A THREE-DIMENSIONAL REQUIREMENTS ELICITATION
AND MANAGEMENT DECISION-MAKING SCHEME FOR THE
DEVELOPMENT OF NEW SOFTWARE COMPONENTS

Andreas S. Andreou, Andreas C. Zographos and George A. Papadopoulos
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str., P.O.Box 20537, CY1678, Nicosia, Cyprus
Email: aandreou@cs.ucy.ac.cy, a.z.zsoft@cytanet.com.cy, george(@cs.ucy.ac.cy

Keywords:

Abstract:

Software components development, Requirements elicitation, Management decision-making, Reusability

Requirements analysis and general management issues within the development process of new software

components are addressed in this paper, focusing on factors that result from requirements elicitation and
significantly affect management decisions and development activities. A new methodology performing a
certain form of requirements identification and collection prior to developing new software components is
proposed and demonstrated, the essence of which lays on a three-entity model that describes the relationship
between different types of component stakeholders: Developers, reusers and end-users. The model is
supported by a set of critical factors analysed in the context of three main directions that orient the
production of a new component, that is, the generality of the services offered, the management approach and
the characteristics of the targeted market. The investigation of the three directions produces critical success
factors that are closely connected and interdependent. Further analysis of the significance of each factor
according to the priorities set by component developers can provide a detail picture of potential
management implications during the development process and more importantly can support management
decisions related to if and how development should proceed.

1 INTRODUCTION

Quality in software engineering is defined as the
level to which a certain software product meets its
specifications (Schach, 1999). Specifications are the
formal or technical transformation of corresponding
requirements collected during a preceding analysis
stage. Therefore, quality is highly dependent on the
success a requirements engineering process exhibits
on identifying the right needs that a software product
must fulfil and serve. Component-based software
engineering makes use of the notion of components,
independent software parts that can be reused in a
way that their combination in various fields or
applications results in the creation of a full software
product dedicated to serve a specific working
domain. A software component should aim primarily
at meeting its requirements/specifications for
increasing its quality. In addition, components must
be of high quality due to customers insisting on such
quality, and this can be achieved only if the

requirements are clearly specified (Szyperski, 1997).
In a demanding and dynamically evolving
component market, developers are often facing a
difficult management problem (profit-wise): Should
they proceed in developing a new software
component or not? Are market conditions in favour
of the former or the latter? Developers’ target of
course is to produce a component that will be
successful, will have many uses (purchases) and will
result financial profits. The critical question for
developers to answer is the following: How can they
orient component success factors prior to
development, or what management decisions should
they take to achieve high quality and sufficient
reuses? The present paper moves along the lines of
these management and quality issues attempting to
provide a framework for collecting factors that on
one hand will assist the analysis and specification of
new components, and on the other will offer the
means for the management to decide if conditions
support the development of a particular component,
and if so what other critical aspects of the
development process should be examined.

Little research effort has so far been reported in
the international literature that was devoted not to
the process of reusing existing components but to
the study of requirements elicitation and
specification as a means for achieving high quality
or assisting the management activities when
developing new ones. Baum and Becker (2000)
introduce the fundamental concepts of generic
components for addressing a broad spectrum of
application requirements, while Grundy (1999,
2000) proposes the alternative of aspect-oriented
requirements engineering for component-based
software systems development. Moreover,
specifications are used in Mili et al. (1994) to
address one of the open problems in the field of
component-based software engineering, namely the
storing and retrieving of components, by proposing a
scheme using formal representations to model
abstract specifications. Sitaraman et al. (2001)
introduce a compositional approach to address
performance specification problems in an effort to
assist the choosing and assembling of components
that best fit their time and space requirements. In
Sugumaran et al. (1999) a new methodology is
proposed and evaluated, which reuses domain
knowledge artifacts for systems analysis and
detailed object/code artifacts for systems
development. Requirements engineering for
component-based systems is also reported in a
number of research studies: Barber (1999)
introduces the Systems Engineering Process
Activities (SEPA) methodology, which addresses
the issue of requirements reuse and evolution in
component-based software development from the
perspective of separating domain-level requirements
from application-level ones. Ncube and Maiden
(1999) propose the use of the PORE, an iterative
requirements engineering process, which gives
emphasis on requirements acquisition, definition and
validation, for the selection of components during
the development of component-based systems.
Finally, Baum et al. (2000) describe Design Spaces
as a way of mapping requirements to reusable
components by representing requirements in a cross-
produce fashion; this cross-produce can then be
correlated against specific criteria to derive the most
suitable components for building new software
systems.

