Essential Features of a Compiler Target Language
for Parallel Machines

George A. PapadopoulosT

Department of Computer Science
University of Cyprus
75 Kallipoleos Str.
Nicosia, P.O.B. 537, CY-1678
CYPRUS

E-mail: george @turing.cs.ucy.ac.cy

Abstract

Term Graph Rewriting Systems (TGRS) have been
used extensively as an implementation vehicle for a
number of, often divergent, programming paradigms
ranging from the traditional functional programming
ones to the (concurrent) logic programming ones and
various amalgamations of them, to (concurrent)
object-oriented ones. More recently, the relationship
between TGRS and process calculi {such as the -
calculus) as well as Linear Logic has also been
explored. In this paper we describe our experience in
using an intermediate Compiler Target Language
(CTL) based on TGRS for mapping a variety of
programming paradigms of the aforementioned types
onto it, highlighting in the process some of the
issues which we feel any such intermediate
representation should address and which form
effectively a minimum set of features every CTL
should possess.

1. Introduction

Term Graph Rewriting Systems ([3]) offer a
powerful computational model for declarative
languages. It can be shown that a functional program
can be mapped onto an equivalent canonical rewriting
system. However, logic programs can also be seen as
sets of equivalence preserving rewrite rules. TGRS
has been shown to be a powerful generalised

t Temporary attachment: German National
Research Centre for Computer Science (GMD-
FIRST), Rudower Chaussee 5, D-1199 Berlin,
Germany. E-mail: hem @ prosun.first.gmd.de

0-7803-2018-2/95/$4.00 © 1995 IEEE

computational mode! able to accommodate the needs
of a variety of language families, often with
divergent operational semantics, such as lazy
functional languages, “eager” concurrent logic
languages or combinations of them and concurrent
object-oriented languages ([2]). Furthermore, it has

~been shown to be capable of expressing the

76

functionality of computational models such as Linear
Logic and w-calculus (see bibliography in [2]). In
addition, the implementation of TGRS themselves,
by means of associated CTLs such as Dactl ([4]) and
MONSTR ({1]), on a variety of (data-flow and graph
rewriting) machines such as Flagship ([10]) has been
extensively studied. For more information on TGRS,
Dactl and MONSTR the reader is advised to consult
references [1,3,4,9] and [2] in these proceedings.

In this paper we discuss some of the issues which we
feel they have played an important role in the success
of Dactl as an intermediate formalism bridging the
gap between user-level languages and (parallel)
machine architectures. We believe that these issues
are generic to the idea of using intermediate
representations (rather than being peculiar to the
TGRS model or the Dactl language) and should
therefore be addressed by any other such potential
intermediate representation formalism. Due to space
limitations we refrain from introducing Dact] here
and we ask the interested reader to consult the
relevant section in [2].

2. Some Important Features a
CTL Should Possess
2.1 Language Embedding

The notion of language embedding ([8]) is essential
in understanding the importance of the points raised

in this section. In comparing two fanguages L1 and
L2 we say that L1 is more expressive or more
general or stronger than L2 if: i) L1 supports certain
programming techniques in a “better” way than L2
does and ii) L2 can be “naturally” embedded inL1.

Since all languages are trivially Turing equivalent we
should be aware of the fact that notions such as
“better” or ‘“naturally” are essentially ad hoc.
However, regarding the second point, we can say that
a tanguage L.2 can be naturally embedded into another
language L1 if the main features of L2 can be
supported directly by L1 and there is no need to
“program them around”. In other words an
implementation of L2 in L1 should be able to absorb
L2’s main features rather than reify them. A typical
example is pattern matching; consider the following
pieces of code written in some functional language
and its translation to Dactl:

F-lang: p(H:T,g(X)) -> g(H,T,X).
Dactl: P[Consih t] G[x}] => *Q[h t x];

We note that in the equivalent Dactl rule the pattern
matching is completely absorbed by the language’s
computational model. However, the same cannot
also be said about the following case where the
initial rule is a Prolog-type clause:

Prolog: p([H|T]) :- q(HT)
Dactl: P[Cons(h t]] => *Q{h t];
Plv:Var} => *Q[h:Var t:Var],
v:=*Cons[h t];

Since Dactl supports only pattern matching (one-way
unification) and not full (two-way) unification, there
is a need to work around the case where P is called
with an unistantiated argument (a variable).

In the rest of this section we identify a number of
features which we consider it is essential for any
intermediate Compiler Target Language for the
aforementioned type of languages and architectures to
support with “reasonable” efficiency. Also, we show
that Dactl indeed supports these features and it is
thus able to embed languages that are mapped onto it
rather than reify them by programming around the
languages’ features with elaborate code.

