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Abstract
This paper describes the Multimedia Data Exchange (MDE) Agent Pattern, which itself describes the

decoupling of the communication mechanisms from the actual implementation of two multimedia
components. The general model of Producer (Source), Filter, Consumer (Sink) that is used for the
modeling of temporal media types as components is enhanced by this decoupling. The components must
have the ability to connect to each other. This connection could be modeled as a simple relationship
between the two components but this solution would require that the implementation of this relationship
is the responsibility of either or both of the components and would also be visible by the application. This
pattern proposes the separation and isolation of the implementation of this relationship into a different
class and also proposes customization via a hierarchy that will produce different in usage and

characteristics MDE Agents.

Name:
Multimedia Data Exchange Agent.

Indent:

Represents a directed channel connecting two directed ports of (multi)media

components that are decoupled.



Motivation:

The temporal media types like digital video, music and animation are examples
of time media sequences that have time characteristics. They have a starting time
and duration. Usually Multimedia applications must have the ability to deal
with such data. A multimedia system must have the mechanisms to produce,
transform and consume temporal data based on the time constraints that the

nature of this kind of data requires.

In modeling, the temporal media types can be viewed from two different
perspectives: the passive and the active. The distinction between those two
perspectives is the handling of time as a constraint. With temporal data we can
apply non time critical operations like copying an audio file from one location to
another or changing the luminance of a still image (passive). On the other hand
audio playing back is a time critical operation (active). Since the time constraint
adds complexity by putting additional requirements like synchronization and
multithreading, the two different views of the temporal media are modeled with
two different categories of classes: the media classes that deal with the passive
characteristics of the temporal media and the component classes that deal with the

time critical characteristics.

In a multimedia design, component classes encapsulate hardware devices and
software services and represent resources that perform time-critical operations.

Components are examples of active objects, objects that have state and behavior
like ordinary objects but they can also have their own thread of control and they

can perform actions without being requested to do so by another object.

In a multimedia system we can identify three different categories of components:
the sources (producers), the filters and sinks (consumers). Sources are
components that produce streams (time data sequences), sinks consume streams

and filters transform streams. All the different components specify interfaces for



importing and/or exporting of streams. Different protocols, stream types and
direction can be considered as the main characteristics of those interfaces that in
many cases where they simulate the hardware solutions are referred to as ports.
Furthermore for simplicity we pay emphasis more to Sources and Sinks and we
consider the Filters as Sources or Sinks since for the aspect of data exchange they

can be viewed as being so.

A component must have the ability to connect with another component. Those
connections in an object oriented model can be viewed as complex relationships
that need to be modeled as separate classes. The Multimedia Data Exchange
(MDE) Agent is a pattern for designing complex relationships that represent
different communication mechanisms. Two components can communicate via a

shared memory or via a network or via a buffer, etc.

If the MDE Agent was modeled as a simple relationship then the
implementation details of the communication should have to be embedded in
one of the communicating components and that would lead to the tight coupling
of the communication channel with the component's implementation. The
decision of what kind of connection the two components are going to have is
taken at compile time although in reality it could be more effective for this
decision to be taken at run-time during the instant availability of resources

(virtual relationship).

In Multimedia systems components are involved with a great overload of
producing/receiving streams among their other critical operations (e.g. play).
The creation of MDE Agents as separate classes helps the components to be
unaffected from the presence or absence of a connection since they can use
different threads of control than those of the components. By definition the MDE

Agents have state (connected, not connected) and behavior (Put, Get) and they



should be modeled as active objects since they require their own thread of
control. The MDE Agent is responsible for getting the streams the correct time
from the Source, and for feeding the Source with the necessary input. This
transaction justifies the use of “Agent” in the name of the pattern. When the
Source is ready to produce time data it “asks” the application to “hire” an agent

for this connection.

If we examine the system from the architectural perspective we observe that
communication channels can be shared between two totally different
components. Also, the system evolution forces the creation of the connection as a
separate class. The type of connection can change due to certain requirements
although the components remain the same or the opposite. The separation of the
components from the MDE Agents also helps resource management, since the
MDE Agent can exist only at run-time and when the communication channel is

needed.