All the above references, nevertheless, address
their research targets based on software components
that have already been developed and are available
for reuse. The present paper stands on a totally
different ground than the reported research work,
with its main contribution being the proposition of a

new methodology that can assist the analysis phase
and guide the management tasks when developing a
new software component. Specifically, it is
involved with the issue of achieving high quality
when originally developing software components by
looking at the problem from the angle of identifying
and addressing proper component requirements and
specification prior to development. The attention is
drawn upon: (i) constructing a simple but robust
methodology for guiding developers in defining a set
of key features, both functional as well as non-
functional, that the component should exhibit to
enhance its quality and promote its attractiveness to
potential reusers, (ii) offering a way of tackling
potential management problems prior to
development.

2 SOFTWARE COMPONENTS
QUALITY, REQUIREMENTS
ANALYSIS AND MANAGEMENT

Software components quality can in general be
described in a variety of dimensions: Level of
performance, resource utilization and efficiency,
robustness, value-for-money, fault isolation, safety,
ease-of-use, ease-of-modification, interoperability,
adaptability, level of independence, viability, etc.
These dimensions, though, are highly dependant on
the application domain, the specific functionality the
component offers and the environment, both
technical and business, in which it will be integrated.
Unfortunately, these are never known prior to the
actual process of reusing components to achieve a
specific goal. Thus, information about the critical
factors that guide the success of a component as part
of a larger group of other interacting components
can become available only when the three axons,
application domain, required functionality and
existing technical and business environment, are
known.

The inherent problem with the effort to elicit
proper requirements upon development of
components to be reused is actually the inability to
do so until these requirements become available at a
later stage, that is, during the actual process of reuse.
Our proposition is a new methodology that tackles
this inherent problem via a scheme incorporating
hypothetical requirements. These requirements are
identified through the recording of a number of
critical factors that will potentially affect
components’ reuse. The critical factors are then
analysed in terms of interdependencies and

conclusions are drawn upon potential development
implications. Based on these conclusions,
management decisions can be taken regarding the
production of a software component or the abortion
of the process. In the former case, requirements
elicitation and collection can be performed based on
specific stakeholders’ informational templates.

The methodology is analytically described
through a series of three steps as follows:

Stepl: Identify critical success factors within
the following three axons: “Market”,
“Management’ and “Generality”

Critical success factors can be categorised into three
main dimensions: The target-market in which the
component aims at entering, the component’s
management, and its generality (figure 1). The first
dimension determines whether the component is
developed to create a new market and possibly to set
a new standard, or to compete in an existing market
of components aspiring at winning competition or
gaining a high percentage of customers. The
dimension of management attempts to set an upper
bound to the price estimated for a component’s
future purchase by potential customers, according to
the effort, time and resources put in the process of its
development, as well as according to the advantages
offered upon its reuse. The generality dimension
refers to the functionality feature of a component for
general problem solving capabilities in contrast to
the provision of a specialized solution for a
particular problem. All three dimensions are highly
correlated and the first dimension to be addressed
(entry point) will affect decision making on the other
two. For example, if the component will create a

new market, then the management may decide to
accept higher development costs and increased
number of human resources than usual, aiming at
shortening the release time and be benefited by the
prospective monopoly.

The selection of these particular dimensions was
not arbitrary. Wallnau et al. (2002) report that the
nature of the system architecture changes under the
market regime to respond to marketplace dynamics
(availability of component features, interfaces that
components support, which components thrive, etc.).
This directly influences the selection of components
that best support the functionality of the various
structural parts of the system and dictate the kind of
interaction between these components. In practice,
the “Market” axon is more likely to be used as the
starting entry-point and this is depicted in figure 1
with a larger circle. The “Generality” axon
represents the viewpoint of software component
manufacturers. In a recent study (Seppanen et al.,
2001) the authors presented a survey indicating that
component development may pay off if components
are “big” enough in functional terms, i.e. they come
close to being software products. Thus, under this
perspective the generality of services provided may
be regarded as an aspect of the at most significance
for component developers. Finally, the
“Management” axon is necessary to complete the
scenery by integrating the information provided by
the other two dimensions and by taking control over
the planning and organizing activities during the
development process.

Management

Market

Critical

Architectural Diagram - Telemedicine
Original E
developer

success

Reuser

Relational Database System

Figure 1: Main dimensions for identifying
critical factors that will potentially affect
components’ reuse. Dimensions are highly

Figure 2: A three-entity relationship
model between different stakeholders.
The solid line indicates direct

Figure 3: Diagrammatic
representation of the component-
based telemedicine system in the

correlated: The first dimension to be
analysed (entry point) will determine the
critical factors that belong to the other two

connection. The dashed line corresponds

to indirect type of connection. The inner

rectangle indicates that reuser and end-
user can be seen as one entity

context of which the proposed
methodology was utilized during the
development of components

The identification of certain critical factors for
each of the proposed model’s axons is based on the
focus questions depicted in tables 1, 2 and 3. Focus
questions may be divided into primary and
secondary, while the answers to these questions will
enable the collection of associated factors reflecting
various aspects of each of the three axons analysed.
Thus, a general informational platform is
constructed, reflecting on one hand the targets
served and the advantages offered by a certain
component, and on the other hand the issues related
to the actual process of development and marketing.

