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ABSTRACT  

A fundamental requirement for autonomic computing is to be able 

to automatically infer how human users react in similar contextual 

conditions. This paper examines the problem of autonomic 

reasoning for adapting context-aware applications in mobile and 

pervasive computing environments. In this type of systems, both 

the context and the adaptation possibilities must be modeled 

appropriately to enable the adaptation reasoning engine to infer 

decisions on which adaptations to perform. It is assumed that 

multiple cross-cutting concerns affect such decisions, and thus we 

introduce a multi-dimensional, utility-based model which 

attempts to simulate the user’s reasoning mechanisms. The 

proposed model is applied to component-based mobile and 

pervasive applications, and is being evaluated through a detailed 

scenario. It is argued that the proposed model provides a novel 

and promising approach for designing context-aware, self-

adaptive systems, in particular with respect to mapping the 

adaptive behavior to the system. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Object-oriented design 

methods 

General Terms 
Algorithms, Design, Human Factors 

Keywords 

Context-aware, Self-adaptive, Utility functions, Modeling 

1. INTRODUCTION 
With the advent of mobile computing and the increasing 

importance of ubiquitous computing, one can easily realize the 

potential of context-aware, self adaptive systems. Such systems 

are commonly expected to provide autonomic behavior, utilizing 

their knowledge on the context to adapt their functioning. For all 

these, the main driving and guiding force is the optimization of 

the user experience. In other words, the context is sensed and the 

adaptations are decided with the purpose of improving the service 

utility as it is perceived by the user in the mobile or ubiquitous 

computing environment. 

However, building systems which can be configured to anticipate 

and react on the user needs and wishes is not trivial. The human 

reasoning is complex and it has not been sufficiently understood 

yet. Furthermore, different users exhibit different behavior and 

consequently, different choices. Even if users were interviewed, 

many would not be able to detail their decision process in the 

form of an algorithm. Many users are not even explicitly aware of 

the factors which affect their decision, when faced with a choice. 

In this respect, we propose an approach which attempts to take 

into consideration as many choice-affecting aspects as possible. 

These aspects form a multidimensional space, and the choice is 

automatically made based on the overall matching across these 

dimensions. It is argued that this approach can offer a reasonable 

approximation of the user’s reasoning process, while at the same 

time requiring only a reasonable amount of work from the 

developers. Finally, it is assumed that the developed applications 

are component-based and are dynamically composed at runtime. 

The rest of this paper is structured as follows: Section 2 provides 

the required foundations regarding context awareness and self-

adaptive behavior in mobile and pervasive computing systems. 

Then, the basic multi-dimensional reasoning model is presented in 

Section 3. A case-study scenario is introduced in Section 4 to 

evaluate the proposed multi-dimensional utility-based approach. 

This approach is compared with related work in Section 5 and, 

finally, Section 6 concludes the paper by summarizing its main 

contributions and by pointing to our plans for future work. 

2. FOUNDATIONS 
Consider a user in a mobile or pervasive computing environment. 

Such environments are generally designed to offer services to the 

users and they involve both direct and indirect user interaction. In 

both cases it is assumed that the user perceives the service and has 

a personal opinion about its utility (i.e. different users might 

perceive the utility of the same service differently). In this 

discussion, the utility refers to a quality metric, broader than 

Quality of Service (QoS), which aims to capture the general user 

satisfaction with the functioning of a system in a given context. 

For instance, if a user prefers a system configuration over another 
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one, then it is assumed that the former has a higher utility. A more 

formal definition of utility is provided further on. 

In mobile and ubiquitous computing environments, the context 

changes frequently. For this reason, systems targeting this type of 

environments feature multiple configurations and modes (referred 

to as variants in this paper), which are designed to optimize the 

utility for different subsets of the context space. In the scope of 

context-aware, self-adaptive systems the main goal is to provide 

mechanisms which dynamically and automatically find and apply 

the optimal configuration as the context changes. In this case, we 

assume that the optimality is computed by means of the user-

perceived utility, which must be maximized. 