This pattern is specialized to Multimedia. As far as we are concerned there are
two cases where a design pattern is specialized for Multimedia. In the first case,
the design pattern addresses the idioms and characteristics of Multimedia; e.g. a
design pattern for video data compression. In the second case, the design pattern
addresses a non specific (although generic) Multimedia problem which,
however, is solved from the point of view of Multimedia taking into account any

particular characteristics. This latter approach is used by the proposed Pattern.

The issue of decoupling the input/output data thread from the main thread of
control of an active component is generic and it can also be the case for non
Multimedia systems, but since in Multimedia systems the importing and
exporting of time based media and the synchronization of the Source / Sink
pipeline is very much dependent on this data transferring, we suggest the

creation of active objects that are responsible only for the data exchange and we



try to keep the components unaffected by the presence or absence of connections.
Another goal is to create modular and cohesive Source/ MDE Agent / Sink that
can deal effectively with the evolution that is continuously taking place in

Multimedia technology.

Applicability:

Use the MDE Agent Pattern:

e for modeling components that are involved with a great overload of
producing/receiving streams,

e for modeling a directed channel of communication between two components
that can speak the same “language”,

e when the designer needs to hide the implementation details of the
communication channel from the component,

o for the creation of reusable code for the communication channels between two
active objects,

e when the designer does not want to commit to a particular channel of

communication before run-time (virtual communication channels).

Structure:
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Hierarchy Diagram:
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Multimedia Data Exchange Agents:

MemoryMDEAgent : A shared memory is used as a buffer and by tightly
coupled components that run on the same machine. This MDE Agent owns
and supervises a shared memory location where the SendData of the Source
and Getdata of the Sink act.

BufferMDEAgent : The Put and Get methods of the BufferMDEAgent add
and remove respectively from a shared buffer that belongs to the Agent. They
are used by loosely coupled components that run on the same machine.
NetworkMDEAgent : The Put and the Get operate on a digital network by
performing reads and writes. They are used as communication channels of
two components running on different machines.

DelegateMDEAgent : The Get method calls the SendData of the Source and
the Put method calls the GetData of the Sink. The DelegateMDEAgent does
not provide any storage capabilities for the data exchange.

CableMDEAgent : It represents a physical cable connection. The necessary
checks have to be implemented in the connect() method and the Get and Put

methods are null methods.



Participants:

Source : A component that has at least one Output Port. Output Port is the
interface used by the component to export multimedia streams.

Sink: A component that has at least one Input Port. Input Port is the interface
used by the Sink in order to import data.

Multimedia Data Exchange Agent: Connects an Output Port of a Source with
an Input Port of a Sink and implements the required connection in a way that
it frees the connected components from the implementation details and the

handling of this communication channel.

Collaborations:

1.

MDE Agent construction - In this phase the client application calls the MDE
Agent's constructor and passes as parameters references to the two
components that need to be connected. The constructor of the MDE Agent
establishes the reference of the Source to the associated Sink and also the
reference of the Sink to the associated Source. The main task of the constructor
is to create the necessary conditions for this connection.

Establishment of the connection - In this phase the client application
establishes the connection. It is necessary that beforehand the client
application is ensured that the Source is ready to export data and the Sink is
ready to import data. After that, it calls the MDE Agents method Connect that
will establish the connection which returns an ErrorCode that identifies the
state of the connection. In C++ the ErrorCode can be replaced by the necessary

exception handling.

. Disconnection - In this phase the connection is not necessary and the client

application calls the Disconnect method of the MDE Agent that is responsible

to nil the references from Source to Sink and from Sink to Source.



Consequences
The MDE Agent pattern has the following benefits and drawbacks:

1. Connects an Output port of a Source or a Filter to an Input port of a Sink or a
Filter by making the necessary checks for the correctness of this connection
and the availability of the Input port.

2. It offers the necessary sources for this connection.

3. It removes all the responsibility of this connection from the components. The
connection runs using a different thread of control that deals with the
complexity demanded like synchronization, mutual exclusion, etc. without
overloading the components with this additional requirements. The fact that
the MDE Agent localizes a behavior that otherwise it would be distributed
among the other participants promotes the reusability of the participant
components. This is possible because a change in the connection behavior and
structure (e.g. from buffer connection to shared memory connection) is not
going to affect the participant components but only the MDE Agent.