After completing the gathering of the critical
factors, the component developer assigns a level of
importance to each factor. Thus, he prioritizes the
requirements that result from the factors identified,

giving greater emphasis on those he regards more
significant. The level of impact that this
prioritization may have on the development process
is analyzed and examined in step 2, resulting to
insights of where and how development procedures
will be affected. For example, if the component will
join a current market offering significant advantages
compared to its competitors, then the average cost of
competitive components will have little or no
interest at all and thus it will be given less attention.
Further to that, if the time-to-market estimation
dictates quick development in order to bid the
market at the right time when a need is present, then
the number and/or the skills of the development
team’s members will be given higher priority than
the development costs.

Table 1: Focus questions for the “Market” axon

Primary Focus Questions

Secondary Focus Questions

1.1 Is the targeted market a new characteristics?)?

1.1.1 What are the potentials for success (advantages: first solution? New functional

market (functional-wise) > YES

1.1.2 What new services will be offered?

1.1.3 Will the process of setting a new standard be attempted?

1.2.1 What are the principal competitors (vendor-wise)?

1.2 Is the targeted market an
existing market (functional-wise)
- YES

1.2.2 What are the competitive components and what are the similarities and differences of their
functionality compared to the new component?

1.2.3 What is the average purchase cost of competitive components?

Table 2: Focus questions for the “Management” axon

Focus Questions

2.1 What is the estimated time needed to develop the component?

2.2 What is the estimation about the appropriated time to release the component in the targeted market (time-to-market)?

2.3 What is the estimated number of people required for development?

2.4 What are the necessary skills for the staff to be involved?

2.5 What is the estimated development cost?

2.6 What is the estimated purchase cost?

Table 3: Focus questions for the “Generality” axon

Primary Focus Questions

Secondary Focus Questions

3.1.1 What services will be offered?

3.1 Will the component be of a

3.1.2 How will these services fit and survive in the targeted market?

general-purpose functionality or a

3.1.3 What application domain is addressed?

specific problem solver?

3.1.4 What is the problem dealt and what is the solution offered?

3.1.5 How does the solution tackle the specific problem?

Table 4. Factor weights abbreviations for the “Market” and “Management” axons

Market

Management

New : MR1

Functional advantages : MR1,1

New services : MR1,2

New standard : MR 1,3

Existing : MR2

Competitors’ position in the market : MR2,1
Similarities with competitive components : MR2,2

Average purchase cost of competitive components: MR2,3

Time to develop : MN1

Time to market : MN2

Human resources required : MN3
Level of skills required : MN4
Development cost : MN5
Purchase cost : MN6

Step 2: Define critical factors’ level of
significance according to developers’ priorities
(management decisions). Analyse dependencies and
orient the impact of management decisions on the
less significant factors
Managing the development process of new software
components is a difficult task comprising a set of
decisions that, no doubt, will have a determinative
effect on the success the component will achieve
entering the components market arena. For example,
if the management chooses to proceed in a slower
development rate than the one suggested by market
analysis for the release of a new component, and
attempts to reduce development costs by using only
existing personnel and not recruiting new people,
then market conditions may change in the meantime,
with a competitor component-vendor succeeding in
releasing his component first and overtaking the
market share. Thus, making the right decision the
right time can be the key to the lock for newly
created components to enjoy a rich number of
reuses. This step will introduce a management
decision scheme, which offers a general picture of
how certain factor priorities set by
managers/developers can affect critical aspects of
the development process. Recalling that the
requirements elicitation model proposed comprises
three main axons, which are then decomposed into a
number of critical factors through a set of focus
questions, we will proceed in analysing factor
priorities and dependencies between factors. Table 4
presents the abbreviations of the factors that describe
each component, which will be used to reflect the
relative significance that may be assigned by
component developers. We will concentrate on
factors within the first two axons (“Market”,
“Management”), due to the fact that usually the
factors under the “Generality” axon do not have a
major influence on the management decisions taken
prior to the development process. By this we mean
that developers rarely set the generality or
specialization of a component’s services as a priority
target with which everything else must align.