In order to enable a more rigorous study of the problem, we 

propose a set of definitions for context, variants and utility. These 

definitions provide the foundation for the proposed approach. 

2.1 Context 
In this text we follow Dey’s definition for context, which is one of 

the most frequently cited [1]: “Context is any information that can 

be used to characterize the situation of an entity. An entity is a 

person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user 

and application themselves”. 

In practice, context can be divided into several cross-cutting 

types, or dimensions. Some of these are infinite (e.g. time) while 

some others are limited in value (e.g. the user’s gender can only 

be “male” or “female”). In this perspective, the context might be 

modeled as a multidimensional space in which each relevant 

context type defines a dimension (in the case of types with finite 

value-domains, each value is assigned a range in the dimension). 

Similar approaches exist in the literature such as the one in [2]. 

Assuming that each context type can be abstracted by a real 

number (i.e. �), then a context space of d types can be abstracted 

as a d-dimensional space �d. Then, at any time t, the context can 

be abstracted by a point ct, which defines a value for each of the d 

dimensions (i.e. the ct is defined as (ct
1, ct

2, …, ct
d), where ct

i 

indicates the context value at dimension i for the time instance t). 

We refer to these points ct as context instances. More formally, 

these two terms can be defined as follows: 

Context instance 
ct A (ct

1, ct
2, …, ct

d) � �d, where ct
i � � � i in [1..d] 

(1) 

Context space 
context space A �d 

(2) 

In these definitions, the context space (or context) is defined as a 

d-dimensional geometric space, and a context instance is a point 

(or vector) of the space. Although a geometric analogy is used to 

characterize the context, no assumptions are made concerning the 

relation between points, especially their geometric distance. Since 

discrete states of context can be mapped to (arbitrary) real values, 

no relation can be guaranteed for neighboring points. 

2.2 Variants 
In software engineering, there are two main approaches for 

software adaptation: parameter adaptation and compositional 

adaptation. Several aspects of adaptations have been extensively 

studied, such as where, when, and how they are applied [3]. 

In the context of mobile and ubiquitous computing environments, 

adaptivity is required to overcome the variability of these 

environments. In this respect, systems are designed with adaptive 

properties so that a system can be configured in different modes 

(i.e. combinations of component compositions and parameter 

settings), each one of which is designed to offer maximum utility 

for different conditions of the context. The main characteristic of 

alternative variants is that they maintain the functional properties 

of the software system, while possibly varying their extra-

functional characteristics. In this case, the purpose of the context-

aware, self-adaptive system can be seen as the adjustment of the 

extra-functional properties of the system with the aim of 

optimizing the perceived utility [4]. 

Assume that the system supports a finite set of N variants: 

variant1, variant2, …, variantN. In practice, the set of variants can 

be infinite. For example, in the case of parameter adaptation the 

value domain can be infinite (e.g. consider a component which 

can be adapted dynamically by setting an interval parameter to 

any “positive integer”). In order to simplify the analysis of such 

systems, it is important to assume that in such cases, the 

adaptation domain can be transformed to a finite set of 

configurations by quantizing their value range (i.e. by mapping 

ranges of the infinite domain to a finite number of values). For 

instance continuing with the previous example, the “positive 

integer” parameter can be reduced to {“0”, “greater than zero and 

less than 10”, “10 or more”}. In this way, it can be assumed that 

the number of variants is always finite. 

In some cases, these variants are defined a priori by the software 

developers. However, in order to provide maximum flexibility 

and to meet the requirements of such dynamic environments, the 

variants are often required to be constructed dynamically. For 

instance, in component-based systems the variants are constructed 

by examining the provided and required services (i.e. interfaces) 

of each component [5]. Thus, the exact set of available variants 

fluctuates according to the availability of components and 

services and also according to the contextual conditions. The 

definitions of variants are summarized below: 

Variant 
A variant is any parameter-based or compositional-

based configuration of the application, maintaining 

its original functional properties 

(3) 

Variants 
variants A {variant1, variant2, …, variantN} 

(4) 

In this paper, we are primarily concerned with component-based 

applications, and thus we assume that the system comprises of 

either a single application or a set of applications. However, we 

consider the utility of each possible application individually, 

partly based on the user preferences for each one of them, as it 

will be discussed in the next section. 