4. MDE Agents connect two components that speak the same “language”
(communication protocol). In the case that there is incompatibility, the
designer has to use an adapter pattern [1] to create compatible interface.

5. The creation of the communication channel as a separate part at runtime
generates the risk of inability to create a communication channel due to the
lack of resources since creating separate entities is more resource demanding.
On the other hand, the static creation of communication channels that are not
going to be utilized and they exist just in case they need to be used is possibly
expensive.

6. The MDE Agents are unidirectional channels of communication. The reason
for this is that by nature the time media have a specific direction. The same
implementation is used for hardware solutions with input and output ports.

7. The details of how the components communicate is hidden from the

application.



Implementation

The purpose of this pattern is not to show how the implementation of the
different MDE Agents should be done but to show the separation of a
relationship from the implementation. The implementation of the different
descendants that deals, for example, with the network or the buffer behavior can
follow existing patterns that are specialized for this behavior of the components.
The MDE Agent Pattern defines the necessary interface for the different MDE
Agents which is sufficient for replacing a complicate relationship with a class

relationship.

1. From the structure diagram every MDE Agent has a “has” relationship to the
Source via an attribute named SourcePort and a “has” relationship to Sink
named SinkPort. Both of them have protected export control which means that
they are available only to the descendant of the class MDE Agent.

2. Every Source must know every Sink it is connected to and vice versa if such a
connection exists. This setting is done by the MDE Agent in the method
Connect() which sets the necessary interface attributes of the Source and the
Sink.

3. From the Source and the Sink there are no relationships to MDE Agent. The
creation of the MDE Agent and the establishments of the SourcePort and
SinkPort are done by the application.

4. Mutual Exclusion. In the case of BufferMDEAgent and MemoryMDEAgent
the methods Get and Put must implement mutual exclusion mechanisms.

5. In the case of BufferMDEAgent a FIFO mutual exclusive buffer must be used.
The allocation of the buffer is better to be done in the constructor of the
BufferMDE Agent.

6. The MDE Agents are active objects. For the creation of the base mechanism of
the MDE Agent we suggest the use of the Active Object [2], an Object
Behavioral Pattern for Concurrent Programming created by R. Greg Lavender

and Douglas C. Schmidt.



Sample code
The following C++ code shows the definition of the MDE Agent.

Class Connector{
public
/l Public attributes

/l constructor
Connector (Components* ProducerComp, Components* ConsumerComp);

// connection methods

virtual ErrorCode Connect();
virtual ErrorCode Disconnect();

/! destructor method

virtual ~Connector ();

/I other public methods
protected

// state attributes

Component * SourcePort;
Component * SinkPort;

/I communication methods
virtual ErrorCode Get (void* data, int nbytes);
virtual ErrorCode Put (void* data, int nbytes);

/I other protected methods

Known Uses
The whole development of the MDE Agent pattern was inspired from the Gibbs

and Tsichritzis model [3] where the MDE Agents are defined as Connectors.
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Related Patterns

Mediator is a similar pattern. The main difference is that Mediator deals with
passive objects. The MDE Agent is an active object with the Connect method to
create a separate thread of control. Another difference is that the Colleague
classes knows about its Mediator and that can promote coupling between
Colleague classes and Mediator. The Mediator supports also a multidirectional
protocol in contrast to the MDE Agent that supports only unidirectional
protocol.

Siemens Filters Pipes have a lot in common with our pattern. Pipes are similar to
the MDE Agent. They both connect two active objects and they are both used for
data exchange. On the other hand, there are some major differences:

1. It is clear that the control for the data exchange is in the Filter and not the
Pipe. Pipes are passive and they act as an intermediate storage for the
data exchange of two filters. In our pattern, the MDE Agent has its own
thread of control; once the connection between a Source and a Sink is
established by the application, the Connector is responsible for getting the
data that the Source produces and passes it on to the Sink without the
Source or Sink having to get involved in calling the EndData or GetData.
Those two methods are invoked only by the Connector.

2. The only type of Connector covered by the Pipes and Filters is a FIFO
buffer. In Multimedia systems this is not always the case. There are cases
where a network Connector is needed, there are cases where the shared
memory approach is very important, and there are even cases where there

is only a hardware cable connection.
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