Factor priorities can be classified into two
categories: (i) Mutually excluded priorities, that is,
priorities that cannot be set simultaneously. This
category includes factors that belong to the MR1 and
MR2 groups. (ii) Coexisting priorities, which
indicate that the importance of some factors is
simultaneously taken into consideration. This
category contains in general all the factors that do
not belong to category (i). Our suggestion is the
creation of a Factor Interdependencies Table (FIT),
which will represent the impact of each factor on the

rest of the set. Specifically, given that a certain
factor was assigned higher priority than others, the
FIT determines what other factors will be
influenced. The FIT is constructed as a (nxn) table
containing the abbreviated factor descriptions of
table 4 in the first row/column. The dependencies
are depicted in the table with a mark from a row-
factor (significant) to various column-factors
(affected).

The construction of the FIT assumes that the
management/development team has already
determined, during step 1, the factors it regards more
critical and significant prior to development.
Dependencies are then marked and a level of impact
that priority factors put on the affected ones is
identified. Thus, a general picture is formed
reflecting potential implications that decision-
making will cause and giving insights on how cost,
time and human resources will eventually be shifted
or shaped by setting certain priorities. Following this
management decision-making scheme, the managers
can organize and plan better the development
process due to the fact that the FIT analysis
transforms certain unknown risks into expected
risks. The preceding factors significance analysis
can be used as a management tool for deciding
whether it will be profitable to proceed and develop
a certain component or not. Furthermore, in the case
in which the decision is in favour of a component’s
production, the management will be aware of critical
issues related to the development process, such as
level of costs, required human resources, deadlines
to be met etc., and thus will have the benefit of
organizing and monitoring related activities for
minimizing or eliminating expected risks.

Step3: Based on the factors identified and
studied in steps 1 and 2 proceed to collect the
required informational features for the new software
component or cancel the development attempt
The requirements elicitation process for a new
software component, as stated earlier, has to rely on
assumptions and estimations that can, to the most
accurate extent possible, reflect requirements that
will be set during its reuse and its full operation in
an integrated application. In this context a new
requirements elicitation process will be proposed,
the essence of which rests on a three-entity model as
shown in figure 2. The entities participating in the
model are the “Original developer” of a software
component, the “Reuser” assembling the component
with other components to form an application, and
the “End-user” who actually works with the
application formed.

The model suggests two types of
connections/relationships between entities: First, the
direct connection (solid lines) describing the
relationships between original developer and reuser
on one hand, and reuser and end-user on another.
The term “direct” is used here to denote that the
original developer when creating a component
should always bear in mind that its success relies on
the number of uses it will have provided that it
exhibits all those key characteristics that could
attract potential reusers. In align with this, a reuser
must always take into consideration the specific
needs and requirements of a group of end-users prior
to assembling and integrating components. Second,
the type of indirect connection (dashed line) reflects
the kind of collateral impact that design and
implementation decisions on behalf of the original
developer may have on the final recipients of the
services offered by the particular component. Due to
the fact that the reuser represents the end-user with
respect to his requirements on quality issues, this
type of connection can also be seen as a subset of the
developer-reuser relationship (inner rectangle area).

The general form of the model covers also the
situation in which reuser and end-user is the same
entity. In such a case, an end-user, that need not be
an expert programmer, reuses components to
develop a software application framework to support
his everyday working activities. This case is handled
in the proposed model considering the entities
“Reuser” and “End-user” as merging into a single
entity directly related to the entity “Original
developer” with corresponding merger of the direct
and indirect types of connection into a single general

connection including both types. For simplicity’s
sake let us perform the following abbreviations for
the three connections/relationships taking place in
the model of figure 2: OD-R will denote the
connection between original developer and reuser,
R-EU will refer to the connection between reuser
and end-user, and OD-EU will correspond to the
connection between original developer and end-user.

As previously mentioned this step will be
carried out only in the case in which the result of the
FIT analysis favoured the production of the
component and its outcome will be specific
informational templates for each of the relationships
participating in the three-entity model:

OD-R: The template is depicted in table 5 and
comprises three main informational sections, namely
the “services”, “criteria” and “eligibility
information” section. These sections contain a
significant part of the information required for
providing cataloguing and reusing facilities, as well
as for revealing human and social factors that
contribute or contrast to the reuse of a particular
component.

R-EU: This kind of relationship can be
addressed using classic requirements engineering
processes. Thus, we can follow the suggestion in the
work of Kotonya and Sommerville (1996) and
Sommerville (2000) and use the Viewpoint Oriented
Design (VORD) type of template to collect
viewpoint (stakeholder) and service information, as
shown in table 6.