2.3 Utility Functions 
Here, we refer to utility functions as mathematical artifacts which 

map combinations of context states and variants to scalar values, 

typically in the range [0, 1] where 0 indicates minimum (worst) 

utility and 1 indicates maximum (best) utility (i.e. quite similar to 

the notion used in micro-economic where utilities represent user 

happiness). The choice of the [0, 1] bounds provides the 

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3848 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3848 



convenience of allowing the multiplication of different utilities 

without exceeding the original bounds. 

The purpose of a utility function is to provide a formal, 

mathematical method for computing the utility of a service, as it is 

perceived by the end-user. In this respect, the utility function is 

defined as shown below: 

Perceived utility fu nction 
A perceived utility function (Uperceived) is a function 

that for any context point Ct and any two variants Vx 

and Vy, it computes arithmetic values (e.g. in the 

range of [0, 1]) so that f(ct, vx) > f(ct, vy) if and only 

if the user prefers variant Vx to Vy from her or his 

point of perception 

(5) 

Given this definition, the problem of decision in self-adaptive 

context-aware systems becomes the formation of a computed 

utility function (Ucomputed) which can approximate the perceived 

utility. This approximation is the topic of the following section. 

3. MULTI-DIMENSIONAL MODEL 
Most modern mobile phones provide personalization, and manual 

adaptation through profiles, which are user-customizable. For 

example, a user can configure the “default” profile of his smart-

phone with a custom tune and also by setting the vibration off. 

This implies that when the “default” profile is selected, the user is 

alarmed for incoming calls with the selected tune and the smart-

phone does not vibrate. Different profiles, such as the “meeting”, 

can have different settings such as sound-off and vibration on. 

This example is a scenario where the adaptation affects multiple 

dimensions. For instance, one such dimension is whether there 

will be a tune played when the phone receives a call or not, and 

another dimension is whether the vibration will be activated or 

not. A third dimension, which is not completely cross-cutting, is 

which tune is played for incoming calls. In this paper, we extend 

this model, to arbitrary numbers and types of dimensions. We 

refer to these as adaptation dimensions, and we argue that it can 

provide the foundation for specifying context-aware, self-adaptive 

applications, as it will be described later on. 

To enable this kind of adaptation reasoning, the utility of each 

application is computed independently for each dimension, and 

the overall utility is computed as their weighted sum. Regardless 

of whether the subject under discussion is an application or an 

individual component, its utility over a specific dimension can be 

more easily computed in terms of a fitness function. Such 

functions measure the fitness of particular variants for specific 

context conditions. For example, considering the dimension of the 

mobile phone sound alert, the fitness function would examine if 

the variant into consideration (e.g. sound off) is a good fit for a 

given context (e.g. in a meeting). Fitness functions are essentially 

utility functions covering only a specific aspect of the adaptation. 

In practice, it is not possible to define a perfect utility function, 

because generally users are not completely aware of how they 

perceive the optimality of a service, nor can they describe it. For 

instance, it is possible for a user to sense that she or he prefers one 

variant over another, without explicitly knowing why and which 

contextual factors affect their opinion. Furthermore, it is possible 

that the user’s perceived utility depends on factors that cannot be 

explicitly measured or abstracted, such as their emotional state. 

Uperceived(variantX)A¦
i

U
i
perceived(variantX) (6) 

Ucomputed(variantX)A¦ U
i
perceived(variantX) 

K

i

(7) 

Ucomputed(�) # Uperceived(�) (8) 

In this text, we propose the formalization of utility functions 

which try to approximate the functioning of the users’ internal 

reasoning process. In practice, users evaluate the utility of a 

service over numerous aspects. This can be expressed by an 

equation as shown by formula (6), where the fitness function over 

dimension i is expressed as Ui. However, in order to implement a 

realistic adaptation reasoning algorithm which imitates the user, 

we define the computed utility which is an approximation of the 

perceived utility as shown by formula (7), and which is computed 

over a subset of the dimensions of the perceived utility. For 

example, a user perceives the overall utility offered by a video-

conference system as a combination of many factors, but that 

could be simulated by examining his perception over the video 

clarity and latency only. It is argued that this approach results to a 

computed utility which approximates the user perceived utility, as 

shown by formula (8). Furthermore, it is argued that this 

approximation provides a reasonable and realistic approach for 

enabling context-aware, self-adaptive behavior. 