2.2 Flexible Operational Semantics

The operational semantics of Dactl are fine grain and
rather universal. Thus, they allow the direct
modelling of more concrete operational semantics as
we find them in user-level languages. The following
definition in Dactl of an append function illustrates
the above points:

Append[Nil y] => *yi
Append[Cons[h t]) y] =>
#Cons (h “*Append(t y]]:

Note that the second rule is applicable when the first
argument of Append is a Cons, in which case
Append is overwritten to a new Cons node bearing
the suspension marking # whose second argument is
a recursive call to Append. This call is activated
using *, and the notification marking * on the
argument causes the Cons node to be reactivated
when the .result has been calculated. Hence, the
original caller of Append will be notified of
completion only when the argument to Cons has
been fully evaluated. The above code could be
generated if the original program was written in, say,
a functional language with strict operational
semantics. Nevertheless, the second rule can also be
written instead as follows:

Apperd[Cons[h t] y] =>
*Cons [h *Append(t v1];

This rule specifies an eager evaluation strategy where
the partial result of Append’s reduction is made
available to its caller while the recursive call is
executed in parallel. Furthermore, it is also possible
to generate the following encoding:

Append (Cons[h t] y] =
*Cons [h Append(t y]];

This rule corresponds to a lazy version; the recursive
Append will remain dormant until the original
caller activates it again. This code could be generated
if the original program was written in a functional
language with lazy operational semantics.

What is important to note in all the above codings is
that the different operational semantics required in
each case are modelled directly by means of using
appropriately the available control annotations rather
than be “programmed around” them.

2.3 Variable Representation

We consider the issue of what exactly constitutes a
variable at the level of an intermediate representation
as being of paramount importance in the successful
design of such a formalism. In TGRSs and, indeed,
languages based on them such as Dactl and
MONSTR, a “variable” is simply any node which is
overwritable, i.e. it can be rewritten with a sub-root
redirection. Our experience in dealing with concurrent
logic, functional and, more recently, object-oriented
and Linear Logic based languages has shown that the
representation of a “variable” object can range from a
simple graph node to a small subgraph rooted at such
an overwritable node and comprising some very
useful information particular to the semantics and
characteristics of the language or formalism in
question. For instance, to represent variables in
languages like Parlog ([7])) a simple overwritable
graph node suffices. However in the language GHC,

77

a variable in a guard cannot be instantiated by any
unify operations other than the ones invoked within
the guard. So in the following clause

pX) - qX,Y) | r(y,2).

a unify operation invoked in g can instantiate the
variable Y created in q's environment but not the
variable X which was imported from p’s
environment. So every time a unification is about to
be performed at run-time the environment of this
operation must be checked against the environment
where the variable(s) involved in the unification was
(were) created.

In such a framework a Dactl variable now is of the
form Var [env] where env is a pointer to the
environment where the variable was created in the
first place; also, every unify operation itself carries a
pointer to the environment in which it was invoked
([5]). Thus when unification is about to be
performed, a pointer comparison of the two
environments is performed:

Unify(ernv viVar [env] value] =>
*True, vi=*value; { perform unification
Unifylervl v:Var[env2] value] =>
#Unifylenvli ~v value]; { else suspend

Here we should explain the fact that when the same
node id appears more than once in the LHS of some
Dactl rule, it is considered to denote a test for pointer
equality. So in the above rule the instantiation of the
variable Var will be performed if its environment
env is the same as the environment where the
Unify operation is invoked (the first argument of
Unify). Compatibility of the two environments is
modelled simply as a pointer equality between the
two env nodes; if they point to the same node then
that causes the selection of the first rule. Note that
any parallel machine that supports graph rewriting
([10]) implements pointer equality efficiently since
graph sharing is a fundamental concept in this
computational model.

In GHC/F ([6]), our own extension of GHC with
functional capabilities including handling of infinite
data structures and lazy evaluation, the graph
apparatus modelling a variable is further extended
with the variable’s defining function as for instance
in

1HS[.) =
*f:lazy Producer(.. v:Var([env f] ..],
*Eager Consumer{.. v ..];

Eager_Consumer (.. v:Var[env f} .] =>
#Eager_Consumer([.. ~v ..], *f;

In the above example an “eager” consumer predicate
is waiting to receive as input argument the value of a

variable which must be instantiated by a lazy
function. This is a typical problem in any logic-
functional language with concurrent capabilities and
introduces deadlock which is usually resoived by
means of static analysis techniques which try to
detect at compile-time the producer of every variable
and generate suitable code. In GHC/F the deadlock is
resolved more effectively at run-time by simply
firing the lazy producer of the variable. This is
possible because the variable itself holds a pointer to
its defining function thus providing a window
connecting the consumer with the producer.

Furthermore, an overwritable node can play the role
of a metavariable by being instantiated to a function
application rather than a data structure. The
following piece of code implements a
nondeterministic “commit” operation using such
overwritable nodes.

Fire Carmmit(..] => cammit:Var,
*Guardl [.. camit], *Guard2|[.. cammit];

Guardi [successful_match etc camit:Var]
=> *True, cammit:=*Bodyl[..];

Guardi [unsuccessful_match_etc camnit:Var)
=> *False;

In the above piece of code both guard processes are
executed concurrently and one of them
nondeterministically will assign the metavariable
commit to the corresponding body. These sort of
rule systems arise when programs written in some
concurrent logic or functional programming language
are translated to the more restrictive than Dactl
computational model MONSTR ({1,7}). It is for
these reasons that overwritable nodes in TGRS based
languages are often referred to as stateholders ([1,7]).