Table 5. Informational template for collecting the component developer - reuser relationship factors

OD-R template

Services: A set of available services for reusers to select a component from a list:

= Categorization: The type of component categorization followed

= Sorting: The kind of sorting used
= Retrieving: The way a reuser can retrieve a component
= Testing: The available testing privileges offered

Criteria: A set of criteria to be used by reusers for identifying the right component from a list:

= Functionality: The functionality offered by a component

= Operating System: The required OS platform for a component to execute
* Programming language: The language used for developing a component
= Application domain: A description of the field a component best fits and serves
= Functional characteristics: A set of significant functional characteristics describing a component
Eligibility information: Information to be used for testing the eligibility and appropriateness of a component selected from a list:
= Source code: A full source code listing including in-line and prologue comments, along with information related to the
programming language, compiler and operating system used for developing the component (when modifications are allowed)
= Diagrammatic representations: Graphical presentation of data and control flow, logic of functionality and decision trees (when

modifications are allowed)

= Test cases: A set of test cases, both normal and abnormal, and the corresponding responses
= Failure Data: Information describing failure characteristics, such as mean-time-to-failure, mean-time-between-failures, criticality

of failures dealt and how they were resolved

Table 6. Informational template based on the VORD standard forms for collecting the reuser — end-user relationship factors

R-EU template

Viewpoint template

Service template

Reference: The viewpoint name

Attributes: Attributes providing viewpoint information

Events: Set of event scenarios describing how the system reacts to
viewpoint events

Services: Set of service descriptions
Sub-VPs: The names of sub-viewpoints

Reference: The service name

Rationale: Reason why the service is provided
Specification: List of service specifications
Viewpoints: List of viewpoints receiving the service
Non-functional requirements: A set of non-functional
requirements that constrain the service

Table 7. Informational template for collecting the component developer — end-user relationship factors

OD-EU template

Cost: Purchase cost that may inhibit the selection of a component for reuse according to budget available from client/user of the final

product.

Market: Market or application area, which a component best supports and executes.

Generality: Description of the generality, in functionality terms, of a component’s services.

Functional characteristics: A set of functional characteristics a component exhibits that target a specific user-group.
Non-functional characteristics: A set of non-functional component characteristics that aim at serving best a targeted user-group and

contribute to its selection

OD-EU: The template that provides
informational factors of this type of relationship is
presented in table 7. The factors here are highly
correlated with those identified in step 1, and are
being utilized to form the required documented
“acquaintance” between reuser and component for
assisting the process of selecting the most suitable
component that meets end-users’ requirements.

The three-step methodology described so far
offers developers a complete framework to address
managerial problems of the development process
and to identify a set of critical requirements, both
functional and non-functional, for producing
qualitative and commercially successful software
components. A detailed demonstration of the
proposed methodology is presented in the next

section.

3 METHODOLOGY
DEMONSTRATION

The proposed methodology was applied in the
context of an EU funded project (MEDICATE,
2000) that aims at developing a component-based
telemedicine system utilizing mobile information
devices (phones, palmtops) used by doctors and
medical devices connected to patients, and assuring
reliable real-time communication between all
participants (figure 3). The system comprises: (i) A
main file server, a relational database management
system and a way for supplying patient information

into a database, (ii) An Internet Information Server
(ITS) responsible for retrieving data from the
RDBMS, translate it to the appropriate XML or
WML form, and provide a two-way communication
means between the actual data server and all mobile
or non-mobile devices through the WWW, (iii)
Mobile or non-mobile devices capable of connecting
through the WWW to the corresponding IIS. The
specific system was fully described via three
different component families, based on the ACME
Architecture Definition Language (Garlan et al.,
1997): Mobile components, standard components
and communication components.

Although the target of the project was to
develop various software component types for the
purposes of the specific telemedicine system, the
developers decided to investigate the possibility of
building certain commercial components that could
be offered to potential reusers at a certain cost and
be reused outside the context of the specific
telemedicine project in the future. A
management/development team was formed, which
decided to follow the proposed methodology in
order to investigate the management implications of
developing such components and perform
requirements analysis. For demonstration and
validation purposes we will demonstrate the steps of
the methodology for two components named C1 and
C2 that belong to the mobile component family. C1
is responsible for retrieving information from a
RDBMS using XML-like queries and translate the
result to various output forms, while C2 receives
information from C1 in a proper form and transmits
it to the terminal.