Finally, it is worth noting that this elementary approach enables 

adaptation reasoning over multiple dimensions, but it is limited in 

terms of customization. Most notably, it is expected that different 

users have different perception for the importance of each of the 

examined dimensions, compared to other users. For this reason, 

the overall utility of an application is expressed as the weighted 

sum of the dimensional utilities, as shown below: 

¦

¦

 

 

�

{
K

i

i

K

i

mjii

mj

w

CVfitnessw

CVUtility

1

1

)),((

),(
 

(9) 

The weights wi can be adjusted to reflect the importance of each 

of the monitored dimensions for the targeted user. In this paper, it 

is assumed that the weights are manually adjusted by the users, 

but in future work we plan to provide methods and mechanisms 

that automate this (for example by taking into consideration user 

feedback that is collected at runtime). 

Given this mathematical method for computing utilities, a 

context-aware, self-adaptive system can be constructed by means 

of evaluating the computed utility of each variant whenever the 

context changes, and by adapting to the optimal variant when 

needed. This approach is evaluated in the following section. 

4. CASE STUDY-BASED EVALUATION 
To illustrate the functioning of the proposed approach, we present 

a case-study scenario, along with explanations of how the utility 

functions are evaluated along the scenario. The scenario is about 

an on-site technician who uses a smart-phone device to assist her 

in her everyday assignments. In particular, the smart-phone runs a 

specialized, context-aware application which updates her of any 
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upcoming tasks even while out of the office and, also, it allows 

her to interact with her colleagues when she needs to do so. 

For simplicity, we consider four dimensions only. Based on these 

dimensions, the system tries to optimize the user’s perception. 

These dimensions are the hands-free operation, the audio volume, 

the system response and the video quality. The hands-free 

operation dimension examines the user’s need for hands-free 

operation (i.e. when she is driving) and the system’s ability to 

provide her this mode. The audio volume dimension controls the 

audio volume, for which the user’s need may vary, based for 

example on the ambient noise. The system response dimension 

measures the capacity of the system to quickly respond to the user 

input. The user’s need for responsiveness may vary based on her 

activities (e.g. relaxing at home or working on a difficult and 

stressful task) and its provision can depend on factors such as 

CPU load and network latency and bandwidth. Finally, the video 

quality dimension measures the video stream quality (i.e. in terms 

of resolution, refresh rate, and colors), which is relevant when the 

user uses to a video conferencing application. 

A typical day of this user is as follows: The user wakes up and 

starts preparing for work. She then takes her car to work, at which 

time she instructs her smart-phone to sync with the enterprise 

server. When the user arrives at office, she has a video conference 

with her colleagues to plan the day’s activities. Next, she drives to 

a client’s site and her agenda is updated dynamically while she 

drives. The updates are spoken to her by a text-to-speech system. 

The user arrives on-site and uses the device to get information in 

the specifications of the machinery she needs to maintain, and 

also in order to contact her colleagues by voice when needed. 

To enable this sort of scenario, a smart-phone device is assumed, 

running an appropriate context-aware, adaptation supporting 

middleware. Such middleware would provide functionality for 

automatic context management (i.e. sensing and access of context 

data), and for deployment and adaptation of applications. 

4.1 Experimental Setup 
In the following paragraphs, we describe the experimental setup 

which is based on the case study scenario and which attempts to 

demonstrate how the multi-dimensional utilities approach is used. 