2.4 Atomicity of Rewrites

One of Dactl’s main features is that all rewritings
specified in a rule are performed atomically, so in the
following example:

Test_and Set{vl:Var v2:Var) =>
*True, vl:=*1, v2:=%2;

either both v1 and v2 have the pattern Var and are
instantiated at the same time or either of them has
already been instantiated in which case the matching
should fail. This is a very powerful concept and it
can be used to model atomic unification supported
mainly by the Concurrent Prolog family of
languages ([8]). However, implementing such a
scheme is quite expensive and computational models
like MONSTR restrict atomicity to the case of only
a single overwritable node. Although for languages
that endorse the so-called eventual publication of
unification ([8]) not even atomicity of a single
overwritable redirection is required, to model

nondeterminism effectively we need to guarantee the
support of atomic updating of such a single
overwritable node at the Dactl or MONSTR level;
otherwise, there is no guarantee that, say, the rule
system of Fire_Commit in a previous example
will behave as expected.

3. Conclusions

In mapping a variety of computational models and
languages to an intermediate Compiler Target
Language based on TGRS for parallel machines we
have identified a number of features which we believe
every such CTL formalism should possess, namely:

* Flexibility of operational semantics. In
particular, the operational semantics should be
fine grain, universal and be based on a minimum
set of primitive actions. Then the more concrete
operational semantics (lazy, eager, strict,
parallel, even sequential) of some high-level
language can be directly supported by the CTL.

* The CTL should have a liberal view of what
constitutes a variable so that different ways of
accessing such a variable can be implemented
effectively, including metaprogramming
techniques. A variable apparatus should therefore
be viewed more like a control primitive (the
“stateholder” point of view). The
implementation and use of these stateholders
must be supported efficiently by the underlying
machine architecture.

* Atomicity should be supported at least up to the
level of updating a single elementary node. A
stronger notion of atomicity will be difficult to
implement efficiently {(requiring extensive
locking) and will not be needed for many
families of languages, but a weaker one will
also not be sufficient to model effectively and
simply important control concepts (such as
semaphore handling and the stateholder
functionality). Reference [1] provides -an
excellent discussion on this point which lead to
the design of MONSTR, a subset of Dactl.

* The CTL should be based on some theoretically
sound computational model rather than being a
possibly useful but ad hoc set of add-on
primitives as it is sometimes the case for some,
otherwise highly successful, proposals (such as
Linda-type models). One advantage here is that
one can formally prove the correctness of the
transjation scheme adopted from some high-level
language to the CTL.

References

|

f2]

i3]

(4]

3]

[6)

7]

(8]

(9]

(10]

79

R. Banach, MONSTR: Term Graph Rewriting -
for Parallel Machines, in [9], pp. 243-252.

R. Banach and G. A. Papadopoulos, A Highly
Parallel Model for Object-Oriented Concurrent

_Constraint Programming, these proceedings.

H. P. Barendregt, M. C. 1. D. van Eekelen, J.
R. W. Glauert, J. R. Kennaway, M. J.
Plasmeijer and M. R. Sleep, Term Graph
Rewriting, PARLE’87, Eindhoven, The
Netherlands, June 15-19, LNCS 259, Springer
Verlag, pp. 141-158.

J. R. W. Glauert, J. R. Kennaway, and M. R.
Sleep, Dactl: An Experimental Graph
Rewriting Language, Graph Grammars and
Their Applications to Computer Science,
LNCS 532, Springer Verlag, 1990, pp. 378-
395.

J. R. W. Glauert and G. A. Papadopoulos, A
Parallel Implementation of GHC, FGCS’88,
Tokyo, Japan, Nov. 28 - Dec. 2, ICOT proc.,
Vol. 3, pp. 1051-1058.

J. R. W. Glauert and G. A. Papadopoulos,
Unifying Concurrent Logic and Functional
Languages in a Graph Rewriting Framework,
3rd EPY Computer Science Conference,
Athens, Greece, May 26-31, 1991, Vol. 1,
pp. 59-68.

G. A. Papadopoulos, A Fine Grain Parallel
Implementation of Parlog, TAPSOFT’89,
Barcelona, Spain, March 13-17, LNCS 352,
Springer Verlag, pp. 313-327.

E. Y. Shapiro, The Family of Concurrent
Logic Programming Languages, Computing
Surveys 21(3), 1989, pp. 412-510.

M. R. Sleep, M. J. Plasmeijer and M. C. J.
D. Eekelen (eds.), Term Graph Rewriting:
Theory and Practice, John Wiley, New York,
1993.

I Watson, V. Woods, P. Watson, R. Banach,
M. Greenberg and J. Sargeant, Flagship: A
Paralle! Architecture for Declarative
Programming, /5th ISCA, Hawaii, May 30 -
June 2, 1988, pp. 124-130.