Table 8. Critical factors identified for components C1 and C2 according to the “Market”, “Management”, “Generality” axons

Component C1

Component C2

1.1 No
1.2 Yes
1.2.1 There are few vendors offering components with the
same functionality (six were identified, the major two
were analyzed)
Microsoft: Complete ActiveX Data Objects (ADO) and
Extensible Markup Language (XML) framework within
the recent releases of ADO 2.6 and SQL Server 2000.
Full Functional, expensive solution, need to have good
knowledge of SQL Server
GA Express DOM programming: ActiveX control that
makes transformation of XML-like to queries to
Document Object Model tree like structure
Costs range from $400 to $1200

122

123

It’s a totally new solution offering new functional
characteristics: Few parameters, quick response
Regardless of the mobile device type this component
will produce similar results. This terminal device
independency will be achieved through the production of
HTML and textual output

Yes, a new standard for sending information to remote
devices (PDAs and 2,5" generation mobile phones)

1.2 No

2.1 Approximately one working week or 20 man hours

2.2 Three weeks from today (setting this at the time of the
methodology application)

2.3 One person

2.4 Advanced design and programming skills, good knowledge
of the DCOM model and other Microsoft development
tools

2.5 Approximately 115€ (5,75€ per working hour) plus the cost
for the development tools

2.6 Approximately 18€ (or 15% of the initial human resources
cost)

1.3 Approximately two working weeks or 40 man hours

1.4 One month from today (setting this at the time of the
methodology application)

1.5 Two persons

1.6 Advanced design and programming skills, good knowledge
of the DCOM model and other Microsoft development
tools

1.7 Approximately 230€ (5,75€ per working hour) plus the
cost for the development tools

1.8 Approximately 35€ (or 15% of the initial human resources
cost)

3.1 General purpose functionality

3.1 Specific problem solver

3.1.1 Communication using XML schema streams 3.1.1 Provides XML streams to PDAs and text to 2,5"
3.1.2 Independence of the RDBMS engine based on the use of generation mobile phones
the emerging mobile technology 3.1.2 First solution, with anticipated high level of
3.1.3 Mobile communications effectiveness and reliability
3.1.4 The problem is to develop a software standard for 3.1.3 Mobile communications
mobile data communications and the solution will be the 3.1.4 The problem is to combine the Internet technology with
new component itself. wireless devices. The component will offer the solution
3.1.5 Reusable code, mobile device independency to this problem
3.1.5 Offers a reliable wireless communication scheme over
the WWW
Developers decided to develop both the requirements in human and financial resources

components using Microsoft tools and specifically
C1 using Microsoft Visual Basic 6.0 and C2 using
Microsoft Visual FoxPro 6.0, due to the fact that
they were highly experienced with those
programming tools.

The steps of the proposed methodology for
these specific components were performed as
follows:

Stepl: The critical factors gathered are presented in
table 8 for each of the two components previously
mentioned (answers follow the questions’
numbering of tables 1 to 3). Summarizing the key
points of this table, Cl is a general-purpose
component targeting an existing market and
requiring minimum human and financial resources,
while C2 is a specific problem solver that aspires to
set a new standard and form a new market, doubling

compared to Cl. Developers set the following
priorities for each component: Since C1 will be
entering an existing market, greater emphasis was
given to competitive components’ similarities
(MR2,2) and their average cost (MR2,3), aiming at
offering a new component with at least the same
functional features but in a lower and more attractive
price. For C2 their attention was drawn on factors
describing the creation of a new market (MR1,2 —
MR1,3) offering specific problem solving
capabilities, with emphasis on quick release (MN2)
in order to a timely bid of the market.

Step 2: The FIT for C1 and C2 is given in table 9,
marking with “1” the dependencies of the prioritized
factors in the C1 case, and with “2” the
corresponding factors in the C2 case.

In the C1 case two factors were given the
highest priority, the similarities of existing
competitive components (MR2,2) and their average
cost (MR2,3). The MR2,2 dependencies analysis
resulted that this factor primarily influenced the
level of skills of the developer’s personnel which
should be high enough to identify the functionalities
of the competition and produce the same services at
minimum or more, preserving a low development
cost in order for the component’s future purchase
cost to be lower or equal to that of the competition.
The MR2,3 analysis proved that this priority was
affecting all MN factors: The average cost of
competitive components left no room for producing
a new one with higher purchase cost provided that it
would offer the same, more or less, functionalities
with competition. Thus, development costs should
align with this, something that was translated to
either reduced human resources with higher level of
skills (experienced) but more expensive, or to
recruitment of new personnel with lower skills level
but lower man-hour payment. Each case, though,
would have an undesired effect on the time to
develop the component, which would be increased.
Analyzing point 1.2.2 of table 8 for C1, developers
characterized Microsoft’s solution as a fully
functional component that can perform XML
parsing as well as tight integration with SQL server
database engine. A detailed market-wise view
showed that the development of a similar component
would undertake a high risk due on one hand to the
very successful position Microsoft’s component
currently holds in the components market, and on
the other to the increased costs required for a new
component to achieve functional outperformance.
The management/developing team after having this
clear picture of development implications and risks
decided not to proceed with the production of a

marketable component, since its purchase costs was
estimated to be greater compared to that of the
competition, especially in cases in which similar, but
with slightly reduced functionality components,
were offered for free and the possibility of a reuser
choosing a particular component from a pool of
similar ones with a certain purchase cost was
estimated as minimal. Thus, this component was
developed only to serve the specific telemedicine
project described earlier and not for commercial
purposes.