Table 1: Case study scenario - Possible variants 

# Short name Descr iption 
1 Offline-Visual No net connection with visual UI 

2 Offline-Audio No net connection with audio UI 

3 Offline-Audio-

Loud 

No net connection with audio UI and 

loud volume 

4 Online-Visual Online operation with visual UI 

5 Online-Audio Online operation with audio UI 

6 Online-Audio-

Loud 

Online operation with audio UI and 

loud volume 

7 VideoConf-HQ Video conference mode with high 

quality streaming 

8 VideoConf-LQ Video conference mode with low 

quality streaming 

First, based on the possible component compositions and the 

parameter settings, the middleware dynamically constructs the set 

of possible variants (i.e. possible system configurations). These 

variants specify compositions of the application, as well as values 

of their configurable parameters. For simplicity, the numerical 

parameters are quantized to a few values only (e.g. the volume is 

set for either noisy or quiet environments, as opposed to allowing 

arbitrary values in a range of 0 to 1 for example). A limited and 

fixed set of variants is defined as shown in Table 1. 

Throughout the execution of this scenario, the middleware 

monitors the context (including the user’s occupation, status and 

anticipated needs) and tries to autonomously select the most 

suitable variant. This sort of adaptation is decided by means of a 

feedback control loop, which continuously estimates the utility of 

each possible configuration through a set of utility functions (in 

this case the feedback consists of the sensed context values). 

Applying the four detected dimensions to the utility function of 

formula (9) results to the equation shown below: 

4321

44332211 )()()()(
),(

wwww

fwfwfwfw
CVU mj

���

�����������
  

(10) 

In this case, the utility of each variant Vj for some given context 

conditions Cm is computed as the weighted sum of the fitness of 

the given variant for the specified context, over the four detected 

dimensions. In this case, the weights are assumed to be values in 

the range [0, 1] reflecting the importance of each aspect to the 

targeted user. In this example, it is assumed that all weights are 

equal (for example set to 1). 

Next, the fitness functions of formula (10) are defined, in relation 

to the context and to the variants’ properties. Generally, the 

fitness functions attempt to evaluate the relevant context types 

and the corresponding properties of the variant into question. 

Their goal is to return higher values for better matches of the 

given context with regards to the dimension into consideration. 

An example of how the functions of the case study example 

would be constructed with pseudo-code is depicted in the 

following: 

f1(�) A Utilityhands-free: 

  if(context.user.state is driving OR manual_work) 

  then return variant.offered_hands-free 

  else return 1 - variant.offered_hands-free 

f2(�) A Utilityaudio-volume: 

  1 – diff(context.env.noise_level, variant.offered_audio-volume) 

diff(x, y): a function which compares two values x, y and returns a 

higher value the more different they are (min 0 and max 1) 

f3(�) A Utilitysystem-response: 

  if(context.user.state is manual_work) 

  then (0.7*variant.offered_sr + 0.3*context.resources.cpu_avail) 

  else (0.5*variant.offered_sr + 0.5*context.resources.cpu_avail) 

f4(�) A Utilityvideo-quality: 

  if(context.user.state is video_conferencing) 

  then (0.6*variant.offered_vq + 0.4*context.resources.net_bw) 

  else 0 

Figure 1: Fitness functions of the case study scenario 

Figure 1 shows how the fitness functions are generally expressed 

in terms of context values (e.g. context.user.state) and variant 

properties (e.g. variant.offered_hands-free). Based on the body of 

these fitness functions, the context needs can also be computed. 

To better understand the nature of the dimensional (fitness) utility 

functions, consider that had the user being interested in just one 
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dimension of the adaptation domain (e.g. hands-free option), then 

that fitness function (e.g. f1) would correctly rank the variants for 

a context state, based on their offered hands-free properties only. 

As mentioned already, it is assumed that the middleware provides 

automatic management of context sensing, and asynchronously 

informs the adaptation reasoning engine whenever some relevant 

context change occurs (i.e. a change in the above context types). 

The relevant context types for this scenario are shown in Table 2. 

