simpler. The XML middleware
(Ciancarini, 2002) can implement complex
applications based on XML Document agents. In our
work we are using the XML serialisation technique
not only to transmit data object but also to exchange
coordination and control messages. The recent
MOM (Message-Oriented Middleware) Servers are
extending the standard XML into a powerful set of
instructions and procedure calls, executed on the
distributed nodes (Cabri, 2000). In our work we are
implementing a specific framework that is using the
above range of techniques to specify a well-defined
pattern of Tele-Control Systems. It provides not only
the communication techniques between the nodes
but also the coordination signaling that is needed to
handle remote administrators and remote units.

5 CONCLUSIONS

Generic frameworks comprising reusable
components are currently becoming more popular
because they can assist in the rapid development of
large-scale and complicated applications. The Tele-
Control framework has already proved that we can
easily create an application that handles Remote
Units. The developer can use this framework
without any knowledge of sockets or XML
messages. We believe that the XML protocol that we
are using covers the major scenarios of the
communication process. The dynamic structures of
the XML parsing classes verify that the controlling
classes of the framework can handle any formed
XML structure.

REFERENCES

Clemens Szyperski, 1998. Component Software, Beyond
Object-Oriented Programming, Addison-Wesley.

Fred Halsall, 1996. Data Communications, Computer
Networks and Open Systems, Addison-Wesley.

Eric Bruneton, Michel Riveill, 2002. An architecture for
extensible middleware platforms, IASTED 2002.

Welf Lowe, Markus L. Noga, 2002. A Lightweight XML-
based Middleware Architecture, 20th IASTED
International Multi-Conference Applied Informatics.

Giacomo Cabri, Letizia Leonardi, Franco Zambonelli,
2000. XML Dataspaces for Mobile Agent
Coordination, SAC 2000.

Paolo Ciancarini, Robert Tolksdorf, 2002. Coordination
Middleware for XML-centric Applications, SAC 2002.