The C2 case was totally different. The primary
concern of developers was the production of a
component, which would bring a new service and
create a new standard in the mobile communications
software components market. The MRI1,2 and
MR1,3 dependencies analysis revealed strong
interaction with the required human resources and
their level of skills based on the reasoning that since
this would be a totally new solution with nothing
similar in the market for using it as a starting point,
then probably a significant number of people with
high analysis, design and developing skills would
have to be hired to undertake these difficult and
demanding tasks. Consequently, this would have a
significant impact on the development and purchase
costs, which were directly related to the quantity and
quality of human resources. In addition, factor
MR1,3 dictated that a careful business analysis
should determine the appropriate time to release the
component in the market for setting this new
standard. This time-to-market was directly linked to
the time bounds of the development process. Since
the time-to-market was also regarded as a high
priority factor (MN2), then developers had to
compromise with any constraint the market analysis
would pose as a result of the time-to-market
estimation.

Table 9. Functional Interdependencies Table (FIT) for components C1 and C2 marked with “1” and “2” respectively

MRL1 | MR1,2 | MR1,3 | MR2,1 | MR2,2

MR3,3 | MN1 | MN2 | MN3 [MN4 | MN5S | MN6

MRI1,1

MR1,2

MR1,3

MR2,1

MR2,2

MR2,3

MN1

MN2 2 2 2

MN3

MN4

MNS

MNG6

Therefore, at the end of the day this factor
determined all the rest, that is, the kind of new
services the component would offer and the type of
standard it would set, as well as all the rest factors
that belong to the “Management” axon, that is, when
must development end, how many people should be
involved with development and with what skills, and
as a consequence of these latter two factors the costs
of development and future purchase. Having all
these in mind the management/development team
reached the conclusion that market conditions were
in favor of developing such a component and that
potential implications or development risks would
be manageable. Hence, the development of the C2
component was launched, starting with the analysis
part based on step 3 of the proposed methodology.
Step3: Collection of informational features of C2
OD-R _ developers decided to provide all the
services listed in table 5 via a special component
storage-retrieving system, which is currently under
development. This system is based on an encoded
scheme of components’ features stored in a
relational database and an intelligent retrieving
mechanism based on genetic algorithms. Upon
retrieving a component the reuser will have access to
source code and diagrams, as well as to test cases
and failure data.

RE-EU _ The VORD methodology presented in
table 6 was utilized to analyze the required services
using as viewpoints the preceding component
feeding -, and the subsequent component being fed
by -, the component under development, seen as a
chain of functional components. These two
viewpoints were regarded as stakeholder entities and
services were defined according to their needs.
OD-EU _ factors were covered through the OD-R
relationship informational template.

The application of the proposed methodology
proved simple and straightforward in practice,
giving a new perspective as regards the way that
components can be conceived, analyzed, developed
and finally become commercially available to
potential reusers. Following the suggested steps the
components’ developers were able to: (i) investigate
the feasibility level of producing a profitable
commercial component from the management’s
point of view and analyze the implications of the
development process before the process started, and
(ii) identify and incorporate a set of functional and
non-functional characteristics in a systematic and
controlled way, in the case a decision for proceeding
with development of a specific component was
taken. In addition, they felt confident that they
touched upon significant marketing and management

issues and that the component they produced
enclosed all prerequisites for being a success in the
application domain addressed.

4 CONCLUSIONS - FUTURE
WORK

Seeking for quality in software will always be
the ultimate goal for a computer scientist or software
engineer, no matter what the technical environment
for development or the application domain may be.
Radical changes in the way we produce software as
we move to more efficient, automated and modern
development tools and techniques, necessitate a
certain transition in the methodology used for
measuring and assuring quality. One of these
modern ways to produce software applications
nowadays is through reusing existing software
components assembled to achieve the desired
functionality and purpose.