Table 2: Case study scenario - Needed context types 

Context type Descr iption & Values 
Describes the state of the user (i.e. whether 

she or he is working, resting, sleeping, etc) 

user.state 

Values: driving, manual_work, video_conf, 

resting, sleeping 

Describes the level ambient noise (i.e. noise 

in the environment of the device) 

env. 

noise_level 

Values: lower, low, medium, high, higher 

Describes the availability of CPU based on 

the work load and the running applications 

resources. 

cpu_avail 

Values: 0:0.1:1, where smaller values 

indicate lower availability and higher values 

indicate higher availability 

Describes the bandwidth of the network, as a 

percentage of the total available (e.g. 

assuming a 54Mbits 802.11G interface) 

resources. 

net_bw 

Values: 0:0.1:1, where 0 indicates no 

network connection, 1 indicates 54Mbps 

bandwidth availability, etc 

The other constituent of fitness functions are the variant 

properties. These properties describe the variants in terms of 

specific characteristics, such as for example their ability to 

operate in hands-free mode. These are shown in Table 3. 

Table 3: Case study scenario – Variant properties 

Variant ohf oav osr ovq 
Offline-Visual 0 0 0.2 0 

Offline-Audio 0.8 0.5 0.2 0 

Offline-Audio-Loud 0.9 1 0.2 0 

Online-Visual 0 0 0.8 0 

Online-Audio 0.8 0.5 0.8 0 

Online-Audio-Loud 0.9 1 0.8 0 

VideoConf-HQ 0.5 0.5 0.7 1 

VideoConf-LQ 0.5 0.5 0.7 0.7 

4.2 Experiment Scenes 
Based on the experimental setup of Section 4.1, we define a 

detailed scenario, which comprises a number of individual scenes. 

For each one of these scenes, we define the context values for the 

relevant context types (As mentioned already, it is assumed that 

the middleware provides automatic management of context 

sensing, and asynchronously informs the adaptation reasoning 

engine whenever some relevant context change occurs (i.e. a 

change in the above context types). The relevant context types for 

this scenario are shown in Table 2. 

Table 2) and we compute the utilities for each dimension 

independently, as well as the overall utility. Based on the scenario 

described at the beginning of this Section, we define the scenes as 

shown in Table 4. 

Based on these settings and their specified context values, the 

adaptation reasoning engine evaluates the dimensional utilities for 

each of the four aspects, as well as the overall utility as the 

weighted sum of these utilities. Based on these, an individual 

ranking of the variants is inferred for each of the examined 

context states. These results are illustrated in Table 5. 

Table 4: Case study scenario - Experiment scenes 

Scene # Descrip tion & Context 
Context user.state env.noise res.cpu res.net_bw 

The user is still at home, and syncs her smart-

phone’s agenda over the slow home network. 

Scene #1 

resting low (0.1) hi (0.9) med (0.5) 

The user enters her car and drives to work. She 

wants to continue receiving updates in her agenda. 

Scene #2 

driving med (0.5) hi (0.8) low (0.2) 

The user sits at her office and has a video conf 

with her colleagues to plan the day activities 

Scene #3 

video_con

f 

med (0.5) hi (0.7) hi (0.9) 

The user arrives to the client’s site and performs 

manual maintenance on the installed equipment 

Scene #4 

man_work hi (0.9) lo (0.3) med (0.6) 

As illustrated in Table 5, a different variant is selected for each 

scene (i.e. context conditions). For the first scene, the typical 

online variant with visual UI is selected. This is a reasonable 

choice as the home environment is characterized by low ambient 

noise, medium network bandwidth and the user is capable of 

using the preferred visual UI mode of interaction. The overall 

(average) utility is computed to be 0.64, with the corresponding 

computed utilities for hands-free, audio-volume, system-response 

and video-quality set to 1, 0.9, 0.67 and 0 respectively. The rest of 

the selections are also argued to be reasonable for the contextual 

conditions of each scene. 

Table 5: Adaptation decisions based on dimensional utilities 

Scene # Selected Variant Score overall (dimensional) 
Scene #1 Online-Visual 0.64 (1, 0.9, 0.67, 0) 

Scene #2 Online-Audio 0.61 (0.8, 1, 0.64, 0) 

Scene #3 VideoConf-HQ 0.76 (0.5, 1, 0.56, 0.96) 

Scene #4 Online-Audio-LD 0.61 (0.9, 0.9, 0.65, 0) 

The complete set of computed utilities (both dimensional and 

overall) can be computed with a small script implementing the 

dimensional utility functions. This can be especially useful for the 

developers of the context-aware applications, as it allows them to 

fine tune both the variant properties (as shown in Table 3) and the 

dimensional utility functions (i.e. the fitness functions as shown in 

Figure 1). This kind of matrices provides important insight to the 

developers concerning the correctness of the utility functions as 

well as the functioning of the context-aware system early on at 

development time. In the next section we compare the proposed 

multi-dimensional model to the related work, and we argue on its 

advantages and limitations. 

5. RELATED WORK 
The current state of the art refers to three main types of adaptation 

approaches, namely action-based, goal-based and utility-function 

based [6]. In this paper we are concerned with utility function-

based approaches, which assign values (utilities) to adaptation 
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alternatives and which provide higher levels of abstraction by 

enabling dynamic determination of the optimal adaptation 

alternative (variant), typically the one with the highest utility. 

The use of utility functions for enabling context-aware, self-

adaptive systems is a rather novel approach, receiving increasing 

interest from the software engineering community. For example, 

the MADAM project proposed a middleware which uses a utility-

based, architectural approach to adaptation [7]. In this case, the 

utility functions are also expressed as functions on context, using 

intermediate property predictor artifacts. The latter are used to 

compute reusable parts of the utility function. Furthermore, a 

similar multi-dimensional utility approach is also described in [8], 

but which is however limited to four QoS-specific dimensions. 

Unlike the state of the art, our approach breaks the computation of 

the utility for a variant into several aspects, covering different 

cross-cutting dimensions of the adaptation. For instance, the 

MADAM approach [7] uses a static approach where the context-

aware properties of applications are fixed into the composition 

plans, making the reuse of individual components significantly 

harder. Contrary to this, our approach does not depend on any 

hard-coded properties in the plans, but rather it dynamically 

acquires the relevant properties of each variant at deployment 

time by accessing its relevant metadata. This has the significant 

advantage of facilitating reusability. 

As it is stated in [9], interfacing with humans is one of the main 

challenges in designing and implementing autonomic computing 

systems. Quoting the author, “the difficulty with utility functions is 

that humans find them difficult and awkward to specify”. The 

results of this paper target primarily developers of context-aware, 

self adaptive systems. It is argued that the proposed model can be 

of significant help as it adopts the Separation of Concerns (SoC) 

approach to allow the developers to concentrate on an individual 

aspect of the adaptive behavior of the system at a time. Further 

on, it is argued that the proposed model can facilitate reusability 

of the context-aware and adaptation properties of the components 

(and applications), which is a significant gain for the developers. 

Finally, while this approach appears to have some potential in the 

field of context-aware, self-adaptive applications, it naturally 

comes with a few limitations as well. For instance, the tuning of 

the utility functions can be quite cumbersome and difficult to be 

performed. In this respect, we are working on a mechanism which 

tries to automatically perform that task with minimum user-

intervention, using results from the control theory field. Another 

limitation concerns the case where a large number of variants is 

deployed which poses scalability issues. However, as we are 

primarily concerned with small mobile and embedded devices 

running only a few context-aware applications, it is argued that 

this problem will not arise too frequently. 

6. CONCLUSIONS 
Mobile and pervasive computing introduces new and important 

challenges to the software developers. Especially with respect to 

the interaction with users, context-aware applications are 

expected to automatically and autonomously adapt to maximize 

the overall user satisfaction. In this respect, we have introduced a 

novel, multi-dimensional utility model which mitigates the 

complexity inherent in the development of such systems. 

The improvement is achieved by introducing a utility function-

based approach that allows the developers to focus on a specific 

aspect of the context-aware, self-adaptive behavior at a time. The 

adaptations are decided by matching the offered properties of 

each variant to the contextual conditions, and then repeating this 

for each relevant dimension. Furthermore, this approach offers 

high reusability as both the adaptation properties of the variants 

and the utility functions of the system are highly reusable. 
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