This paper studied issues of analysis and
management during the development of new
software components, emphasizing on quality
features and critical characteristics that contribute to
the production of successful commercial
components. Our proposition was a simple and
effective step-by-step methodology that provides the
means for investigating market and management
aspects prior to developing components on one
hand, and a systematic way for performing
requirements analysis of a new software component
on another. The proposed methodology begins with
defining a critical, raw-basis informational platform
for a particular component, based on three axons:
Market, management and generality. Factors within
these axons are identified and analysed from the
management’s point of view, addressing potential
implications during the development phase and
assessing the prospect of commercial success. This
analysis reveals the level of dependency between
costs, time and human resources according to market
conditions and supports developers to decide
whether to proceed to developing a component or
not. In the case of proceeding to development the
methodology suggests a new requirements elicitation
and gathering process, with the factors’
informational platform already defined serving as
the foundation of a model describing the
relationships between three entities participating in
component-based software development: The
developer of a component, its reuser, and the end-
user of the software application in which the

component is integrated. The proposed methodology
analyses each of these relationships to define a set of
requirements features, both functional and non-
functional, as well as the necessary documenting
information, that a component must provide to
become more attractive than its competitors and to
achieve a significant number of uses.

The methodology was demonstrated and
validated through a telemedicine software
application based on components. The development
of two components was approached through the
steps proposed and the most significant result was
the management’s decision to produce only one of
the two components for commercial purposes, due to
the fact that the factors’ analysis of the abandoned
one (first component) suggested that market
conditions did not justify the expected development
costs/resources risks. The development process of
the second component was based on the
requirements elicitation scheme proposed and
developers expressed their satisfaction having a
systematic way of collecting components’ functional
and non-functional features and their confidence that
the software component produced via this
methodology reached high levels of quality.

Our future work will concentrate on three
directions: First, on completing the components’
storing and retrieving software system currently
under development. Second, on investigating the
determination of the weighting structure that can be
used to describe the correlation between each of the
axons, as well as the factors defined within each
axon. Finally, on employing the proposed
methodology in several other case studies, to
compare its practical implementation in different
application domains.

REFERENCES

Barber, K.S., 1999. Increasing opportunities for
reuse through tool and methodology support for
enterprise-wide requirements reuse and
evolution. 9" Annual Workshop on Software
Reuse (WISR9).

Baum, L., Becker, M., Geyer, L., Molter, G., 2000.
Mapping requirements to reusable components
using Design Spaces. IEEE International
Conference on Requirements Engineering
(ICRE2000).

Baum, L., Becker, M., 2000. Generic components to
foster reuse. 37" International Conference on
Technology of Object-Oriented Languages and
Systems (TOOLS-PACIFIC 2000).

Garlan, D., Monroe, R. and Wile, D., 1997. ACME:
An Architecture Description Interchange
Language. CASCON'97.

Grundy, J., 1999. Aspect-oriented requirements
engineering for component-based software
systems. 4" IEEE International Conference on
Requirements Engineering (RE 1999).

Grundy, J., 2000. Multi-perspective specification,
design and implementation of software
components using aspects. International Journal
of Software Engineering and Knowledge
Engineering 10(6).

Kotonya, G., Sommerville, 1., 1996. Requirements
Engineering with viewpoints. BCS/IEE Software
Engineering J., 11(1), 5-18.

MEDICATE, 2000. The control, identification and
delivery of prescribed medication. FP5-IST
project, IST-2000-27618.

Mili, A., Mili, R., Mittermeir, R., 1994. Storing and
retrieving software components. [6th
International Conference on Software
Engineering. IEEE Computer Society Press.

Ncube, C., Maiden, N.A.M., 1999. PORE:
Procurement - Oriented Requirements
Engineering method for the component-based
systems engineering development paradigm. 2"
international workshop on Component-Based
Software Engineering.

Seppanen, V., Helander N., Niemela, E., Komi-
Sirvio, S., 2001. Original software component
manufacturing: Survey of the state-of-the-
practice. Euromicro Conference (CBSE2001).

Schach, S.R., (1999). Classical and Object-Oriented
Software Engineering. McGraw-Hill, London, 4™
edition.

Sitaraman, M., Kulczycki, G., Krone, J., Ogden,
W.F., Reddy, A.L.N., 2001. Performance
specification of software components. 4 CM
SIGSOFT Software Engineering Notes.

Sommerville, 1., 2000. Software Engineering,
Addison-Wesley, 6th edition.

Sugumaran, V., Tanniru, M, Storey, V.C., 1999.
Identifying software components from process
requirements using domain model and object
libraries. 20" International Conference on
Information Systems. Association for
Information Systems.

Szyperski, C., 1997. Component Software. Beyond
Object-Oriented Programming. Addison-
Wesley.

Wallnau, K.C., Hissam, S.A., Seacord, R.C., 2002.
Building systems from Commercial Components.
Addison-Wesley.

